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Abelian Codes Over Galois Rings Closed Under Certain
Permutations
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Abstract—We study -length Abelian codes over Galois rings with char-
acteristic , where and are relatively prime, having the additional
structure of being closed under the following two permutations: i) per-
mutation effected by multiplying the coordinates with a unit in the ap-
propriate mixed-radix representation of the coordinate positions and ii)
shifting the coordinates by positions. A code is -quasi-cyclic ( -QC) if

is an integer such that cyclic shift of a codeword by positions gives an-
other codeword. We call the Abelian codes closed under the first permu-
tation as unit-invariant Abelian codes and those closed under the second
as quasi-cyclic Abelian (QCA) codes. Using a generalized discrete Fourier
transform (GDFT) defined over an appropriate extension of the Galois ring,
we show that unit-invariant Abelian and QCA codes can be easily charac-
terized in the transform domain. For = 1, QCA codes coincide with
those that are cyclic as well as Abelian. The number of such codes for a
specified size and length is obtained and we also show that the dual of an
unit-invariant -QCA code is also an unit-invariant -QCA code. Unit-in-
variant Abelian (hence unit-invariant cyclic) and -QCA codes over Galois
field and over the integer residue rings are obtainable as special cases.

Index Terms—Abelian codes, dual codes, Galois rings, generalized dis-
crete Fourier transform (GDFT), mixed-radix number system, quasi-cyclic
codes.

I. INTRODUCTION

The family of Abelian codes over finite fieldsFp and integer
rings modulom, Zm, have been extensively studied [1]–[8]. Abelian
codes include the class of cyclic codes (hence, Bose–Chaudhuri–Hoc-
quenghem (BCH), Reed–Solomon (RS) codes) as a special case and
in some cases [1], [2], it has been shown that Abelian codes have
better error-correcting capabilities compared to that of cyclic codes of
the same length.

For a primep, Galois rings are residue class polynomial rings
Zp [x]=�(x), whereZp [x] is the ring of polynomials overZp
and �(x) is a basic irreducible polynomial of degreel over Zp[x]
and, hence, overZp [x] [9]. This Galois ring denoted by GR(pa; l),
throughout this correspondence, coincides with the finite fieldFp
when a = 1 and the integer residue class ringZp when l = 1.
Linear codes overZp have been studied by several authors [10]–[13].
Renewed interest in codes over rings was due to Hammonset al. [14],
who found that certain optimal nonlinear binary codes are binary
images of certain linear codes overZ4 under the Gray map. Recently,
various aspects of coding and cryptography are dealt in the general
setting of Galois rings instead of finite fields [15]–[20]. In view of
this, in this correspondence, the Abelian codes we discuss are over
Galois rings GR(pa; l).

Recently, permutation groups of cyclic codes over Galois rings have
been investigated in [15]. Different decoding algorithms for codes over
Galois rings and Abelian codes have been studied [21]–[24]. In [22],
a decoding algorithm for Alternant codes over Galois rings has been
proposed. In certain cases, Abelian codes belong to the class of Alter-
nant codes and, hence, the above algorithm could be used for decoding
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such codes. In [24], a permutation decoding algorithm was proposed for
decoding binary Abelian codes using Gröbner bases. It was shown in
[24] that the number of errors that can be corrected varies with the sub-
group of the automorphism group of the code used in permutation de-
coding. The larger this group,the better the error-correcting capability.
This motivates us to characterize Abelian codes closed under certain
permutations. We achieve this for two kinds of permutations described
in the following.

Letm0; m1; . . . ; mr�1 be nonzero positive integers and let

n =

r�1

�=0

m�:

Let i 2 In = f0; 1; . . . ; n � 1g. Usingm� ’s as mixed radixes, any
numberi 2 In can be uniquely expressed as

i = i0 + i1m0 + � � �+ ir�1(m0m1 � � �mr�2) (1)

where0 � i� < m�. The mixed-radix representation ofi is denoted
by

i = die = dir�1; ir�2; . . . ; i0e: (2)

The mixed-radix addition and subtraction, denoted by� and	, re-
spectively, are defined by

i� j = dar�1; ar�2; . . . ; a0e; a� = (i� + j�) mod m�; 8�:

and

i	 j = dar�1; ar�2; . . . ; a0e; a� = (i� � j�) mod m�; 8�:

Let G be an Abelian group of order

n =

r�1

�=0

m�

which is a direct product ofr cyclic subgroups of ordermi; i =
0; 1; . . . ; r� 1. An n-length code is Abelian onG if, for every code-
word (c0; c1; . . . ; cn�1) in the code,(c0�j ; c1�j ; . . . ; c(n�1)�j)
also belongs to the code for all values ofj = 0; 1; . . . ; n � 1.

In this correspondence we study Abelian codes that are also closed
under the two permutations given in the following definition.

Definition 1:
i) Let b = dbr�1; br�2; . . . ; b0e 2 In such thatgcd(b�; m�) = 1

for all � = 0; 1; . . . ; r � 1. LetUb: In ! In, defined by

die = dir�1; ir�2; . . . ; i0e

! d(br�1ir�1)m ; (br�2ir�2)m ; . . . ; (b0i0)m e

where(x)m denotesx modulom. We call this permutation theUnitb
permutation. (Notice that every mixed-radix component ofb is a unit
in the integer ring modulo the respective mixed radix.) Abelian codes
closed underUb are calledUb-invariant and the collection of such
Abelian codes for various unitsb will be called unit-invariant Abelian
codes.

ii) For somet2In, letQt: In!In, which takesi! i+t modulon.

Abelian codes closed underQt are those which aret-quasi-cyclic as
well. (A code ist-quasi-cyclic (t-QC) if t is an integer such that cyclic
shift of a codeword byt positions gives another codeword belonging
to the code.) Abelian codes closed underQt will be referred ast-QC
Abelian (t-QCA) codes. Fort = 1, we getcyclic Abelian (CA) codes.

0018-9448/03$17.00 © 2003 IEEE
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Fig. 1. U -invariant QCA codes.

The class of QC codes [25], [26] is important due to the following
reasons: i) they contain asymptotically good codes [26], ii) they provide
a link between block codes and convolutional codes [27], and iii) they
recently have been shown to have a close relationship with the tail-
biting representations of general block codes [28].

The classes of codes studied in this correspondence are best ex-
plained with Fig. 1. The class of length-n = mr�1mr�2 � � �m1m0

Abelian codes is depicted by the ellipse in the figure. In the class of
n-length QC codes everyns-QC code is closed undern�-cyclic shifts
also for alls � � � r� 1, wheren� = m��1m��2 � � �m1m0. Note
that every length-n = mr�1mr�2 � � �m1m0 Abelian code is neces-
sarily anns-QC code for somes � r � 1 wheren0 = 1 by conven-
tion. Hence, the ellipse has not gone outside the concentric circles. The
circle (shown in bold) representsn-length unit-invariant linear codes
(not necessarily Abelian). The horizontally hatched regions represent
ns-QCA codes for some value ofs and the double-hatched regions rep-
resentUnitb-invariantns-QCA codes. Observe that an Abelian code
is eitherns-QCA orUnitb-invariantns-QCA.

The main result of this correspondence consists of i) characterizing
QCA and unit-invariant QCA codes over Galois rings, ii) finding the
values for every Abelian code, and iii) if the code isUnitb-invariant
also, then the valueb.

We show that it is easy to obtain these results using the discrete
Fourier transform (DFT) approach. DFT domain characterization of
cyclic, Abelian, and QC codes over finite fields and ringsZm have
been previously discussed in the literature [6], [7], [29], [30]. In this
correspondence, we characterize QCA codes andUb-invariant Abelian

codes over Galois rings in the DFT domain defined over suitable Ga-
lois ring extensions. Thus, we characterizeUb-invariant QCA codes as
well. By inspecting the DFT domain description of an Abelian code, we
are able to give all the values ofns andb for which the code isns-QCA
andUb-invariant QCA. QCA codes have the advantage that they need
a smaller Galois ring extension compared toQC non-Abeliancodes for
DFT domain characterization for some cases [31]. Efficient DFT do-
main encoding and decoding techniques exist for codes over fields [32].
Since algebraic decoding generally takes place in the extension ring, a
smaller extension ring may lead to simpler or more efficient decoding.

Throughout the correspondence, the length of the coden is relatively
prime to the characteristicpa of the Galois ring over which the code is
defined.

The content is organized as follows. In Section II, we give a brief
introduction to codes over Galois rings and the concept of dimension
of a code over a Galois ring. A generalized DFT is used to charac-
terize Abelian codes in this section. This is a generalization of [6],
where Abelian codes over ringsZm were characterized in DFT do-
main. In Section III, we characterizeUb-invariant Abelian codes and
in Section IV we present the characterization of QCA codes over Ga-
lois rings. In Section V, we discuss dualUb-invariant and QCA codes
and enumerate such invariant codes of a specified size.

II. CODESOVER GALOIS RING

Let GR(pa; l) be the Galois ringZp [x]=�(x), where�(x) is a
basic irreducible polynomial of degreel inZp [x]. We refer the readers



2244 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 9, SEPTEMBER 2003

to [6], [35] where most of the properties of Galois rings relevant to us
are listed. A GR(pa; l)-linear code of lengthn is an GR(pa; l)-sub-
module of GR(pa; l)n.

The following result can be found in [20], [33], [15].

Proposition 1 [20], [33]: A GR(pa; l)-linear codeC is permuta-
tion-equivalent to a code with generator matrix of the form

Ik A0; 1 A0; 2 � � � A0; a

0 pIk pA1; 2 � � � pA1; a

...

0 0 � � � pa�1Ik pa�1Aa�1; a

whereAi; j are matrices over GR(pa; l) and the columns in the above
generator matrix are grouped into blocks of sizek0; k1; . . . ; ka�1.
The size ofC is pl� , where

� =

a�1

i=0

ki(a� i)

C is said to be of type(k0; k1; . . . ; ka�1), andk0; k1; . . . ; ka�1 are
called the dimensions ofC.

A. DFT Over Galois Rings

In this subsection, we define the generalized discrete Fourier trans-
form (GDFT) over Galois rings and discuss its properties, used subse-
quently to characterize Abelian codes over Galois rings.

Throughout the correspondence,G will denote an Abelian group of
ordern which is a direct product ofr cyclic subgroups, denoted by
Cr�1; Cr�2; . . . ; C0 of orders, respectively,mr�1; mr�2; . . . ; m0.
Clearly,n = mr�1mr�2 � � �m1m0. If g(m ); g(m ); . . . ; g(m )

are the generators of the corresponding cyclic subgroups, then any el-
ementg 2 G can be written as

g = g
i

(m )g
i

(m ) � � � g
i

(m )

for someir�1; ir�2; . . . ; i0 where0� ik <mk for k = 0; 1; . . . ;
r � 1. This element is denoted bygi or gdie, where die =
dir�1; ir�2; . . . ; i0e is the mixed-radix representation ofi 2 In
using mr�1; mr�2; . . . ; m0 as the mixed radixes. The group
operation ofG can thus be specified using mixed-radix indexing as
gigj = gi�j , wherei; j 2 In andi� j andi	 j are the mixed-radix
addition and subtraction, respectively. Lete be the exponent ofG and
p be a prime such thatgcd(e; p) = 1 and henceforth, let

n� =

��1

i=0

mi; for all � = 1; 2; . . . ; r � 1

n0 = 1 by convention. We consider linear codes of lengthn =
mr�1 � � �m1m0 over the Galois ring GR(pa; l) and useq for pl for
notational simplicity. (Note that whena = 1, GR(pa; l) becomes
Fp which is generally denoted byFq .) Letm be the smallest integer
such thate j (plm � 1). The polynomialxe � 1 factors linearly
in the group of units of the Galois ring GR(pa; lm) denoted by
GR(pa; lm)�. Hence, elements of ordermi exists in GR(pa; lm)�

for i = 0; 1; . . . ; r � 1. The GDFT is defined as follows.

Definition 2 (GDFT): Let

gcd(n; p) = 1 and ~a = (a0; . . . ; an�1) 2 GR(pa; l)n:

The GDFT of~a, denoted by~A = (A0; . . . ; An�1) 2 GR(pa; lm)n,
is given by

Aj =

n�1

i=0

r�1

�=0

�
i j

� ai; j 2 In (3)

where i = dir�1; ir�2; . . . ; i0e and j = djr�1; jr�2; . . . ; j0e
are mixed-radix representations ofi and j with mixed radixes
m0; m1; . . . ; mr�1 and �0; �1; . . . ; �r�1 are elements of
GR(pa; lm)� of ordersm0; m1; . . . ; mr�1, respectively.

For a ringR, the group ringRG is the set of formal sums given by

RG =

n�1

k=0

cdkegdke: cdke 2 R :

Addition in RG is the component-wise addition and multiplication in
RG can be defined in two ways [6]: i) as convolution in which caseRG

is a “convolution algebra” or ii) as point-wise multiplication in which
caseRG is a “point-wise product algebra.”

The GDFT defined above is a generalization of the GDFT for codes
overZp = GR(pa; 1) discussed in [6]. Naturally, all the properties of
GDFT in [6] (convolution property, conjugate symmetry property, and
the algebra-isomorphism property) hold for the GDFT in Definition 2.

In particular, the conjugate symmetry property is as follows.
Let �0 be the Frobenius automorphism of GR(pa; lm) and let
� = �l0. Now, GR(pa; l) is fixed under the automorphism� and�i,
i = 0; 1; . . . ; r � 1 in the definition of GDFT satisfy�(�i) = �

q
i . If

(Ad0e; Ad1e; . . . ; Adn�1e) 2 GR(pa; lm)n

is the GDFT vector of

(ad0e; ad1e; . . . ; adn�1e) 2 GR(pa; l)n

then the following relation amongAdje; j 2 In holds:

�(Adje) = Aqdje (4)

whereqdje = d(qjr�1)m ; (qjr�2)m ; . . . ; (qj0)m e.

B. GDFT Characterization of Abelian Codes Over GR(pa; l)

Definition 3: The setfdie; qdie; q2die; . . . ; q(e �1)dieg � In
wheredie = qe die is called thecyclotomic cosetcontainingdie, de-
noted bydie, andei is called the exponent ofdie. Clearly,In is a dis-
joint union of cyclotomic cosets. LetLLL � In be the set containing one
element from each of the cyclotomic cosets. We call the setLLL as the
cyclotomic representative set. (For concreteness, we use the smallest
element of a cyclotomic coset as a representative.) Notice that cyclo-
tomic cosets are independent ofa.

Example 1:
i) For n = 7� 3� 3 andq = 2 the cyclotomic cosets are shown in

Table I and

LLL = fd0e; d1e; d3e; d4e; d5e; d9e; d10e; d12e;

d13e; d14e; d27e; d28e; d30e; d31e; d32eg:

ii) Table II(a) shows the cyclotomic cosets forn = 5 � 2 � 2 and
q = 9 and Table II(b) displays the correspondingLLL.

iii) For n=3�3�3 andq=4, there are 27 cyclotomic cosets each
consisting of one elementi; i=0; 1; . . . ; 26 which is same asLLL.

The constraint due to the conjugate symmetry property given by (4)
implies that i) the set of transform components

Âdie = fAdie; Aqdie; Aq die; . . . ; Aq dieg
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TABLE I
CYCLOTOMIC COSETS FORn = 7 � 3 � 3 AND q = 2

TABLE II
CYCLOTOMIC COSETS AND CONSTRAINED SETS FOR n = 5 � 2 � 2 LENGTH

ABELIAN CODESOVER GR(3 ; 2)

are related (in other words, transform components indexed by elements
of the same cyclotomic coset are related) and, moreover, ii) every ele-
ment ofÂdie belongs to the same Galois ring

GR(pa; lei) � GR(pa; lm)

for some fixedei dividingm. The setÂdie will be called theconjugacy
classcontainingAdie. For a codeC over GR(pa; l), letCCCjjj = fAj j
~a 2 Cg denote the set of distinct values taken by thejth transform
component of all the codewords inC and let

CCCiii; jjj = f(Ai; Aj) j ~a 2 Cg:

Using the conjugate symmetry and convolution property of the
GDFT as in [6], it can be shown that the image of alln-tuples over

GR(pa; l) under the GDFT, is isomorphic to a direct sum of Galois
rings given by

GDFT(GR(pa; l)n) �=
i2LLL

GR(pa; lei):

An Abelian codeC over GR(pa; l) is isomorphic to an ideal of the
ring

i2LLL GR(pa; lei), whereCCCiii = p� GR(pa; lei) for some fixed
value of�i, 0 � �i � a, and transform components belonging to
different conjugacy classes take values independently. ByAi andAj

take values independently, we meanCCCiii; jjj = CCCiii �CCCjjj .
To be precise, we have the following GDFT domain characterization

of Abelian codes over GR(pa; l).

• An Abelian codeC over GR(pa; l) is the set of inverse GDFT
vectors of a GR(pa; l)-submodule of GDFT(GR(pa; l)n) �
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GR(pa; lm)n in which transform components indexed by ele-
ments ofdie, i = 0; 1; . . . ; n� 1, take all the values from some
ideal of GR(pa; lei) and transform components in disjoint cy-
clotomic cosets take values independently. Equivalently

• For any Abelian codeC over GR(pa; l), transform components
of every codeword satisfy the conjugate symmetry property and
for all i 2 f0; 1; . . . ; n � 1g, CCCiii = p� GR(pa; lei) for some
�i 2 f0; 1; . . . ; ag with transform components in disjoint cy-
clotomic cosets taking valuesindependently.

In the remainder of this correspondence, we refer to the ideal
p� GR(pa; lei) as the�i-ideal of GR(pa; lei). Also, for an Abelian
code, sincêAdie can take values only from the ideals of Galois subring
GR(pa; lei), we will sayAdie takes values from the�i-ideal to mean
that CCCiii = p� GR(pa; lei), since it is obvious the ideal of which
ring is meant. Hence, an Abelian code is specified/characterized
by specifying �i ; �i ; . . . ; �i corresponding to each element
in LLL = fdi1e; di2e; . . . ; dijLLLjeg. In other words, an Abelian code
over GR(pa; l) can be characterized by a partition ofIn as given in
Definition 4 that follows.

Definition 4: Thedefining partition of an Abelian code is the par-
tition (T0; T1; . . . ; Ta) of In, where

T� = fj 2 In j CCCjjj = p
�GR(pa; lej)g; for 0 � � � a:

For an Abelian code, everyT� is a union of some cyclotomic cosets or
T� = ; if CCCjjj 6= p�GR(pa; lej) for anyj 2 In.

Example 2: Let G = C3 � C3 � C3, whereC3 is a cyclic group
of order3. Therefore,n = 27 ande = 3. We will consider codes
over GR(22; 2). Sincee j (22 � 1), there is no need for an extended
Galois ring and hence there are no conjugacy constraints on the trans-
form components. All the transform components independently take
values from the ideals of Galois ring GR(22; 2), where the ideals are
f0g; 2GR(22; 2) and GR(22; 2). All the codesC0 to C5 shown in
Table III are Abelian codes where each elementa + bx 2 GR(22; 2)
is denoted simply byab. In all the codes, the transform components not
listed take the value zero. For each code the defining partition is also
shown.

Including the two trivial codes GR(pa; l)n and the all-zero
codeword), there are(a + 1)jLLLj Abelian codes over GR(pa; l),
of length n = mr�1mr�2 � � �m0. The cardinality of ideal
p� GR(pa; lei) is p(a�� )le and, hence, ifC � GR(pa; l)n is
an n = mr�1mr�2 � � �m0-length Abelian code of dimensions
(k0; . . . ; ka�1) (refer to Proposition 1) such that each conjugacy
classÂdie takes values from the�i-ideal, then the size of the code is
pl� where

� =
i2LLL

ei(a� �i)

and

kj =
i: � =j

ei; for all j = 0; 1; . . . ; a� 1:

The conjugacy class taking values fromp� GR(pa; lei) contributes to
the dimensionk� .

C. Constraints onLLL

The main result of this correspondence is to identify the constraints
on the values taken by transform components belonging to different
conjugacy classes for the Abelian code to be i) unit-invariant for any
b = dbr�1; br�2; . . . ; b0e such thatgcd(b�; m�) = 1 for all � =
0; 1; . . . ; r � 1 and ii)ns-QC for anys, 0 � s � r � 1.

Given the transform domain description of an Abelian code, this re-
sult enables us to give the smallest value ofs for which the code is

ns-QC and also all the values ofb for which the code isUb-invariant.
Toward this end, we define aconstraint in terms of a partition onLLL
and Abelian codes satisfying this constraint as follows.

Definition 5: A constraint D is a partitionfD1; D2; . . . ; Dug of
the set of cyclotomic coset representatives

LLL = fdi1e; di2e; . . . ; dijLLLjeg:

An Abelian code over GR(pa; l) is said to satisfy the constraintD
if di�e; di�e 2 Dj for somej 2 f1; 2; . . . ; ug implies�i = �i ,
whereCCCi = p� GR(pa; lei ) andCCCi = p

� GR(pa; lei ). If
a setDj contains only one cyclotomic coset representative, we call
the corresponding cyclotomic coset afree cyclotomic coset. Otherwise,
Dj is called aconstrained set of cyclotomic coset representativesand
all the corresponding cyclotomic cosets ofDj are said to form a con-
strained set.

Example 3: Table II(c) and (d) and Table IV(a) and (b) show two
kinds of constrained sets defined by Definition 6 and Definition 8 ahead
for the casesn = 5�2�2 with q = 9 andn = 3�3�3 with q = 4.

III. U NIT-INVARIANT ABELIAN CODE

In this section, we characterizeUb-invariant Abelian codes in the
DFT domain. Letb 2 In such thatb = dbr�1; br�2; . . . ; b0e and
gcd(b�; m�) = 1 for all � = 0; 1; . . . ; r � 1. Let Ub: In ! In,
which sends

die = dir�1; ir�2; . . . ; i0e

! dbedie = dbr�1ir�1; br�2ir�2; . . . ; b0i0e:

Let dbe�1 = db�1
r�1; b

�1
r�2; . . . ; b

�1
0 e, whereb�1

� represents the in-
verse ofb� in Im and let~a (b) denote theUb-permuted version of~a,
~A (b) denote the corresponding DFT vector. Ifr = 1, i.e., if G is a
cyclic group,Ub-invariant codes generalize the class of cyclic codes
overFq which are invariant under the permutationi ! qi modulon
studied in [26] and [29].

Definition 6: For anyi 2 In andb as defined above, let

die
(b )

= fdie; dbe�1die; dbe�2die; . . . ; dbe�e +1dieg (5)

wheree0i is the smallest integer such thatdbe�e die = die. Moreover,
for everydie 2 LLL = fdi1e; di2e; . . . ; dijLLLjeg, the associated subset
of LLL, denoted bydie(b), is defined to be

die(b) = dje 2 LLLjdje = dke for some k 2 die
(b )

: (6)

Note that with the definition above, everyb defines a partition onLLL.

Theorem 1: For any n and p such thatgcd(n; p) = 1, an
n = mr�1mr�2 � � �m0-length Abelian code over GR(pa; l) is
Ub-invariant iff it satisfies the constraintD = fD1; D2; . . . ; Dug,
wherej 2 Di � LLL ) Di = dje(b).

Proof: From the GDFT expression

A
(b)
j =

n�1

i=0

r�1

�=0

�
i j

� a
(b)
i =

n�1

i=0

r�1

�=0

�
i j

� adbedie

=

n�1

i=0

r�1

�=0

�
(b i )j

� adie

=A
db j ; b j ; ...; b j e

= Adbe dje:

This implies that an Abelian code isUb-invariant iff CCCdjjje =

CCCdbe dje. Also, if e0j is the smallest integer such thatdbe�e dje =
dje, an Abelian code isUb-invariant iff

CCCdjjje = CCCdbbbe djjje = � � � = CCC
dbbbe djjje

= CCCdjjje:
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TABLE III
n = 3 � 3 � 3 LENGTH ABELIAN CODESOVER GR(2 ; 2)

Corollary 1: For anyn andp such thatgcd(n; p) = 1, all n =
mr�1mr�2 � � �m0-length Abelian codes over GR(pa; l) areUb-in-
variant forb = dq�1; q�1; . . . ; q�1e.

Example 4: Table IV(a) lists forn = 3 � 3 � 3-length Abelian
codes over GR(22; 2), constrained sets for all possible values of
b exceptd1; 1; 1e. For the same parameters, Table III lists code-
words of several codes. The codesC1 and C2 are Ub-invariant for
b = d2; 1; 1e, d1; 2; 1e, and d2; 2; 1e; C3 is Ub-invariant for
b = d1; 1; 2e, d2; 1; 1e, andd2; 1; 2e; andC4 is Ub-invariant for

b = d1; 1; 2e; d2; 1; 1e, d2; 1; 2e, d1; 2; 1e, d1; 2; 2e, d2; 2; 1e,
andd2; 2; 2e.

As an application of this result in the permutation decoding of
Abelian codes, we use one of the examples used in [24].

The first code considered in [24] was the[49 = 7 � 7; 18; 12]
code over GR(21; 1) = F2. The setLLL for these parameters is
as follows: fd0; 0e, d0; 1e, d0; 3e, d1; 0e, d1; 1e, d1; 2e, d1; 3e,
d1; 4e, d1; 5e, d1; 6e, d3; 0e, d3; 1e, d3; 2e, d3; 3e, d3; 4e, d3; 5e,
d3; 6eg. Further, it was mentioned in [24] that the zeros of this code
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TABLE IV
CYCLOTOMIC COSETS ANDCONSTRAINED SETS FORn = 3� 3� 3 LENGTH ABELIAN CODESOVER GR(2 ; 2)

are Ta = T1 = fd0; 0e, d0; 1e, d1; 0e, d1; 1e, d3; 3e, d0; 3e,
d3; 0e, d3; 5e, d5; 3e, d1; 4e, d4; 1eg. It can be checked that both

the setsT1 andT0 = In n T1 are such thatdie
(b )

2 T1 (resp.,
T0) for any i 2 T1 (resp.,T0) and for the following values of
dbe�1 = d2; 2e; d3; 3e; d1; 2e; d2; 1e. From our results, this code
is Ub-invariant for dbe = d4; 4e; d5; 5e; d1; 4e, and d4; 1e. In
[24], only the permutation subgroup corresponding todbe = d4; 4e
was used whereas the permutation subgroup corresponding to
dbe = d5; 5e; d1; 4e; d4; 1e under which the code is invariant was
not considered. Using these additional permutations, it could be
possible to correct more errors, or it is possible that one of these
permutations is more important than the others in the sense that using a
lesser number of permutation subgroups (and, hence, lesser iterations)
the decoding algorithm might be able to correct most of the errors.

IV. QCA CODES IN THEGDFT DOMAIN

In this section, for a given lengthn = mr�1mr�2 � � �m0, we
study the GDFT domain characterization ofns-QCA codes for all
s = 0; 1; 2; . . . ; r � 1 and for a fixed ordering of the factorsmr�1;

mr�2; . . . ; m0. To characterize thet-QCA code wheret is any

divisor ofn, with a proper ordering of the factors ofn, we can always
havet = m0

sm
0

s�1 � � �m
0

0 for some integers such that

n = m
0

r�1m
0

r�2 � � �m
0

sm
0

s�1 � � �m
0

0:

Hence, the GDFT characterization of at-QCA can be done wheret
is any divisor ofn, but it is important to notice that, in this case, the
mixed-radix addition� (and, hence, Abelian codes) will be defined
with respect to the mixed radixesm0

r�1; m
0

r�2; . . . ; m
0

0. For instance,
if G is of ordern = 36 = m1�m0, wherem1 = 9; m0 = 4, we can
characterize all CA and 4-QCA codes (cyclic and 4-QC codes Abelian
onG = C9 � C4). Forn = 36 = m0

1 �m0

0, wherem0

1 = m0

0 = 6,
we can characterize all CA and 6-QCA codes (cyclic and 6-QC codes
Abelian onC6�C6). In some cases, it might turn out that a given code
C is Abelian onG = C9 � C4 as well asC6 � C6 (trivial examples
are all-zero vector, repetition code and GR(pa; l)n) in which case we
can characterize whether this code ist-QC for t = 1; 4; and6.

Throughout this section, for a vector~a 2 GR(pa; l)n, ~a (t) will
denote thet-cyclic shifted version of~a and the corresponding GDFT
vector will be denoted by~A (t).

Theorem 2: All n = mr�1mr�2 � � �m0-length Abelian codes are
nr�1-QCA codes.
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Proof: LetC be ann = mr�1mr�2 � � �m0-length Abelian code.
For any~a = n�1

i=0 aigi 2 C, the codeword

g(m )

n�1

i=0

aigi =

n�1

i=0

ai�dm �1; 0; ...;0egi = ~a (n )

also belongs toC.

In the next few theorems we will use the following notations.

Definition 7: For everyj 2 In such that

dje = d0; 0; . . . ; 0; j� 6= 0; j��1; . . . ; j0e

(i.e.,j� is the first nonzero mixed-radix component) and� � h > s �
0, let the setJ(h; s)(j) be defined as in (7) at the bottom of the page.

If h = s + 1, we denote the set in (7) asJ(s)(j) for notational
simplicity which is the set of alldie 2 In with only thesth component
running overIm .

Definition 8: Let LLL = fdi1e; di2e; . . . ; dijLLLjeg. For any s
(0 � s < r � 1), anddie 2 LLL such thati � ns+1 and

die = d0; . . . ; 0; i� 6= 0; i��1; . . . ; i0e;

the subsetdiehsi of LLL is defined as the set

j 2 LLLj an element ofdje 2 J(�; s)(k) for somek 2 die : (8)

Since for any pairdice; dide 2 LLL, dicehsi anddidehsi either coincide
or disjoint,fdiehsijdie 2 LLLg constitute a partition ofLLL. This partition
of LLL will be called thes-partition of LLL.

Example 5: Table II(d) lists all thes-partitions for all values ofs
for the casen = 5 � 2 � 2 with q = 9 and Table IV(b) displays the
same for the casen = 3 � 3� 3 with q = 4.

The following two properties of Galois rings are used in the proof of
Lemma 1.

1) The degree of any element� 2 GR(pa; l) is the smallest pos-
itive integer t such that�t0(�) = �. It follows that if � 2
GR(pa; t) but not in any subring GR(pa; t1), wheret1 < t,
thent is the degree of�. This helps to identify the elements of a
subring GR(pa; t) in the Galois ring GR(pa; l).

2) For any� 2 GR(pa; l), andt, a divisor ofl, such thatl = td,
the relative trace mapTl=t is defined as

Tl=t(�) = � + �t0(�) + �2t0 (�) + � � �+ �
(d�1)t
0 (�):

Properties analogous to those for the trace function over finite
fields [34] can be proved forTl=t as well.

Lemma 1: If gcd(n; p) = 1 and if C is an
n = mr�1mr�2 � � �m0-length Abelian code over
GR(pa; l) such that CCCk = p� GR(pa; lek) for each
k = djr�1; jr�2; . . . ; ks; . . . ; j0e 2 J(s)(j), then

k2J (j)

�ks Ak 2 pGR(pa; le); for every ~A 2 GDFT(C)

iff �k �  for all k 2 J(s)(j) andekje for the specific value

k = djr�1; . . . ; js+1; 0; js�1; . . . ; j0e:

Proof: If the degree of�ks is t, by definitiont is the smallest in-
teger such that�t0(�

k
s ) = �p k

s = �ks . Since�s is anmsth root of
unity, this impliest is the smallest integer such thatks = (ptks)m .
In the summation k2J (j) �

k
s Ak, ks is thesth component in the

mixed-radix representation ofk. SinceAk 2 GR(pa; lek), ek the ex-
ponent of the cyclotomic cosetdke is the smallest integer such that
k� = (ple k�)m for all � = 0; 1; . . . ; r � 1. This impliest di-
videslek and from property 1) above,�ks 2 GR(pa; lek) and hence
�ks Ak 2 p� GR(pa; lek) for all k 2 J(s)(j). We now partition the
setfAk j k 2 J(s)(j)g into subsets such that all transform compo-
nents belonging to the same subset are from the same conjugacy class.
Let H be the number of such subsets andMi; 0 � i < H the cardi-
nality of each subset. We choose one transform component

dk(i)e = djr�1; jr�2; . . . ; js+1; k
(i)
s ; js�1; . . . ; j0e

from theith subset and write

k2J (j)

�ks Ak 2 pGR(pa; le)

as

H�1

i=0

M �1

�=0

�q k
s Aq dk e 2 pGR(pa; le)

whereê is the size of the cyclotomic coset containingk with sth com-
ponent,ks = 0. If di = lêMi for all i

M �1

�=0

�q k
s Aq dk e =

M �1

�=0

�lê�0 �ks Adk e

=Td =lê �ks Adk e :

From the properties of relative trace

Td =lê �ks Adk e 2 p� GR(pa; lê); for all k

and hence
H

i=0

Td =lê(�
k
s Adk e) 2 GR(pa; le)

iff ê j e. This summation belongs to-ideal of GR(pa; le) iff �k � 
because transform components belonging to different conjugacy
classes and, hence, the individual trace functions (Td =lê for eachi)
take values independently.

The following Lemma which denotes the mixed-radix representation
of i + ns is used in the main theorem (Theorem 3).

Lemma 2: For everydie = dir�1; ir�2; . . . ; i0e andns; s =
1; 2; . . . ; r � 1, the mixed-radix representation ofdi + nse is given
in (9) at the bottom of the page, where

�
(s)
k =

1; if i� � �1 mod m�; for all s � � < k

0; otherwise

for s + 1 � k � r � 1.
The following theorem presents the main result of this correspon-

dence that establishes the constraint set for anns-QCA code.

J(h; s)(j) = fd0; . . . ; 0; j�; j��1; . . . ; jh; xh�1; xh�2; . . . ; xs; js�1; . . . ; j0egjx� 2 Im ; � = h� 1; h� 2; . . . ; sg: (7)

di+ nse = d(ir�1 + �
(s)
r�1)m ; (ir�2 + �

(s)
r�2)m ; . . . ; (is+1 + �

(s)
s+1)m ; (is + 1)m ; is�1; . . . ; i0e (9)
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Theorem 3: For anyn andp such thatgcd(n; p) = 1, a length-
n = mr�1mr�2 � � �m0 Abelian code over GR(pa; l) is ns-QCA,
0 � s � r� 2, iff it satisfies the constraintD = fD1; D2; . . . ; Dug,
where

j 2 Di � LLL) Di =
fjg; if j � ns+1 � 1

djehsi; otherwise.

In other words, an Abelian code isns-QCA iff for all j 2 LLL

i) the spectral componentj is free if0 � j � ns+1 � 1;
ii) and spectral components belonging todjehsi form a constrained

set ifns+1 � j � n � 1.
Proof: Let~a = (a0; a1; . . . ; an�1) 2 C. We have

A
(n )
j =

n�1

i=0

r�1

�=0

�
i j

� ai�n

=

n�1

i=0

r�1

�=s+1

�
j (i +� )

� �
j (i +1)
s

s�1

�=0

�
i j
� ai: (10)

Clearly, if j 2 LLL such that0 � j � ns+1 � 1, jr�1 = jr�2 = � � � =
js+1 = 0, and (10) becomes

A
(n )
j = �

j
s

n�1

i=0

r�1

�=0

�
i j

� ai = �
j
s Aj :

The preceding equation impliesj is free for all0 � j � ns+1�1, thus
proving condition i). To prove condition ii) forns+1 � j � n� 1, we
continue with (10).

If dje = d0; . . . ; 0; j� 6= 0; j��1; . . . ; j0e, substituting the in-
verse GDFT

ai =
1

n

n�1

k=0

r�1

�=0

(��)
�i k

Ak

in (10) we can reduce it to (11)–(13) as shown at the bottom of the page.
In (12), since�(s)s+2 = 0, if �(s)s+1 = 0 or if is+1 6� �1 mod ms+1, we
can further split the first part of the right-hand side of (12) and obtain
(13).

Observe thatK is independent ofjs andK1 is independent of both
js andjs+1.

Proof for the “Only If” Part: Let C be anns-QCA code. Notice
that in deriving (13), we have not assumed any fixed value fors. In
this part of the proof, we will prove condition ii) by induction ons. To
elaborate, we will first prove that condition ii) is true fors = r � 2.
Using the fact that everyns-QC code isns+1-QC also, we will be
through if we assume that the condition is true fors + 1 and show
that it is true fors.

To prove condition ii) fors = r � 2, let j 2 LLL such thatnr�1 �
j � n � 1, and letCCCjjj = p�GR(pa; lej). We need to prove that

A
(n )
j =

1

n

n�1

k=0

n�1

i=0

�

�=s+1

�
i (j �k )+� j

� �
i (j �k )+j
s

s�1

�=0

�
i (j �k )
� Ak

=
1

n
k2J (j)

n�1

i=0

�
� j
�

��1

�=s+1

�
i (j �k )+� j

� �
i (j �k )+j
s Ak (11)

=
1

n
k2J (j)

n�1

�
j
s �

� j

s+1

��1

�=s

�
i (j �k )
� Ak

+
1

n
k2J (j)

n�1

�
k
s �

k

s+1

��1

�=s+2

�
i (j �k )+� j

� �
� j
� Ak (12)

A
(n )
j =�

j
s Aj +

1

ms

(�
j

s+1 � 1)

k2J (j)

�
k
s Ak

�
1

msms+1
k2J (j)

�
k
s �

k

s+1 Ak

+
1

n
k2J (j)

n�1

�
k
s �

k

s+1

��1

�=s+2

�
i (j �k )+� j

� �
� j
� Ak

=�
j
s Aj +K +K1 (13)

where

K =
1

ms

(�
j

s+1 � 1)

k2J (j)

�
k
s Ak

and

K1 =
1

n
k2J (j)

n�1

�
k
s �

k

s+1

��1

�=s+2

�
i (j �k )+� j

� �
� j
� Ak �

1

msms+1
k2J (j)

�
k
s �

k

s+1 Ak :
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all other spectral components in the setdjehr�2i take values from the
�-ideal of their corresponding Galois subrings. It is enough to prove this
for the spectral components inJ(r�2)(j) since the other components
in djehr�2i will get connected through conjugacy constraints. Toward
this end, we consider another transform componentj0 such thatj0 2
J(r�2)(j) andCCCjjj = p� GR(pa; lej ). All we need to show is that,
if Abelian codeC is nr�2-QC then� = �0.

Fors = r�2, starting from (11) and following similar manipulation
as in (12) and (13) we get

A
(n )

j = �
j

r�2 Aj +K (14)

where

K =
1

mr�2
(�

j

r�1 � 1)

k2J (j)

�
k

r�2 Ak :

From the preceding equality,K = A
(n )
j ��

j

r�2 Aj . SinceAj takes
values from the idealp�GR(pa; lej), we haveK 2 p�GR(pa; lej)

and since 1
m

(�
j

r�1 � 1) is a unit, this implies

k2J (j)

�
k

r�2 Ak 2 p�GR(pa; lej): (15)

The transform componentj0 2 J(r�2)(j), and from Lemma 1, (15)
implies�0 � �.

Notice thatj 2 J(r�2)(j0) = J(r�2)(j) and, hence, in the counter-
part of (15) forA

(n )

j
, K is a constant, i.e.,

A
(n )

j
= �

j

r�2 Aj +K:

By a similar argument that we used to obtain (15)

k2J (j)

�
k

r�2 Ak 2 p� GR(pa; lej )

which implies� � �0. Hence� = �0.
Having proved condition ii) fors = r� 2, we now assume that this

condition is true for somes+ 1, i.e., we assume that the setdjehs+1i
is a constrained set for anyj 2 LLL. We draw attention to the fact that,
for dje = d0; . . . ; 0; j�; j��1; . . . ; j0e, the setJ(�; s)(j) is a union
of setsJ(�; s+1)(:) as shown in (16) at the bottom of the page.

From our definition of thes-partition ofLLL in Definition 8, the set
djehsi will be a union of severaldiehs+1i for somei 2 LLL. Let

djehsi = fdj1ehs+1i [ dj2ehs+1i [ � � � [ djdehs+1ig:

Following our hypothesis, let all transform components indjiehs+1i
take values from their respective�j -ideal for all i 2 f1; 2; . . . ; dg.
Our aim is to prove that�j ’s are all equal for alli 2 f1; 2; . . . ; dg.

Without loss of generality, we will first assume thatj = j1 2 djehsi
and letCCCjjj = p� GR(pa; lej). Now we consider anyj0 2 J(s+1)(j).
If j0 =2 LLL, a representative ofdj0e is inLLL; in fact, it belongs todjehs+1i
and henceCCCjjj is also a�j -ideal. LetCCCjjj = p� GR(pa; lej ). From
(13)

A
(n )
j =�js Aj +K +K1

A
(n )
j

=�js Aj +K 0 +K1:

Since C is ns-QCA, both A
(n )
j and Aj take values from

p� GR(pa; lej). Similarly, both A
(n )
j

and Aj take values
from p� GR(pa; lej ). This implies

K +K1 2 p� GR(pa; lej)

and

K 0 +K1 2 p� GR(pa; lej )

and, therefore,K �K 0 2 p� GR(pa; le) wheree = lcm(ej; ej ).
This implies

k2J (j)

�ks Ak 2 p�GR(pa; le1) (17)

where���j ande1 je. For allk2J(s)(j), if CCCkkk=p� GR(pa; lek),
from Lemma 1,�k����j . But all transform componentsk2J(s)(j)
have their representatives indjehsi and hence each�k is equal to some
�j and, therefore,�j ��j for all i2f2; 3; . . . ; dg.

In our argument so far, we assumed thatdje = dj1e. But the entire
argument holds good fordje = djie, i 2 f2; 3; . . . ; dg. Hence,�j �
�j for all i 2 f2; 3; . . . ; dg, which implies�j = �j = � � � = �j .

Proof for the “If” Part: Let the Abelian codeC satisfy
the constraint given in the statement of the theorem. LetCCCj =
p� GR(pa; lej). Because the code satisfies condition ii), all trans-
form componentsk 2 J(�; s)(j) take values from their respective
�j -ideal (i.e.,CCCk = p� GR(pa; lek)). We need to show thatA(n )

j

also takes values fromp� GR(pa; lej).
For this, we continue from (11). SinceAk takes values from the ideal

p� GR(pa; lek) � p� GR(pa; lm), the element
n�1

i=0

�
� j
�

��1

�=s+1

�
i (j �k )+� j

� �i (j �k )+j
s Ak

in (11), belongs top� GR(pa; lm) for all k 2 J(�; s)(j), and hence
A
(n )
j also takes values fromp� GR(pa; lm). But sinceple dje =

qe dje = dje

�
le

0 A
(n )
j = A

(n )
j

as shown at the bottom of the page, and henceA
(n )
j is an element of

p� GR(pa; lej) � p� GR(pa; lm).

Example 6: Table IV(b) lists the constrained sets for the codes
shown in Table III. Notice that, in Table III, all codes exceptC3 andC5
are CA codes whereasC3 andC5 are 3-QCA codes.

Definition 9: An Abelian code which is botht-QC as well asUb-in-
variant is called anUb-invariantt-QCA code.

Corollary 2: For any n and p such thatgcd(n; p) = 1, a
length-n = mr�1mr�2 � � �m0 Abelian code over GR(pa; l) with
defining partition(T0; T1; . . . ; Ta) is Ub-invariantns-QCA iff for
any j 2 LLL

1) dje(b) � T� for some�; and
2) djehsi � T� for some� if j � ns+1.

Proof: Follows from Theorems 1 and 3.
Given anyn = mr�1mr�2 � � �m0-length Abelian code, this result

helps us to systematically identify the smallest value ofs for which the
code isns-QC and all values ofb for which the code isUb-invariant.

J(�; s)(j) =
x 2I

J(�; s+1)(d0; . . . ; 0; j�; . . . ; js+1; xs; js�1; . . . ; j0e) (16)

�
le

0 A
(n )
j =

1

n
k2J

n�1

i=0

�
� j
�

��1

�=s+1

�
i (j �(q k ))+� j

� �i (j �(q k ))+j
s Aq dke

=A
(n )
j since fqe dke j k 2 J(�; s)(j)g = J(�; s)(j):
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V. ENUMERATION OF CODES AND DUAL CODES

In this section, we follow a general approach to enumerate all
Abelian codes of a specified size satisfying a given constraintD.
Hence, we will be enumerating bothns-QCA codes as well as
Ub-invariant codes. We then show that using the transform domain
characterization, it is easy to identify the dual of anns-QCA (resp.,
Ub-invariant Abelian) code which is alsons-QCA (resp.,Ub-invariant
Abelian).

A. Enumeration of Abelian Codes Satisfying ConstraintD

Let a n = mr�1mr�2 � � �m0-length Abelian code satisfy con-
straint D = fD1; D2; . . . ; Dug. Including the two trivial codes
(all-zero vector and GR(pa; l)n), there are(a + 1)u Abelian codes
over GR(pa; l) satisfying the constraintD.

In the constraintD = fD1; D2; . . . ; Dug, let jDj j = dj . There-
fore,

jLLLj =
u

i=1

di:

Further, ifDj = fj1; j2; . . . ; jd g, let ej1; ej2; . . . ; ejd be the

corresponding sizes of the cyclotomic cosetsdj1e; dj2e; . . . ; djd e;
respectively. For ann = mr�1mr�2 � � �m0-length Abelian
code of dimensions k0; . . . ; ka�1 satisfying the constraint
D = fD1; D2; . . . ; Dug, the constrained setDj contributes
ej1 + ej2 + � � � + ejd to the dimensionk� , when all the elements
belonging to the constrained setDj take values from�j -ideal of their
corresponding Galois subring.

Theorem 4: For anyn andp such thatgcd(n; p) = 1, the number
of Abelian codes over GR(pa; l) of lengthn = mr�1mr�2 � � �m0

and sizepl� satisfying the constraintD = fD1; D2; . . . ; Dug, is the
number of ways in which� can be expressed as

� = (a� �1)

d

i=1

e1i + � � �+ (a� �u)

d

i=1

eui

where0 � �j � a for all j = 1; 2; . . . ; u.

B. Dual Codes

If C is a GR(pa; l)-linear code, its dualC? is defined using the
normal inner product

C? = ~y 2 GR(pa; l)n:

n�1

i=0

xiyi = 0; 8~x 2 C :

The following notion of dual cyclotomic cosets is used in describing
the dual code pairs. For a given cyclotomic cosetdie, the cyclotomic
cosetdn 	 ie is called the dual cyclotomic coset. For anyi 2 LLL,
let i? 2 LLL denote the representative element of the dual cyclotomic
cosetdn 	 ie. The dual of an Abelian code is also Abelian and the
proof follows from the reasoning in [6], [35]. If(T0; T1; . . . ; Ta)
is the defining partition of an Abelian codeC, we use the notation
(T?

0 ; T?
1 ; . . . ; T?

a ) for the defining set of the dual codeC?. If die �
T� in C, then forC?, the dual cyclotomic cosetdn 	 ie is a subset of
T?
a�� .
Now, if an Abelian code satisfies the constraintD, to prove that the

dual code also satisfies the same constraint, we need to observe the
following.

• If dje(b) is a constrained set defined in Definition 6, then the set
fi? j i 2 dje(b)g is also a valid constrained set forUb-invariant
codes and it is actually equal todj?e(b).

• For j � ns+1 � 1, i.e., if j is free thenj? is also free and for
ns+1 � j < n, if djehsi is a constrained set defined in Definition
8, then the setfi? j i 2 djehsig is also a valid constrained set
for ns-QCA codes and is equal todj?ehsi.

Example 7:
i) In Table IV(a), forb = d1; 1; 2e, d1?e(b) = d1e(b), d4

?e(b) =
d7e(b).

ii) For b = d2; 2; 2e, dj?e(b) = dje(b) for all j 2 LLL.
iii) In Table IV(b), for s = 1, d4?ehsi = d8ehsi, d9

?ehsi = d18ehsi
and fors = 0, d3?ehsi = d6ehsi, d9

?ehsi = d18ehsi.

With this, and the characterization of dual Abelian codes, it
is clear that if C is an Abelian code satisfying the constraint
D = fD1; D2; . . . ; Dug such thatDk = dje(b) � T� for Ub-invari-
ance (Dk = djehsi � T� for ns-QC), the dual code is also an Abelian
code satisfying the same constraint withDk = dj?e(b) � T?

a��

(resp.,Dk = dj?ehsi � T?
a��) for somek0 2 f1; 2; . . . ; ug.

Example 8: For the parameters discussed in Example 2, the code
corresponding toCCCjjj = 2GR(22; 2) for all j 2 In is a self-dual
code. This self-dual Abelian code corresponds to the defining parti-
tion (T0; T1; T2) whereT0 = T2 = ; andT1 = In. It is inter-
esting to note that this Abelian code is cyclic as well asUb-invariant
for all b. In fact, this code should satisfy any general constraintD =
fD1; D2; . . . ; Dug (more than the two mentioned in this correspon-
dence) sinceT1 = In = D.

VI. DISCUSSION

In this correspondence, we have characterized Abelian codes over
Galois rings using a generalized DFT defined over a suitable extension
of the Galois ring. We have then characterized Abelian codes which
are alsons-QC andUb-invariant. QCA codes have the advantage over
QC-only codes in the sense that, in certain cases they need a smaller
extension field for DFT characterization. It would be interesting to see
if this additional structure in the code could be exploited to develop
good or more efficient decoding algorithms. We have enumerated all
the QCA codes andUb-invariant Abelian codes of a given length and
we have shown that the dual of a QCA code or aUb-invariant Abelian
code is also a QCA code or aUb-invariant Abelian code, respectively.

In [36], a Gray isometry (from GR(pa; l)n to Fn
q ) for codes over

Galois rings was defined and using this map, a nonlinear(36; 312; 15)
code, the best known code for these parameters, was constructed as the
image of aZ9-lift of the ternary Golay code. It is interesting to see if the
Gray image of codes over GR(pa; l) discussed in this correspondence
give any good codes over the base fieldFq .
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Cubic Self-Dual Binary Codes

Alexis Bonnecaze, Member, IEEE, Anne Desideri Bracco,
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Patrick Solé, Member, IEEE

Abstract—We study binary self-dual codes with a fixed point free auto-
morphism of order three. All binary codes of that type can be obtained by a
cubic construction that generalizes Turyn’s. We regard such “cubic” codes
of length3 as codes of length over the ring . Classical notions of
Type II codes, shadow codes, and weight enumerators are adapted to that
ring. Two infinite families of cubic codes are introduced. New extremal bi-
nary codes in lengths 66 are constructed by a randomized algorithm.
Necessary conditions for the existence of a cubic[72 36 16] Type II code
are derived.

Index Terms—Automorphism group, codes over rings, self-dual codes.

I. INTRODUCTION

The construction of binary self-dual codes with an automorphism of
given odd order has received a lot of attention over the years [14].

In this correspondence, we consider the case of an automorphism
of order three without a fixed point. It was shown in [15] that all such
codes can be obtained by a generalized cubic construction from a binary
code and a quaternary code both of length`. From now on, we will call
such codes “cubic.”

We view cubic codes as codes of length` over the ring 2� 4. We
study self-dual codes over that alphabet and adapt to that ring the clas-
sical tools in the study of self-dual codes: Type II codes, shadow codes,
weight enumerators, and invariant theory. We give two infinite families
of cubic self-dual codes related to quadratic residue (QR) codes and
Reed–Muller (RM) codes, respectively. We give examples of extremal
self-dual cubic codes for̀� 22, and thereby examples of the applica-
tion of the tools developed. Necessary conditions for the existence of a
putative cubic Type II[72; 36; 16] are derived.
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