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Abstract. The transform domain characterization of linear cyclic codes over
finite fields using Discrete Fourier Transform (DFT) over an appropriate ex-
tension field is well known. In this paper, we extend this transform domain
characterization for linear quasi-cyclic codes over finite fields. We show how
one can derive a lower bound on the minimum Hamming distance of a quasi-
cyclic code and decode the code upto that minimum Hamming distance using
this characterization.
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1 Introduction

A code is said to be m-quasi-cyclic if the cyclic shift of every codeword by
m positions gives another codeword [18]. The class of quasi-cyclic codes is
a generalization of the class of cyclic codes (m=1) and has been studied by
several authors in various contexts. The connection between quasi-cyclic codes
and convolutional codes has been studied in [20] and [6]. The class of quasi-
cyclic codes contains good codes in the sense of meeting a version of the
Gilbert-Varshamov bound [14]. With restrictions on the parameters, quasi-
cyclic codes have been investigated in [1, 7, 8, 9, 10, 11, 19, 21, 22, 24, 30].
Quasi-cyclic codes have been studied in terms of circulant matrices in [12] and
[13].

There has been a renewed interest in quasi-cyclic codes [3, 5, 6, 15, 23]
due to their close relationship with tail-biting representations of general block
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codes [3]. For instance, motivated by the 64-state quasi-cyclic representation
of the (24, 12, 8) Golay code, reported in [20], the theory of tail-biting repre-
sentation of block codes was initiated in [3] and the minimal tail-biting trellises
for several codes including the Golay code were reported.

For studying m-quasi-cyclic codes, quite often [1, 6, 7, 8, 9, 10, 11, 14, 15,
20, 21, 22, 23, 30] the co-ordinates of a codeword a = (a0, a1, · · · , an−1) are
permuted and blocked as ((a0, am, a2m, · · · , a( n

m
−1)m), (a1, am+1, a2m+1, · · · ,

a( n
m

−1)m+1), · · · , (am−1, a2m−1, a3m−1, · · · , an−1)). With this co-ordinate order-
ing, the generator and parity check matrices (with possibly some redundant
rows) can be written as matrices with n

m
× n

m
circulant matrices as elements.

It specializes to cyclic codes with m = 1 resulting in only one block in the
codewords and circulant matrices as the generator and parity check matri-
ces. In the recent paper [15], Lally and Fitzpatrick consider codewords in the
blocked polynomial form as (a(0)(X), a(1)(X), a(2)(X), · · · , a(m−1)(X)) where
a(i)(X) = ai + ai+mX + ai+2mX2 + · · · + ai+( n

m
−1)mX

n
m

−1 and view an m-

quasi-cyclic code as a submodule of
(

Fq [X]

(X
n
m −1)

)m

. The authors then investigate
the structural properties of m-quasi-cyclic codes with the help of Groebner
bases of modules over Fq[X]. Essentially the same module structure was im-
posed by Conan and Seguin in [4, 25] in the unblocked forms of the code-
words. They imposed an Fq[X]-module structure on an m-quasi-cyclic code
by defining f (X).a = f (T m)(a), where T is the cyclic shift operator. Since
(X

n
m − 1) ⊆ Fq[X] annihilates the code, the code can be seen as an Fq [X]

(X
n
m −1)

module. Unblocked polynomial form of a codeword can be obtained from the
blocked polynomial form of a codeword as a(X) = a(0)(Xm) + Xa(1)(Xm) +
X2a(2)(Xm) + · · · + Xm−1a(m−1)(Xm)).

In [23], Tanner gave ways to transform a block circulant binary parity check
matrix into a parity check matrix over an extension field by a block wise DFT
or linearized polynomial transform. He gave an interesting way to estimate
a lower bound on the minimum Hamming distance from such a parity check
matrix. For using the block wise DFT, one needs the condition ( n

m
, 2) = 1,

whereas the linearized polynomial transform does not need any such condition
to be satisfied. Using the block wise DFT, Ling and Solé [17] showed that in
some cases quasi-cyclic codes can be constructed by well known construction
methods from shorter codes.

The transform domain characterization of linear cyclic codes using DFT is
well known [2]. An extension of this to abelian codes has been reported in [26]
and to cyclic and abelian codes over integer residue rings in [27] and [28]. In
[29] repeated-root cyclic codes have been studied in the transform domain. A
transform domain approach often leads to efficient encoder and decoder struc-
tures for a code [2].

In this paper we investigate the structural properties of m-quasi-cyclic codes
in transform domain using the n-length DFT of the unblocked codewords. This
needs (n, q) = 1, an even stronger condition than ( n

m
, q) = 1. In a similar way
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as in [23], we show how our approach can give a useful lower bound on the
minimum Hamming distance.

The contents of this paper are organized as follows. In the next section
we briefly describe the known DFT characterization of linear cyclic codes and
introduce certain cyclotomic cosets and invariant subspaces needed for extend-
ing the characterization to quasi-cyclic codes. In Section 3, we present the DFT
characterization for all minimal m-quasi-cyclic codes. In Section 4, we deal
with non-minimal m-quasi-cyclic codes, and using results of Section 3, we ob-
tain a DFT characterization of m-quasi-cyclic codes. The duals of quasi-cyclic
codes and self-dual quasi-cyclic codes are discussed in Section 5. Construction
of parity check equations over an extension field from the transform domain
structure of an m-quasi-cyclic code is studied in Section 6. How such parity
check equations can give a lower bound on the minimum Hamming distance is
also discussed in this section. Finally Section 7 concludes this paper.

2 Preliminaries

Let Fq denote the finite field of cardinality q. We consider linear codes over
Fq of length n where (n, q) = 1. Let m be a positive integer dividing n. A
code is said to be m-quasi-cyclic if the code is closed under cyclic shift by m

symbols. Obviously, m=1 gives cyclic codes. Throughout the paper we discuss
only linear m-quasi-cyclic codes.

Let r be the smallest positive integer such that n|(qr − 1) and α ∈ Fqr \ {0}
be an element of order n. The DFT of a vector a = (a0, a1, · · · , an−1) ∈ Fn

q is
defined to be A = (A0, A1, · · · , An−1) ∈ Fn

qr , where

Aj =
n−1∑
i=0

αijai for j = 0, 1, · · · , n − 1. (1)

The inverse DFT is given by

ai = n−1
n−1∑
j=0

α−ijAj for i = 0, 1, · · · , n − 1. (2)

For any j ∈ [0, n − 1], the residue class modulo n
m

of j , denoted by (j)n,m, is
defined as

(j)n,m = {i ∈ [0, n − 1]|j ≡ i mod n
m
}.

Cardinality of (j)n,m is m for all j ∈ [0, n − 1]. If a vector is cyclically shifted
m times, the transform components whose indices lie in a residue class modulo
n
m

are multiplied by the same scalar.
For any j ∈ [0, n − 1], the q-cyclotomic coset modulo n of j , denoted by [j ]n,
is defined as

[j ]n = {i ∈ [0, n − 1]|j ≡ iqt mod n for some non-negative integer t}.
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Similarly, on the same set [0, n − 1], we define the q-cyclotomic coset modulo
n
m

of j , denoted by [j ] n
m

, as

[j ] n
m

= {i ∈ [0, n − 1]|j ≡ iqt mod n
m

for some non-negative integer t}.
For any subset S ⊆ [0, n − 1], with misuse of terminology, we shall call the
DFT components with indices in S as the ‘DFT components in S’. We define
the length of [j ] n

m
as the number of elements in it that are less than n

m
. The

length of [j ]n is the same as its size and will be denoted by rj . Note that the
length of [j ] n

m
is the same as the length of [jm]n and hence is denoted by

rmj . Clearly, rmj = rmk if [j ] n
m

= [k] n
m

and rj = rk if [j ]n = [k]n. Each
q-cyclotomic coset modulo n

m
of [0, n − 1] corresponds to a q-cyclotomic co-

set modulo n
m

of [0, n
m

− 1]. Suppose S = [j ] n
m

∩ [0, n
m

− 1]. Then clearly
[j ] n

m
= S ∪ (S + n

m
) ∪ · · · ∪ (S + (m − 1) n

m
). So, |[j ] n

m
| = m|S| = mrmj .

Clearly, a q-cyclotomic coset modulo n
m

is the union of some q-cyclo-
tomic cosets modulo n. If J ⊆ [0, n − 1], we write [J ]n = ∪j∈J [j ]n and
[J ] n

m
= ∪j∈J [j ] n

m
. Clearly, [j ] n

m
= [

(j)n,m

]
n
.

Example 2.1 In {0, 1, 2, 3, 4, 5, 6, 7, 8}, the binary cyclotomic cosets modulo
9 and modulo 9

3 = 3 are respectively

[0]9 = {0}; [1]9 = {1, 2, 4, 5, 7, 8}; [3]9 = {3, 6}

and

[0]3 = {0, 3, 6}; [1]3 = {1, 2, 4, 5, 7, 8}.

The lengths of the binary cyclotomic cosets modulo 9 are the same as their
sizes, whereas the length of [0]3 is 1 and is not the same as its size. Similarly,
the length of [1]3 is 2 whereas its size is 6.

The DFT defined by (1) is an Fq-linear map satisfying the following two
properties.
Conjugacy constraint: A ∈ Fn

qr is the DFT of some vector a ∈ Fn
q if and only if

Ajq = A
q

j for all j ∈ [0, n− 1]. Clearly, this constraint restricts Aj to be in the
subfield Fq

rj , where rj is the length of [j ]n. Note that a specific value for Aj

uniquely specifies the values of all the transform components Aj ′ for j ′ ∈ [j ]n.
Cyclic shift property: If A = DFT (a), b ∈ Fn

q such that bi = ai−1, and
B = DFT (b), then Bj = αjAj .

Let C be a code and CD = {DFT (a)|a ∈ C}. We shall say that Aj , the j -th
transform component of a, takes values from {Aj |A ∈ CD}. If S ⊆ Fqr , then we
call the subcode {a ∈ C|Aj ∈ S} to be obtained by restricting the j th transform
component in S. If L ⊂ [0, n − 1], then the subcode obtained by restricting
{Aj |j 	∈ L} to zero is called the L-subcode of C and will be denoted by CL.
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Now, the transform domain characterization of cyclic codes is the following:

• The set of j -th transform components of all the codewords of a linear cyclic
code is either Fq

rj or {0}, and conversely the set of inverse DFT vectors of all
the vectors of a subspace of DFT (Fn

q ) ⊂ Fn
qr , in which transform compo-

nents in [j ]n, j = 0, 1, ..., n − 1, of every vector take either only the zero
value or all the values of Fq

rj , and transform components in disjoint [j1]n
and [j2]n take values independently, constitute a cyclic code.

From the above characterization, it is clear that to specify a cyclic code, it
is sufficient to specify the set [J ]n in which the transform components of all the
codewords are zero. It is important to note that the transform components Aj

and Ak can never be related unless [j ]n = [k]n. The main result of this paper
is that if transform components from different cyclotomic cosets modulo n are
related appropriately, one gets the m-quasi-cyclic codes and any m-quasi-cyclic
code is describable in terms of these relations.

Moreover, for any m-quasi-cyclic code, a transform component Aj can take
values from certain proper (non-trivial) subspaces of Fq

rj (viewed as a vector
space over Fq) which is not possible for a cyclic code. We proceed to describe
these subspaces.

Definition For every s ∈ F ∗
qr (the nonzero elements of Fqr ), an Fq-subspace V

of Fqr is called an s-invariant subspace if it is closed under the multiplication
by s. A nonzero s-invariant subspace is said to be minimal if it does not have
any proper nonzero s-invariant subspace.

Example 2.2 We discuss all the minimal s-invariant subspaces of F24 when
s runs over all the nonzero elements of F24 . Let α be a primitive element
of F24 . There are five minimal α5-invariant subspaces: V1 = {0, 1, α5, α10},
V2 = {0, α, α6, α11}, V3 = {0, α2, α7, α12}, V4 = {0, α3, α8, α13} and V5 =
{0, α4, α9, α14}. All these five subspaces are minimal α10-invariant subspaces
also. There are fifteen minimal α0 = 1-invariant subspaces, each consisting of
the zero element and any one nonzero element of F24 . For any other value of s

there is only one minimal s-invariant subspace which is F24 .

If α ∈ Fqr is an element of order n, then it is known that {αjt |t ≥ 0} spans
the subfield Fq

rj . So the αj -invariant subspaces are nothing but the Fq
rj -sub-

spaces and any minimal αj -invariant subspace of Fqr is of the form βFq
rj for

some β ∈ F ∗
qr . So the number of minimal αmj -invariant subspaces in Fq

rj is
qrj − 1

qrmj − 1
.

Since for an m-quasi-cyclic code several transform components from dif-
ferent cyclotomic cosets modulo n can be related, we formalize the notions of
related and unrelated sets of transform components below.
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For any subset J = {j1, j2, · · · , jk} ⊆ [0, n − 1], AJ denotes the ordered
tuple (Aj1, Aj2, · · · , Ajk

) where an arbitrary fixed order in J is assumed. For
some ordered tuples T1 = (t11, · · · , t1,j1), · · · , Tl = (tl,1, · · · , tl,jl

) the concate-
nated tuple (t11, · · · , t1,j1, · · · , tl,1, · · · , tl,jl

) is denoted by (T1, · · · , Tl).

Definition Let I1, I2, · · · , It be some disjoint subsets of [0, n−1] and suppose
RIl

= {
AIl

|a ∈ C} for l = 1, 2, · · · , t . The classes of transform components
{Ai |i ∈ I1}, {Ai |i ∈ I2}, · · · , {Ai |i ∈ It} are said to be mutually unrelated for
C if

{(
AI1, AI2, · · · , AIt

) |a ∈ C} = RI1 × RI2 × · · · × RIt
. Otherwise they are

said to be related.

3 Quasi-Cyclic Codes in Transform Domain

Let C be a linear m-quasi-cyclic code and CD = {DFT (a)|a ∈ C}. From the
definition of a linear m-quasi-cyclic code and the cyclic shift property, it follows
that CD should satisfy the following two properties:

1. CD is a vector space over Fq .
2. If A ∈ CD and B ∈ Fn

qr such that Bj = αmjAj for j = 0, 1, · · · , n − 1, then
B ∈ CD.

The second property above leads to

Theorem 3.1 Let J = {j1, j2, · · · , jm} ⊆ [0, n− 1] be a residue class modulo
n
m

with j1 < j2 < · · · < jm. The set of ordered tuples of transform components
AJ = (

Aj1, Aj2, · · · , Ajm

)
of all the codewords of a linear m-quasi-cyclic code

is an Fq
rmj1 -subspace of Fq

rj1 × Fq
rj2 × · · · × Fq

rjm .

However AJ can not take values from any arbitrary Fq
rmj1 -subspace. The

subspace should conform with the conjugacy constraint on the components.
For example, consider binary 3-quasi-cyclic codes of length 9. The set {0, 3, 6}
is a residue class modulo 3. The 3-tuple (A0, A3, A6) should take values from
an F2-subspace V of F2 × F4 × F4 such that any vector x = (x1, x2, x3) ∈ V

satisfies x3 = x2
2 .

If C is m-quasi-cyclic and S ⊂ Fqr is αmj -invariant, then clearly the subcode
obtained by restricting the j th transform component to S is also m-quasi-cy-
clic. If the nonzero transform components can be partitioned into two mutually
unrelated and disjoint subsets, then clearly, the code is the direct sum of the two
subcodes obtained by restricting each subset of transform components to zero.
In particular, for two mutually unrelated subsets of the form S and Sc where
Sc = [0, n − 1] \ S, we have C = CS

⊕ CSc . An m-quasi-cyclic code is called
minimal if it does not have any proper nonzero m-quasi-cyclic subcode.

Note that, when specialized to m = 1, Theorem 3.1 reduces to the well
known fact for cyclic codes: the set of values taken by Aj is either {0} or Fq

rj .
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In the case of cyclic codes the transform components from two different [j1]n
and [j2]n can never be related to each other. Whereas for m-quasi-cyclic codes
they can be related provided [j1]n and [j2]n are in the same q-cyclotomic coset
modulo n

m
[Theorem 3.4]. Notice that when m = 1, the q-cyclotomic cosets

modulo n and the q-cyclotomic cosets modulo n
m

are identical and there is no
room to relate transform components of different q-cyclotomic cosets.

In the following subsection we discuss minimal m-quasi-cyclic codes and
the general case is discussed in the next section.

3.1 Minimal Quasi-Cyclic Codes

In a minimal m-quasi-cyclic code, for any j ∈ [0, n−1], Aj should take values
from a minimal αmj -invariant subspace, since otherwise, we can restrict Aj to
a minimal αmj -invariant subspace to get a proper m-quasi-cyclic subcode.

Now, consider any j, k ∈ [0, n − 1] such that none of Aj and Ak are zero
for all the codewords of a minimal m-quasi-cyclic code C. Suppose Aj and Ak

take values from the minimal αmj -invariant and αmk-invariant subspaces Vmj

and Vmk respectively. Since the code is minimal, if Aj is restricted to {0}, then
the subcode obtained is the zero code. Since the code is linear, for any other
element β in Vmj , there is only one codeword in C with Aj = β. This is true for
any nonzero transform component in C. So, Aj and Ak are related by a linear in-
vertible map of Vmj onto Vmk. But since the code is m-quasi-cyclic, an arbitrary
linear invertible map can not relate two nonzero transform components.

The following two lemmas will help to identify the possible linear invert-
ible maps, connecting two given nonzero transform components in a minimal
m-quasi-cyclic code.

Lemma 3.2 Let σ : Fql → Fql be an Fq-linear invertible map and β and β ′

be two elements of Fql with cardinality of their conjugacy classes l. If σ(βa) =
β ′σ(a) ∀a ∈ Fql , then, β ′ = βqt

for some t < l and σ : a 
−→ caqt ∀a ∈ Fql

for some unique c ∈ Fql .

Proof. Any map of Fql into Fql is induced by a unique polynomial over Fql of de-

gree at most ql −1 [16]. Let the polynomial fσ (X) = ∑ql−1
i=0 ciX

i ∈ Fql [X] be
such that σ(a) = fσ (a) ∀a ∈ Fql . In this case, c0 = 0 since fσ (0) = σ(0) = 0.
For any s ∈ Fql , define the permutation λs : Fql −→ Fql as λs : a 
−→ sa.
By hypotheses,

σλβ = λβ ′σ. (3)

Clearly,

fσλβ
(X) =

ql−1∑
i=1

ciβ
iXi
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and

fλβ ′σ (X) =
ql−1∑
i=1

ciβ
′Xi.

Equation (3) implies

ciβ
i = ciβ

′ for i = 1, 2, · · · , ql − 1

⇒ βi = β ′ whenever ci 	= 0.

If, for some i1 ≤ ql − 1, we have ci1 	= 0, then fσ (X) = ci1X
i1 + · · ·.

Since σ is Fq-linear, we have

σ(sa) = sσ (a) ∀s ∈ Fq and ∀a ∈ Fql

⇒ σλs = λsσ ∀s ∈ Fq

⇒ ci1s
i1 = sci1 ∀s ∈ Fq

⇒ s = si1 ∀s ∈ Fq

⇒ i1 = ql1 for some l1 < l.

Suppose, ∃ i1 = ql1 , i2 = ql2 , l1, l2 < l, such that ci1, ci2 	= 0. Then,

β ′ = βql1 = βql2

⇒ l|(l2 − l1)

⇒ l2 = l1.

So, there is only one nonzero term in fσ (X) and that is of degree qt for some
non-negative integer t < l and thus the lemma follows.

Lemma 3.3 Let β and β ′ be two elements of Fqr such that the lengths of their
conjugacy classes are both l, and sFql and s ′Fql be two β and β ′-invariant
subspaces in Fqr . Suppose σ : sFql −→ s ′Fql is an Fq-linear invertible map.
Then σ satisfies σ(βa) = β ′σ(a) ∀a ∈ sFql if and only if β ′ = βqt

and
fσ (X) = cXqt

for some unique c ∈ s ′s−qt

Fql and t < l.

Proof. The reverse implication is trivial. So we prove the forward implication
only.
Let us define a map σ ′ : Fql −→ Fql as σ ′ : a 
−→ (s ′)−1σ(sa). Clearly, σ ′ is
an Fq-linear map and
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σ ′(βa) = (s ′)−1σ(sβa)

= (s ′)−1β ′σ(sa)

= β ′σ ′(a).

So by Lemma 3.2, β ′ = βqt

for some t < l and fσ ′(X) = c′Xqt

for some
c′ ∈ Fql .
By the definition of σ ′, σ(a) = s ′σ ′(s−1a); ∀a ∈ sFql and so, fσ (X) =
s ′fσ ′(s−1X) = s ′s−qt

c′Xqt = cXqt

where c = s ′s−qt

c′.

The following theorem identifies the relations between the transform com-
ponents in different q-cyclotomic cosets modulo n that give the minimal
m-quasi-cyclic codes.

Theorem 3.4 In a minimal m-quasi-cyclic code of length n, the transform
components in only one q-cyclotomic coset modulo n

m
, say [j ] n

m
, are nonzero.

Any two nonzero transform components Aj1 and Aj2 , where j1, j2 ∈ [j ] n
m

and
[j1]n 	= [j2]n, are related by an isomorphism σ with fσ (X) = cXqt

for some
unique c ∈ Fqr , where t is such that j2 ≡ j1q

t mod n
m

. If Aj1 and Aj2 take
values from sFq

rmj and s ′Fq
rmj respectively, then c ∈ s ′s−qt

Fq
rmj .

Proof. In a minimal m-quasi-cyclic code, if Aj1 and Aj2 are nonzero, then
Aj1 and Aj2 take values from minimal αmj1 and αmj2 -invariant subspaces of
Fq

rj1 and Fq
rj2 respectively, and Aj2 is dependent on Aj1 by an Fq-linear in-

vertible map σ , i.e., Aj2 = σAj1 . Since the code is m-quasi-cyclic, σ should
satisfy σ(αmj1a) = αmj2σ(a). So, by using Lemma (3.3) with β = αmj1 and
β ′ = αmj2 , we see that mj2 ≡ mj1q

t mod n for some t < rmj1 , i.e., mj2 and mj1

are in the same q-cyclotomic coset modulo n. Equivalently, j2 and j1 are in the
same q-cyclotomic coset modulo n

m
. So, in a minimal m-quasi-cyclic code, the

transform components are nonzero only in one q-cyclotomic coset modulo n
m

.
Moreover, again by Lemma (3.3), if j2 ≡ j1q

t mod n
m

, then the isomorphism
σ is given by fσ (X) = cXqt

for some c ∈ Fqr .

Example 3.1 Consider binary (q=2) 3-quasi-cyclic codes (m = 3) of
length n = 9. The binary cyclotomic cosets modulo n are {0}, {3, 6} and
{1, 2, 4, 5, 7, 8} and the binary cyclotomic cosets modulo n

m
= 3 are {0, 3, 6}

and {1, 2, 4, 5, 7, 8}. The number of minimal αmj -invariant subspaces in Fq
rj

is given by q
rj −1

q
rmj −1 . For the example under consideration these values are tabu-

lated in Table 1 for all the binary cyclotomic cosets. (The double vertical lines
demarcate the cyclotomic cosets modulo n

m
and the single vertical lines fur-

ther demarcate the binary cyclotomic cosets modulo n in the binary cyclotomic
cosets modulo n

m
.) The minimal 3-quasi-cyclic codes with non-zero transform
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components only in the cyclotomic coset {1, 2, 4, 5, 7, 8} can not be related to
transform components in any other cyclotomic cosets and there are 21 such
codes each corresponding to one α3-invariant subspace of F26 . Table 2 shows
all the other minimal 3-quasi-cyclic codes possible. There is one minimal 3-
quasi-cyclic code (C1 in Table 2) with DFT components taking nonzero values
only in the binary cyclotomic coset {0} modulo 9, and there are three (C2, C3, C4

in Table 2) with DFT components taking nonzero values only in {3, 6}. There
are three minimal 3-quasi-cyclic codes in which DFT components in {0} and
{3, 6} are nonzero and related. These are C5, C6, C7 in Table 2, and the relations
are given by A3 = cA2t

0 where t = 0 and the values of c are respectively 1, α21

and α42. For comparison, the total number of minimal cyclic codes (m = 1) is
given at the bottom of the table.

The relations in the above example for the codes with related transform
components turn out to be simple and straightforward. To exemplify transform
components in more than two q-cyclotomic cosets modulo n being related, we
give the following example.

Example 3.2 Consider binary codes of length 15.We have m-quasi-cyclic codes
for m = 3 and m = 5. For both these values, the binary cyclotomic cosets and
possible minimal m-quasi-cyclic codes are classified in Table 1. In Table 3,
we list the codewords and their transform vectors for four minimal 5-quasi-cy-
clic codes with transform components in different 2-cyclotomic cosets modulo
n related. For the code C1, the transform components in 2-cyclotomic cosets
{7, 11, 13, 14} and {1, 2, 4, 8} are related and the relation is A7 = α7A1, that
is, t = 0 and c = α7. The relations for the codes C2 and C3 are respectively
A5 = α6A2

1 and A7 = α3A2
5. The code C4 is obtained by relating the transform

components in three 2-cyclotomic cosets {1, 2, 4, 8}, {5, 10} and {7, 11, 13, 14}.
The relations are A5 = α11A2

1 and A7 = α3A1.

Clearly, any nonzero vector is contained in a minimal m-quasi-cyclic code
if and only if the DFT components of the vector are nonzero only in one q-cy-
clotomic coset modulo n

m
. That minimal m-quasi-cyclic code is spanned by the

m-shifts of the vector.

4 Arbitrary Quasi-Cyclic Codes

Let C be an arbitrary m-quasi-cyclic code and suppose Aj is nonzero for C
and takes values from an αmj -invariant subspace V of Fq

rj . Let V1 and V2

be two αmj -invariant subspaces of V such that V = V1 + V2. If C1 and C2

are the m-quasi-cyclic subcodes obtained by restricting Aj in the subspaces
V1 and V2 respectively, then clearly, C = C1 + C2. (However if V = V1 ⊕ V2,
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Table 2. Minimal 3-quasi-cyclic codes of Example 3.1

Codewords DFT
a0 a1 a2 a3 a4 a5 a6 a7 a8 A0 A1 A2 A3 A4 A5 A6 A7 A8

C1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0

C3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 1 0 0 0 0 α21 0 0 α42 0 0

C4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 1 1 0 1 0 0 0 α42 0 0 α21 0 0

C5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

C6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 1 0 0 α21 0 0 α42 0 0

C7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 0 α42 0 0 α21 0 0

then C = C1 ⊕ C2 need not be true. In fact, C1 ∩ C2 is the subcode of C obtained
by restricting the transform component Aj to {0}.) By successively doing this,
we can decompose the code as the sum of a family of subcodes, each of which
has any nonzero transform component Aj taking values from a minimal αmj -in-
variant subspace. Now, let us consider one such code (which is a subcode of the
original code). Let {j1, j2, · · · , jt} be a set of representatives of the cyclotomic
cosets modulo n where the transform components are nonzero for the code.
We construct a subset L of {j1, j2, · · · , jt} as follows. First assign L = {j1}.
Suppose Ajl

takes values from the minimal αmjl -invariant subspace Vjl
. In the

subcode obtained by restricting Aj1 to 0, Aj2 takes values from either Vj2 or {0}.
If it takes values from 0, then clearly, Aj2 is related to Aj1 by an isomorphism.
Otherwise Aj1 and Aj2 take values independently and in that case keep j2 in
L. Next, restrict all the transform components indexed by the elements of L to
0 and check a transform component Ajl

not yet considered. If its values vary
over Vjl

, then put jl in L. Continuing this way, we’ll get a set L such that all
the transform components indexed by its elements take values independently
and the values of all the other transform components are determined by them.

Note that in the process of construction of L, the minimality of Vjl
is used

and consequently such a subset L may not exist when Vjl
are not minimal αmjl -

invariant subspaces. Now, we can decompose the subcode as the direct sum of
|L| codes, each one of which is obtained by restricting all but one transform
components indexed by the elements of L to zero. Clearly, each subcode thus
obtained is a minimal m-quasi-cyclic code. So, any m-quasi-cyclic code can be
decomposed as the sum of some minimal m-quasi-cyclic codes. Just taking a
minimal family of such minimal subcodes such that their sum is the original
code, we can express the code as the direct sum of some minimal m-quasi-cyclic
codes. So we have
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Theorem 4.1 Any m-quasi-cyclic code can be decomposed as the direct sum
of some minimal m-quasi-cyclic codes.

Theorem 4.1 was first proved in [4]. Note that the decomposition of an m-
quasi-cyclic code in terms of some minimal m-quasi-cyclic codes may not be
unique, though for m = 1, that is for cyclic codes the decomposition is always
unique.

For a minimal m-quasi-cyclic code, the transform components in different
cyclotomic cosets modulo n

m
are (trivially) unrelated. So, by Theorem 4.1 it is

also true for any m-quasi-cyclic code. This gives the following characterization
of m-quasi-cyclic codes in the transform domain.

Theorem 4.2 A code C is m-quasi-cyclic iff

• The transform components in different q-cyclotomic cosets modulo n
m

are
mutually unrelated.

• For any j ∈ [0, n
m

− 1], A(j)n,m
takes values from an Fq

rmj -subspace of
Fq

rj × F
q

r
j+ n

m
× · · · × F

q
r
j+(m−1) n

m
.

Though the decomposition of an m-quasi-cyclic code is not unique in gen-
eral, by first part of Theorem 4.2, any m-quasi-cyclic code can be decomposed
uniquely as direct sum of some m-quasi-cyclic codes, each having nonzero
transform components only in certain distinct q-cyclotomic coset modulo n

m
.

So we have

Theorem 4.3 Let �i; i = 1, 2, · · · , t be the distinct q-cyclotomic cosets
modulo n

m
of [0, n − 1]. Then,

C =
t⊕

i=1

C�i
(4)

The unique subcodes C�i
in (4), obtained by considering each q-cyclotomic

coset modulo n
m

are actually the primary components [15] or irreducible com-
ponents [4] of the code. In [15], the primary components of C were obtained
as X

n
m −1

fi(X)
.C, where fi(X) are the irreducible factors of X

n
m − 1. To see the

bridge, note that the n
m

-length DFT of X
n
m −1

fi(X)
is nonzero in exactly one q-cy-

clotomic coset modulo n
m

, say [0, n
m

] ∩ [j ] n
m

. So, the n-length DFT of Xn−1
fi(Xm)

is nonzero in exactly one cyclotomic coset modulo n
m

, namely [j ] n
m

, because
if k ≡ lqt mod n

m
, then the k-th component of the n-length DFT of Xn−1

fi(Xm)
is

the αkn−1
fi(αkm)

= αlqt n−1
fi(αlqt m)

= (αm)lq
t n

m −1
fi((αm)lq

t )
= lqt -th component of the n

m
-length DFT of

X
n
m −1

fi(X)
. So, multiplying X

n
m −1

fi(X)
to C, which is same as multiplying Xn−1

fi(Xm)
to C in

unblocked form, is equivalent to ‘zeroing out’ the transform components in all
but one q-cyclotomic cosets modulo n

m
, that is [j ] n

m
. Thus C�i

are the primary
components of the code.
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Ling and Solé [17] gave a construction of m-quasi-cyclic codes from shorter
codes over extension fields of Fq . That construction also gives a decomposi-
tion of an m-quasi-cyclic code as the direct sum of some m-quasi-cyclic codes.
However their decomposition is actually the same decomposition as in Theo-
rem 4.3. To see this, let us first state the main theorem (Theorem 5.1) of [17]
in a slightly simplified form. Here ζ is a primitive n

m
-th root of unity in an

appropriate extension field of Fq .

Theorem 5.1 of [17] (simplified form) Let F = Fq and ( n
m
, q) = 1. Then the

m-quasi-cyclic codes over F of length n are precisely given by the following
construction: write Y

n
m − 1 = g1 · · · gs , where gi are the irreducible factors of

Y
n
m − 1. Write F [Y ]/(gi) = Gi . Let Ui denote the cyclotomic coset of Z/mZ

corresponding to Gi and fix ui ∈ Ui . For each i, let Ci be a code of length m

over Gi . For xi ∈ Ci and for each 0 ≤ g ≤ m − 1, let

cg((xi)) =
( n

m

)−1 s∑
i=1

T rGi/F

(
xiζ

−gui
)
. (5)

Then the code

C = {(
c0((xi)), · · · , c n

m
−1((xi))

) |∀xi ∈ Ci

}
(6)

is an m-quasi-cyclic code over F of length n. Conversely, every m-quasi-cyclic
code over F of length n is obtained through this construction.

Let us fix an ‘i’ and consider the subcode C(i) obtained from

cg((xi)) =
( n

m

)−1
T rGi/F

(
xiζ

−gui
)

(7)

and (6). Clearly, C = ∑
i C(i). We’ll show that C(i) = C[ui ] n

m
. It is sufficient

to show that each codeword of C(i) has nonzero transform components (in the
n-length DFT) only in [ui] n

m
.

We can assume ζ = αm. Let xik denote the k-th component of xi . Clearly,
the degree of gi is rmui

. Suppose a ∈ Fn
q is a codeword in C(i) constructed as

ajm+k =
( n

m

)−1
T rGi/F

(
xikα

−jmui
)

where xi ∈ Ci , 0 ≤ j ≤ n

m
− 1, 0 ≤ k ≤ m − 1 (8)

and its n-length DFT is A ∈ Fn
qr . Then,

At =
n
m

−1∑
j=0

m−1∑
k=0

ajm+kα
t(jm+k)

=
( n

m

)−1
n
m

−1∑
j=0

m−1∑
k=0

αt(jm+k)

rmui
−1∑

v=0

x
qv

ik α−mjuiq
v



468 B. K. Dey, B. Sundar Rajan

=
( n

m

)−1 m−1∑
k=0

rmui
−1∑

v=0

x
qv

ik αkt

n
m

−1∑
j=0

αmj(t−uiq
v).

But
n
m

−1∑
j=0

αmj(t−uiq
v) =

{
n
m

if t = uiq
v mod n

m

0, otherwise.

So,

At =
{∑m−1

k=0 x
qv

ik αkt if t ≡ uiq
v mod n

m
for some v

0 otherwise
(9)

and hence a has zero transform components outside [ui] n
m

. So, a ∈ C[ui ] n
m

. This
shows that the decomposition C = ∑

i C(i) is actually the primary decomposi-
tion as in (4).

Let us consider one subcode C�i
. Let ji,1, ji,2, · · · , ji,ki

be the represen-
tatives of the different q-cyclotomic cosets modulo n in �i . Now, in any
m-quasi-cyclic code, this set of representatives can be uniquely partitioned
into some subsets such that transform components in these subsets are mutu-
ally unrelated and any subset cannot be partitioned further in the same way.
Let

{
ji,1, ji,2, · · · , ji,ki

} = ∪si

l=1�i,l be the partition. Then the code C�i
can

be decomposed further as the direct sum of si subcodes C�i,1, C�i,2, · · · , C�i,si
,

where C�i,l
is obtained by restricting all the transform components of C�i

ex-
cept those indexed by the elements of

[
�i,l

]
n

to zero. Then, we have the unique
decomposition

C =
t⊕

i=1

si⊕
l=1

C�i,l
. (10)

However, the subsets �i,l are in general different for different codes.
Notice that in the unique decomposition of C in (10), the subcodes C�i,l

are
not necessarily minimal and moreover these are not necessarily uniquely de-
composable into minimal quasi-cyclic codes. For example, consider the three
binary 3-quasi-cyclic codes C1, C2 and C5 of length 9 listed in Table 2. The
direct sum of any two of these three gives the same code, which has nonzero
transform components in one binary cyclotomic coset modulo n

m
and is decom-

posable in three different ways. In [15], the authors gave a systematic way to
get a decomposition of the subcodes C�i

using Groebner bases.
Given any subset S ⊆ Fn

q , the intersection of all the m-quasi-cyclic codes
containing S is called the m-quasi-cyclic code generated by S.A code generated
by a single vector is called an one-generator m-quasi-cyclic code [10, 11, 15].
Note that for an one-generator m-quasi-cyclic code, each primary component
C�i

(recall equation (4)) is either zero or minimal, since it is generated by
the vector whose DFT components in the corresponding q-cyclotomic coset
modulo n

m
are the same as that of a and all other DFT components are zero.
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If a minimal m-quasi-cyclic code has the nonzero DFT components in
[j ] n

m
, then its dimension is rmj . Suppose there are t q-cyclotomic cosets mod-

ulo n
m

. If [j ] n
m

is the i-th q-cyclotomic coset modulo n
m

, then let us denote
rmj as ti . Considering the dimensions, C�i

can be direct sum of at most m

minimal m-quasi-cyclic codes (or cyclic irreducible codes as are called in
[4, 15]). The number of ways C�i

of dimension li ti can be chosen is thus
given by

∏li−1
h=0

qmti −qhti

qli ti −qhti
, where the empty product is assumed to be 1. So,

the total number of distinct m-quasi-cyclic codes of length n is given by∑m
l0=0

∑m
l1=0 · · ·∑m

lt=0

∏t
i=1

(∏li−1
h=0

qmti −qhti

qli ti −qhti

)
. This formula was originally de-

rived in [4]. From the values of li for a code, lot of structural information can
be known. For example, if maxi li = l, then one needs at least l generators to
generate the code. So, for an one-generator code, li = 1 or 0 and at least one li
is 1. An one-generator code is minimal iff the generator has nonzero transform
components in exactly one q-cyclotomic coset modulo n

m
. Dimension of an one

generator code is given by
∑

ti where the summation is over the q-cyclotomic
cosets modulo n

m
where the DFT components of the generator are not all zeros,

that is, where the corresponding primary components of the code are nonze-
ro. In [15, 25], the dimension of the m-quasi-cyclic code generated by a single
generator in blocked polynomial form (g(0)(X), g(1)(X), · · · , g(m−1)(X)) is de-
rived to be n

m
− deg(gcd(g(0)(X), g(1)(X), · · · , g(m−1)(X), X

n
m − 1)). The fact

that both the formulae are actually same can be realized just by noting that ti
are actually the degrees of the irreducible factors of X

n
m − 1.

5 Duals of Quasi-Cyclic Codes

For two vectors a, b ∈ Fn
q , the Euclidean inner product of a and b is defined as

E(a, b) =
n−1∑
i=0

aibi. (11)

Two vectors are said to be orthogonal if the Euclidean inner product of the
vectors is zero. Two codes C1 and C2 are said to be duals of each other if
C2 = {

b ∈ Fn
q |E(a, b) = 0 ; ∀a ∈ C1

}
.

Theorem 5.1 For an m-quasi-cyclic code C, a vector b ∈ Fn
q is orthogonal to

C if and only if for all a ∈ C,

∑
j∈[i] n

m

AjB−j = 0 for all q-cyclotomic cosets
(

modulo
n

m

)
[i] n

m
. (12)
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Proof. Clearly, b is orthogonal to C if and only if

a ⊥ b ; ∀a ∈ C

⇐⇒
n−1∑
j=0

ajbj = 0 ∀a ∈ C

⇐⇒
n−1∑
j=0

AjB−j = 0 ∀a ∈ C

⇐⇒
∑

j∈[i] n
m

AjB−j = 0 for each q-cyclotomic cosets
(

modulo
n

m

)
[i] n

m

∀a ∈ C.

Corollary 5.2 There is no self-dual m-quasi-cyclic code over Fq of length n

when (n, q) = 1 and m is odd.

Proof. Note that [0] n
m

= (0)n,m. Let {i1, i2, · · · , il} be a set of representatives of
the q-cyclotomic cosets modulo n in (0)n,m. Suppose for an m-quasi-cyclic code
C, A{i1,i2,···,il} takes values from an Fq-subspace V of Fq

ri1 × Fq
ri2 × · · · × Fq

ril .
Clearly, the dimension of the Fq-subspace

W = {B{−i1,−i2,···,−il} | T r1
(
Ai1B−i1

)+ · · · + T rl

(
AilB−il

)

= 0 ∀A{i1,i2,···,il} ∈ V }
is m − dimFq

(V ) where

T rj : F
q

rij −→ Fq

x 
→ x + xq + · · · + xq
rij

−1

.

If the code is self-dual, then V = W and so, 2 dimFq
(V ) = m. Hence, there is

no self-dual m-quasi-cyclic code over Fq of length n when (n, q) = 1 and m is
odd.

However, this result is also true with the condition ( n
m
, q) = 1 instead of

(n, q) = 1 (see Proposition 6.3 in [17]). But the condition (n, q) = 1 is required
for the n-length DFT in our approach.

6 Parity Check Matrix and Minimum Distance Bound

Tanner used BCH like argument [23] to estimate a lower bound on the min-
imum Hamming distance from the parity check equations over an extension
field. Given a binary parity check matrix of a binary m-quasi-cyclic code, Tan-
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ner used block wise DFT or block wise linearized polynomial transform to get
a set of parity check equations over an extension field of F2.

Here, we describe how one can get a set of parity check equations over an
extension field of Fq for an m-quasi-cyclic code over Fq . Before doing so, we
first give the main theorem for the distance bound. This is in a slightly different
form from Tanner’s related theorems [23, Theorem 6,8 and 10] and the proof is
analogous to Tanner’s corresponding proofs. In the following, power of a vector
will mean component wise power.

Theorem 6.1 Suppose, the components of the vector v ∈ Fn
qr are nonzero and

distinct. If for each k = k0, k1, · · · , kδ−2, the vectors vk are in the span of a
set of parity check equations over Fqr , then the minimum Hamming distance
of the code is at least that of the cyclic code of length qr − 1 with roots βk,
k = k0, k1, · · · , kδ−2 where β is a primitive element of Fqr .

Proof. Let C be the code, which has vk, k = k0, k1, · · · , kδ−2 in the span of its
parity check equations. Let the corresponding cyclic code be Cc.
Suppose v = (v0, v1, · · · , vn−1) with vi = βλi , where λi are distinct.
For any a ∈ C with Hamming weight ωH(a) = d, we’ll show that ∃a′ ∈ Cc,
s. t. ωH(a′) = d.
We construct a′ as

a′
λi

= ai for i ∈ [0, n − 1]

a′
j = 0 when j 	= λi ∀i ∈ [0, n − 1].

Clearly, ωH(a′) = d.
Now,

a ∈ C ⇒
n−1∑
i=0

aiv
k
i = 0 for k = k0, k1, · · · , kδ−2

⇒
n−1∑
i=0

a′
λi
βλik = 0 for k = k0, k1, · · · , kδ−2

⇒
qr−2∑
j=0

a′
jβ

jk = 0 for k = k0, k1, · · · , kδ−2

⇒ a′ ∈ Cc.

So, If ki = k0 + i in the above theorem, by BCH bound we can say that the
minimum distance of the code of length n is at least δ.

The idea behind this theorem is that, if a code has certain powers of v as
parity check vectors, then the code can be seen as a shortened code (that is,
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the code obtained by taking the codewords with certain positions zeros and
then deleting those positions)[18] of a cyclic code of length qr − 1. Not only
is the minimum distance of the code guaranteed to be at least that of the cyclic
code, any decoding algorithm for the cyclic code can also be used to decode
the shortened code. The decoder only has to pad zeros in the deleted positions
and decode from the resulting qr − 1 length vector.

For an arbitrary j ∈ [0, n
m

− 1], suppose A(j)n,m
takes values from an Fq

rmj -
subspace V of Fq

rj × F
q

r
j+ n

m
× · · · × F

q
r
j+(m−1) n

m
. Then V is the null space

of a system of Fq
rmj -linear equations of the form

m−1∑
i=0

T ri

(
ciAj+i n

m

) = 0 (13)

where T ri is the F
q

r
j+i n

m
/Fq

rmj -trace:

T ri : F
q

r
j+i n

m
−→ Fq

rmj

x 
→ x + xq
rmj + · · · + xq

(li−1)rmj

where li = rj+i n
m

rmj
. Now equation (13) can be rewritten as

m−1∑
i=0

li−1∑
k=0

(
ciAj+i n

m

)qkrmj = 0

⇒
m−1∑
i=0

li−1∑
k=0

c
qk

i

n−1∑
t=0

αt(j+i n
m

)q
krmj

at = 0

⇒
n−1∑
t=0




li−1∑
k=0

(
m−1∑
i=0

ciα
t(j+i n

m
)

)q
krmj

 at = 0.

This gives a parity check equation over Fqr for the code.
The component wise conjugate vectors of the parity check vectors obtained

this way and the vectors in their span are also parity check vectors of the code.

Example 6.1 Consider an m = 3-quasi-cyclic code of length n = 9 over F2

given by the frequency domain restriction A1 ∈ β−3F4, where β ∈ F64 is a
primitive element with minimal polynomial X6 + X + 1. (the DFT is defined
over F64 with the DFT kernel α = β7). Note that the conjugacy constraint allows
A1 to take any value from F64. But in this particular 3-quasi-cyclic code, A1

takes values from a minimal α3-invariant subspace. The restriction A1 ∈ β−3F4

gives the parity check vector:

h =
((

β3αi
)4 − β3αi

)
i=0 to 8

= (
β48, β56, β7, β6, β14, β28, β27, β35, β50

)
.
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The components of h are distinct and nonzero and h2, being a component
wise conjugate of h, is also a parity check vector of the code. So, Theorem
6.1 guarantees a minimum Hamming distance at least 3 for the code. So, it is a
[9, 5, ≥ 3] code. If we impose the further condition A0 = 0, then we get another
parity check vector h0 = (1, 1, · · · , 1) and as a result we get a [9, 4, ≥ 4] code.

7 Conclusion

In this paper, we have obtained a generalization of the well known DFT domain
characterization of cyclic codes over finite fields. It is shown that for minimal
m-quasi-cyclic codes of length n, transform components in different q-cyclo-
tomic cosets modulo n are related (not possible for cyclic codes) and possible
relations are identified. For non-minimal m-quasi-cyclic codes the decomposi-
tion in terms of minimal m-quasi-cyclic codes is discussed.A way to get a lower
bound on the minimum Hamming distance for m-quasi-cyclic codes in terms of
the minimum Hamming distance of a BCH code is shown. Decoding algorithm
for the corresponding BCH code can be used to decode the m-quasi-cyclic code
upto that minimum distance.
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