AN ALGEBRAIC CHARACTERIZATION OF UNIQUELY VERTEX COLORABLE GRAPHS

CHRISTOPHER J. HILLAR AND TROELS WINDFELDT

Abstract

The study of graph vertex colorability from an algebraic perspective has introduced novel techniques and algorithms into the field. For instance, k-colorability of a graph can be characterized in terms of whether its graph polynomial is contained in a certain ideal. In this paper, we interpret unique colorability in an analogous manner and prove an algebraic characterization for uniquely k-colorable graphs. Our result also gives algorithms for testing unique colorability. As an application, we verify a counterexample to a conjecture of Xu concerning uniquely 3 -colorable graphs without triangles.

1. Introduction

Let G be a simple, undirected graph with vertices $V=\{1, \ldots, n\}$ and edges E. The graph polynomial of G is given by

$$
f_{G}=\prod_{\substack{\{i, j\} \in E \\ i<j}}\left(x_{i}-x_{j}\right)
$$

Fix a positive integer $k<n$, and let $C_{k}=\left\{c_{1}, \ldots, c_{k}\right\}$ be a k-element set. Each element of C_{k} is called a color. A (vertex) k-coloring of G is a map $\nu: V \rightarrow C_{k}$. We say that a k-coloring ν is proper if adjacent vertices receive different colors; otherwise ν is called improper. The graph G is said to be k-colorable if there exists a proper k-coloring of G.

Let \mathbb{k} be an algebraically closed field of characteristic not dividing k that contains the k th roots of unity. Also, set $R=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ to be the polynomial ring over \mathbb{k} in indeterminates x_{1}, \ldots, x_{n}. Let \mathcal{H} be the set of graphs with vertices $\{1, \ldots, n\}$ consisting of a clique of size $k+1$ and isolated vertices. We will be interested in the following ideals of R :

$$
\begin{aligned}
J_{n, k} & =\left\langle f_{H}: H \in \mathcal{H}\right\rangle \\
I_{n, k} & =\left\langle x_{i}^{k}-1: i \in V\right\rangle \\
I_{G, k} & =I_{n, k}+\left\langle x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}:\{i, j\} \in E\right\rangle
\end{aligned}
$$

One should think of $I_{n, k}$ and $I_{G, k}$ as representing the set of all k-colorings and proper k-colorings of the graph G, respectively. These ideals are important because

[^0]they allow for an algebraic formulation of k-colorability. The following theorem collects the results in the series of papers $[2,3,10,11,12]$.
Theorem 1.1. The following four statements are equivalent:
(1) The graph G is not k-colorable.
(2) The constant polynomial 1 belongs to the ideal $I_{G, k}$.
(3) The graph polynomial f_{G} belongs to the ideal $I_{n, k}$.
(4) The graph polynomial f_{G} belongs to the ideal $J_{n, k}$.

The next result says that the generators for the ideal $J_{G, k}$ in the above theorem are very special (see Section 2 for a review of the relevant definitions). A proof can be found in [10].

Theorem 1.2 (J. de Loera). The set of polynomials, $\left\{f_{H}: H \in \mathcal{H}\right\}$, is a universal Gröbner basis of $J_{n, k}$.
Remark 1.3. The set $\mathcal{G}=\left\{x_{1}^{k}-1, \ldots, x_{n}^{k}-1\right\}$ is a universal Gröbner basis of $I_{n, k}$, but this follows easily since the leading terms of \mathcal{G} are relatively prime (find reference), regardless of term order.

We give a self-contained proof of Theorem 1.1 in Section 2. We say that a graph is uniquely k-colorable if there is a unique proper k-coloring up to permutation of the colors in C_{k}. In this case, partitions of the vertices into subsets having the same color are the same for each of the k ! proper colorings of G. A natural refinement of Theorem 1.1 would be an algebraic characterization of when a k-colorable graph is uniquely k-colorable. Our main result provides such a characterization.
Theorem 1.4. Let G be k-colorable with a coloring that uses all k colors. Then there exist polynomials g_{1}, \ldots, g_{n}, and g such that the following three statements are equivalent:
(1) The graph G is uniquely k-colorable.
(2) The polynomials g_{1}, \ldots, g_{n} belong to the ideal $I_{G, k}$.
(3) The graph polynomial f_{G} belongs to the ideal $I_{n, k}+\langle g\rangle$.

Remark 1.5. The polynomials g_{1}, \ldots, g_{n}, and g can be written down explicitly once we are given a proper k-coloring of G; we will define them in Section 4. See also Example 1.7 below.

For a uniquely colorable graph, the polynomials g_{1}, \ldots, g_{n} in the theorem are especially nice, yielding a partial analog to Theorem 1.2.

Theorem 1.6. Let G be uniquely k-colorable. Then the polynomials g_{1}, \ldots, g_{n} form the reduced Gröbner basis for $I_{G, k}$ with respect to the lexicographic order with $x_{n} \prec \cdots \prec x_{1}$.
Example 1.7. We present an example of a uniquely 3-colorable graph on $n=12$ vertices and give the polynomials g_{1}, \ldots, g_{n} from Theorem 1.4.

Let G be the graph given in Figure 1. The following set of 12 polynomials is a reduced Gröbner basis for the ideal $I_{G, k}$. The leading terms of each g_{i} are underlined.

$$
\begin{aligned}
& \left\{\underline{x_{12}^{3}}-1, \underline{x_{7}}-x_{12}, \underline{x_{4}}-x_{12}, \underline{x_{3}}-x_{12}\right. \\
& \underline{x_{11}^{2}}+x_{11} x_{12}+x_{12}^{2}, \underline{x_{9}}-x_{11}, \underline{x_{6}}-x_{11}, \underline{x_{2}}-x_{11} \\
& \left.\underline{x_{10}}+x_{11}+x_{12}, \underline{x_{8}}+x_{11}+x_{12}, \underline{x_{5}}+x_{11}+x_{12}, \underline{x_{1}}+x_{11}+x_{12}\right\}
\end{aligned}
$$

Figure 1. A uniquely 3-colorable graph without triangles

Notice that the leading terms of the polynomials in each line above correspond to the different color classes of the coloring of G.

The organization of this paper is as follows. In Section 2, we discuss some of the algebraic tools that will go into the proofs of our main results. Section 3 is devoted to a proof of Theorem 1.1, and in Section 4, we present arguments for Theorems 1.4 and 1.6. Theorems 1.1 and 1.4 give algorithms for testing k-colorability and unique k-colorability of graphs, and we discuss the implementation of them in Section 5 , along with a verification of a counterexample [1] to a conjecture $[4,7,13]$ by Xu .

2. Algebraic Preliminaries

We briefly review the basic concepts of commutative algebra that will be useful for us here. Let I be an ideal of $R=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. The variety $V(I)$ of I is the set of points in \mathbb{k}^{n} that are zeroes of all the polynomials in I. Conversely, the vanishing ideal $I(V)$ of a set $V \subseteq \mathbb{k}^{n}$ is the ideal of those polynomials vanishing on all of V. These two definitions are related by way of $V(I(V))=V$ and $I(V(I))=\sqrt{I}$, in which

$$
\sqrt{I}=\left\{f: f^{n} \in I \text { for some } n\right\}
$$

is the radical of I. The ideal I is called zero-dimensional if $V(I)$ is finite. A term order \prec for the monomials of R is a well-ordering which is multiplicative and for which the constant monomial is smallest. The initial term (or leading monomial) $i n_{\prec}(f)$ of a polynomial $f \in R$ is the largest monomial in f with respect to \prec. The standard monomials $\mathcal{B}_{\prec}(I)$ of I are those monomials which are not the initial terms of any polynomial in I.

Many arguments in commutative algebra and algebraic geometry are simplified when restricted to radical, zero-dimensional ideals (resp. multiplicity-free, finite varieties), and those found in this paper are not exceptions. The following fact is useful in this regard.

Lemma 2.1. Let I be a zero-dimensional ideal and fix a term order \prec. Then $\operatorname{dim}_{\mathbb{k}} R / I=\left|\mathcal{B}_{\prec}(I)\right| \geq|V(I)|$. Furthermore, the following are equivalent:
(1) I is a radical ideal.
(2) I contains a univariate square-free polynomial in each indeterminate.
(3) $\left|\mathcal{B}_{\prec}(I)\right|=|V(I)|$.

Proof. See [5].
A finite subset \mathcal{G} of an ideal I is a Gröbner basis (with respect to \prec) if the initial ideal,

$$
i n_{\prec}(I)=\left\langle i n_{\prec}(f): f \in I\right\rangle,
$$

is generated by the initial terms of elements of \mathcal{G}. Furthermore, a universal Gröbner basis is a set polynomials which is a Gröbner basis with respect to all term orders. Many of the properties of I and $V(I)$ can be calculated by finding a Gröbner basis for I, and such generating sets are fundamental for computation (including the algorithms presented in the last section).

Finally, a useful operation on two ideals I and J is the construction of the colon ideal $I: J=\{h \in R: h J \subseteq I\}$. If V and W are two varieties, then the colon ideal

$$
\begin{equation*}
I(V): I(W)=I(V \backslash W) \tag{2.1}
\end{equation*}
$$

corresponds to a set difference.

3. Vertex Colorability

In what follows, the set of colors C_{k} will be the set of k th roots of unity, and we will freely speak of points in \mathbb{k}^{n} with all coordinates in C_{k} as colorings of G. In this case, a point $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{k}^{n}$ corresponds to a coloring of vertex i with color v_{i} for $i=1, \ldots, n$. The varieties corresponding to the ideals $I_{n, k}, I_{G, k}$, and $I_{n, k}+\left\langle f_{G}\right\rangle$ partition the k-colorings of G as follows.

Lemma 3.1. The varieties $V\left(I_{n, k}\right), V\left(I_{G, k}\right)$, and $V\left(I_{n, k}+\left\langle f_{G}\right\rangle\right)$ are in bijection with all, the proper, and the improper k-colorings of G, respectively.

Proof. The points in $V\left(I_{n, k}\right)$ are all n-tuples of k th roots of unity and therefore naturally correspond to all k-colorings of G. Let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in V\left(I_{G, k}\right)$; we must show that it corresponds to a proper coloring of G. Let $\{i, j\} \in E$ and set

$$
q_{i j}=\frac{x_{i}^{k}-x_{j}^{k}}{x_{i}-x_{j}} \in I_{G, k} .
$$

If $v_{i}=v_{j}$, then $q_{i j}(\mathbf{v})=k v_{i}^{k-1} \neq 0$. Thus, the coloring \mathbf{v} is proper. Conversely, suppose that $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is a proper coloring of G. Then, since

$$
q_{i j}(\mathbf{v})\left(v_{i}-v_{j}\right)=\left(v_{i}^{k}-v_{j}^{k}\right)=1-1=0,
$$

it follows that for $\{i, j\} \in E$, we have $q_{i j}(\mathbf{v})=0$. This shows that $\mathbf{v} \in V\left(I_{G, k}\right)$. Finally, if \mathbf{v} is an improper coloring, then it is easy to see that $f_{G}(\mathbf{v})=0$, and that moreover, any $\mathbf{v} \in V\left(I_{n, k}\right)$ for which $f_{G}(\mathbf{v})=0$ has two coordinates, corresponding to an edge in G, that are equal.

The next result follows directly from Lemma 2.1. It will prove useful in simplifying many of the proofs in this paper.
Lemma 3.2. The ideals $I_{n, k}, I_{G, k}$, and $I_{n, k}+\left\langle f_{G}\right\rangle$ are radical.
We next describe a relationship between $I_{n, k}, I_{G, k}$, and $I_{n, k}+\left\langle f_{G}\right\rangle$.
Lemma 3.3. $I_{n, k}: I_{G, k}=I_{n, k}+\left\langle f_{G}\right\rangle$.
Proof. Let V and W be the set of all colorings and proper colorings, respectively, of the graph G. Now apply Lemma 3.1 and Lemma 3.2 to equation (2.1).

The dimensions of the residue rings corresponding to these ideals are readily computed from the above discussion. Recall that the chromatic polynomial χ_{G} is the univariate polynomial for which $\chi_{G}(k)$ is the number of proper k-colorings of G.

Lemma 3.4. Let χ_{G} be the chromatic polynomial of G. Then

$$
\begin{aligned}
\chi_{G}(k) & =\operatorname{dim}_{\mathbb{k}} R / I_{G, k}, \\
k^{n}-\chi_{G}(k) & =\operatorname{dim}_{\mathbb{k}} R /\left(I_{n, k}+\left\langle f_{G}\right\rangle\right)
\end{aligned}
$$

Proof. Both equalities follow from Lemmas 2.1 and 3.1.
Let $K_{n, k}$ be the ideal of all polynomials $f \in R$ such that $f\left(v_{1}, \ldots, v_{n}\right)=0$, $\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{k}^{n}$, if at most k of the v_{i} are distinct. Clearly, $J_{n, k} \subseteq K_{n, k}$. We will need the following result of Kleitman and Lovasz [11].

Theorem 3.5. The ideals $K_{n, k}$ and $J_{n, k}$ are the same.
Proof. We sketch the proof (see [11] for more details). Let $f \in K_{n, k}$ and for each subset $S \subseteq\{1, \ldots, n-1\}$, let f_{S} be the polynomial gotten from substituting x_{n} for each x_{i} with $i \in S$. Since $f_{S} \in K_{n, k}$, induction on the number of indeterminates n implies that $f_{S} \in J_{n, k}$ for nonempty S. If $p=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ is a monomial, then

$$
q(p):=\sum_{S}(-1)^{|S|} p_{S}, \quad p \in R
$$

equals $\left(x_{1}^{a_{1}}-x_{n}^{a_{1}}\right) \cdots\left(x_{n-1}^{a_{n-1}}-x_{n}^{a_{n-1}}\right) x_{n}^{a_{n}}$. By linearity, therefore, it follows that $q=q(f)=\left(x_{1}-x_{n}\right) \cdots\left(x_{n-1}-x_{n}\right) h$ for some $h \in R$. Since $q \in K_{n, k}$, the polynomial h is zero whenever at most $k-1$ of the x_{1}, \ldots, x_{n-1} are distinct. Thus, upon expanding h in terms of powers of x_{n}, the coefficients will belong to $K_{n-1, k-1}$, and by induction, we may assume they all belong to $J_{n-1, k-1}$. Hence, $q \in J_{n, k}$. Finally, we have $f=q-\sum_{S \neq \emptyset}(-1)^{|S|} f_{S} \in J_{n, k}$, completing the proof.

We now present a proof of Theorem 1.1.
Proof of Theorem 1.1. (1) $\Rightarrow(2)$: Suppose that G is not k-colorable. Then it follows from Lemma 3.4 that $\operatorname{dim}_{\mathbb{k}} R / I_{G, k}=0$ and so $1 \in I_{G}$. 2) \Rightarrow (3): Suppose that $I_{G, k}=\langle 1\rangle$ so that $I_{n, k}: I_{G, k}=I_{n, k}$. Then Lemma 3.3 implies that $I_{n, k}+$ $\left\langle f_{G}\right\rangle=I_{n, k}$ and hence $f_{G} \in I_{n, k} .(3) \Rightarrow(1)$: Assume that f_{G} belongs to the ideal $I_{n, k}$. Then $I_{n, k}+\left\langle f_{G}\right\rangle=I_{n, k}$, and it follows from Lemma 3.4 that $k^{n}-\chi_{G}(k)=k^{n}$. Therefore, $\chi_{G}(k)=0$ as desired. (4) $\Rightarrow(1)$: Suppose that $f_{G} \in J_{n, k}$. Then from Theorem 3.5, there can be no proper coloring \mathbf{v} (there are at most k distinct coordinates). $(1) \Rightarrow(4)$: If G is not k-colorable, then for every substitution $\mathbf{v} \in \mathbb{k}^{n}$ with at most k distinct coordinates, we must have $f_{G}(\mathbf{v})=0$. It follows that $f_{G} \in J_{n, k}$ from Theorem 3.5.

4. Unique Vertex Colorability

Let G be a colorable graph with proper coloring ν, and let k be the number of distinct colors in $\nu(V)$. Then G is a k-colorable graph, which has a coloring using all k colors. Before giving the definition of the polynomials g_{1}, \ldots, g_{n} in Theorem 1.4 , we develop some notation. Although this set of polynomials will depend on ν, for notational simplicity, we will assume that this dependency is understood. The color class $\operatorname{cl}(i)$ of a vertex $i \in V$ is the set of vertices with the same color as
i. The representative of a color class is the largest vertex contained in it. We set $m_{1}<m_{2}<\cdots<m_{k}=n$ to be the representatives of the k color classes.

For a subset $U \subseteq V$ of the vertices, let h_{U}^{d} be the sum of all monomials of degree d in the indeterminates $\left\{x_{i}: i \in U\right\}$. We also set $h_{U}^{0}=1$. For each vertex $i \in V$, we define a polynomial g_{i} as follows:

$$
g_{i}= \begin{cases}x_{i}^{k}-1 & \text { if } i=m_{k}, \tag{4.1}\\ h_{\left\{m_{j}, \ldots, m_{k}\right\}}^{j} & \text { if } i=m_{j} \text { for some } j, \\ h_{\left\{i, m_{2}, \ldots, m_{k}\right\}}^{1} & \text { if } i \in \operatorname{cl}\left(m_{1}\right), \\ x_{i}-x_{\max \operatorname{cl}(i)} & \text { otherwise. }\end{cases}
$$

One should think (loosely) of the first case of (4.1) as corresponding to a choice of a color for the last vertex; the second and third, to subsets of vertices in different color classes; and the fourth, to the fact that elements in the same color class should have the same color. These polynomials encode the coloring ν algebraically in a computationally useful way (see Lemmas 4.2 and 4.4 below).

Example 4.1. In Example 1.7, the displayed coloring gives us $\left(m_{1}, m_{2}, m_{3}\right)=$ $(10,11,12)$ and the polynomials from the second and third cases of (4.1) are

$$
\begin{aligned}
g_{1} & =h_{\{1,11,12\}}^{1}=x_{1}+x_{11}+x_{12} \\
g_{5} & =h_{\{5,11,12\}}^{1}=x_{5}+x_{11}+x_{12} \\
g_{8} & =h_{\{8,11,12\}}^{1}=x_{8}+x_{11}+x_{12} \\
g_{10} & =h_{\{10,11,12\}}^{1}=x_{10}+x_{11}+x_{12} \\
g_{11} & =h_{\{11,12\}}^{2}=x_{11}^{2}+x_{11} x_{12}+x_{12}^{2} .
\end{aligned}
$$

One can also easily check that the other polynomials from Example 1.7 arise from the other cases of (4.1).

Recall that a reduced Gröbner basis \mathcal{G} is a Gröbner basis such that (1) the coefficient of $i_{\prec}(g)$ for each $g \in \mathcal{G}$ is 1 and (2) the leading monomial of any $g \in \mathcal{G}$ does not divide any monomial occurring in another polynomial in \mathcal{G}. Given a term order, reduced Gröbner bases exist and are unique.

Lemma 4.2. Let \prec be the lexicographic ordering induced by $x_{n} \prec x_{n-1} \prec \cdots \prec x_{1}$. Then the set of polynomials $\left\{g_{1}, \ldots, g_{n}\right\}$ is the reduced Gröbner basis with respect to \prec for the ideal it generates.

Proof. It is clear by construction that the initial terms of $\left\{g_{1}, \ldots, g_{n}\right\}$ are relatively prime. It follows that these polynomials form a Gröbner basis for the ideal they generate (again by some reference). That they are reduced also follows by inspection of (4.1).

The following innocuous-looking fact is a very important ingredient in the proof of Theorem 1.4.

Lemma 4.3. Let U be a subset of the vertices of G, and suppose that $\{i, j\} \subseteq U$. Then, for all nonnegative integers d,

$$
\begin{equation*}
\left(x_{i}-x_{j}\right) h_{U}^{d}=h_{U \backslash\{j\}}^{d+1}-h_{U \backslash\{i\}}^{d+1} . \tag{4.2}
\end{equation*}
$$

Proof. We induct on the number of elements in U. When $U=\{i, j\}$, the relation is clear from

$$
h_{\{i, j\}}^{d}=\frac{x_{i}^{d+1}-x_{j}^{d+1}}{x_{i}-x_{j}}
$$

Suppose now that U has at least three elements and let $l \in U$ be different from i and j. Then,

$$
\begin{aligned}
\left(x_{i}-x_{j}\right) h_{U}^{d} & =\left(x_{i}-x_{j}\right) \sum_{r=0}^{d} x_{l}^{r} h_{U \backslash\{l\}}^{d-r} \\
& =\sum_{r=0}^{d} x_{l}^{r}\left(x_{i}-x_{j}\right) h_{U \backslash\{l\}}^{d-r} \\
& =\sum_{r=0}^{d} x_{l}^{r}\left(h_{U \backslash\{j, l\}}^{d+1-r}-h_{U \backslash\{i, l\}}^{d+1-r}\right) \\
& =\sum_{r=0}^{d} x_{l}^{r} h_{U \backslash\{j, l\}}^{d+1-r}-\sum_{r=0}^{d} x_{l}^{r} h_{U \backslash\{i, l\}}^{d+1-r} \\
& =\left(h_{U \backslash\{j\}}^{d+1}-x_{l}^{d+1}\right)-\left(h_{U \backslash\{i\}}^{d+1}-x_{l}^{d+1}\right) \\
& =h_{U \backslash\{j\}}^{d+1}-h_{U \backslash\{i\}}^{d+1} .
\end{aligned}
$$

This completes the induction and the proof.
That the polynomials g_{1}, \ldots, g_{n} represent an algebraic encoding of the coloring ν is explained by the following lemma.

Lemma 4.4. Let g_{1}, \ldots, g_{n} be given as in (4.1). Then the following three properties hold for the ideal $A=\left\langle g_{1}, \ldots, g_{n}\right\rangle$:
(1) $I_{G, k} \subseteq A$,
(2) A is radical,
(3) $|V(A)|=k!$.

Proof. First assume that $I_{G, k} \subseteq A$. Then A is radical from Lemma 2.1. Moreover, since the polynomials $\left\{g_{1}, \ldots, g_{n}\right\}$ form a Gröbner basis for the ideal A, the number of standard monomials of A is equal to $|V(A)|$. By inspection of (4.1) using the ordering in Lemma 4.2, we have $\left|\mathcal{B}_{\prec}(A)\right|=k$!, and therefore (3) is proved.

We now prove statement (1). First, we give explicit representations of polynomials $x_{i}^{k}-1 \in I_{n, k}$ in terms of the generators of A. We first claim that for $i=1, \ldots, k$, we have

$$
\begin{equation*}
x_{m_{i}}^{k}-1=x_{n}^{k}-1+\sum_{l=i}^{k-i}\left[\prod_{j=l+1}^{k}\left(x_{m_{i}}-x_{m_{j}}\right)\right] h_{\left\{m_{l}, \ldots, m_{k}\right\}}^{l} . \tag{4.3}
\end{equation*}
$$

To verify (4.3), we will use Lemma 4.3 and induction to prove that for each $s \leq k-i$, the sum on the right hand side above is equal to

$$
\begin{equation*}
\prod_{j=s+i}^{k}\left(x_{m_{i}}-x_{m_{j}}\right) h_{\left\{m_{i}, m_{s+i}, \ldots, m_{k}\right\}}^{s+i-1}+\sum_{l=s+i}^{k-i}\left[\prod_{j=l+1}^{k}\left(x_{m_{i}}-x_{m_{j}}\right)\right] h_{\left\{m_{l}, \ldots, m_{k}\right\}}^{l} \tag{4.4}
\end{equation*}
$$

For $s=1$, this is clear. In general, using Lemma 4.3, the first term on the left hand side of (4.4) is

$$
\prod_{j=s+i+1}^{k}\left(x_{m_{i}}-x_{m_{j}}\right)\left(h_{\left\{m_{i}, m_{s+1+i}, \ldots, m_{k}\right\}}^{s+i}-h_{\left\{m_{s+i}, \ldots, m_{k}\right\}}^{s+i}\right)
$$

which is easily seen to cancel the first summand in the sum found in (4.4). Now, equation (4.4) with $s=k-i$ gives us that the right hand side of (4.3) is

$$
x_{n}^{k}-1+\left(x_{m_{i}}-x_{m_{k}}\right) h_{\left\{m_{i}, m_{k}\right\}}^{k-1}=x_{n}^{k}-1+x_{m_{i}}^{k}-x_{n}^{k}=x_{m_{i}}^{k}-1,
$$

proving the claim.
It remains to show that $x_{i}^{k}-1 \in A$ for all $i \in V$. We first claim that for those $i \in V$ not in $\left\{m_{1}, \ldots, m_{k}\right\}$, we have $x_{i}-x_{m_{i}} \in A$. For those i not in the color class of vertex m_{1}, this is clear from (4.1). Otherwise,

$$
g_{i}-g_{m_{1}}=h_{\left\{i, m_{2}, \ldots, m_{k}\right\}}^{1}-h_{\left\{m_{1}, \ldots, m_{k}\right\}}^{1}=x_{i}-x_{m_{1}} \in A
$$

as desired. For $i \notin\left\{m_{1}, \ldots, m_{k}\right\}$, let $f_{i}=x_{i}-x_{m_{i}}$ and notice that

$$
x_{m_{i}}^{k}-1=\left(x_{i}-f_{i}\right)^{k}-1=x_{i}^{k}-1+f_{i} h \in A
$$

for some polynomial h. It follows that $x_{i}^{k}-1 \in A$.
Finally, we must verify that the other generators of $I_{G, k}$ are in A. To accomplish this, we will prove the following stronger statement:

$$
\begin{equation*}
U \subseteq\left\{m_{1}, \ldots, m_{k}\right\} \text { with }|U| \geq 2 \Longrightarrow h_{U}^{k+1-|U|} \in A \tag{4.5}
\end{equation*}
$$

We downward induct on $s=|U|$. In the case $s=k$, we have $U=\left\{m_{1}, \ldots, m_{k}\right\}$. But then as is easily checked $g_{m_{1}}=h_{U}^{k+1-|U|} \in A$. For the general case, we will show that if one polynomial $h_{U}^{k+1-|U|}$ is in A, with $|U|=s<k$, then $h_{U}^{k+1-|U|} \in A$ for any subset $U \subseteq\left\{m_{1}, \ldots, m_{k}\right\}$ of cardinality s. In this regard, suppose that $h_{U}^{k+1-|U|} \in A$ for a subset U with $|U|=s<k$. Let $u \in U$ and $v \in\left\{m_{1}, \ldots, m_{k}\right\} \backslash U$, and examine the following equality (using Lemma 4.3):

$$
\left(x_{u}-x_{v}\right) h_{U \cup\{v\}}^{k-s}=h_{U}^{k-s+1}-h_{U \cup\{v\} \backslash\{u\}}^{k-s+1} .
$$

By induction, the left hand side of this equation is in A and therefore the assumption on U implies that

$$
h_{U \cup\{v\} \backslash\{u\}}^{k-s+1} \in A .
$$

This shows that we may replace any element of U with any element of $\left\{m_{1}, \ldots, m_{k}\right\}$. Since there is a subset U of size s with $h_{U}^{k+1-|U|} \in A$ (see (4.1)), it follows from this that we have $h_{U}^{k+1-|U|} \in A$ for any subset U of size s. This completes the induction.

A similar trick as before using polynomials $x_{i}-x_{m_{i}} \in A$ proves that we may replace in (4.5) the requirement that $U \subseteq\left\{m_{1}, \ldots, m_{k}\right\}$ with one that says that U consists of vertices in different color classes. If $\{i, j\} \in E$, then i and j are in different color classes, and therefore the generator $h_{\{i, j\}}^{k-1} \in I_{G, k}$ is in A. This finishes the proof of the lemma.

Remark 4.5. Property (1) in the lemma says that $V(A)$ contains proper colorings of G while properties (2) and (3) say that, up to permutation of the colors, the zeroes of the polynomials g_{1}, \ldots, g_{n} correspond to the single proper coloring given by ν.

Lemma 4.6. Suppose that G is uniquely k-colorable. Then the following two statements hold:
(1) If $\{i, j\} \subseteq V$ have the same color, then $x_{i}-x_{j} \in I_{G, k}$.
(2) If $U \subseteq V$ is a set with $|U| \geq 2$ consisting of vertices with all different colors, then $h_{U}^{k+1-|U|} \in I_{G, k}$.

Proof. Let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in V\left(I_{G, k}\right)$, which by Lemma 3.1 corresponds to a proper coloring. Since G is uniquely k-colorable, it follows that $v_{i}-v_{j}=0$ for each i and j in the same color class. Thus $x_{i}-x_{j} \in I\left(V\left(I_{G, k}\right)\right)=I_{G, k}$ since $I_{G, k}$ is radical. To prove the second statement, we induct on the size of U. Suppose that $U=\{i, j\}$ consists of two vertices with different colors, and let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in V\left(I_{G, k}\right)$. Then by Lemma 4.3,

$$
\left(v_{i}-v_{j}\right) h_{U}^{k+1-|U|}(\mathbf{v})=h_{U \backslash\{j\}}^{k}(\mathbf{v})-h_{U \backslash\{i\}}^{k}(\mathbf{v})=v_{i}^{k}-v_{j}^{k}=0
$$

Since $v_{i} \neq v_{j}$, it follows that $h_{U}^{k+1-|U|} \in I_{G, k}$ in this case (using as before that $I_{G, k}$ is radical). For $|U|>2$, we have,

$$
\left(v_{i}-v_{j}\right) h_{U}^{k+1-|U|}(\mathbf{v})=h_{U \backslash\{j\}}^{k+1-|U \backslash\{j\}|}(\mathbf{v})-h_{U \backslash\{i\}}^{k+1-|U \backslash\{i\}|}(\mathbf{v})=0-0=0,
$$

by Lemma 4.3 and the induction hypothesis. Again, it follows that $h_{U}^{k+1-|U|}(\mathbf{v})=0$, completing the induction and the proof.

Before proving our main theorem, we define the g in Theorem 1.4 using a "dual" set of auxiliary polynomials $\bar{g}_{1}, \ldots, \bar{g}_{n}$. Given a subset $U \subseteq V$ of the vertices of G, we let K_{U} denote the graph on vertices V with a clique on vertices U and isolated other vertices. For $i=1, \ldots, n$, set

$$
\bar{g}_{i}= \begin{cases}1 & \text { if } i=m_{k} \tag{4.6}\\ f_{\left.K_{\left\{m_{j}\right.}, \ldots, m_{k}\right\}} & \text { if } i=m_{j} \text { for some } j, \\ f_{\left.K_{\left\{i, m_{2}\right.}, \ldots, m_{k}\right\}} & \text { if } i \in \operatorname{cl}\left(m_{1}\right) \\ h_{\{i, \max c l(i)\}}^{k-1} & \text { otherwise. }\end{cases}
$$

We can now define

$$
\begin{equation*}
g=\bar{g}_{1} \cdots \bar{g}_{n} \tag{4.7}
\end{equation*}
$$

The following is a duality relationship between g_{1}, \ldots, g_{n} and g.
Lemma 4.7. $I_{n, k}:\left\langle g_{1}, \ldots, g_{n}\right\rangle=I_{n, k}+\langle g\rangle$.
Proof. Since all the ideals in consideration are radical by Lemmas 2.1 and 4.4, equation (2.1) says that we need to show:

$$
V\left(I_{n, k}+\langle g\rangle\right)=V\left(I_{n, k}\right) \backslash V\left(\left\langle g_{1}, \ldots, g_{n}\right\rangle\right)
$$

First, suppose that $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ is contained in the left-hand side of the above equation; we will verify it is in the right-hand side. In this case, $\bar{g}_{i}(\mathbf{v})=0$ for some i. Suppose that i arises from the fourth case of (4.6), and let j be such that $m_{j}=$ $\max c l(i)$. If $v_{i}=v_{m_{j}}$, then $h_{\left\{i, m_{j}\right\}}^{k-1}(\mathbf{v})=k v_{i}^{k-1} \neq 0$, a contradiction. It follows that $v_{i} \neq v_{m_{j}}$, and therefore $\mathbf{v} \notin V\left(\left\langle g_{1}, \ldots, g_{n}\right\rangle\right)$. If i comes from cases two or three in (4.6), then $\bar{g}_{i}(\mathbf{v})=0$ says that two coordinates of \mathbf{v} that represent vertices in different color classes are equal. But then this point cannot be in $V\left(\left\langle g_{1}, \ldots, g_{n}\right\rangle\right)$ by Lemma 4.4 (specifically, Remark 4.5).

Conversely, suppose that \mathbf{v} is a coloring not contained in $V\left(\left\langle g_{1}, \ldots, g_{n}\right\rangle\right)$. Then $g_{i}(\mathbf{v}) \neq 0$ for some i. This i cannot come from the first case of (4.1). If it arises from the fourth case, then $v_{i}-v_{m_{j}} \neq 0$ for some j. Thus, the equality $\left(v_{i}-v_{m_{j}}\right) h_{\left\{i, m_{j}\right\}}^{k-1}(\mathbf{v})=v_{i}^{k}-v_{m_{j}}^{k}=0$ implies that $\bar{g}_{i}(\mathbf{v})=0$, as desired. Finally, suppose that $g_{i}(\mathbf{v}) \neq 0$ for i from cases two or three, and let $S=\left\{i, m_{2}, \ldots, m_{k}\right\}$ or $S=\left\{m_{j}, \ldots, m_{k}\right\}$, correspondingly. Consider all subsets $U \subseteq S$ with at least 2 elements such that $h_{U}^{k+1-|U|}(\mathbf{v}) \neq 0$ and choose one of minimum cardinality; this set exists by assumption. If $U=\{i, j\}$, then $\left(v_{i}-v_{j}\right) h_{U}^{k+1-|U|}(\mathbf{v})=v_{i}^{k}-v_{j}^{k}=0$ so that $v_{i}=v_{j}$ and $\bar{g}_{i}(\mathbf{v})=0$. Otherwise, if $\{i, j\} \subseteq U$, then

$$
\left(v_{i}-v_{j}\right) h_{U}^{k+1-|U|}(\mathbf{v})=h_{U \backslash\{j\}}^{k+1-|U \backslash\{i\}|}(\mathbf{v})-h_{U \backslash\{i\}}^{k+1-|U \backslash\{i\}|}(\mathbf{v})=0
$$

by Lemma 4.3 and the minimality of U. Again, it follows that $v_{i}=v_{j}$ and $\bar{g}_{i}(\mathbf{v})=0$. Therefore, in all cases, $\mathbf{v} \in V\left(I_{n, k}+\langle g\rangle\right)$. This finishes the proof.

We are now in a position to prove our main theorem.
Proof of Theorem 1.4. (1) $\Rightarrow(2)$: Suppose the graph G is uniquely k-colorable and construct the set of g_{i} from (4.1); we will prove that $g_{i} \in I_{G, k}$ for each $i \in V$. By Lemma 4.6, polynomials of the form $x_{i}-x_{m_{i}}$ are in $I_{G, k}$, and by definition of $I_{G, k}$, we have $x_{n}^{k}-1 \in I_{G, k}$. Finally, since the sets $U=\left\{m_{j}, \ldots, m_{k}\right\}$ and $V=\left\{i, m_{2}, \ldots, m_{k}\right\}$ consist of vertices with different colors, those g_{i} of the form h_{U}^{j} and h_{V}^{1} are in $I_{G, k}$ again by Lemma 4.3.
$(2) \Rightarrow(3)$: Suppose that $A=\left\langle g_{1}, \ldots, g_{n}\right\rangle \subseteq I_{G, k}$. From Lemmas 3.3 and 4.7, we have

$$
\begin{aligned}
I_{n, k}+\left\langle f_{G}\right\rangle & =I_{n, k}: I_{G, k} \\
& \subseteq I_{n, k}: A \\
& =I_{n, k}+\langle g\rangle
\end{aligned}
$$

This proves that $f_{G} \in I_{n, k}+\langle g\rangle$.
$(3) \Rightarrow(1)$: Assume that $f_{G} \in I_{n, k}+\langle g\rangle$. Then, $I_{n, k}: I_{G, k} \subseteq I_{n, k}+\langle g\rangle=I_{n, k}: A$. Applying Lemmas 2.1 and 4.4, we have

$$
\begin{equation*}
k^{n}-k!=\left|V\left(I_{n, k}\right) \backslash V(A)\right|=\left|V\left(I_{n, k}: A\right)\right| \leq\left|V\left(I_{n, k}: I_{G, k}\right)\right| \leq k^{n}-k! \tag{4.8}
\end{equation*}
$$

since the number of improper colorings is at most $k^{n}-k$!. It follows that equality holds throughout (4.8) so that the number of proper colorings is k !. Therefore, G is uniquely k-colorable, completing the proof.

Collecting the results of this section, we can now also prove Theorem 1.6 from the introduction.

Proof of Theorem 1.6. By Lemma 4.2, it is enough to show that $A=\left\langle g_{1}, \ldots, g_{n}\right\rangle=$ $I_{G, k}$. From Lemma 4.4, we know that $I_{G, k} \subseteq A$, and the other inclusion is clear from the equivalence of (1) and (2) in Theorem 1.4.

5. Algorithms and Xu's Conjecture

In this section we describe the algorithms implied by Theorems 1.1 and 1.4, and illustrate their usefulness by disproving a conjecture of Xu. ${ }^{1}$

[^1]First, from Theorem 1.1, we have the following methods for determining k colorability.

Algorithm 5.1.

Input: A graph G with vertices $V=\{1, \ldots, n\}$ and edges E, and a positive integer k. Output: true if G is k-colorable; otherwise false.

Method 1:

(1) Compute a Gröbner basis \mathcal{G} of $I_{G, k}$.
(2) Compute the normal form of the constant polynomial 1 wrt. \mathcal{G}.
(3) Return false if the normal form is zero; otherwise return true.

Method 2:

(1) Set $\mathcal{G}:=\left\{x_{i}^{k}-1: i \in V\right\}$.
(2) Set $f:=1$.
(3) For $\{i, j\} \in E$:

Compute the normal form g of $\left(x_{i}-x_{j}\right) f$ wrt. \mathcal{G}, and set $f:=g$.
(4) Return false if f is zero; otherwise return true.

Method 3:

(1) Set $\mathcal{G}:=\left\{f_{H}: H \in \mathcal{H}\right\}$, where \mathcal{H} is the set of graphs with vertices $\{1, \ldots, n\}$ consisting of a clique of size $k+1$ and isolated vertices.
(2) Set $f:=1$.
(3) For $\{i, j\} \in E$:

Compute the normal form g of $\left(x_{i}-x_{j}\right) f$ wrt. \mathcal{G}, and set $f:=g$.
(4) Return false if f is zero; otherwise return true.

The analogue of this algorithm for unique colorability is given by Theorem 1.4.

Algorithm 5.2.

Input: A graph G with vertices $V=\{1, \ldots, n\}$ and edges E, and a k-coloring of G. Output: true if G is uniquely k-colorable; otherwise false.

Method 1:
(1) Compute a Gröbner basis \mathcal{G} of $I_{G, k}$.
(2) For $i \in V$:

Compute the normal form of g_{i} wrt. \mathcal{G}.
Return false if the normal form is nonzero.
(3) Return true.

Method 2:

(1) Compute a Gröbner basis \mathcal{G} of $I_{n, k}+\langle g\rangle$.
(2) Set $f:=1$.
(3) For $\{i, j\} \in E$:

Compute the normal form g of $\left(x_{i}-x_{j}\right) f$ wrt. \mathcal{G}, and set $f:=g$.
(4) Return true if f is zero; otherwise return false.

In [13], Xu showed that if G is a uniquely k-colorable graph with $|V|=n$ and $|E|=m$, then $m \geq(k-1) n-\binom{k}{2}$, and this bound is best possible. He went on to conjecture that if G is uniquely k-colorable with $|V|=n$ and $|E|=(k-1) n-\binom{k}{2}$, then G contains a k-clique. In [1], this conjecture was shown to be false for $k=3$ and $|V|=24$ using the graph in Figure 2; however, the verification is somewhat complicated. We prove that this graph is a counterexample to Xu's conjecture using Algorithm 5.2, Method 1. The computation requires approximately an hour of processor time on a laptop PC; the code can be downloaded from the link at the beginning of this section.

Figure 2. A counterexample to Xu's conjecture

References

[1] S. Akbari, V. S. Mirrokni, B. S. Sadjad, K_{r}-Free uniquely vertex colorable graphs with minimum possible edges. Journal of Combinatorial Theory, Series B 82 (2001), 316-318.
[2] N. Alon, M. Tarsi, Colorings and orientations of graphs. Combinatorica 12 (1992), 125-134.
[3] D. Bayer, The division algorithm and the Hilbert scheme. Ph.D. Thesis, Harvard University, 1982.
[4] C.-Y. Chao, Z. Chen, On uniquely 3-colorable graphs. Discrete Mathematics 112 (1993), 21-27.
[5] D. Cox, J. Little, D. O'Shea, Using algebraic geometry, Springer, New York, 1998.
[6] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms, Springer-Verlag, New York, 1997.
[7] A. Daneshgar, R. Naserasr, On small uniquely vertex-colourable graphs and Xu's conjecture, Discrete Math. 223 (2000), 93-108.
[8] F. Harary, S. T. Hedetniemi, R. W. Robinson, Uniquely colorable graphs, Journal of Combinatorial Theory 6 (1969), 264-270.
[9] S.-Y. R. Li, W.-C. W. Li, Independence numbers of graphs and generators of ideals. Combinatorica 1 (1981), 55-61.
[10] J. A. de Loera, Gröbner bases and graph colorings. Beitrage zur Algebra und Geometrie 36 (1995), 89-96.
[11] L. Lovasz, Stable sets and polynomials. Discrete Mathematics 124 (1994), 137-153.
[12] M. Mnuk, On an algebraic description of colorability of planar draphs. In Koji Nakagawa, editor, Logic, Mathematics and Computer Science: Interactions. Proceedings of the Symposium in Honor of Bruno Buchberger's 60th Birthday. RISC, Linz, Austria, October 20-22 (2002), 177-186.
[13] S. Xu, The size of uniquely colorable graphs, Journal of Combinatorial Theory Series B 50 (1990), 319-320.

Department of Mathematics, Texas A\&M University, College Station, TX 77843
E-mail address: chillar@math.tamu.edu
Department of Mathematics, University of Copenhagen, Denmark.
E-mail address: windfeldt@math.ku.dk

[^0]: Key words and phrases. vertex coloring, Gröbner basis, colorability algorithm, uniquely colorable graph.

 The work of the first author is supported under a National Science Foundation Graduate Research Fellowship. This work was conducted during the Special Semester on Gröbner Bases, February 1 - July 31, 2006, organized by RICAM, Austrian Academy of Sciences, and RISC, Johannes Kepler University, Linz, Austria.

[^1]: ${ }^{1}$ Code that performs this calculation along with an implementation of the algorithms in this section can be found here.

