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Abstract: LOGO is aprogramming languagiecorporatingturtle graphicspriginally devisedfor
teaching computing tgoung children in elementary amciddle schools. Here wadvocate the use
of LOGO to helpintroducesomeof the basicconceptsof computergraphics anadomputeraided
design toundergraduate angraduate students collegesand universities.We shall showhow to
motivateaffine coordinatesind affinetransformations, fractalurves andterated functiorsystems,
relaxationmethods andubdivisionschemes fronelementarynotions inturtle geometry andurtle
programming.

1. Introduction

Many different approacheshave been suggestedfor explaining to studentsthe basic
mathematicaktonceptsunderlying computergraphicsand computeraided design, ranging from
baseballarithmetic [Goldman,2001] to projective geometry [Riesenfeld,1981], from Groebner
bases[Hoffmann, 1989] to polar forms [Ramshaw,1989], from tensorsand tensor diagrams
[Blinn, 2002] togeometricproductsand Clifford algebragDorst and Mann,2002]. In this paper
we advocate a very different approach, based on turtle programming (LOGO) and turtle geometry.

LOGO andturtle graphicshave been popularizeas a paradignfor teachingprogramming to
youngchildren in elementaryand middle schools[Papert,1980], but LOGO hasalso beenused
successfullyas a first languageto teach programmingto freshmenat various colleges and
universities[Harvey, 1985-1987]. Yet despitetheseachievementsturtle programmingand turtle
geometry have beenlargely ignored in traditional college and university courseson computer
graphics and computer aided design.

The purpose otthis paperis to promote theturtle asan effectiveway of introducing manyof
the fundamentaktonceptghat underlieboth of thesedisciplines. After briefly reviewingsomeof
the basicnotions ofturtle programmingand turtlegraphicsin Sections 2and4, we showhow the
turtle canbe to usedto motivateaffine coordinatesand affine transformationgSection5), fractal
curves and iterated functi@ystems (Section 6), and fixed pomethods and relaxation techniques
(Section7). In Section8, wediscussa fractalalgorithm forgenerating Beziecurves andsurfaces



based on recursive subdivision, and we mention as well a way of extending the power of the turtle
renderBeziercurves. We summarizeour overallapproachn Section9, wherewe concludewith
some possible future extensions of our turtle techniques.

2. Turtle Geometry and Turtle Programming

Turtle geometryis a local, coordinatefree, version of computationalgeometry. Turtle
geometryhas beemused tostudy manydiverse subjectifom simplepolygons tocomplex fractals,
from the Euler characteristiand the formulaf Gauss-Bonnet tourved space-timand Einstein’s
generaltheory of relativity [Abelson and diSessa1986]. Turtle programsprovide a graphical
interpretation of L-systems, special grammars with specific kinds of production rules
[Prusinkiewicz, 1986]. Turtle representation®f planar polygonshave beenapplied to morph
polygonalshapedSederberg eal, 1993]. Herewe are goingto showhow to useturtle geometry
andturtle programmingto helpintroducecollegestudentso some standardonceptan computer
graphics and computer aided design.

To studyturtle geometrywe introducea virtual turtle. The virtualturtle is a simplecreature.
It knowsonly whereit is, in which directionit is facing, andits stepsize; it obeyssolely simple
commands to change either its location, or its heading, or its notion of scale.

Consider sucla turtle living ona plane. Itdocation can be representby a pointP given by
a pair of coordinates(py, pp); similarly its headingcan be representedby a vectorw given by
another pair of coordinat€sv;,w,). The step size of the turtle is simply the length of the vector
The pair (P,w) is called theturtle’s state Although internallythe computer storethe coordinates
(p1,p2) and (wy,wy), the turtle (and the turtle programmer)has no accessto theseglobal
coordinates.

The turtle respondsto four basiccommands: FORWARD, MOVE, TURN, and RESIZE.
These commands affect the turtle in the following ways:
* FORWARDd: The turtle moves forward steps in the direction of its current
heading, and draws a line from its initial position to its final position.
e MOVE d: Same as FORWARD without drawing a line.
« TURNa: The turtle changes it heading by rotating in the plane counterclockwise from
its current heading by the angle
 RESIZEs: Changes the turtle step size by the fagtor
Notice that all four commands are local, coordinate free instructions to the turtle.

The turtle state (P,w) is a completedescriptionof whatthe turtle knows,andthe four turtle
commandsFORWARD, MOVE, TURN, RESIZE are the only way that a programmercan
communicate with the turtle. Yet from this simple setup much can be learned.
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3. Affine Geometry

Affine geometryis the study of the geometricpropertiesof shapeshat are invariantunder
affine transformations.Affine transformationsare preciselythosemapsthat are combinationsof
translations,rotations, shearingsand scalings. Affine geometryis one of the foundationsof
computergraphics and computeraided design,since affine transformationsare fundamentaito
repositioning and resizing objects in space.

Unfortunately, mostindergraduates and everany graduate studerase not sdamiliar with
the fundamentalconceptsof affine geometryas one might suppose. Even the very notion of an
affine spaceis often unfamiliar to many students. Linear spaces-- spacesof vectors-- are
generally knowrto undergraduates frogourses on linear algebiaut affine spacesontain points
as well as vectors [GoldmaR0Q02b, 2003]. Points have a fixed positibat no direction or length;
vectors havalirection and length, buto fixed position. The distinction between poingd vectors
in affine spacas fundamentalput thisdistinctionis often obscuredh the students’ mindswhere
points and vectorsin the plane are both representedy pairs of coordinates. The distinction
between points and vectors though important in practice, appearsto many students,whose
perspective is grounded in coordinate geometry, as highly artificial.

The turtle canhelp studentsto graspthis distinction. The turtle knows threethings: it's
position, its heading,and its scale. The turtle’s position is representedy a pointin the affine
plane; theturtlesheadingand scaleare storedin a 2-dimensionalector. The point has a fixed
position, but nadirection or length;the vector has direction amehgth, but no fixegosition. This
distinction between points and vectors is naturabordinate free turtle geometry, whereas it seems
quite artificial to students familiar only with analytic geometry based on rectangular coordinates.

Implementingthe turtlecommandson a computeiaccentuatethis distinction betweemoints
andvectors becauseach commandffects pointsand vectordifferently. Let (P,w) represent the
currentstateof the turtle. The effect of eachof the four turtle commandson the turtle’s stateis
summarized in Table 1.

FORWARDA: P P+dw W o W
MOVE d: P P+dw W o W
Wy — Wjcos(a) —wyp Sin(a)
Wy — Wy Sin(a) + wy cos(a)
RESIZEs: P_.P W - SW

Table1: How the four turtle commands affect the turtle’s s{&av).

TURN a: PP
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Thus we see that translations-- FORWARD and MOVE -- alter points but not vectors,
reemphasizinghat pointshaveposition, but vectorsdo not. Similarly, scaling-- RESIZE --alters
vectors, but not points, emphasizing that vectors have length, but points do not.

The TURN commandis also importantbecausethis commandis the first contactof many
studentswith rotation. Since studentstypically are familiar with linear algebra and matrix
multiplication, it is natural for them to implement this transformation using matrices:

DDcos(a) sin(a)L
(Wp Wp) — (wy wp) E}-sin(a) © s(a)E

This matrix will reappear when the students study 3-dimensional computer graphics; the matrix
Ucos(a) sin(a) OC

D—sin(a) cos(a) 0[
0 0 1%

represents rotatioaround thez-axis. Analogous matricesan beused torotate object@round the
X andy axes.

4. Turtle Graphics

Once thefour turtle commandare implemented, studertan starto write turtleprograms to
generateinteresting shapes. The simplest programsjust iterate various combinationsof the
FORWARD, TURN, and RESIZE commands. For example,by iterating the FORWARD and
TURN commands, student&n creatgolygonsand stargsee Table?). Circlescan begenerated
by building polygons with lots obides. Iterating FORWARRNd RESIZE, the turtlevalks along
a straightline, anditerating TURN and RESIZEthe turtle simply spinsin place. But by iterating
FORWARD, TURN, and RESIZE, the turtle can generate spiral curves (see Figure 1).

POLYGONN STARN SPIRALN, A, S
REPEATN TIMES REPEATN TIMES REPEATN TIMES
FORWARD 1 FORWARD 1 FORWARD 1
TURN 2mt/N TURN 4mt/N TURNA
RESIZES

Table 2: Simple turtleprogramsfor generatingpolygons, starsandspiralsby iterating thebasic
turtle commands. For the spiral prograims a fixed angle an8is a fixed scalar.
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Figurel: A pentagon, a five pointed stamd a spiral generated bye programs in Table 2Here
the spiral angleA =271/5 and the scale factor for the spiralSs 9/10.

With a bit more ingenuity (and with some help from the law of cosines),studentscan
generate more complicated shapes such as the wheel and the rosette (see Figure 2).

Figure 2. The wheel and the rosette. The wheelis simply a polygon togetherwith the lines
connecting its vertices to its center. The rosette is a polygon, together with all its diagonals -- that
with the linesjoining every vertex tevery other vertex. Theheel displayed here hd$ sides and

the rosettéhas 20sides. We leaveit as a challengeo thereader tadevelop simpldurtle programs

that generate these shapes.

But by far the most interestingand exciting shapeshat studentscangenerateusing turtle
graphicsarefractals. Fractalsrequire more than iteration; they requirerecursion. Thereis no
single,commonlyaccepteddefinition of the term fractal, but from the point of view of the turtle,
fractals are simplyrecursionmadevisible. The study of fractals carhelp studentgo understand
both computer graphics and recursive programs.
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Let’s try to write a turtleprogramSIERP1to createthe Sierpinskigasket displayedt the far
right of Figure3. How shouldwe proceed?Notice thatthe Sierpinski gaskeis madeup of three
smaller Sierpinskgaskets, eachne halfthe sizeof the original gasket. This observation suggests
that the turtle should adopt the following strategy to generate the Sierpinski gasket:

a. generate a Sierpinski gasket one half the size of the big gasket at one of the vertices of

the outer triangle;

b. move to the next vertex of the outer triangle and turn to face the subsequent vertex;

C. repeat step a and b two more times.

This planwon’t quite workbecause the recursidras no case athich to bottomout; tofinish off
the program,we needto include a basecase. For the Sierpinskigasket,a natural basecaseis
simply to draw a triangle. This approacheadsto the recursiveturtle programfor the Sierpinski
gasket coded in Table 3.

SIERP LEVEL
BASE CASE: IF LEVEL =0, POLYGON 3
RECURSION:
REPEAT 3 TIMES
RESIZE 0.5
SIERP LEVEL -1
RESIZE 2

MOVE 1
TURN 2n
3

Table 3: A recursiveturtle programfor generatinghe Sierpinskigasket. The basecase draws
triangle, a polygon with three sides.

£y P £ i
‘ATA‘ “TL‘ “u‘ ‘LTA‘.
FAENNNARSIAIAN

/

Figure 3: The Sierpinski gaskegenerated fronthe turtleprogram inTable 3. Levels 1,3 and5
of the recursion are illustrated here.




The program inTable 3does indeedjenerate th&ierpinski gasketand bya similaranalysis
one can write turtle programsto generatelots of other engagingfractals, including Koch
snowflakes, fractal trees, and space filling curves [Abelson and diSessa, 1986].

How robustis this turtle programfor the Sierpinskigasket? What happensf we make a
simple mistakein the basecaseandtype POLYGON 4 insteadof POLYGON 3 -- that is, what
happengf we start witha squaran the base casestead ofa triangle? Remarkablythe answeis
thatthoughthe first few levels of recursionappearto generatea differentfigure, in the limit the
turtle generateshe samefractal gasket(seeFigure 4)! ' Why doesthis happen? To answerthis
guestionas wellas many otheruestions aboutactalsgenerated byecursiveturtle programsye
first need to deepen our students’ understanding of affine transformations.

Figure 4: The Sierpinskigasketgeneratedy drawinga squareinsteadof a trianglein the base
case: levels 1, 3 and 5 of the recursion are illustrated here. Compare to Figure 3.

5. Affine Coordinates and Affine Transformations

Let us considerfor now only oriented conformal affine transformations- thatis, affine
transformationghat preserveangle and orientation. Thesetransformationsare preciselythose
maps thatire compositesf translationsyotations, andiniform scalings- the transformations our
studentsencounteiin turtle graphics. In turtle geometrywe applytranslation(FORWARD AND
MOVE) to points, butwe apply rotation andscaling(TURN AND RESIZE)to vectors. In affine
geometry, we shall apply all of these affine transformations directly to points.

Studentsknow whatit meansto translatea point, but what doesit meanto rotate or scalea
point? Earlier, weinsisted that scaling appliesly to vectorsnever to points becaugmints have
no fixed length. Similarly, points have no fixed directionyd@t does it mean to rotate a point? If,
however, we fixa point in theplane (not necessarily at thegin of the coordinatsystem), then we
could rotate pointsabout thisfixed point. Similarly, we could scalehe distance fromany pointto
this fixed point. In effect, if we fix a pointQ, then whatwe meanby rotatingor scalinga pointP
about the poinQ is to rotate or scale the vectBr-Q, and then to add the resulting vectoto



Since studentalready know formulagor translation, rotatiorand uniform scalingrom their

study ofturtle geometry, thegan easily summarizthe effects othese transformations asTable
4.

Translate(v,d): P> P+dw
Pr - G+ (P — ) cos(a) — (P2 —Gp)Sin(a)
P2 - O + (P~ ) sin(a) + (P2 —gp) cos(a)
Scale@,s): P-Q+3P-Q)=sP+(1-9Q
Table 4: How the threebasic conformal affinéransformations affect pointddere Q = (oq,0) is

a fixed pointw is a vectord is a scalar indicating distance, and a scale factor. To rotate or scale
the pointP about the poin®, we rotate or scale the vectBr-Q and add the result @.

Rotate@Q,a):

In turtle graphics,studentsuse matricesto simplify their implementationof the TURN
command. Similarly, they could simplifythe transformatiorRotate(Q,a) by representing this map
in matrix form. Foruniformity, we encouragstudents to rewrite athree of thesdasic conformal
affine transformations using matrix notation as in Table 5.

A od
Translategv,d): P-(p po) D%) 151+ d(wy wo)
_ Dcos(a) sin(a)J E1 cos(a) -sin(a) L
RotateQQ.a): (P P) H—sm(a) cos(a)HJr H sin(a) 1—cos(a)E
& oO
Scale@Q,s): P-(p po) D%) SE;+ A-9) (o ap)

Table5: The three basic conformal affine transformations expressed in matrix notation.

Now all three of the basic conformal affine transformationshave the same form:
P - POM + R for differentchoices oM andR. Oftenstudents need to compose tawch affine
transformations. In linear algebra,studentscan composelinear transformationson vectorsby
representinghe transformationas matricesndthen applyingmatrix multiplication. But herethe
constantadditive term (+ R) getsin the way of composing affine transformationsby matrix
multiplication.

Affine coordinatesare a device for overcomingthis shortcoming[Murray et al, 1994].
Although we haveinsistedthat points and vectorsare distinct types, thereis still no way students
can distinguish betweenpoints and vectorssimply by looking at their rectangularcoordinates.
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Affine coordinatesntroduce adistinctionandalso allowus to represent affinéransformationdy
maitrix multiplication. In affine coordinatesn addition tothe tworectangular coordinatege affix
a third affine coordinate: this third coordinate is 1 for points and O for vectdhais we have:
P=(p1,p2.1) (points)
w=(wy,Wp,0)  (vectors).
Using this notation, we can rewrite translation, rotateorg scaling in terms of matrix multiplication
(see Table 6).

0 O[
Translatev,d): P - pl p, 1
ﬁm o ﬁ
B cos(a) sin(a) OE
Rotate@Q,a): P-(p p )05 -sin(a) cos(a) o

Hh(l—cos(a))+qzsin(a) 02(1-cos(a)) — g sin(a) 1E

D S 0 oC
Scale@Q,s): - (pL P2 1 S o
1- S)Oa 1-9a9 1E

Table 6: The three basic conformal affine transformationsexpressedas matrix multiplication
using affinecoordinates. These matricae valid for anyfixed pointQ, independendf our choice
of the origin for the coordinate system.

Using thesematrices,compositionof conformal affine transformationss given by matrix
multiplication. More generally,using affine coordinatesarbitrary affine transformationscan be
representetby 3x 3 matriceswherethe third columnis (0 0 1)T. Notice too thatif we replace

points by vectors,then thesetransformationmatricesare still valid, sincethe zeroin the third
coordinateof eachvector cancelsthe translationin the third row of the transformationmatrices.
Thus studentscan apply these matricesto implementthe four basic commandsFORWARD,
MOVE, TURN, and RESIZE of turtle graphics (see Table 7).

FORWARD d « Translate(w,d) MOVE d -~ Trandate(w,d)
TURN a — Rotate(P,a) RESZE s —~ Scale(P,9)

Table 7: The four basicturtle commandsexpressedis conformal affine transformations. The
current turtle state i6P,w).

' Vectors in affine space should not be confused with the points at infinity of projective space, and affine
coordinates should not be mistaken for homogeneous coordinates; see [Goldman 2002b, 2003].
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6. Recursive Turtle Programsand Iterated Affine Transformations

Iteratedfunctionssystems ar@anotherapproachto generatindgractals[Barnsley,1993]. We
shall nowshow that by analyzinthe geometry generatdxy recursive turtle programstudents are
led naturallyto the study of iteratedaffine transformations.First, however,we needto formalize
precisely whatve mearnby a recursiveaurtle program. The simplestecursive turtlgorograms have
the following form:

Recursive Turtle Program (RTP)
* Base Case:
Turtle Program(Tg)
* Recursion:
Turtle Program(Ty), Turtle Recursion

Turtle Program(Ty,), Turtle Recursion
Turtle Program(Tip+1)

Here Ty, Tq,..., Tm+1 are simple turtle programs,consistingof finite sequence®f FORWARD,

MOVE, TURN, and RESIZE commands. For now, we shall also make two additional assumption:
* the FORWARD command appears only in the base case;
* in both the base case and in the recursion, the turtle starts and ends in the same state.
The first assumptions there onlyfor simplicity; later on,we shall dispensevith this assumption.
The secondassumption(or somesimilar assumption)s requiredto assurethatthe turtle’s state,
and hence too the geometry generated by the recursive turtle program, converges.

The keysto understandinghe fractal geometry generatday an RTP are thefollowing three
observations:

1. The only effect othe turtle programdy,..., T+ in the recursions to change the state of
the turtle.
2. For any two turtle stateS; = (P,wp) and S, = (P,,w»), there is an oriented conformal
affine transformatiof that mapsS, to S,.
3. Suppose thaly, T, are two turtle programs that differ only by their initial stefgsS,,
and letG,,G, be the geometry generated ByT, If S, =T(S), thenG, =T(G).
The first observatiorfollows becauseby assumption, therareno FORWARD commandsn the
turtle programsTy,..., T+1. Therefore these programs affectly the state ofhe turtle, but nothe
geometry drawrby the turtle. The seconabservation caibe proved bybserving that tget from
10



S =(P,wy) to S, =(Py,wy), we canfirst translate P, to P,, then rotate wy to align with the
direction of ws,, andfinally scale w; to the size of w,. Each of thesetransformationds an

oriented conformal affine map, so their composite is also an oriented conformal affine
transformation. The third observationfollows from the fact that the turtle commandsare local
commands. Thus, if we translate rotate,or scalethe turtle’s initial state,thenwe will translate,
rotate, or scale the geometry generated by the turtle program.

Suppose thaGg is thegeometry generated by the turtle progrdgin the base case, and that
Gy is the geometrygeneratedhfter the kth level of recursionfor k>1. Let S, denotethe initial
state of the turtleand let§ denote the stat® which the turtle prograr,..., T mapsS,. If R is
the oriented conformal affine transformation that m§ps$o §, then by our third observation

Gy = Ry(Gy-1) -+ U Ry(Gy—1) - @
By definition, the fractal generated by the recursive turtle program is
G= Limk_)oon. (2)

Thus Equations(1) and (2) encapsulatevhat we know about the geometryof the fractal G
generated by the recursive turtle program.

Let T={R,,...,Ry}, and letH be any subset of the planiéwe define

TH)=R(H)O---0O0Ry(H), 3)
then Equation (1) can be rewritten more compactly as
Gy =T(Gk-1)-

Thusthe fractal G canbe generatedn the limit by iterating thetransformationl startingwith the
geometryGp. Thecollection of affine transformations ={R,...,Ry,} together withthe setG is

called anterated affine transformation (IAT& special case of an iterated function system where all
the transformations are affine transformations.

Fractalscanbe generatedly iterating contractive affindransformations.A transformationR
is calledcontractiveif for any twopointsP andQ, thereis a fixedconstant independenof P and
Q such that

dist(R(P),R(Q)) < sUdist(P,Q) 0<s<l.
The simplestontractive mapareScalé€ Q,s), where0<|sk1. More generallyjf Ris an oriented
conformal affine transformation, th&nis contractive if and only i0 < det(R) <1.

Let T={R,,...,Ry} beasetof affine transformationsand let Gy be a compact(i.e. closed

andbounded) collectiof pointsand lines. If the mapsn T are contractivethen wewill show in
Section 7 that:
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I.  There exists a unique compact&etuch thatl (G) =G.
The seG is called dixed pointof T.
ii. The setsG, =T(Gk-1) converge td (in the Hausdorff metric on compact sets).

The convergence is independent of the choice of the initi@glet

To fully understand the second statemer,would need t@onsider the space afl compact
subsets othe planetogether withthe Hausdorff metric.We shall not gainto the details here;see
[Barnsley,1993] for afull discussion. It sufficesto tell our studentshat thereis a function that
measures thdistance betweeany twocompact sets, anasing thismeasure oflistanceG, - G.
The fixed setG is calledthe fractal generatedoy the transformationsTl, and the algorithm that
builds the sequenceG,Gy,... is called the deterministicalgorithm for generatingG. (Thereis

also arandomized algorithnfior generatings -- see [Barnsley, 1993].)

Equations (1)-(3) provide the connection betweenfractals generatedby recursive turtle
programsand fractalsgeneratedy the deterministicalgorithmfor iteratedaffine transformations.
If we apply the affingransformationst ={R;,...,Ry,} to the geometnGg, thenby Equations (1)-
(3) this IAT will generateexactly the samegeometryat the kth iteration of the deterministic
algorithm that the RTP generatasthekth level of the recursionSince for an IAT the convergence
is independent of the choice of the initial &, the same must be true for turtle programs -- that is,

the geometrygenerated byn RTP is independenof the turtle programin the base caseyrovided
that in the base case (amcthe recursion), the turtle starts and ends irsime state. Notice that if
the turtle changesstateeitherin the basecaseor during the recursionthen Equation(1) may no
longerhold. Thusrecursiveturtle programsmotivatethe study of iteratedaffine transformations,
and iterated affine transformations shed light on the behavior of recursive turtle programs.

Given any specific recursive turtle program, the transformationsT ={R;,...,Ry} of the

correspondinglAT are easy to find. Using Table 7, studentscan simply write down the
transformationmatricesfor eachturtle commandin each of the turtle programs Ty,...,Ty,. If

Re1--Ren, are the matrices correspondingto the turtle commandsappearingin the turtle
programT, 1< k< m, then
Ri=Ri1Ryn,

Rq = Re-1Rk1 R, -

For example considerthe turtleprogramin Table 3 for the Sierpinski gasket.Supposehat
the outertriangle of the gaskethasverticesat the points P;,P,,P; andedgesequalin lengthand

parallel to the vectorsy,wy,w3. If the turtle starts in stat@, w,), then
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L 1L
Ry =Sealet ot

L
R, = R, OScale(Py,2) (ITrang ate(wq,1) DROtateﬁ’Z,z—nﬁ]Scaleﬁ? ’ % E

= Trandlate(wy,1) DRotateHDZ, H]Sc IeHDZ,

O
R3 = R, UScale(P,,2) UTranslate(w,,1) DRotateﬁD 2—”@]80&% E

= Translate(wy,1) DRotateHDZ, H]T ranslate(ws,1) DRotateH33, H]Scal eH33, ZE

Notice that the transformationR, mapsthe Sierpinski gaskes into one of the smallerSierpinski
gasketsat the vertexPy, k=1,2,3. Therefore if T ={R;,R,,Ra}, then T(S) = S, so the Sierpinski
gasketSis indeed &fixed point of thesetransformations. Figurg illustratesthe Sierpinskigasket
generatedby the deterministic algorithm for the transformationsT ={R;,R,,Ra} using two
different base cases. An even easier general method for extracting the transformations
T ={Ry,Ry,Ra} for the IAT from the recursive turtle program is provided ineflal, 2003].

;
—
/ / = E
AR

\ : > .-'_FL i J—F"“‘-} i

Figure 5: The Sierpinski gaskegenerated byhe IAT T ={R;,Ry,R3} constructed directljrom

our RTP for the Sierpinski gasket. On the top therbase case is a horizontal line, and we display
from left to right 1, 2, 4 levelsof iteration. On the bottomrow the basease isa solidsquare, and
we display from left to right 1, 3, 5 levels of iteration.
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This resultthat everyRTP correspond® anIAT canbe extendedn manyways. First, we
can removethe restriction that the FORWARD commanddoesnot appearin any of the turtle
programsTy,..., T4 in the recursion.If we removethis restrictionthen the programdy,..., Ty
will generate some geomei@y and Equation (1) will be replaced by

Gy = Ry(Gk-1) 0+ 0 Ry(Gy—1) O C. (4)

The set C is calleda condensatiorset[Barnsley, 1993] for the correspondingAT. Henceeach
such RTP corresponds to an IAT with a condensation set.

We can also permit the turtle to changestatein the basecase and during the recursion,
provided that in both cases the turtle starts in the stateS; and finishes in the same stee. If

Ry is the oriented conformal affineansformation that mapS, to S, where S; is the state of the
turtle after executing Ty,..., Ty interspersedvith k-1 recursivecalls, then Equation(1) will be
replaced by

Gy = Ri(Gy-1) U+ U Ry(Gy-1) - ()
Hence once again the RTP corresponds to an IAT.

The conversds alsotrue. Every IAT consistingof orientedconformal mapgorresponds$o
anRTP. Studentscanconstructthis RTP in the following fashion. Let T ={R,...,Ry} be the
transformations othe IAT. Every orientecconformal mapcan be decomposedto the product of
a rotation, ascale,anda translation. These mapsn turn, correspond tdurtle commands.In fact,
supposehat Ry transforms(Py_1,Wi—1) - (Px,Wk). Thenthere isa turtleprogramT, that maps
(Pk=1,Wk-1) - (Px,wy). First TURN the turtleto face towardsP, thenMOVE the distance from
Px—1 to Py, thenTURN w_, to align with the directionof wy, andfinally RESIZE wj_4 to the
sizeof wy. Now the geometrygeneratedby an RTP with the turtle programsTy,..., T, in the
recursionwill satisfythe samerecurrenceelationasthe geometrygeneratedy the IAT with the
transformationsT ={Ry,...,Ry}, provided thaboth inthe baseaseand inthe recursiorthe turtle
startsand endsin the samestate. We can easily enforcethis constraintin the basecase; in the
recursion, we add the prografg,+1, whose sole purpose is to return the turtle to its initial state.

This result can be generalizedevento an IAT consistingof arbitrary nonsingularaffine
transformations, bub do sowe need taeconfigure the turtleln additionto the headingectorw,
let the turtle also carry a left handvectorv. Alter the TURN and RESIZE commandsso that the
turtle canrotate and scalethe vectorsv andw independently- that is, the turtle now obeysthe
commands TURN(&,ay) and RESZE(s,s,) that rotate and scale the vectors v and w
independently. The samergumentghat we just usedfor ordinaryturtlesand IATsconsistingof
orientedconformal mapscanbe appliedto demonstratehe equivalencebetweenan RTP for this
reconfigured turtle and an IAT with arbitrary nonsingular affine transformatioret plL2003].
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As afinal generalizationstudents could considenutually recursive turtl@rograms -that is,
two or more recursivedurtle programghat call oneanother. There is aversion ofthe IAT that also
permits mutual iteration, and these more powerful versionsof RTP and IAT are once again
equivalent to one another [@tial, 2003].

7. TheTrivial Fixed Point Theorem

The fractal generated by recursiveturtle programis independenbf the geometrygenerated
by theturtle programin the basecasebecauseeveryRTP is equivalentto an IAT, andthe fractal
generated by an IAT is known to be independent of the base case. But this result begs the quest
why is the fractal generated by an IAT independent of the base case?

The reductionof fractals generatedy recursiveturtle programsto fractalsgeneratedy the
deterministic algorithm for iterated affine transformations raises several more questions:

* Why does iteration necessarily lead to fixed points?

* Why are the fixed points unique?

* Why must the iteration converge?
We shall nowanswereachof thesequestionsn turn by a sequence ofhreeeasylemmas. These
answers motivate thetudy of some simple analyslsading students directly tihis section’s main
result: the trivial fixed point theorem for complete metric spaces.

We beginby answeringthe first questionby showingthatfor continuousfunctions,when
iteration converges, iteration necessarily leads to a fixed point.

Lemmal: Let T be acontinuous function, antbr all n=0 let P41 =T(R,). If P=Lim,_ P,
exists, then P is a fixed point of T.
Proof. SinceT is a continuous map,

T(P) =T(Limy_, oPpn) = Limy _ o T(Py) = Limy _, ooPneg =P

Since contractivenaps arenecessarily continuousje concludérom Lemmal thatiterating a
contractive map will leatb a fixed point whenever thteration converges. Next we shakat for a
contractive map, this fixed point is unique.

Lemma?2: LetT be a contractive map. Then T can have at most one fixed point.
Proof: IfP andQ are both fixed points dof, thenT(P) =P and T(Q) = Q. Therefore

Dist(T(P),T(Q)) = Dist(P,Q).
contradicting the assumption thats a contractive map.
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From Lemmasl and 2, we concludethatif we iterate a contractivemap T andthe iteration
converges, theit must convergeo the uniqudixed point of T. But this resulstill leaves openhe
guestionof why iterationof contractivemaps alwaysonverges.To establishthis result, students
need to understand the notion of a cauchy sequence.

A sequencg S} is called acauchy sequendgfor any £> 0 there is an integeéd such that
mn>N O Dist(S,,Sy) <€.
In simplewords, a sequende cauchyif the elements athe sequence getoser and closeas their

indices getarger andarger. The following resultshows thaiterating a contractivenap generates
a cauchy sequence.

Lemma 3: Supposehat Tis a contractive mapand forall n=0 let P,,; =T(P,). Then{P,}
is a cauchy sequence for any choicdgf

Proof: Sincel is a contractive map, there is a constadts<1 such that
Dist(Pn+1, Pn) = Dist(T(Pn),T(Pn_l))
< sDist(Py, Pr—1) = SDist(T(Ph-1), T(Pr-2))

<s"Dist(P,Py) -
Therefore fon sufficiently large,

DiSt(Pn+m+1’ Pn) < DiSt(Pn+m+1’ I:)n+m) toeet DiSt(Pn+17 Pn)
< ("M +... + SMDist(Py, Py)
cQ Dist(Py, Py)

B 1-s
<eg.

In a completemetric space cauchysequencealways converge. A metric space(X,d) is a
spaceX togetherwith a distancefunction d. The function d must satisfy the usualpropertiesof
distance; in particulad must satisfy the triangular inequality:

d(x,2) <£d(x,y) + d(y,2).
A metric spaceis said tobe completeif everycauchysequence convergedVe cannow statethe
main result of this section, which is well known in analysis [Barnsley, 1993].
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Trivial Fixed Point Theorem
Supposethat T is a contractive map on a complete metric space, and for all n>0 let

Pr+1 =T(P,). Then{P,} converges to the unique fixed point of T for any choid®,of

Proof: The sequence[P,} is cauchyby Lemma3. Therefore,Lim, P, existsbecausehe

metric spaceis complete. Sincea contractivemapis necessarilya continuousmap, it follows by
Lemma 1 thatLimy, _ P, is a fixed point off. Finally by Lemma 2, this fixed point is unique.

Two important examples of complete metric spaces are:
« (R",dist), wheredist is the standard Euclidean metric @fi.

« (H(R™),h), whereh is the Hausdorff distance da(R"), the space of compact subsets

of R". (For a rigorous proof, see [Barnsley, 1993].)
Let us focus for now on the second example.

Supposehat{R;,...,Ry} is acollection ofcontractive mapsn R". Then T ={R,...,Ry}

is a contractivemap on H(R") [Barnsley,1993]. Thereforeit follows by the trivial fixed point
theorem that:

a. There exists a unique compactGetuch thafl (G) =G.

b. The setsGy =T(Gg-1) converge td& and the convergence is independent of the choice

of the initial setGy.
In other words,
a. acontractive IAT determines a unique fractal, the unique fixed point of the IAT.
b'. the deterministic algorithm always converges to the unique fractal determined by a
contractive IAT independent of the base case.

In additionto the investigationof fractals, studentsshouldbe shown severalotherimportant
applications othe trivial fixed pointtheorem. Here wehall consider briefly twsuch applications
-- solving transcendentaquationsand solving large systemsof linear equations- basedon the

completeness of the metric spg&d’, dist).

Suppose we need to solve the equaiidr) =0. Let G(x) =F(x)+ x. Then
F(a)=0 = G(a)=a.
Thatis, a is aroot of F if and only if a is afixed pointof G. If F is atranscendental functioit,
may be difficult to find a root of F directly, but if G happendo be acontractivemap,thenby the

trivial fixed point theorem we can find a root@fy iteration.
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For example, supposee want to finda root of thetranscendental functioR (x) = cos(x) — X.
Let G(x) =F(x)+ x=cos(x). Thenarootof F is equivalentto a fixed pointof G. ButG is a
contractive man theinterval [-a,a] whenever0O < a< 711/ 2 becausdy the Mean Value Theorem
if x,yd[-a4a],then

|cos(x) —cos(y)  sin(a) [x—y |.

Therefore, sincg—a,a] I R is a completametric space, ifollows by the trivial fixed point theorem
that the sequencey, G(Xg),G(G(Xp)).... will converge to a fixed point &, and hence to a root of
F, for any choice of xg LI [-a,a]. We illustrate thisconvergence fotwo distinctchoices ofxg in
Figure 6.

1.5 1.5

1.25 1.25

¥ 1

0.75 0.75

0.5 0.5
0.25 0.:25 \
0.25 0.50.75 1 1.251.5 0.250.50.75 1 1.251.5

Figure 6: Finding a root of the function F(x)=cos(x) —x by computinga fixed point of the
function G(x) = F(x) + x =cos(x) using iteration. Convergenceo theroot is illustratedfor two
distinct starting pointp: onthe left xo =0, on theright xg =1.3. In both cases 10 iterations are
shown, and in both casesthe sequence xg,G(Xg),G(G(Xg)),... spirals rapidly into the root

x =.739 at the intersection of the curvgs=cos(x) andy = Xx.

Another important application of the trivial fixgubint theorem in computer graphics is solving
large systemsof linear equationsfor examplethe radiosity equationg[Sillion and Puech,1994].
Consider a system ofindependent linear equationsimnknowns:

M1 Xg +--+ Myp X =By
: - MOB.
Mp1Xy -+ Mpn X =By

Studentsknow that theycan solvethis systenfor the unknownsX =(X;,...,X,;) usingGaussian

elimination, or Cramer'srule, or simply by inverting the matrix M. But when n, the number of
equations,is large, Cramer'srule and matrix inversion are numerically unstable,and Gaussian
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eliminationis slow; iterative methodsoften work better. Iterative methodsfor solving systemsof
linear equationsire calledelaxation methodsWe shall look atwo such relaxation methodsine
due to Jacobi anthe other to Gauss-Seidel. These relaxation metaedan important application
of the trivial fixed point theorem.

In Jacobirelaxationwe start with some initial guess,usually either X0 =0=(0,...,0) or

x0=B= (By,...,B). Then we iterate using the formula:
xk=SB _5 mx}f‘l k1.
Mii  jz Mii
This formula is equivalent to
xK=T(x*h=01-Qmxk1+q B,
whereQ is the diagonalpartof M and | is the nxn identity matrix. Note that Q_1 is easyto

compute, since to invert a diagonal matrix we simply intrextdiagonal entriedf T is a contractive
map, thenthe trivial fixed point theoremguaranteesonvergence.When the coefficientmatrix is
diagonally dominant -- that is, when
Mji 2 5 | Mjj |
j#i
T is automatically a contractive map. This is exactly the case for the radiosity equations [Sillion ar
Puech, 1994].

In Gauss-Seidelrelaxation we also start with some initial guess,again usually either
x%=0= (©....,0) or x0=B= (By....,Bp). But now we iterate using the formula:
xk=5_5 mx}( -5 mx}<‘1 k=1,
Mii  j<i Mij j>i Mij
This formula is equivalent to
x*=T(xkh=0-Qtmxk1+qB,
whereQ is the lowertriangular part oM andl is the n x n identity matrix. Notice again thaQ_1

is mucheasierto computethan ML, sinceit is relatively easyto invert a lowertriangularmatrix.

Again if T is a contractivemap, thenthe trivial fixed point theoremguaranteesonvergenceand
againwhen the coefficient matrix is diagonallydominantT is automaticallya contractive map.
Gauss-Seidetelaxationis typically fasterthanJacobirelaxationbecausehe methodof Gauss-

Seidel takes into account the values<f already computed during the current iteration.
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8. Bezier Curvesand Surfaces

So far the turtle has steeredstudentstowards the study of affine coordinatesand affine
transformations, iterated affine transformations and fractal curveslias to the trivial fixed point
theoremand relaxationtechniquedor solving large systemsof linear equations. Thesetopicsall
haverelevanceo computergraphics; we turn now to applicationsin computeraided design.The
main ideaof this section,that Bezier curvesand surfacesare fractalsyvasfirst disclosed tane of
us (Ron Goldman) by Joe Warren [Warren, 1993].

Bezier curves and surfacase some of the simplest, most commamg most important curves
and surfacesin computer aided design. Bezier curves are typically defined in terms of the
Bernstein basis functions

B () =(Hta-1" K  k=o0...n.
Let Py....,P, bea sequencef pointsin R™. Then theBezier curvewith control points Py,...,P,
is the parametric polynomial curve defined by

P(t) = E B (1) Py O<ts<l.
k=0

Subdivisionis the standard approadh computeraideddesign toanalyzing Beziecurves. A
subdivisionalgorithm is a techniquefor splitting a Bezier curveinto two Beziercurvesat some
parametevalue t J[0,1], typically at t =1/2. Let Qq,...,Q, and Ry....,R, bethe control points

of the Bezier curveP(t) restricted to the interva[®,1/2] and[1/21]. A subdivision algorithm is a
procedurefor computing the Bezier control points Qy,...,Q, and Ry,...,R, from the original
Bezier control points P,,...,P,. Subdivisionalgorithmsare importantin computeraided design

becausesubdivisioncanbe appliedto renderandintersectBezier curves[Goldman,2002a]. We
shall now show that recursive subdivision leads to a fractal algorithm for generating Bezier curves.

There is a well known subdivision algorithm for Bezier curves due to de Casteljau[de
Casteljau,1985]. The deCasteljau subdivisioalgorithm carbe usedo computeeither explicitor

recursiveformulas for Q:(Qo,...,Qn)T and R:(F\’O,...,Rn)T from the original control points

P=(Py. ..,Pn)T . Herewe shallfocus onthe explicit formulas. From the de Casteljawlgorithm
we find that

k

Q= 3 Bf/2)P, k=0...,n
j=0
n-k _k

Rq= ¥ B /2P k=0,...,n.

j=0



We can rewrite these equations more compactly in matrix form. Let

01 0 00
Bawz o - o o1 1 °8 g
L:EB%(:L/Z) B]]_'(]./Z) 0 D.Z 2 O ak)[
H : : .o O : : D:EZTE
Jw2 BlW2 - BYW2AH Fn n 7 onf
qHt no 10
%8(1/2) B{(1/2) - BlW2A 5 En on o B .
m=C O Bl (1/2) - BRZ%(l/Z)u_DO i1 D:an—k)[
= : : . Oog ol o1 Hon-] E
E 0 0 Bo(l/Z)E O: O
0 Ho o - 1
Then
Q=LOP
R=M OP.

If Pisinvertible-- thatis, if the control pointsof P(t) are affinelyindependent- then using
these matrices, we can represent the Bezier deft)eas the fixed point of an IAT. Let

Lp=PlOLOP
Mp=P~10OM OP.
andconsiderthe IAT given by the two maps{Lp,Mp}. Itis easyto checkthatLp and Mp are
contractive maps. In addition,
POLp=PO(P1OLOP)=LOP=Q
POMp =P(P1OMOP)=MOP=R.
More generally, iN is any finite product whose factors consist only of the mattigexiM, then
(NOP)OLp = (NOP) (P 1 OLOP) = (N OL) OP
(NOP)OMp = (N OP) (P~ OM OP) = (N OM) OP.
Thus {Lp,Mp} applied repeatedlyto the control points P generatesa recursive subdivision
algorithm for the Bezier curve(t).

Recursive subdivisioapplied to the contrgboints is knowrto converge to theriginal Bezier
curve[Lane andRiesenfeld, 1980].Therefore|f we iterate thetwo maps{Lp,Mp} on thecontrol
polygon forthe initial set of controlpointsP, theresulting sebf control polygonswill convergeto

the original Beziercurve P(t). But {Lp,Mp} are contractivemaps,so by the trivial fixed point
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theoremthis convergences independenbf the initial set! We illustrate this convergencdor two
different initial sets irFigure 7. In summary, thieactal generated by the IAT consistiofjthe two

subdivision matrice§Lp,Mp} is precisely the Bezier curv(t) whose control points afe

g =

Figure 7. A quadraticBeziercurvegenerated byterating the subdivisionmatrices{ Lp,Mp} on

two differentinitial sets. On the toplevel, we illustrate the controlpolygon P = ((0,0), 1D, (2,0))

togetherwith the outputof the subdivisionalgorithmafter 1 and 3 levelsof subdivision. On the
bottom level, we start with a filled in square,and we illustrate the output of the deterministic
algorithmafter 1 and4 iterations. In both casesthe setsconvergeto the quadraticBeziercurve
whose control points are.

If the control pointsP,....,P, lie in the planeand n = 3, thenthe pointsP,,...,P, cannotbe

affinely independentso the matrix P~ doesnot exist. Neverthelessyve canstill constructthe

matrices{Lp,Mp} for the IAT by lifting the control points P,...,P, to a higher dimensional

space. For quadratics, we use affine coordinates and set

Py 10 Lxg Yo 1E

0_0O
R
2 2 Y2
For higher degreeswe simply generalizetheseaffine coordinatesto higher dimensions. For

cubics, set
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DDO 1 od B(O Yo 1 oC
SD U O L
P 1 1 OD— EP(]_ Y1 1 0[
DDZ 1 OB Ei(z Yo 1 OE
HDS 1 10 (X3 Y3 1 1r

for quartics,

EPO 10 OB Eko Yo 10 OE
EPl 10 OD EP(l Y1 10 O[
P:EPZ 1 0 OLE D(Z Yo 10 O[,
%3 11 0% %l((g Y3 11 OE
w 11 10k yq 111

and so on for higher and higher degree. By construction
[Py 1C

det(P) =o|et%1 1%
2

soif Py,P,P, arenot collinear,then det(P) #0 and P! exists. For a Beziercurveof degreen,

the fractal generatecby the IAT consistingof the two subdivisionmatrices{Lp,Mp} is an n-

dimensional curve. Projecting this high dimensional curve orthogonally into the xy-plane
reproduces the original Bezier curi?t).

Since every IAT corresponds to a recursive tiptegram, every Bezier curve can be generated
by arecursiveturtle program. Since, however,the matrices{Lp,Mp} typically are not oriented
conformal affinetransformations, wavould need taise a turtleéhat carriesalong a lefthand vector
and responds themore powerfulTURN(aq,ay) and RESZE(s;,sp) commands.For an explicit
example of a turtle program that generates a Bezier curve, ssea|J2003].

Bezier surfacesalso have subdivision procedures; therefore Bezier surfacescan also be
generatedby fractal algorithms. For triangular Bezier patches,the IAT correspondingto
subdivisioncontainsthreematrices; for tensorproductBezier patcheghe IAT correspondingo
subdivision contains four matrices. The remaining analysis is much the same as for Bezier curve:

9. Conclusions

Turtles are a simple virtual paradigmfor investigatingcomplicatedgeometrictopics. Thus

turtleslend themselveguite naturallyto education; indeed educatiowas theprimary purposdor
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which turtle geometry was originally invented.

We have tracedonly a few of the many possible ways that turtle geometry and turtle
programming can be used for introducing amgestigating standard concepts in computer graphics
and computer aided design. Below is a schematic summary of the paths we have taken.

Turtle Commands- Translation, Rotation, and Scaling Affine Coordinates and
Affine Transformations

Recursive Turtle Programs. Fractals—» |ATs - Trivial Fixed Point Theorem
! !

Bezier Curves Relaxation Methods
(Subdivision)  (Jacobi, Gauss-Seidel)

Other path arecertainly possible. To theturtle’s state(P,w), we couldadda scalar massn.
The new turtle state could be denotedby (mP,m,w), where (mP,m) representsa mass-point.
Mass-pointgoften mislabeledas homogeneousoordinatesprovide the mathematicafoundation
for much of computergraphics[Goldman,2002b, 2003], and they supply as well the control
structures for rational Bezier and rational B-spline curves and surfaces [Goldman, 2002a].

To studythe effectsof mass(inertia), we wouldneedto updatethe FORWARDand MOVE
commands so that

FORWARDA: (mP,m) - (mP + dw,m) W - W
MOVE d: (mP,m) - (mP + dw,m) W - W
The turtle’s new location after executing these commands is
mP + dw dw
—=P+—.
m m

Hencethe higherthe turtle’s mass,the less the turtle’s locationchangeswhenwe commandthe
turtle to advance.

Extensionsof the turtle to 3-dimensionscould also be introduced[Abelson and diSessa,
1986], and with the natural extensionsof the turtle commandso 3-dimensionsstudentscould
proceedto the study of Grassmanrcoordinatesand the full rangeof projective transformations
much as we studied affine coordinates and affine transformations.

Thusthe humbleturtle canprovide an easyinitial entry for studentanto manyof the most
important and most vital topics in computer graphics and computer aided design.
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