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Abstract. In this paper it is shown that the extension ideals of polynomial
prime and primary ideals in the corresponding ring of entire functions remain
prime or primary, respectively. Moreover, we will prove that a primary decom-
position of a polynomial ideal can be extended componentwise to a primary
decomposition of the extended ideal. In order to show this we first prove the
flatness of the ring of entire functions over the corresponding polynomial ring
by use of Gröbner basis techniques. As an application we give an elementa-
ry proof of a generalization of Hilbert’s Nullstellensatz for entire functions
(cf. [10]).

Keywords: Flat module, Gröbner basis, Entire function, Hilbert’s Nullstellen-
satz.

1 Introduction

In this paper we will investigate some properties of ring extensions from poly-
nomial rings to rings of entire functions. Our considerations are based mainly
on elementary algebraic arguments, in particular on the theory of Gröbner bases
in rings of entire functions.

In the same way as the decomposition of polynomial ideals into primary
components has applications in commutative algebra and algebraic geometry
decompositions of ideals in rings of entire functions are of great interest in
complex analysis and analytic geometry. We will give a partial solution of the
latter problem by providing effective methods for the computation of primary
decompositions of ideals generated by polynomials in a ring of entire functions.

This research was partially supported by KBN Grant Nr. 2 P03A 015 22 and by DAAD.
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In fact, it will turn out that the problem reduces to the decomposition of the
ideal restricted to the underlying polynomial ring. Moreover, we will show that
the restriction ideal is generated by the same polynomials in this situation.

We introduce some notions and notations which will be used throughout this
paper. By “ring” we always mean “commutative ring with unit”. For an arbitrary
integral domain A we denote by Q(A) its quotient field. The basic algebraic
structures involved in this paper are the polynomial ring R := K[X1, . . . , Xn],
X1, . . . , Xn indeterminates, the ring S := K[[X1, . . . , Xn]] of formal power
series, and the ringE := {f ∈ S|f is convergent in K

n}. Since we are interest-
ed in convergence, we restrict ourself to the fields of complex (K = C) or real
(K = R) numbers. Clearly, there are the inclusions R ⊂ E ⊂ S. In this paper
convergence of power series always means convergence at the entire space K

n.
The set T := T (X1, . . . , Xn) of all terms Xα := X

α1
1 · · ·Xαnn corresponding to

α ∈ N
n forms a K-vector space basis of R.

For f = ∑
α∈Nn cαX

α ∈ S we define the support of f by suppf :=
{Xα | cα �= 0}. The elements of R are just these of finite support. For the use
of Gröbner techniques it is necessary to order the monomials Xα in such a
way that the multiplication is (strongly) monotone with respect to the order.
Such orders are called admissible. In what follows the symbol ≺ will always
denote an admissible term order on T . An admissible term order ≺ is called an
elimination order for the nonempty proper subset Z ⊂ X if for any two terms
t ∈ T (Y ) and s ∈ T (X) \ T (Y ), where Y := X \ Z, it holds t ≺ s.

We can define a function lt : R → R assigning to each non-zero polyno-
mial f ∈ R the largest term with respect to ≺ in suppf . The term lt (f ) will be
called the leading term of f (with respect to ≺). Each polynomial ideal I ⊆ R

can be associated the so-called leading term ideal lt (I ) ⊆ R which is defined
as the ideal generated by all leading terms of non-zero elements of I . A subset
F ⊂ I of non-zero polynomials belonging to I is called a Gröbner basis of I
(with respect to ≺) if the leading terms of the elements of F generate lt (I ). An
elimination order ≺ for a nonempty proper subset Z ⊂ X has the following
nice property. If G is a Gröbner basis with respect to ≺ of the ideal I ⊆ K[X]
then the setG∩K[Y ] is a Gröbner basis of the elimination ideal I ∩K[Y ] with
respect to the restriction of ≺ to the set T (Y ) of terms in Y , where as above Y
denotes the set difference X \Z. Finally, let �I := T \ lt (I ) denote the set of
standard terms modulo I . The residue classes of the elements of �I modulo
I form a K-vector space basis of the quotient ring R/I . For a comprehensive
introduction to the theory of Gröbner basis we refer to the survey article [4] or
one of the text books [3], [5] or [6].

The theory of Gröbner bases can be generalized to ideals generated by poly-
nomials in the ring E of entire functions. Each entire function g ∈ E can be
uniquely represented as an infinite sum g = ∑

u∈T cuu, cu ∈ K. In analogy to
the polynomial case g is called irreducible modulo IE (with respect to ≺) if
cu = 0 for all u ∈ lt (I ). The central result is a division theorem [1, Theorem
3.7] which can be written in the following form:
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Theorem 1 Let I ⊆ R be an ideal, F a Gröbner basis of I with respect to
an arbitrary term order ≺ and g ∈ E an entire function. Then there exists a
uniquely determined entire function gIE,red ∈ E which is irreducible modulo
IE with respect to ≺ and satisfies g − gIE,red ∈ IE. Moreover, there exist
entire functions hf ∈ E such that

g =
∑

f∈F
hf f + gIE,red

and all terms u · lt (f ), where f ∈ F and u ∈ supphf , are pairwise distinct.

Note, if g is a polynomial then also the cofactors hf and the remainder gIE,red
are polynomials and we have a classical Gröbner division formula satisfying
hf = 0 or lt (hf f ) � lt (g) for all f ∈ F . The operator assigning to each
element g ∈ E its remainder gIE,red modulo IE (with respect to ≺) is linear
and continuous and we have g ∈ IE if and only if gIE,red = 0. Hence, any
ideal of E generated by polynomials is closed, for details see [1].

Corollary 1 For any ideal I of R we have

(IE) ∩ R = I

Proof. The inclusion I ⊆ IE ∩ R is obvious. Now, consider g ∈ IE ∩ R
and choose a Gröbner basis B of I (with respect to an arbitrary term order ≺).
Then gIE,red = 0 (considered as an entire function) and therefore g reduces to
0 modulo B (considered as a polynomial), i.e. g ∈ I . 	


Remark 1. We note that

1. R is integrally closed in E. In the complex case this can be immediately
deduced from Liouville’s Theorem. Real case follows as well as in 2. from
complex case by complexification.

2. E is integrally closed (in its field of quotients Q(E)). This follows from
Riemann’s Theorem on extension of holomorphic functions.

3. As a consequence of 1. and 2. we see that R is integrally closed in Q(E).
4. From 3. it follows that Q(R) is algebraically closed in Q(E).

The paper is organized as follows. First of all, we show thatE is a faithfully flat
extension of R using Gröbner basis techniques in Sections 2 and 3. Moreover,
in Section 3 it is proved that prime (resp. primary) ideals of R generate prime
(resp. primary) ideals in E and that an irredundant primary decomposition of
a polynomial ideal I ⊂ R extends componentwise to an irredundant primary
decomposition of the extension ideal IE. Finally, these results are applied in
order to give an elementary proof of a generalization of Hilbert’s Nullstellensatz
for entire functions in Section 4.
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2 Flatness of E via Gröbner Bases

Let R′ := R[Y ], where Y is an additional indeterminate, and let E′ be the ring
of entire functions on K

n+1.

Lemma 2 Let I ′ be an ideal ofR′ and set I := I ′ ∩R. Then
(
I ′E′)∩E = IE.

Proof. Let ≺ be an elimination order for {Y }. Consider an arbitrary f ∈ I ′E′ ∩
E. fIE,red is irreducible modulo I ′E′ since any polynomial g ∈ I ′ such that
lt (g) ∈ T (X1, . . . , Xn) belongs to I by the elimination property of ≺. Hence,
we have fIE,red = (

fIE,red
)
I ′E′,red = fI ′E′,red = 0 and it follows f ∈ IE

which implies
(
I ′E′) ∩ E ⊆ IE. The converse inclusion is obviously true. 	


The next lemma is a straightforward extension of the well known formula

I ∩ J = (Y IA[Y ] + (1 − Y )JA[Y ]) ∩ A (1)

allowing the computation of the intersection of ideals I, J of an arbitrary ring
A by elimination of a new indeterminate Y from a certain ideal sum1.

Lemma 3 Let Ĩ , J̃ be ideals of E. Then

Ĩ ∩ J̃ =
(
Y ĨE′ + (1 − Y )J̃E′

)
∩ E .

Proof. For a ∈ Ĩ ∩ J̃ we have

Ya + (1 − Y )a = a ∈
(
Y ĨE′ + (1 − Y )J̃E′

)
∩ E .

Now, let a ∈
(
Y ĨE′ + (1 − Y )J̃E′

)
∩E. The function a does not depend on Y

and can be presented in the form a = Y
∑r

i=0 aifi+(1−Y )∑s
j=0 bjgj ,where

ai ∈ Ĩ , bj ∈ J̃ , fi ∈ E′, and gj ∈ E′ for i = 0, . . . , r and j = 0, . . . , s.
The fi and gj have well defined values fi(0), gj (0), fi(1), gj (1) ∈ E, i =
0, . . . , r and j = 0, . . . , s, for Y = 0 and Y = 1, respectively. It follows
a = ∑s

j=0 bjgj (0) ∈ J̃ and a = ∑r
i=0 aifi(1) ∈ Ĩ . Hence, a ∈ Ĩ ∩ J̃ . 	


In order to emphasize that the generalization of Equation (1) to the situation
described in Lemma 3 is not self evident, note, that the equation

I ∩ J = (Y IA[[Y ]] + (1 − Y )JA[[Y ]]) ∩ A
is invalid in general since the right hand side is always equal to J .

1 In the literature, e.g. [3] or [5], we found the formula only for polynomial rings A but the
generalization to arbitrary rings is obvious.
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Lemma 4 Let I, J be ideals of R. Then IE ∩ JE = (I ∩ J )E.

Proof. Equation (1) and Lemmata 2 and 3 yield:

IE ∩ JE = (
Y (IE)E′ + (1 − Y )(JE)E′) ∩ E

= (
YIE′ + (1 − Y )JE′) ∩ E

= ((
YIR′ + (1 − Y )JR′)E′) ∩ E

= ((
YIR′ + (1 − Y )JR′) ∩ R)

E

= (I ∩ J )E 	


Corollary 5 Let I be an ideal of R. Then for all f ∈ R we have

IE :E f = (I :R f )E .

Proof. This follows from

f · (IE :E f ) = IE∩fE = (I ∩fR)E = (f · (I :R f ))E = f · ((I :R f )E)

	


Lemma 6 For all f1, . . . , fk ∈R it holds

SyzE(f1, . . . , fk) = SyzR(f1, . . . , fk)E .

Proof. The inclusion SyzR(f1, . . . , fk)E ⊆ SyzE(f1, . . . , fk) is obvious.
Now, consider s ∈ SyzE(f1, . . . , fk). The ideal of the first components of

the elements of SyzE(f1, . . . , fk) is (f2, . . . , fk)E :E f1 which is equal, by
Corollary 5, to ((f2, . . . , fk)R :R f1) E. But this is the extension of the ideal of
the first components of the elements of SyzR(f1, . . . , fk) inE. Therefore, mod-
ulo SyzR(f1, . . . , fk)E we can arrange that the first component of s becomes
zero. The statement now follows by induction on k. 	


Corollary 7 The ring E is flat over R.

3 Extension of Prime and Primary Ideals

Let d be an integer with 1 ≤ d < n and set R̃ := K[X1, . . . , Xd]. By Ẽ
we denote the ring of everywhere convergent power series in the variables
X1, . . . , Xd with coefficients from K.
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Lemma 8 Let I ⊂ R be an ideal such that R/I is a finitely generated R̃-mod-
ule. Then

E/IE  R/I ⊗R̃ Ẽ. (2)

Proof. SinceR/I is finitely generated as an R̃-module for each i = d+1, . . . , n
there are polynomials in I ∩R[Xi] which are monic with respect to Xi . Fix an
arbitrary elimination order ≺ for {Xd+1, . . . , Xn}. Then for all i = d+1, . . . , n
there are αi ∈ N such that Xαii ∈ lt (I ).

Consider now the map ϕ : R/I ⊗R̃ Ẽ → E/IE given by (r + I )⊗ ẽ �→
rẽ + IE. Let f ∈ E. Then fIE,red ∈ Ẽ[Xd+1, . . . , Xn] and therefore ϕ is an
epimorphism.

Let m1, . . . ms be elements of R such that their residue classes modulo I
generate R/I as an R̃-module. Then we have an exact sequence

R̃t
ψ−→ R̃s

π−→ R/I −→ 0

for suitable t ∈ N. We note that Imψ consists of the syzygies of R/I as an
R̃-module. Tensoring with Ẽ we get a commutative diagram with exact top row

Ẽt
ψ̃−−−→ Ẽs

π̃−−−→ R/I ⊗R̃ Ẽ −−−→ 0


�=



�=



�ϕ

Ẽt
ψ̃−−−→ Ẽs

ρ−−−→ E/IE −−−→ 0

, (3)

where ψ̃ := ψ ⊗ idẼ , π̃ := π ⊗ idẼ and ρ := ϕ ◦ π̃ . It is clear that the bottom
row of (3) is a complex and that ρ is an epimorphism.

Take (ẽ1, . . . , ẽs) ∈ kerρ, i.e. m1ẽ1 + . . . + msẽs ∈ IE. Assume I =
(p1, . . . , pr)R. Then there are e1, . . . , er ∈ E with

m1ẽ1 + . . .+msẽs + p1e1 + . . .+ prer = 0,

i.e. (ẽ1, . . . , ẽs, e1, . . . , er) ∈ Es+r is a syzygy of the ideal J := (m1, . . . , ms,

p1, . . . , pr)R of R.
By Lemma 6, (ẽ1, . . . , ẽs, e1, . . . , er) = ∑q

i=1 σie
∗
i with polynomial syzy-

gies σ1, . . . , σq of J and e∗1, . . . , e
∗
q ∈ E. Let now σ̃i := (ai,1, . . . , ai,s) ∈ Rs

be the tuple consisting of the first s components of σi , i = 1, . . . , q. Then∑s
j=1 ai,jmj ∈ I for all i = 1, . . . , q. Since R̃ ⊂ R is a flat extension,

σ̃i is a linear combination over R of syzygies of R/I as an R̃-module, i.e.
we can assume without loss of generality that σ̃i ∈ R̃s , i = 1, . . . , q. By
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substituting Xd+1 = . . . = Xn = 0 in (ẽ1, . . . , ẽs) = ∑q

i=1 σ̃ie
∗
i we obtain

(ẽ1, . . . , ẽs) = ∑q

i=1 σ̃ifi with fi ∈ Ẽ, i = 1, . . . , q. Therefore the bottom
row of (3) is exact, too, and hence ϕ is an isomorphism. 	

Let P ⊂ R = K[X1, . . . , Xn] be a prime ideal such that R/P is integral over
R̃ and P ∩ R̃ = {0}. If I is a P -primary ideal then R/I is integral over R̃ as
well.

Consider the rings L := R/P ⊗R̃ Q(R̃) and M := R/I ⊗R̃ Q(R̃). Since
tensoring withQ(R̃) is nothing else then localizing at the nonzero elements of
R̃, L is an integral domain and the zero ideal of M is a primary ideal in M .
Moreover R̃ ⊂ R/P implies Q(R̃) ⊂ L. Since L is generated as a Q(R̃)-al-
gebra by the residue classes of Xd+1, . . . , Xn, L is a field because L is now
finite and integral over Q(R̃). Hence L  Q(R̃)[η] for some primitive ele-
ment η ∈ L, i.e. L  Q(R̃)[Z] / FQ(R̃)[Z] for some irreducible polynomial
F ∈ Q(R̃)[Z]. Moreover M is an artinian local Q(R̃)-algebra (since L is a
field, M has only one maximal ideal).
Now we have

Theorem 2

1. For any prime (primary) ideal P ⊂ R the extension ideal PE is a prime
(primary) ideal of E.

2. E is faithfully flat over R.

Proof. Since the statement of the Theorem is invariant under linear transfor-
mations, we may assume that we have with d := dimR/P , P ∩ R̃ = {0}
and R/P is integral over R̃ (use Noetherian normalization). Therefore, we can
use the notations introduced above. Now E/IE ⊆ M ⊗R̃ Ẽ (Lemma 8) and
Ẽ is flat over R̃ (Corollary 7). Since Q(R̃)⊗R̃ Ẽ ⊆ Q(Ẽ) we get M ⊗R̃ Ẽ (
M ⊗Q(R̃) Q(R̃)

)
⊗R̃ Ẽ  M ⊗Q(R̃)

(
Q(R̃)⊗R̃ Ẽ

)
⊆ M ⊗Q(R̃) Q(Ẽ). In

particular, we get E/PE ⊆ L⊗Q(R̃) Q(Ẽ)  Q(Ẽ)[Z] / FQ(Ẽ)[Z]. But F
is irreducible over Q(Ẽ), too (cf. Remark 1., 4.) and therefore L⊗Q(R̃) Q(Ẽ)

is a field. Since PE ∩ R = P �= R (cf. Corollary 1), PE is a proper ideal in
E and therefore E/PE is an integral domain, i.e. PE is a prime ideal in E.
Moreover, since M is artinian, M is a finite dimensional Q(R̃)-vector space.
ThereforeM⊗Q(R̃) Q(Ẽ) is a finite dimensionalQ(Ẽ)-vector space and thus a
local artinianQ(Ẽ)-algebra (sinceL⊗Q(R̃)Q(Ẽ) is a field,M⊗Q(R̃)Q(Ẽ) has
only one maximal ideal). Therefore the zero ideal of E/IE ⊆ M ⊗Q(R̃) Q(Ẽ)

is a primary ideal, i.e. IE is a primary ideal in E which finishes the proof of 1.
Finally, 2. follows from Corollary 7 and 1. 	


Proposition 9 Let I be an ideal of R.
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1. Assume that I = Q1 ∩ . . .∩Qm is an (irredundant) primary decomposition
of I in R with Pi-primary ideals Qi , i = 1, . . . , m and P1, . . . , Pm ∈
SpecR. Then IE = Q1E ∩ . . . ∩ QmE is an (irredundant) primary de-
composition of IE in E with PiE-primary ideals QiE, i = 1, . . . , m and
P1E, . . . , PmE ∈ SpecE.

2. rad (I · E) = (rad I) · E

Proof. Part 1 follows from Theorem 2 and Lemma 4. Using the notation of part
1 we obtain

rad (I · E) = rad(Q1E ∩ . . . ∩QmE)

= rad (Q1E) ∩ . . . ∩ rad (QmE)

= (P1E) ∩ . . . ∩ (PmE) = (P1 ∩ . . . ∩ Pm) · E
= (rad I ) · E

which proves part 2. 	


4 Hilbert’s Nullstellensatz for Entire Functions

In this section we restrict ourself to the field C of complex numbers. As in
Section 3 let d be an integer with 1 ≤ d < n and set R̃ := C[X1, . . . , Xd]
and R∗ := C[Xd+1, . . . , Xn]. By Ẽ (resp. E∗) we denote the ring of entire
functions in the variables X1, . . . , Xd (resp. Xd+1, . . . , Xn) with coefficients
in C. Let y ∈ C

d . For f ∈ E we denote by f (y) ∈ E∗ the entire function
which is obtained from f by substituting X1, . . . , Xd by the corresponding
coordinates y1, . . . , yd of y. For an ideal I of R we let I (y) := {f (y) | f ∈ I }
and Iy := I + (X1 − y1, . . . , Xd − yd)R which are ideals of R∗ and R, resp.
One easily observes the equality Iy = I (y)R + (X1 − y1, . . . , Xd − yd)R. If
R/I is a finitely generated R̃-module, then dimR∗/I (y) = dimR/Iy = 0, i.e.
V (I (y)) ⊂ C

n−d and V (Iy) ⊂ C
n are non empty and consist only of finitely

many points. As already mentioned in the proof of Lemma 8, in this situation
I contains for all i = d + 1, . . . , n polynomials of the form X

αi
i + gi with

αi ∈ N
+ and gi ∈ R̃.

The next proposition extends a result due to Jarnicki, O’Carroll and Win-
iarski in the polynomial case (see [8]) to entire functions.

Proposition 10 Let Q ⊂ R be a primary ideal such that R/Q is a finitely
generated R̃-module with Q ∩ R̃ = {0}. Then for any non-empty Zariski open
subset U of C

d we have
⋂

y∈U
QyE = QE,
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in particular,
⋂

y∈Cd

QyE = QE.

Proof. It is clear, that
⋂
y∈U QyE ⊇ QE (since Q ⊆ Qy for all y ∈ U ). Let

B = {b1, . . . , bm} be a Gröbner basis of Q with respect to some elimination
order ≺ for {Xd+1, . . . , Xn}. For f ∈ R let ltdf ∈ T (Xd+1, . . . , Xn) denote
the leading term of f considered as an element of C[X1, . . . , Xd][Xd+1, . . . ,

Xn]. We note that in this context the corresponding leading coefficient lcdf is
a polynomial in X1, . . . , Xd . By our assumption there are αi ∈ N such that
X
αi
i ∈ lt (Q) for all i = d + 1, . . . , n. The set U ′ := {y ∈ U | (lcdbi)(y) �=

0 for all i = d + 1, . . . , n} is a non-empty Zariski open set such that B(y) :=
{b1(y), . . . , bm(y)} is a Gröbner basis of Q(y) for all y ∈ U ′ (cf. [2]). More-
over, the trace of a final reduction of h(y) (h ∈ R) modulo B(y) is the same for
each y ∈ U ′. Let now f ∈ ⋂

y∈U QyE. Replacing f by fQE,red we can assume
without loss of generality that f ∈ Ẽ[Xd+1, . . . , Xn], i.e. f (y) ∈ R∗ for all
y ∈ U . In addition, for all y ∈ U we have f (y) ∈ Q(y) since f ∈ QyE. There-
fore f (y)Q(y)E∗,red = 0, i.e. f (y) = ∑m

i=1 ãi(y)bi(y), where for all y ∈ U ′ the
ãi are polynomials inXd+1, . . . , Xn with coefficients which are quotients of an
entire function by a polynomial (both in the variablesX1, . . . , Xd). Multiplying
this equation by c(y), where c ∈ R̃ is a common denominator of ã1, . . . , ãm, for
suitable a1, . . . , am ∈ Ẽ[Xd+1, . . . , Xn] we obtain

(
cf − ∑m

i=1 aibi
)
(y) = 0

for all y ∈ U ′. Since U ′ is dense in C
d , this implies cf − ∑m

i=1 aibi = 0 and,
hence, cf ∈ QE. Since Q is primary, QE is primary, too (cf. Theorem 2).
SinceQ∩ R̃ = {0} and c ∈ R̃ we can deduce f ∈ QE, i.e.

⋂
y∈U QyE ⊆ QE

and therefore
⋂
y∈U QyE = QE. 	


Corollary 11 Let I ⊂ R be an ideal. Then IE is an intersection of ideals of
the form JE, where the J are zero dimensional ideals of R (i.e. dimR/J = 0).

Proof. By Proposition 9 we can assume without loss of generality that I is a
primary ideal with associated prime ideal P . Take now a noetherian normali-
zation of R/P , i.e. up to linear change of coordinates we assume that R/P and
hence R/I is integral over C[X1, . . . , Xd], where d = dimR/P . Now apply
Proposition 10. 	

The next result generalizes Hilbert’s Nullstellensatz for entire functions.A proof
using analytic methods was given by W. Rudin (cf. [10]).

Corollary 12 Let V ⊆ C
n be an algebraic subset given by an ideal I ⊂ R. Let

f ∈ E be an entire function vanishing everywhere on V . Then f ∈ (rad I) · E.
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Proof. Again we can assume without loss of generality that I is a primary ideal.
First consider the case that dimR/I = 0, i.e. V = {z}. Expanding f at z into
a power series shows that f ∈ PE, where P ⊂ R is the vanishing ideal of z.
Since I is P -primary, there is a t ∈ N

+ with P t ⊆ I , whence f t ∈ IE.
Now let I be an arbitrary primary ideal. As in the proof of the previous

Corollary we choose a noetherian normalization of R/I . Using the same no-
tation as in Proposition 10 we choose y ∈ C

d . By the previous considerations
there is a t (y) ∈ N

+ such that f t(y) ∈ QyE. Since t (y) ≤ rankCR/Qy =
rankCC[Xd+1, . . . , Xn]/Q(y) ≤ αd+1 · . . . · αn we have f t ∈ ⋂

y∈Cd QyE for
sufficiently high t ∈ N

+. Now the claim follows by Propositions 9 and 10. 	

Finally, we remark that Proposition 10 could be also applied in order to prove
a version of the effective Nullstellensatz for entire functions in a similar way
as it was done in the polynomial case in [8].
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