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Abstract

We give a brief survey of permutation decoding and some recent results in the search
for PD-sets.

1 Introduction

Permutation decoding was first developed by MacWilliams [12]. It involves finding a set of
automorphisms of the code, called a PD-set, that acts in a certain way such that the set
can be used for decoding and correcting the maximum number of errors of which the code
is capable. The method is described fully in MacWilliams and Sloane [13, Chapter 15] and,
more recently, in Huffman [9, Section 8], where a survey of results up to the time of writing
that chapter is given.

We will give here a brief, but complete, description of permutation decoding, and discuss
some recent results. In particular we will look at codes defined by designs or graphs, where
the automorphism group is known and large.

2 Codes from designs

Terminology for codes and designs will be as in Assmus and Key [1]. An incidence structure
D = (P, B,I), with point set P, block set 5 and incidence 7 is a t-(v, k, A) design, if |P| = v,
every block B € B is incident with precisely k points, and every ¢ distinct points are together
incident with precisely A blocks.

The code of the design D over the finite field F' is the space spanned by the incidence
vectors of the blocks over F'. If the point set of D is P and the block set is B, and if Q is
any subset of P, then we will denote the incidence vector of Q by v<. Thus the code of the
design is C = <vB | B € B>, and is a subspace of F'7, the full vector space of functions from
P to F.
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All the codes here will be linear codes, i.e. subspaces of the ambient vector space. If
a code C over a field of order ¢ is of length n, dimension &, and minimum weight d, then
we write [n, k, d], to show this information. A generator matrix matrix for the code is a
k x n matrix made up of a basis for C. The dual or orthogonal code C is the orthogonal
under the standard inner product, i.e. C*+ = {v € F"|(v,c) = 0 for all ¢ € C}. A check
matrix or parity-check matrix for C is a generator matrix for C; the syndrome of a
vector y € F™is Hy. A code C is self-orthogonal if C C C and is self-dual if C = C*.
If ¢ is a codeword then the support of ¢ is the set of non-zero coordinate positions of ¢. A
constant word in the code is a codeword, all of whose coordinate entries are either 0 or
1. The all-one vector will be denoted by 7, and is the constant vector of weight the length
of the code. Two linear codes of the same length and over the same field are equivalent if
each can be obtained from the other by permuting the coordinate positions and multiplying
each coordinate position by a non-zero field element. They are isomorphic if they can be
obtained from one another by permuting the coordinate positions. Any code is isomorphic
to a code with generator matrix in so-called standard form, i.e. the form [I} | A]; a check
matrix then is given by [~AT | I,,_]. The first k coordinates are the information symbols
and the last n — k coordinates are the check symbols. An automorphism of a code C' is
any permutation of the coordinate positions that maps codewords to codewords.

3 Permutation decoding

A PD-set for a t-error-correcting code C is a set S of automorphisms of C' which is such that
every possible error vector of weight s < ¢ can be moved by some member of S to another
vector where the s non-zero entries have been moved out of the information positions. In
other words, every t-set of coordinate positions is moved by at least one member of S to
a t-set consisting only of check-position coordinates. That such a set will fully use the
error-correction potential of the code follows from a result quoted below. That such a set
exists at all is clearly not always true. There is a bound on the minimum size that the set
S may have, and we will quote the relevant result below. Both the two results can be found
with proofs in [9, Theorem 8.1].

Result 1 Let C be an [n, k,d], t-error-correcting code. Suppose H is a check matriz for
C in standard form, i.e. such that I,_j is in the redundancy positions. Let y = c+ e be a
vector, where ¢ € C and e has weight < t. Then the information symbols in y are correct if
and only if the weight of the syndrome of y is < t.

Proof: Suppose C has generator matrix G in standard form, i.e.
G = [I|A]

and that the encoding is done using G, i.e. the data set x = (z1,...,x)) is encoded as zG.
The information symbols are then the first £ symbols, and the check matrix H is

H = [-AT|L,_].
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Suppose the information symbols of y are correct. Then
Hyl = Hel = €7,

and thus wt(Hy?) < t.

Conversely, suppose that not all the information symbols are correct. Then if e =
€1...en,and € =ej...ex, €' =exy1...e,, we assume that €’ is not the zero vector. Now
use the fact that for any vectors

wt(z +y) > wt(z) — wt(y).

Then
wt(Hy') = wt(HeT) = wt(—ATe/T + ')
> wt(—ATe") = wt(e"T)
wt(e’A) — wt(e”)
= wt(e'A) + wt(e/) — wt(e') — wt(e”)
= wt('G) — wt(e)

v
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which proves the result. O

The algorithm for permutation decoding then is as follows: we have a t-error-correcting
[n, k,d]q code C with check matrix H in standard form. Thus the generator matrix G for
C that is used for encoding has I as the first k£ columns, and hence as the information
symbols. Any k-tuple v is encoded as vG. Suppose z is sent and y is received and at most
t errors occur. Let S = {g1,...,gs} be the PD-set. Compute the syndromes H(yg;)? for
i =1,...,s until an ¢ is found such that the weight of this vector is ¢ or less. Now look
at the information symbols in yg;, and obtain the codeword ¢ that has these information
symbols. Now decode y as cg;” ! Note that this is valid since permutations of the coordinate
positions correspond to linear transformations of F™, so that if y = x + e, where x € C,
then yg = xg + eg for any g € S,,, and if g € Aut(C), then zg € C.

The next result is also in [9] and due to Gordon [7] using a formula of Schénheim [14]:

Result 2 If S is a PD-set for a t-error-correcting [n, k,d|qcode C, and r =n — k, then

A ]

In Gordon [7] and Wolfman [16] small PD-sets for the binary Golay codes were found.
In Chabanne [6] abelian codes, i.e. ideals in the group algebra of an abelian group, are
looked at using Groebner bases, and the ideas of permutation decoding are generalized. In
general it is rather hard to find these PD-sets, and obviously they need not even exist. Note
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that PD-seets need not be sought, in general, for codes with minimum weight 3 or 4, since
correcting a single error is, in fact, simply done by using syndrome decoding, because in
that case multiples of the columns of the check matrix will give the possible syndromes.
Thus the syndrome of the received vector need only be compared with the columns of the
check matrix, by looking for a multiple.

We use the following observation which we state as a more general lemma:

Lemma 1 Suppose C is a [n, k,d), t-error-correcting code, and let r =n—Fk. Let T denote
the set of t-tuples of the elements of {1,...,n} and & the set of t-tuples of the elements of
the check positions {k +1,...,n}. Then a set S = {g1,...,9s} of automorphisms will be a

PD-set for C if
Jer' =71

geS

Furthermore, for any g € Aut(C), the set ¢S = {gg1,...,99s} will also be a PD-set.

Proof: The first part is clear. The second statement can be proved as follows: we need to
show that any t-tuple 3 € T satisfies 8 = a® ' forsomea € Eande € ¢S. If 39 =y =l
for some a € £ and h € S, then B = a9 = WM™ as required. O

4 Cyclic codes

MacWilliams [12] developed a theory for finding PD-sets for cyclic codes.
An [n,k,d], C is cyclic if whenever ¢ = cjca...c, € C then every cyclic shift of ¢ is in
C. Thus the mapping 7 € S5, defined by

Ti1—1+1

for i € {1,2,...n}, is in the automorphism group of C, and 7" = 1. If a message c is
sent and ¢ errors occur, then if e is the error vector and if there is a sequence of k zeros
between two of the error positions, then 77 for some j will move the sequence of zeros into
the information positions, and thus all the errors will occur in the check positions. Thus
< 7 > will be a PD-set for C'if k < §.

As shown in [12], if ¢ is a number prime to the length n, then the map

pri— qi

is also an automorphism of the cyclic code and in the normalizer N of < 7 >. MacWilliams
examines cases where N contains a PD-set.

5 PD-sets through computation

For small ¢ PD-sets can be found computationally. Using Magma such sets have been found,
and a list of codes and corresponding PD-sets is given at the website:
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http://www.ces.clemson.edu/ keyj

under the list of Magma [3] results on PD-sets.

We examined the hermitian and Ree unitals on 28 points, both of whose codes are only
single-error correcting, but nevertheless we did go ahead and find PD-sets. We then also
looked at some codes from desarguesian projective planes; these codes are cyclic and we
were able to find PD-sets in the normalizer of a regular cyclic subgroup of the automorphism
group. These were not necessarily the smallest PD-sets.

In addition we looked at codes arising from some primitive actions of finite simple groups
and found PD-sets where possible. We list the action of the alternating group Ag below in
item 7 and item 8 on two different designs on 126 points. See [11] for a fuller description of
this type of action.

Some examples:

1. C the [28,21,4], code of the hermitian unital on 28 points, a 2-(28,4,1) design has
bound 4; Aut(C) is Spe(2) and a PD-set of four elements was found.

2. C*, for C as above, is a [28, 7, 12]o; here the bound is 10; a PD-set of 30 elements was
found.

3. C the [28,19,4]2 code of the Ree unital on 28 points, a 2-(28,4,1) design, has bound
4; Aut(C) is PI'Ly(8) and a PD-set of four elements was found.

4. C the [31, 16, 6]5 code of the projective plane of order 5, PG2(5), a 2-(31,6,1) design; C
has PGL3(5) acting and is a cyclic code, the bound is 7, and a PD-set of 14 elements,
inside a cyclic group of order 31, was found.

5. The dual of the above is a [31, 15, 10]5 self-orthogonal code, with bound 28, and the
normalizer of a Sylow 31-subgroup has order 93. One such group was found to be a
PD-set.

6. C the [57,29,8]7 code of the plane PG2(7), with PGL3(7) acting and is a cyclic code;
the bound is 15, and a PD-set of 43 elements was found inside the normalizer (of
order 171) of a regular cyclic group of order 57; also one of size 54 was found inside
a regular cyclic group of order 57. (Computations for this code are included in the
appendix, Section 8, and a practice decoding run is shown.)

7. The binary code C of a 1-(126,20,20) design acted on by Ag is a [126, 56, 6]z code
with dual a [126, 70, 5]2 code; the bound is 4, and we found a PD-set of size 17; for
C* the bound is 7 and we found a PD-set of size 32.

8. The binary code C of a 1-(126,40,40) design acted on by Ag is a [126,48,16]2 code
and its dual is a [126,78, 5]y code; the bound for C* is 8, and we found a PD-set of
size 43 for C'*.

(In each case the bound referred to is the lower bound of Result 2.)
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6 Codes from triangular graphs

Recently Key, Moori and Rodrigues [10] obtained explicit PD-sets for the binary codes
defined by the adjacency matrix of a triangular graph. For any n, the triangular graph
T'(n) is defined to be the line graph of the complete graph K,. It is a strongly regular
graph on v = ”("2_1) vertices, i.e. on the pairs of letters {i,j} where 4,5 € {1,...,n}.
The binary codes formed from the span of the adjacency matrix of triangular graphs have
been examined by Tonchev [15, p. 171] and Haemers, Peeters and van Rijckevorsel [8,
Theorem 4.1]. See also [4, 5, 1, 2]. In particular the dimension and weight enumerator of
these codes are easily determined. The code formed by the span of the adjacency matrix
is also the code of the 1—("("2_1) ,2(n —2),2(n — 2)) design D obtained by taking the rows
of the adjacency matrix as the incidence vectors of the blocks; the automorphism group of
this design will contain the automorphism group of the graph, the latter of which is easily
seen to be S,,. Similarly, the automorphism group of the code will contain S,,. The facts
about the binary codes are summarized in the following, the proof of which can be found

in [10].

Result 3 Let C be the binary code obtained by the row span of an adjacency matriz for the
triangular graph T'(n), where n > 5.

If n = 2m then C is a self-orthogonal [(Z;n),Zm —2,4(m — 1) code with weight distri-
bution the zero vector and

2 2 1/2
<4(m—1),<;n> >,<8(m—2),<1n’> >,...,<m2,2<::> >

if m is even, and

2 2 2
<4(m—1),<;”> >,<8(m—2),<;n> S <m?—1, <mT1> >

if m is odd.
If n is odd, then C is a [(g),n —1,n — 1]2 code with weight distribution the zero vector
and

<n-—1,n>...,<2in—2i), (;) >, ...,
7

where 1 <i < (n—1)/2.
The minimum weight of C+ is 3. The automorphism group of C is Sy, unless n =6, in
which case it is PGL4(2) = As.

(Here < i,j > denotes j vectors of weight i.)
In [10], explicit PD-sets for these codes are obtained. The following ordering of the
points is used:
P ={l,n},Po={2,n},...,Pp_1 ={n—1,n}, (1)
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first, followed by the set

Pn = {1, 2}, Pn+1 = {1, 3}, ey Pgn_g = {2, 3}, ceey P(;L) = {n - 2,n - 1}. (2)
The generator matrix for C' is shown in [10] to be in standard form, with the first n — 1
coordinates the information symbols for n odd, and the first n — 2 for n even. For n > 5
PD-sets can be found for the code C.

Result 4 Using the ordering of the point set P given in Equations (1) and (2), the following
sets of permutations in Sy, in the natural action on the points P, are PD-sets for the binary
code C' of the triangular graph T'(n).

1. Forn > 5 odd,
S={lgtu{(i,n) |1<i<n-1}

is a PD-set of n elements.

2. Forn > 6 and even,
S={lctu{(in) [1<i<n—13U{{(i,n—1)(n)]" [1<di,j<n—2}
is a PD-set of n®> — 2n + 2 elements.

This result is proved by examining the action of the group S, on the points in the positions
given.

7 Conclusions

The success of finding PD-sets for the triangular graphs came about by ordering the points
in such a way that the nature of the information symbols was known, and the action of
the automorphism group apparent. A similar type of approach using the codes of finite
geometries, and the projective linear groups, seems to be a possible route for finding PD-
sets for those codes. In addition, the PD-sets could be looked for in the normalizer of a
Singer group.
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8 Appendix: sample computation

The following is the log of a Magma run using the 7-ary code of the
plane PG_2(7) of order 7, i.e. a [57,29,8]_7 code with PGL_3(7)

acting. A PD-set of 43 elements was found inside the normalizer of a
Singer cycle acting on the plane, the set having 43 elements. The
normalizer has order 171, i.e. 57x3. A run showing the decoding
algorithm working is then shown, along with the Magma routine that is
used; the latter is quoted at the end as the file "qudecodeR.m". The
code C is obtained by taking the span over F_7 of the incidence vectors
of the 57 lines given below:

15, 25, 27, 28, 33, 42, 49, 53 },{ 9, 11, 12, 17, 26, 33, 37, 56 },
1, 6, 15, 22, 26, 45, 55, 57 },{ 3, 12, 19, 23, 42, 52, 54, 55 },
2, 3, 8, 17, 24, 28, 47, 57 },{ 6, 13, 17, 36, 46, 48, 49, 54 },

1, 10, 17, 21, 40, 50, 52, 53 },{ 4, 6, 7, 12, 21, 28, 32, 51 },

8, 18, 20, 21, 26, 35, 42, 46 },{ 18, 28, 30, 31, 36, 45, 52, 56 },
7, 14, 18, 37, 47, 49, 50, 55 },{ 4, 14, 16, 17, 22, 31, 38, 42 },
2, 11, 18, 22, 41, 51, 53, 54 },{ 9, 16, 20, 39, 49, 51, 52, 57 },
4, 8, 27, 37, 39, 40, 45, 54 },{ 1, 11, 13, 14, 19, 28, 35, 39 },
1, 8, 12, 31, 41, 43, 44, 49 },{ 3, 7, 26, 36, 38, 39, 44, 53 },

9, 19, 21, 22, 27, 36, 43, 47 },{ 12, 22, 24, 25, 30, 39, 46, 50 },
13, 23, 25, 26, 31, 40, 47, 51 },{ 8, 15, 19, 38, 48, 50, 51, 56 },
2, 21, 31, 33, 34, 39, 48, 55 },{ 5, 7, 8, 13, 22, 29, 33, 52 },

3, 13, 15, 16, 21, 30, 37, 41 },{ 5, 12, 16, 35, 45, 47, 48, 53 },
10, 12, 13, 18, 27, 34, 38, 57 },{ 2, 4, 5, 10, 19, 26, 30, 49 },
4, 23, 33, 35, 36, 41, 50, 57 },{ 1, 3, 4, 9, 18, 25, 29, 48 },

11, 21, 23, 24, 29, 38, 45, 49 },{ 4, 11, 15, 34, 44, 46, 47, 52 },
6, 16, 18, 19, 24, 33, 40, 44 },{ 14, 24, 26, 27, 32, 41, 48, 52 },
5, 15, 17, 18, 23, 32, 39, 43 },{ 7, 17, 19, 20, 25, 34, 41, 45 },
3, 10, 14, 33, 43, 45, 46, 51 },{ 6, 8, 9, 14, 23, 30, 34, 53 },

2, 6, 25, 35, 37, 38, 43, 52 },{ 16, 26, 28, 29, 34, 43, 50, 54 },
7, 11, 30, 40, 42, 43, 48, 57 },{ 7, 9, 10, 15, 24, 31, 35, 54 },
8, 10, 11, 16, 25, 32, 36, 55 },{ 5, 14, 21, 25, 44, 54, 56, 57 },
1, 2, 7, 16, 23, 27, 46, 56 },{ 1, 5, 24, 34, 36, 37, 42, 51 },

3, 22, 32, 34, 35, 40, 49, 56 ¥,{ 17, 27, 29, 30, 35, 44, 51, 55 },
4, 13, 20, 24, 43, 53, 55, 56 },{ 19, 29, 31, 32, 37, 46, 53, 57 },
1, 20, 30, 32, 33, 38, 47, 54 },{ 2, 12, 14, 15, 20, 29, 36, 40 },
5, 9, 28, 38, 40, 41, 46, 55 },{ 3, 5, 6, 11, 20, 27, 31, 50 },

2, 9, 13, 32, 42, 44, 45, 50 },{ 10, 20, 22, 23, 28, 37, 44, 48 },
6, 10, 29, 39, 41, 42, 47, 56 }

P e S N e T e T e T e T S e e N T W e W T s W S S S

2-(57, 8, 1) Design with 57 blocks
> Dim(C);
29

> au;
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Permutation group au acting on a set of cardinality 57
Order = 5630688 = 275 * 373 * 773 * 19
\\the PD-set of 43 elements
> PDset43;
L
Id(nhx),
(1, 44, 55, 19, 7, 15, 16, 47, 8, 27, 52, 25, 9, 13, 53, 57, 40, 14, 38)(2, 4,

32, 43, 29, 42, 20, 31, 30, 12, 17, 54, 41, 35, 3, 45, 24, 37, 48)(5, 28,

39, 26, 6, 18, 50, 56, 46, 11, 36, 22, 33, 49, 51, 23, 34, 10, 21),

(1, 38, 14, 40, 57, 53, 13, 9, 25, 52, 27, 8, 47, 16, 15, 7, 19, 55, 44)(2,

48, 37, 24, 45, 3, 35, 41, 54, 17, 12, 30, 31, 20, 42, 29, 43, 32, 4)(5,

21, 10, 34, 23, 51, 49, 33, 22, 36, 11, 46, 56, 50, 18, 6, 26, 39, 28),
(1, 55, 7, 16, 8, 52, 9, 53, 40, 38, 44, 19, 15, 47, 27, 25, 13, 57, 14)(2,
32, 29, 20, 30, 17, 41, 3, 24, 48, 4, 43, 42, 31, 12, 54, 35, 45, 37) (5,
39, 6, 50, 46, 36, 33, 51, 34, 21, 28, 26, 18, 56, 11, 22, 49, 23, 10),

(1, 14, 57, 13, 25, 27, 47, 15, 19, 44, 38, 40, 53, 9, 52, 8, 16, 7, 55)(2,
37, 45, 35, 54, 12, 31, 42, 43, 4, 48, 24, 3, 41, 17, 30, 20, 29, 32)(5,
10, 23, 49, 22, 11, 56, 18, 26, 28, 21, 34, 51, 33, 36, 46, 50, 6, 39),
(1, 19, 16, 27, 9, 57, 38, 55, 15, 8, 25, 53, 14, 44, 7, 47, 52, 13, 40)(2,
43, 20, 12, 41, 45, 48, 32, 42, 30, 54, 3, 37, 4, 29, 31, 17, 35, 24)(5,
26, 50, 11, 33, 23, 21, 39, 18, 46, 22, 51, 10, 28, 6, 56, 36, 49, 34),
(1, 40, 13, 52, 47, 7, 44, 14, 53, 25, 8, 15, b5, 38, 57, 9, 27, 16, 19)(2,
24, 35, 17, 31, 29, 4, 37, 3, 54, 30, 42, 32, 48, 45, 41, 12, 20, 43)(5,
34, 49, 36, 56, 6, 28, 10, 51, 22, 46, 18, 39, 21, 23, 33, 11, 50, 26),

(1, 7, 8, 9, 40, 44, 15, 27, 13, 14, 55, 16, 52, 53, 38, 19, 47, 25, 57)(2,
29, 30, 41, 24, 4, 42, 12, 35, 37, 32, 20, 17, 3, 48, 43, 31, 54, 45) (5,

6, 46, 33, 34, 28, 18, 11, 49, 10, 39, 50, 36, 51, 21, 26, 56, 22, 23),
(1, 57, 25, 47, 19, 38, 53, 52, 16, 55, 14, 13, 27, 15, 44, 40, 9, 8, 7)(2,
45, 54, 31, 43, 48, 3, 17, 20, 32, 37, 35, 12, 42, 4, 24, 41, 30, 29)(5,
23, 22, 56, 26, 21, 51, 36, 50, 39, 10, 49, 11, 18, 28, 34, 33, 46, 6),

(1, 15, 52, 57, 44, 16, 25, 40, 55, 47, 9, 14, 19, 8, 13, 38, 7, 27, 53)(2,
42, 17, 45, 4, 20, 54, 24, 32, 31, 41, 37, 43, 30, 35, 48, 29, 12, 3)(5,
18, 36, 23, 28, 50, 22, 34, 39, 56, 33, 10, 26, 46, 49, 21, 6, 11, 51),

(1, 83, 27, 7, 38, 13, 8, 19, 14, 9, 47, 55, 40, 25, 16, 44, 57, 52, 15)(2, 3,
12, 29, 48, 35, 30, 43, 37, 41, 31, 32, 24, 54, 20, 4, 45, 17, 42)(5, 51,
11, 6, 21, 49, 46, 26, 10, 33, 56, 39, 34, 22, 50, 28, 23, 36, 18),

(1, 16, 9, 38, 15, 25, 14, 7, 52, 40, 19, 27, 57, 55, 8, 53, 44, 47, 13)(2,
20, 41, 48, 42, 54, 37, 29, 17, 24, 43, 12, 45, 32, 30, 3, 4, 31, 35)(5,
50, 33, 21, 18, 22, 10, 6, 36, 34, 26, 11, 23, 39, 46, 51, 28, 56, 49),

(1, 13, 47, 44, 53, 8, 55, 57, 27, 19, 40, 52, 7, 14, 25, 15, 38, 9, 16)(2,
35, 31, 4, 3, 30, 32, 45, 12, 43, 24, 17, 29, 37, 54, 42, 48, 41, 20) (5,
49, 56, 28, 51, 46, 39, 23, 11, 26, 34, 36, 6, 10, 22, 18, 21, 33, 50),

(1, 47, 53, b5, 27, 40, 7, 25, 38, 16, 13, 44, 8, 57, 19, 52, 14, 15, 9)(2,
31, 3, 32, 12, 24, 29, 54, 48, 20, 35, 4, 30, 45, 43, 17, 37, 42, 41)(5,
56, 51, 39, 11, 34, 6, 22, 21, 50, 49, 28, 46, 23, 26, 36, 10, 18, 33),

(1, 9, 15, 14, 52, 19, 57, 8, 44, 13, 16, 38, 25, 7, 40, 27, 55, 53, 47)(2,
41, 42, 37, 17, 43, 45, 30, 4, 35, 20, 48, 54, 29, 24, 12, 32, 3, 31)(5,
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33, 18, 10, 36, 26, 23, 46, 28, 49, 50, 21, 22, 6, 34, 11, 39, 51, 56),
(1, 8, 40, 15, 13, 55, 52, 38, 47, 57, 7, 9, 44, 27, 14, 16, 53, 19, 25)(2,
30, 24, 42, 35, 32, 17, 48, 31, 45, 29, 41, 4, 12, 37, 20, 3, 43, 54) (5,
46, 34, 18, 49, 39, 36, 21, 56, 23, 6, 33, 28, 11, 10, 50, 51, 26, 22),
(1, 25, 19, 53, 16, 14, 27, 44, 9, 7, 57, 47, 38, 52, 55, 13, 15, 40, 8) (2,
54, 43, 3, 20, 37, 12, 4, 41, 29, 45, 31, 48, 17, 32, 35, 42, 24, 30) (5,
22, 26, 51, 50, 10, 11, 28, 33, 6, 23, 56, 21, 36, 39, 49, 18, 34, 46),
(1, 27, 38, 8, 14, 47, 40, 16, 57, 15, 53, 7, 13, 19, 9, 55, 25, 44, 52) (2,
12, 48, 30, 37, 31, 24, 20, 45, 42, 3, 29, 35, 43, 41, 32, 54, 4, 17)(5,
11, 21, 46, 10, 56, 34, 50, 23, 18, 51, 6, 49, 26, 33, 39, 22, 28, 36),
(1, 52, 44, 25, 55, 9, 19, 13, 7, 53, 15, 57, 16, 40, 47, 14, 8, 38, 27)(2,
17, 4, 54, 32, 41, 43, 35, 29, 3, 42, 45, 20, 24, 31, 37, 30, 48, 12)(5,
36, 28, 22, 39, 33, 26, 49, 6, 51, 18, 23, 50, 34, 56, 10, 46, 21, 11),
(1, 24, 33)(2, 56, 55)(3, 11, 15)(4, 21, 27)(5, 44, 30)(6, 47, 37)(7, 43,
39)(8, 12, 22)(9, 45, 28) (10, 14, 35)(13, 31, 46) (16, 20, 34)(17, 26,
57) (18, 38, 42) (19, 54, 51)(23, 53, 48) (25, 29, 49) (32, 36, 40) (41, 50,
52),
(1, 37, 18)(2, 46, 53)(3, 36, 14)(4, 5, 55)(6, 8, 17)(7, 29, 51)(9, 24,
49) (10, 38, 20) (11, 16, 31)(12, 33, 44) (13, 30, 28) (15, 45, 39)(19, 41,
56) (21, 52, 35)(22, 27, 32)(23, 57, 54) (25, 42, 50) (26, 40, 43)(34, 47,
48),
(1, 45, 5)(2, 50, 27)(3, 46, 9)(4, 10, 40)(6, 16, 42)(7, 32, 11)(8, 30,
21) (12, 36, 57) (13, 20, 23) (14, 41, 18)(15, 35, 34) (17, 39, 19)(22, 47,
24) (25, 43, 28)(26, 53, 37)(29, 33, 38)(31, 56, 44)(48, 51, 55)(49, 52,
54),
(1, 48, 10)(2, 11, 47)(3, 22, 52)(4, 28, 53)(5, 19, 35)(6, 27, 43)(7, 42,
56) (8, 54, 34)(9, 37, 50)(12, 49, 13)(14, 45, 26) (15, 24, 51)(16, 30,
39) (17, 18, 44) (20, 21, 25)(23, 40, 29)(31, 36, 38)(32, 33, 55) (41, 46,
57),
(1, 3, 56)(2, 18, 40)(4, 34, 7)(5, 38, 43)(6, 15, 41)(8, 31, 50)(9, 35,
23) (10, 57, 30) (11, 19, 12)(13, 42, 26) (14, 54, 33) (16, 29, 22)(17, 28,
52) (20, 51, 44) (21, 47, 45)(24, 36, 53)(25, 32, 46) (27, 48, 49)(37, 39,
55),
(1, 2, 36)(3, 33, 19)(4, 39, 47)(5, 7, 20)(6, 52, 45)(8, 41, 11)(9, 48,
21) (10, 44, 54) (12, 51, 16) (13, 17, 50) (14, 24, 23) (15, 37, 56) (18, 55,
43) (22, 25, 31)(26, 38, 30)(27, 29, 34)(28, 57, 35)(32, 49, 53) (40, 42,
46),
(1, 35, 51)(2, 6, 7)(3, 50, 47)(4, 23, 25)(5, 14, 17)(8, 20, 49)(9, 41,
26) (10, 53, 45) (11, 55, 24) (12, 46, 52)(13, 29, 36) (15, 54, 22)(16, 43,
21) (18, 57, 31)(19, 30, 34) (27, 37, 28)(32, 56, 38) (33, 40, 48)(39, 44,
42),
(1, 4, 26)(2, 22, 9)(3, 49, 57)(5, 15, 48)(6, 25, 30)(7, 31, 33)(8, 35,
39) (10, 55, 29) (11, 27, 42)(12, 23, 38) (13, 54, 21)(14, 37, 46) (16, 17,
56) (18, 19, 45) (20, 28, 40) (24, 34, 52)(32, 51, 47)(36, 44, 41) (43, 50,
53),
(1, 41, 39)(2, 26, 25)(3, 18, 53)(4, 51, 38)(5, 40, 37)(6, 19, 31)(7, 48,
22)(8, 42, 28)(9, 54, 36) (10, 13, 43) (11, 44, 29)(12, 56, 14)(15, 17,
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21) (16, 32, 50) (20, 33, 57)(23, 52, 30)(24, 46, 27) (34, 55, 45) (35, 49,
47),

(1, 32, 23)(2, 33, 15)(3, 51, 8)(4, 6, 9)(5, 16, 54)(7, 30, 18)(10, 19,
24) (11, 52, 37)(12, 34, 25)(13, 41, 22) (14, 48, 28)(17, 46, 38)(20, 39,
27) (21, 53, 29)(26, 44, 35)(31, 49, 40) (36, 55, 42)(43, 56, 47)(45, 50,
57),

(1, 54, 11)(2, 39, 38)(3, 6, 55)(4, 49, 16) (5, 57, 42)(7, 37, 21)(8, 29,
46) (9, 17, 10)(12, 50, 15) (13, 32, 18)(14, 30, 51)(19, 20, 22)(23, 27,
45) (24, 56, 40) (25, 48, 36)(26, 52, 31)(28, 47, 41)(33, 53, 35)(34, 44,
43),

(1, 43, 46)(2, 49, 14)(3, 23, 44)(4, 18, 15)(5, 47, 29)(6, 13, 35)(7, 12,
10) (8, 45, 56) (9, 32, 34)(11, 25, 17)(16, 41, 33)(19, 37, 36)(20, 26,
55) (21, 57, 24)(22, 53, 42)(27, 31, 51)(28, 38, 54)(30, 50, 40)(39, 52,
48),
(1, 17, 34)(2, 28, 16)(3, 26, 27)(4, 33, 13)(5, 53, 41)(6, 44, 32)(7, 24,
50) (8, 43, 23)(9, 12, 18)(10, 25, 37)(11, 38, 48)(14, 31, 39)(15, 30,
49) (19, 42, 21)(20, 36, 52)(22, 55, 35)(29, 56, 57) (40, 45, 51) (46, 47,
54),
(1, 29, 28)(2, 51, 52)(3, 34, 13)(4, 50, 14)(5, 8, 24)(6, 53, 20)(7, 17,
36) (9, 43, 11)(10, 15, 32)(12, 21, 40)(16, 35, 18)(19, 48, 26) (22, 57,
37) (23, 55, 31)(25, 54, 39)(27, 30, 56)(33, 47, 42)(38, 41, 49) (44, 45,
46),
(1, 12, 6)(2, 5, 13)(3, 39, 40) (4, 22, 44)(7, 45, 49)(8, 32, 26)(9, 30,
33) (10, 52, 42)(11, 14, 20)(15, 31, 28)(16, 48, 46) (17, 23, 47) (18, 25,
24) (19, 29, 50)(21, 55, 41)(27, 35, 36) (34, 38, 37)(43, 51, 57)(53, 54,
56),
(1, 42, 49)(2, 23, 19)(3, 10, 16)(4, 56, 52)(5, 27, 12)(6, 57, 48) (7, 54,
26) (8, 37, 33)(9, 29, 39)(11, 13, 45)(14, 32, 21)(15, 43, 36) (17, 22,
40) (18, 47, 20) (24, 28, 44)(25, 41, 51)(30, 46, 55) (31, 34, 53)(35, 50,
38),
(1, 30, 22)(2, 21, 44)(3, 28, 7)(4, 36, 8)(5, 9, 31)(6, 38, 24)(10, 27,
41) (11, 40, 35)(12, 26, 47)(13, 48, 56) (14, 42, 34) (15, 20, 46) (16, 37,
23) (17, 51, 53)(18, 52, 29)(19, 43, 49) (25, 45, 33)(32, 39, 57)(50, 55,
54),
(1, 20, 50)(2, 34, 57)(3, 21, 38)(4, 46, 19)(5, 52, 32)(6, 40, 54) (7, 41,
23) (8, 48, 18)(9, 42, 51)(10, 47, 31)(11, 53, 30)(12, 28, 55)(13, 24,
39) (14, 43, 22)(15, 29, 26)(16, 45, 36) (17, 33, 27)(25, 35, 56) (37, 49,
44),
(1, 31, 21)(2, 10, 8)(3, 5, 25)(4, 11, 57)(6, 14, 29)(7, 35, 46)(9, 20,
56) (12, 39, 53)(13, 37, 51)(15, 42, 23) (16, 24, 26) (17, 49, 55)(18, 27,
54) (19, 32, 28)(22, 38, 45)(30, 36, 47)(33, 52, 43)(34, 40, 41)(44, 48,
50),

(1, 33, 24)(2, 55, 56)(3, 15, 11)(4, 27, 21)(5, 30, 44)(6, 37, 47)(7, 39,
43) (8, 22, 12)(9, 28, 45)(10, 35, 14)(13, 46, 31)(16, 34, 20) (17, 57,
26) (18, 42, 38)(19, 51, 54)(23, 48, 53) (25, 49, 29)(32, 40, 36)(41, 52,
50),

(1, 49, 42)(2, 19, 23)(3, 16, 10)(4, 52, 56)(5, 12, 27)(6, 48, 57)(7, 26,

11
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54) (8, 33, 37)(9, 39, 29)(11, 45, 13)(14, 21, 32)(15, 36, 43) (17, 40,
22) (18, 20, 47)(24, 44, 28) (25, 51, 41)(30, 55, 46)(31, 53, 34)(35, 38,
50),
(1, 22, 30)(2, 44, 21)(3, 7, 28)(4, 8, 36)(5, 31, 9 (6, 24, 38) (10, 41,
27) (11, 35, 40) (12, 47, 26) (13, 56, 48) (14, 34, 42)(15, 46, 20) (16, 23,
37) (17, 53, 51)(18, 29, 52) (19, 49, 43)(25, 33, 45)(32, 57, 39) (50, 54,
55),
(1, 51, 35)(2, 7, 6)(3, 47, 50) (4, 25, 23)(5, 17, 14)(8, 49, 20)(9, 26,
41) (10, 45, 53)(11, 24, 55) (12, 52, 46) (13, 36, 29) (15, 22, 54) (16, 21,
43) (18, 31, 57)(19, 34, 30) (27, 28, 37)(32, 38, 56)(33, 48, 40) (39, 42,
44),
(1, 36, 2)(3, 19, 33)(4, 47, 39)(5, 20, 7)(6, 45, 52)(8, 11, 41)(9, 21,
48) (10, 54, 44)(12, 16, 51)(13, 50, 17) (14, 23, 24)(15, 56, 37)(18, 43,
55) (22, 31, 25)(26, 30, 38)(27, 34, 29)(28, 35, 57)(32, 53, 49) (40, 46,
42)

]

> PDset :=PDset43;

> load "qudecodeR.m";

Loading "qudecodeR.m"

check matrix

2316363335305¢614

received.
(2554606
03562565
32 th pdset elt
(1, 17, 34)(2, 28, 16)(3, 26, 27)(4, 33, 13)(5, 53, 41)(6, 44, 32)(7, 24, 50)
(8, 43, 23)(9, 12, 18)(10, 25, 37)(11, 38, 48)(14, 31, 39)(15, 30, 49) (19, 42,
21) (20, 36, 52)(22, 55, 35)(29, 56, 57) (40, 45, 51) (46, 47, 54)
3 errors
corrected (2554506036362365306402316363335305¢614
035625555540521564352)
It is true that the corrected vector is the sent word

6 2316363334305¢64
0

sent..... (204431303310655165122255563143614124
432020030350001520536)

received. (004431303310056165122255563143614124
4320200303500015205236)

4 th pdset elt

(1, 55, 7, 16, 8, 52, 9, 53, 40, 38, 44, 19, 15, 47, 27, 25, 13, 57, 14)(2, 32,
29, 20, 30, 17, 41, 3, 24, 48, 4, 43, 42, 31, 12, 54, 35, 45, 37)(5, 39, 6,
50, 46, 36, 33, 51, 34, 21, 28, 26, 18, 56, 11, 22, 49, 23, 10)

3 errors

corrected (2 04431303310655165122255563143614124
4320200303500015205 3 6)

It is true that the corrected vector is the sent word
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sent..... (65366620300452346323312525430446520
534610060151363352560)

received. (6 366610300452346323312525430446520
534610060151360352560)

4 th pdset elt

(1, 55, 7, 16, 8, 52, 9, 53, 40, 38, 44, 19, 15, 47, 27, 25, 13, 57, 14)(2, 32,
29, 20, 30, 17, 41, 3, 24, 48, 4, 43, 42, 31, 12, 54, 35, 45, 37)(5, 39, 6,
50, 46, 36, 33, 51, 34, 21, 28, 26, 18, 56, 11, 22, 49, 23, 10)

2 errors

corrected (63666 20300452346323312525430446520
534610060151363352560)

It is true that the corrected vector is the sent word

sent..... (0112240545035433246160053245031216
613222642321120235341)

received. (01 12240545035433246160053245031216
613226642321 120235301)

1 th pdset elt

Id(nhx)

2 errors

corrected (01 12240545035433246160053245031216
613222642321120235341)

It is true that the corrected vector is the sent word

sent..... (6536005200643424342400131553521146414
461664313021222664520)

received. (6 36405200643424142400131553521146414
463664313021222664520)

8 th pdset elt

1, 7, 8, 9, 40, 44, 15, 27, 13, 14, 55, 16, 52, 53, 38, 19, 47, 25, 57)(2, 29,
30, 41, 24, 4, 42, 12, 35, 37, 32, 20, 17, 3, 48, 43, 31, 54, 45)(5, 6, 46,
33, 34, 28, 18, 11, 49, 10, 39, 50, 36, 51, 21, 26, 56, 22, 23)

3 errors

corrected (6 360052006434243424001315535211464
461664313021222664520)

It is true that the corrected vector is the sent word

> load "qudecodeR.m";

Loading "qudecodeR.m"

check matrix

sent..... (6520240342533163500623265134603101
56400011440543046215 3)

1

1

1

6

6

6

3

3

3

5

13

received. (6 562024034253316650062326513460310151

5640001144054304622523)
11 th pdset elt

(1, 53, 27, 7, 38, 13, 8, 19, 14, 9, 47, 55, 40, 25, 16, 44, 57, 52, 15)(2, 3, 12,
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29, 48, 35, 30, 43, 37, 41, 31, 32, 24, 54, 20, 4, 45, 17, 42)(5, 51, 11, 6,
21, 49, 46, 26, 10, 33, 56, 39, 34, 22, 50, 28, 23, 36, 18)

2 errors

corrected (6 56202403425331635006232651346031015
56400011440543046215 3)

It is true that the corrected vector is the sent word

sent..... (41545623030341220535021510215340652
101663241506430345061)

received. (41 5456230303412205356215402153406252
101663241506430345061)

6 th pdset elt

(1, 19, 16, 27, 9, 57, 38, 55, 15, 8, 25, 53, 14, 44, 7, 47, 52, 13, 40)(2, 43,
20, 12, 41, 45, 48, 32, 42, 30, 54, 3, 37, 4, 29, 31, 17, 35, 24)(5, 26, 50,
11, 33, 23, 21, 39, 18, 46, 22, 51, 10, 28, 6, 56, 36, 49, 34)

3 errors

corrected (41545623030341220535021510215340652
101663241506430345061)

It is true that the corrected vector is the sent word

sent..... (45450666536202155354404110556402655
110412540306524326121)

received. (4 545066653620255535440411055640261515
110412540306526326121)

4 th pdset elt

(1, 55, 7, 16, 8, 52, 9, 53, 40, 38, 44, 19, 15, 47, 27, 25, 13, 57, 14)(2, 32,
29, 20, 30, 17, 41, 3, 24, 48, 4, 43, 42, 31, 12, 54, 35, 45, 37)(5, 39, 6,
50, 46, 36, 33, 51, 34, 21, 28, 26, 18, 56, 11, 22, 49, 23, 10)

2 errors

corrected 4 545066653620215535440411055640265H5
110412540306524326121)

It is true that the corrected vector is the sent word

sent..... (10121301514310344350540632316242204
0206033145023001503323)

received. (1 0121301514210344350540632315244204
020603314502300150333)

6 th pdset elt

(1, 19, 16, 27, 9, 57, 38, b5, 15, 8, 25, 53, 14, 44, 7, 47, 52, 13, 40)(2, 43,
20, 12, 41, 45, 48, 32, 42, 30, 54, 3, 37, 4, 29, 31, 17, 35, 24)(5, 26, 50,
11, 33, 23, 21, 39, 18, 46, 22, 51, 10, 28, 6, 56, 36, 49, 34)

3 errors

corrected (1 0121301514310344350540632316242204
020603314502300150333)

It is true that the corrected vector is the sent word
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156146164663520016436)

received. (21 33533402426262566321216344615545¢62
1561161646635200161436)

3 th pdset elt

(1, 38, 14, 40, 57, 53, 13, 9, 25, 52, 27, 8, 47, 16, 15, 7, 19, 55, 44)(2, 48,
37, 24, 45, 3, 35, 41, 54, 17, 12, 30, 31, 20, 42, 29, 43, 32, 4)(5, 21, 10,
34, 23, 51, 49, 33, 22, 36, 11, 46, 56, 50, 18, 6, 26, 39, 28)

3 errors

corrected (2 033533402426262566321216344655545¢62
156146164663520016436)

It is true that the corrected vector is the sent word

> nhx;
Permutation group nhx acting on a set of cardinality 57
Order = 171 = 372 * 19
(1, 38, 14, 40, 57, 53, 13, 9, 25, 52, 27, 8, 47, 16, 15, 7, 19, 55, 44)(2,
48, 37, 24, 45, 3, 35, 41, 54, 17, 12, 30, 31, 20, 42, 29, 43, 32, 4)(5,
21, 10, 34, 23, 51, 49, 33, 22, 36, 11, 46, 56, 50, 18, 6, 26, 39, 28)
(3, 43, 32)(4, 31, 54)(5, 34, 51)(6, 50, 28)(7, 27, 16)(8, 38, 9)(10, 39,
22) (11, 26, 21)(12, 20, 29)(13, 57, 52) (14, 15, 40) (17, 35, 45)(18, 49,
33)(19, 55, 53)(23, 56, 46) (24, 37, 42)(25, 44, 47) (30, 48, 41)
(1, 33, 24)(2, 55, 56)(3, 15, 11)(4, 27, 21)(5, 30, 44)(6, 37, 47)(7, 39,
43) (8, 22, 12)(9, 28, 45)(10, 35, 14)(13, 46, 31)(16, 34, 20)(17, 57,
26) (18, 42, 38)(19, 51, 54)(23, 48, 53)(25, 49, 29) (32, 40, 36) (41, 52,

50)
> Seqset(PDset43) subset {x:x in nhx};
true
> quit;

Total time: 21.300 seconds
qudecodeR.m

//values for blox= blocks of design,p=p-ary code
//C= code of design over GF(p),pdset=PD set for code

IV:=func< v, block,p |
CharacteristicVector (VectorSpace(GF(p),v), block) > ;

bal:=Basis(C);
seq:=[1;
d:=Dimension(C);
v:=Length(C);
for j:=1 to d do
b:=ballj];
seq:=seq cat [b[k]: k in [d+1..v]];
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end for;

ma:=KMatrixSpace (GF(p),d,v-d);
sm:=ma'!seq;
smt :=-Transpose(sm) ;
z:=[0:j in [1..v-d]];
seqn:=[];
for j:=1 to v-d do
r:=[smt[j][i]:1 in [1..d]];
zj:=z;
zjljl:=1;
rc:=r cat zj;
seqn:=seqn cat rc;
end for;
cseq:=&cat[Eltseq(ballil):i in [1..d]1];
man: =KMatrixSpace (GF(p) ,v-d,v);
mal:=KMatrixSpace(GF(p),1,d);
ma2:=KMatrixSpace (GF(p),d,v);
ma3:=KMatrixSpace (GF(p),1,v-d);
hsmt:=man!seqn;
"check matrix";
H:=hsmt;

cs:=ma2!cseq;
kset:={};

for i:=1 to 5 do
bb:=Random(C) ;
ers:=[];

for i:=1 to t do
ni:={Random({1..v})};
ai:=Random(f);
cc:=IV(v,ni,p);
ers:=Append(ers,aix*cc);
end for;

b:=bb + &+[ers[i]:i in [1..t]];
"received.",b;

for k:=1 to #pdset do
e:=PDset [k] ;

seql:=[];
for i:=1 to v-d do

seql:=Append(seql, InnerProduct(b~e,hsmt[i]));

end for;
s:={i:i in [1..v-d]|seql[i] ne 0};
if #s le t then

16
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k,"th pdset elt";

e;

#s,"errors";

kset:=kset join {k};
bee:=b"e;

aseq:=[beel[i]:i in [1..d]];
vv:=mall!aseq;

r:=C! (vv*cs);
"corrected",r " (e"-1);

"It is",r"(e"-1) eq bb,"that the corrected vector is the sent word";
break k;

end if;

end for;
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