
Numerical Gröbner Bases and Syzygies:
an Interval Approach

MARCO BODRATO and ALBERTO ZANONI
{bodrato, zanoni}@posso.dm.unipi.it

Dipartimento di Matematica
Università di Pisa

Via Buonarroti 2 – 56127 Pisa, Italy

Abstract. In Gröbner bases computation a general open question is how
to guide calculations coping with numerical coefficients and/or not exact
input data. It may happen that, due to error accumulation or insufficient
working precision, the result is not one theoretically expects. The basis
may have more or less polynomials, a different number of solutions, a
zero set with wrong multiplicity, and so on. Augmenting precision we
may overcome algorithmic errors, but we don’t know in advance how
much it should be, and a trial-and-error approach is often the only way.
Coping with initial errors is an even more difficult task. In this work
the combined use of syzygies and interval arithmetic is proposed as a
technique to decide at each critical point of the algorithm what to do.

1 Introduction

For a general reference to Gröbner bases, we refer to [1], [4], [6] and [7]. The
Gröbner bases bases computation is basically founded on polynomial head de-
termination. The crucial point is then to test zero equality for leading coefficients,
to decide if a monomial is the real head, or it has to be canceled.

If the wrong decision is made, the resulting basis may be completely wrong,
not only in the sense that its coefficients may be far away from the expected
values, but even that the leading term set (staircase) may be different. This
latter aspect is the worst one.

The numerical stability problem for Gröbner bases computation has been
studied for some years. Different approaches were proposed:

– Stetter [11], who takes into consideration the size of coefficients.
– Shirayanagy [10], who proves convergence with floating point computation

for systems with exact coefficients with increasing precision. Unfortunately,
no upper bound is given.

– Migheli [9] uses a combined numerical–modular approach (H).
– Zanoni [14] [15] uses coefficients with two different precisions to study per-

turbation effects (F2).
– Traverso and Zanoni [13] organise a general view in which they introduce

the idea which is developed in the present work.

2

The weak point which seems common to many treatments is lack of flexibil-
ity. Infact, the ZT is usually tuned by some fixed parameters (coefficient sizes,
number of correct digits, initial precision, etc.), and there is no automatic pro-
cedure to detect which are the best values (if they exist) for a system to be
correctly treated. Some heuristics may be used, but trial–and–error is still the
only general method to analyse all the cases with fixed–behaviour ZT.

What one looks for is an adaptive test, which defines a well–determined pro-
cedure to decide case by case if the coefficients under testing is zero or not. In
other words, we would like that the system itself imposes the conditions that
should be satisfied to fulfil, if possible, the ZT.

In [13] the use of syzygies is proposed. Giving relations expressing the “his-
tory” (trace) of the computations, they seem to be a good tool to analyse the
situation when a ZT has to be applied. In this work we describe our experiments
following this idea. A prototype implementation for first experiments is being
realized with the C++ PoSSoLib library, result of the FRISCO [8] project.

2 Syzygies

Let K be a field and F = {f1, . . . , fs} ⊂ K[X] = K[x1, . . . , xn] a polynomial
list representing the initial system. A syzygy for F is a s–uple of polynomials
H = {h1, . . . , hs} ⊂ K[X] such that H · F =

∑s
1 hi · fi = 0.

Let G = {g1, . . . , gt} ⊂ K[X] be an equivalent system obtained from F during
a Buchberger algorithm application. The idea is to keep track of all the passages
that were done to obtain G from F , as in the extended Euclid algorithm for
Bezout’s identity. In other words, we look for some polynomials kij such that

gj(X) =
s∑

i=1

kij(X) · fi(X) j = 1, ..., t (1)

It is possible to obtain syzygies and the kij by using a simple variant of Buch-
berger algorithm itself: its extended version (see [5]). Look at f1, ..., fs ∈ K[X]
as vectors (f1, 1, 0, ..., 0), ..., (fs, 0, ..., 0, 1) ∈ K[X]s+1, considered as a K[X]–
module, with a term ordering in which comparisons are made on pairs (t, i) –
where t is a term and i is an index indicating the position – such that any term
in initial position is greater than whatever term in any other position.

3 Multi-component coefficients

The fundamental idea for the MCoeff type is to take benefit from different ba-
sic types, adding with the additional feature of interval arithmetic. We describe
them with an eye to their their actual implementation in the C++ PoSSoLib
library [8]. A MCoeff m = (n, mS ,mL,mi,ms) is an “enriched” representation of
a real number. It has a mod p part n, two almost equal floats with different pre-
cisions, the short (mS) and long (mL) part, and an interval [mi,ms] 3 mS ,mL.

3

Definition 1. Let x ∈ R \ {0}. The natural number s = size(x) such that

x = a · 2s with
1
2
≤ |a| < 1.

is the size of x.

ZERO TEST : A MCoeff m is considered to be zero
– when its short or long part is exactly zero, or
– when it is the result of an addition or subtraction in which the size drops by

more than cancellation, or
– when size(mS) − size(mL) > discrepancy (indicating that all the meaningful

digits disappeared, and only garbage remained).

Definition 2. A multi component coefficient m is dangerous when zero is con-
tained in its interval part, not dangerous otherwise. A polynomial with multi
component coefficients involved in the Buchberger algorithm is dangerous when
its leading coefficient is and it is no more head–reducible with respect to the
current basis, not dangerous otherwise.

A not dangerous coefficient is surely different from zero.
For our purposes, we choosed not to use directly the interval part in the

zero detection, as, for example, is done in [10]. There the author, with a slightly
different but substantially equivalent notation, considers as zero a coefficient
having negative inf and positive sup. In the paper it is proved that, if sufficiently
high precision is given, this leads to a correct rewriting rule, but up to now there
is no way to detect an upper bound for such precision, so trial and error has to
be used for each example. Moreover, his approach is valuable only when initial
data are exact, so that augmenting the working precision makes sense.

4 The technique

We show here how one can proceed to detect and solve critical zero/not zero
detection during a classical Buchberger algorithm application. As is well known,
there are many degrees of freedom in it, regarding to divisors ordering, critical
pairs choice, pre– and post–processing of a S-polynomial, etc.

Numerical Buchberger Algorithm

I Construct the F system with MCoefficients, and start the Buchberger algorithm.
II If there is a remaining S-polynomial, compute r, its complete reduction with respect

to the current basis, otherwise go to step V.
III If r = 0 or its head coefficient c is not dangerous, update the data structures and

go to step II, otherwise to IV.
IV Decide if c can really be or is surely different from 0. In the first case delete the

head in r and go to III, otherwise update data structures and continue from II.
V Extract the final polynomials gi from the obtained basis, and output them.

Let K be the field of reals, and F be given, with the finite precision determining
the width of the initial intervals Ii for its coefficients. Any system F ′ obtained

4

from F slightly moving the coefficients in the corresponding Ii is a valid repre-
sentation of the problem, indistinguishable from F (we say it is near to F). This
is the freedom in looking for the most interesting representative, that is the most
instable one, with more interesting properties, such as positive root multiplicity,
etc. The key step in the Numerical Buchberger Algorithm is the ZT in (IV).

5 The zero test

Let α, β, γ, δ, · · · ∈ Nn be multindexes, T = {Xδ | |δ| = 0, 1, ...} the term basis
and t(r) = Xρ the head term of r. We look at the relations (1) concerning r

r(X) =
∑

γ

rγXγ =
s∑

i=1

ki(X) · fi(X)

Let Kα
i be the not zero coefficient of ki in the monomial containing the term

Xα, and F β
i similarly for fi. Abusing notation, we also introduce new variables

F = {F β
i | β ∈ Bi} and K = {Kα

i | α ∈ Ai} corresponding to these coefficients.
Thanks to the MCoeff approach, interval limits for the unknowns are available.
If we perform the computations on the right hand side of this relation and then
equate coefficients, we obtain the following system

Sρ,c =

0 =
s∑

i=1
α+β=γ

Kα
i F β

i γ > ρ ; rγ =
s∑

i=1
α+β=γ

Kα
i F β

i γ ≤ ρ

 (2)

The zero test asks if:

Pρ : are there values for Kα
i , F β

i inside their intervals with rρ = c = 0 ?
This means to choose an initial system near to F and a set of syzygy values

letting the computation trace still be valid, but such that (iterating the process)
we can put to zero as many coefficients as possible. We introduce some vector
having appropriate dimension for easiness of reference in the following:

1. i1, s1 : whose entries are the extremes of the intervals for F β
i , for all i, β.

2. i2, s2 : similarly for Kα
i , for all possible i and α.

Evidently, il ≤ sl for l = 1, 2. For the way i1 and s1 entries are defined, 0
is never contained in the initial intervals for F . This prevents the trivial null
solution to be admissible. One could be tempted to write and solve

Pρ :



min c =
∣∣∣∣ s∑

i=1
α+β=ρ

Kα
i F β

i

∣∣∣∣ (O)

0 =
s∑

i=1
α+β=γ

Kα
i F β

i γ > ρ (P1)

iβ1,i ≤ F β
i ≤ sβ

1,i

iα2,i ≤ Kα
i ≤ sα

2,i

}
for all possible i, α, β

(3)

5

One can distinguish the two cases P+
ρ , P−

ρ if the approximate value we obtain
for c is greater or smaller than zero, respectively.

From now on we will call equation (O) the objective function (o.f). The follow-
ing sections throw some light on the drawbacks of such an approach, introducing
a possible alternative.

6 Considerations about system writing

When performing a Gröbner basis computation, many degrees of freedom are
present, not only because of the customisable strategies of the algorithm, but
also under a strict mathematical point of view. Infact, the two equations

f(X) = 0 α · f(X) = 0 (4)

are perfectly equivalent when α 6= 0. This implies that all the obtained poly-
nomials – and therefore their coefficients – are determined up to a constant. In
particular, this is also true for the coefficient c, and the decision we must take is
in fact a “binary” one: if it is zero or not. We can’t really consider its absolute
value. If we really want to do so, we have some way to remove the extra degree(s)
of freedom.

Let t(fi) = Xδi the leading term of fi: looking for a simplification of the
system shape,

1. we make the initial polynomials fi monic. This gives a double advantage.
First, no more initial degrees of freedom. Second, all leading coefficients
being now exactly equal to 1, the F δi

i variables are now fixed, and there is
then no reason at all even to introduce and consider them. We therefore have
once and for all reduced in a trivial way the research space dimension.

2. if some fi has exactly one exact coefficient (with trivial interval [v, v]) the
above step can be viewed as a “shift” of the exactness to the new head
coefficient (one). If fi has more than one exact coefficient and the head one
is not, it may seem that we loose precision, but we can easily recover the
information keeping some relation(s) for the exact F ’s. If, e.g., F1,3 = 2 and
F1,5 = 3 we should put apart the relation 3 · F1,3 − 2 · F1,5 = 0 and use it
when needed.

For a uniform treating, we will consider the most general formulation, sup-
posing all the coefficients as not precisely known. For what concerns notation,
in the following we will

– indicate with KO ⊂ K the subset of K variables appearing in the o.f. O.
The single variable F β

i will also be indicated with Fij , where j is the position
(starting from 0 for the head term) of the coefficient in the ith polynomial
sparse representation. Similarly for Kα

i .
– introduce the specialisation function rF : K[K, F] → MCoeff evaluating a

polynomial expression to its MCoeff value obtained substituting the values
for K and F variables and using MCoeff arithmetic.

6

7 Solving the system

We have essentially a quadratic optimisation problem with quadratic restric-
tions. Theoretically, the problem could be solved by using Lagrange multipliers,
considering also the available limitations on F and K variables. We instead pro-
pose another way to treat it, without introducing new variables, but directly
applying as soon as possible the available information on data.

We can in general proceed following two main directions to nullify the o.f.:

Symbolic : Extract the relations (polynomials in F) such that the o.f. becomes
zero. This means the ones that were used by the algorithm that must be
fulfilled for the trace to remain valid up to the current point, and the o.f.
itself, rewritten only in terms of F variables.

Numeric : Find numerically only some particular values for the initial coeffi-
cients satisfying these relations.

The former gives global information, the latter only punctual.
Obtaining exact, symbolic relations in F is extremely useful to set appro-

priately the initial values for F . It may infact happen that some relations were
obtained thanks to the MCoeff ZT, that is, forcing explicitly the result to zero.
Tuning the F such that these relations are satisfied exactly, we refine the com-
putation, introducing less corrections and therefore less garbage. Moreover, each
time that new F–relations are determined, they must be still verified in all of
the following computations. Coherence must be preserved. In general, however,
symbolic analysis is very difficult in practice, and a numerical treatment of Pρ

becomes necessary. However, we develop here the symbolic aspect, in order to
have a general idea of the problems and results that may be encountered.

We propose to consider the system composed by (P1) equations – see (3) –
as living in K[F][K] instead than K[K, F], that is, with F variables considered
as parameters. The system becomes then a sparse parametric linear one.

MF ·K =

 · · ·
· Fij ·
· · ·

 ·
Kij

·

=0

We note thatMF entries are monic mono-
mials in F . For what concerns symbolic ma-
nipulations, it is possible to consider the sys-
tem as temporarily living in Z[F][K], and pass
to K only when necessary. Moreover, there is
no predefined term ordering for F and K vari-
ables. This freedom will be extremely fruitful.

Our idea is trying to use (P1) to eliminate as many K variables as possible,
trying to focus mainly on F variables:

1. Using Gauss’ method, we can reduce (at least partially, see below) the sys-
tem, and eventually express some of the K variables, say the Kv subset,
in terms of the remaining “free parameters” Kp = K \ Kv and (usually
complicated) rational functions Rα

i (F).
2. Substituting the obtained expressions for KO in the objective function, we

obtain an alternate expression c′ depending essentially only on F variables.
Because of this, only the forward phase of Gauss’ method is really necessary,
to delay as much as possible the computation complexity.

7

See section 10 for some examples.

8 Ordering, preprocessing and pivot management

We explain how to manage the system in order to reduce it as much as possible.

8.1 Ordering and preprocessing

Before reducing the system, we should choose the ordering for K variables. We
note that the truly interesting part of MF is limited to the lines corresponding
to KO ∩ Kv. To minimise successive substitutions and reduce the amount of
computations, it seems reasonable to

(A) consider KO variables as the smallest ones.

In our experiments, we noticed that some equation p(F) · Kij = 0 may
appear. If we know that Kij is not dangerous, we immediately obtain a relation
concerning F variables which must be forced to zero. In other words, we are told
that the algorithm considered p(F) = 0 for this particular trace. This can be a
new information usable to tune appropriately the coefficient of F , moving thus
to a nearby F ′ for which p(F) = 0 is exactly satisfied. The suggestion is then to

(B) consider K variables with dangerous values as big as possible.

These criteria may be (partially) incompatible. Anyway, (B) is more important,
aiming to avoid to express non dangerous variables in terms of dangerous ones.

Definition 3. A polynomial p ∈ Z[K, F] ⊂ K[K, F] (an equation p = 0) is mute
if p is a linear binomial in K variables with its two coefficients equal to 1.

Due to their nothing more than “renaming” function, we can preprocess the
system performing the substitutions they indicate (we use here only one index
for simplicity)

Ki + Kj = 0 =⇒ Ki = −Kj

deleting some Ki once and for all from the system.
This reduction helps from the numerical point of view, too. Frequently the

intervals of the two variables Ki and Kj are widely different, may be one is
dangerous and the other is not. The simple equality relation allows us to consider
the intersection of the intervals, and use it in the forthcoming computations.

8.2 Pivot management

A fundamental question in each of Gauss’ reduction steps is the choice of a pivot.
We follow here an approach similar to the ”total maximum pivot” adopted in
the numerical case, when looking for the pivot with maximum absolute value in
the remaining part of the system, in order to minimise error propagation. In our
case, working with parametric coefficients, the problem is essentially to decide
if a coefficient can be used as pivot, that is, if it is surely different from zero,
and eventually choose the most simple one, such that symbolic expansions are
as limited as possible. Finding a good pivot may influence K variables order.

8

Definition 4. Let p ∈ K[F][K], and hc(p) ∈ K[F] be its leading coefficient. We
say that p is trustable if rF (hc(p)) is not dangerous, not trustable otherwise.
p is TH (term–headed) if hc(p) is a monomial c · tF = c ·

∏
ij Fij ∈ Z[F] ⊂ K[F].

As a possible heuristic to find the best not dangerous pivot, we classify the
coefficients in order of preference. If there is a constant coefficient, we use it,
otherwise we choose according to the length and eventually the degree, taking the
minimum. If a K–linear polynomial p obtained during the process is trustable,
its head coefficient can be used as pivot, and p itself as a simplifying equation.

Suppose now that k reduction steps were successfully done for MF leading
to M(k)

F , and no trustable polynomial is found for the current reduction step.
We can (indeed, we must) look a bit further. We search for a trustable entry that
could play as pivot in the tails of the remaining polynomials. If m

(k)
ij ∈ M(k)

F
is such, we exchange the kth and jth columns of the matrix, that is change the
positions of the corresponding K variables in the ordering, and proceed using
the (reordered) ith polynomial as current simplifying equation.

Non–trustable polynomials may be used as symbolic simplifiers, but only
for special cases. The typical case is given by p1 = p1,1(F)Kα

i + t1(F,K) and
p2 = p2,1(F)Kα

i + t2(F,K),with the division theorem giving p2,1 = p1,1 · q + r2,1

with q 6= 0. Then p1 can be used to (partially) simplify p2 as follows

p′2 = r2,1(F)Kα
i +

(
t2(F,K)− q(F) · t1(F,K)

)
If the content of an intermediate polynomial p has a factor c1 such that rF (c1)
is not dangerous, then c1 can be deleted (being surely not zero).

All these considerations permit to simplify as much as possible the system,
adding no extra hypotheses on coefficients.

9 Final shape

Avoiding denominators, the final result is the reduced matrixMF corresponding
to the (partially) reduced system.

MF =

(
D(F) −N1(F)

0 N2(F)

) with D(F) diagonal matrix with diagonal entries
d1(F), . . . , dt(F), and N1(F), N2(F) are t× u, v× u

sub–matrices, respectively, with di, n
(1)
hk , n

(2)
hk ∈ K[F].

Expliciting everything we have

MF ·K =

=

{
D(F) ·Kv = N1(F) ·Kp

N2(F) ·Kp = 0
=



d1(F) 0 −n
(1)
11 (F) · · · −n

(1)
1u (F)

. . .
...

...
0 dt(F) −n

(1)
t1 (F) · · · −n

(1)
tu (F)

n
(2)
11 (F) · · · n

(2)
1u (F)

0
...

...
n

(2)
v1 (F) · · · n

(2)
vu (F)



Kv

−−
Kp



9

We underline here again that from the practical point of view it is sufficient
to compute only the forward phase of Gauss’ reduction. The backward part may
be done when reducing the o.f. modulo the new equations.

Suppose that N2 = 0, that is no conditions concerning the free parameters
are present. In this case it is possible to solve the equations with respect to Kv

and obtain

Kα
i =

u∑
j=1

n
(1)
ij (F)
dj(F)

Kp,j =
u∑

j=1

Rij(F)Kp,j (5)

Focusing on KO and substituting their expressions in terms of F,Kp, O becomes

c =
s∑

i=1
α+β=ρ

F β
i ·

 u∑
j=1

Rij(F)Kp,j

=
u∑

j=1

R′
ij(F)Kp,j = R(F,Kp)

with R′
ij(F) =

s∑
i=1

α+β=ρ

F β
i ·Rij(F) and R(F,Kp) =

N(F,Kp)
D(F)

It is clear that D(F) = lcm(d1(F) . . . dt(F)) is surely not dangerous. The
case Kp = {K} is the best one: we have c = R(F,Kp) = N(F)

D(F) · K, indicating
explicitly that and how c depends on initial coefficients, remembering the always
present degree of freedom, signed by the surviving K variable – see relations (4).

When K is not dangerous, the problem is reduced to check if N(F) – which is
nothing more than the determinant of a certain sub–matrix of MF – has a zero
inside the region defined by inequalities concerning F variables. If this happens,
then the answer to Pρ is “yes”, otherwise “no”. Instead of determining roots, we
may consider

T+ :

{
min c = N(F)

i1 ≤ F ≤ s1

T− :

{
max c = N(F)

i1 ≤ F ≤ s1

and not computing effectively the optimum value, but only an admissible as-
signment giving the opposite sign – with respect to the one we have obtained in
our particular computation – for the new c within interval tolerances. This is a
much easier task, because the admissible region is now convex.

– If we find a point π1 such that sign(N(π1)) = −sign(N(π0)), where π0 is
the particular one we have, we can consider the segment connecting them,
reducing thus to the univariate case. Because of the zero theorem for continue
functions, there surely exist πR = π0 + t · (π1−π0) solving our problem, with
t ∈ (0, 1). We found that N(F) is a new relation for F variables that must
be considered in all the following computations, and found one root of hers.

– If such a F1 point does not exist – that is, the polynomial does not change
sign – then we conclude that c is surely different from zero. We may restrict
its interval part excluding zero and continue the computation.

10

10 Examples

We present here some easy system examples, to show what may arise in practical
cases. For simplicity, we indicate only the floating point values v of the coeffi-
cients. Intervals are [v(1 − sign(v) · 2ω), v(1 + sign(v) · 2ω)]. For each example
we indicate the value of ω and the used term ordering: DRL for DegRevLex, L
for Lex.

1 [3, DRL] F1 = (z − 1000 , x2y + zx + x , xy2 + zy)

In this simple example we have that the S-poly s = S(x2y+zx+x, xy2+zy) =
xy. So where is the problem ? The algorithm added and subtracted xy(z−1000),
and therefore the head coefficient seems to be zero. The resulting system is:

O = (F1,2)K1,0 ; P1 =
{

K1,0 + K2,0 = 0
(F1,1)K1,0 + (F2,1)K2,0 = 0

From this we can see that the o.f. can not be zero (the interval for K1,0 does
not contain zero). Simplifying it, we obtain a relation F1,1−F2,1 = 0 which was
quite easy to detect looking at the initial system. Finding it here, it means that
this relation was used to obtain the current polynomial.

2 [3, DRL] F2 = (z − 10 , z5 + 20x2y + 21xy , z5 + 21xy2 + 20y2)

Buchberger algorithm simplifies z5 to 10z4 and so on till we obtain 105. This
process gives us all the K0,j variables, which are completely independent from
computation of critical heads. Then the first S-polynomial

s = S(20x2y + 21xy + 105, 21xy2 + 20y2 + 105) = (20 · 20− 21 · 21)xy2 + . . .

Since these values are really intervals, it is possible to have that the obtained
head coefficient equal equals zero. This is not the relation we see as an o.f.,
because the algorithm does continue, simplifying xy2. That’s why we have to
study a function of the form (F)K, where K is dangerous.

More precisely, we have that for 6th critical pair we find a dangerous situation:

O=(F2,2)K2,1

P1 =



K0,0 + K2,0 = 0 (1) (F0,1)K0,2 + K0,5 = 0 (7)
K0,1 + K1,0 = 0 (2) (F0,1)K0,3 + K0,6 = 0 (8)
(F0,1)K0,0 + K0,2 = 0 (3) (F0,1)K0,4 + K0,7 = 0 (9)
(F0,1)K0,1 + K0,3 = 0 (4) (F0,1)K0,5 + K0,8 = 0 (10)
K0,4 + K2,1 = 0 (5) (F0,1)K0,6 + K0,9 = 0 (11)
(F1,1)K1,0 + (F2,1)K2,0 = 0 (6) (F0,1)K0,7 + K0,10 = 0 (12)
(F1,2)K1,0 + (F2,2)K2,0 + (F2,1)K2,1 = 0 (13)

We numbered P1 equations for clarity. Equations (1), (2) and (5) are mute.
Performing all the simplifications, the really interesting part of the system is

P ′
1 =

{
(F1,1)K1,0 + (F2,1)K2,0 = 0
(F1,2)K1,0 + (F2,2)K2,0 + (F2,1)K2,1 = 0

11

K1,0 and K2,0 are not dangerous, while K2,1 is. We therefore change ordering,
putting K2,1 as the greatest variable. We finally have

MF ·K =
(

F1,1F2,1 0 F1,1F2,2 − F1,2F2,1

0 F1,1 F2,1

)K2,1

K1,0

K2,0

 =
(

0
0

)

and the o.f. becomes O =
N(F)
D(F)

K2,0 =
F1,1F2,2 − F1,2F2,1

F1,1F2,1
K2,0

As expected, N(F) represents a determinant. We translated the uncertainty
problem from K space (K2,1 is dangerous) to a convex F subspace.

3 [5, L] F3 =


2xyt− 2x + y2z − z = 0
x3z − 4x2yt− 4x2 − 4xy2z − 4xz − 2y3t + 10y2 + 10yt− 2 = 0
xt2 − x + 2yzt− 2z = 0
xz3 − 4xzt2 − 4xz − 4yz2t− 2yt3 + 10yt− 4z2 + 10t2 − 2 = 0

Processing the 28th critical pair we find a dangerous situation:

O = (F2,3)K2,1 + (F2,2)K2,6 + (F3,6)K3,0 + (F3,3)K3,2

P2 =



(F0,1)K0,2 + (F2,1)K2,6 + K2,7 + (F3,2)K3,2 + (F3,1)K3,3 = 0
K0,2 + (F2,1)K2,1 + K2,2 + (F3,2)K3,0 + (F3,1)K3,1 = 0
(F0,2)K0,4 + (F2,2)K2,4 + (F3,5)K3,0 + (F3,4)K3,1 = 0

(F2,1)K2,0 + K3,1 = 0 K0,1 + K2,1 + (F3,1)K3,0 = 0
(F2,1)K2,2 + (F3,2)K3,1 = 0 (F0,2)K0,5 + (F3,5)K3,1 = 0
K0,3 + K2,3 = 0 K0,4 + (F2,1)K2,3 + K2,4 = 0
K0,5 + (F2,1)K2,4 = 0 (F0,1)K0,0 + K2,5 + K3,2 = 0
(F2,1)K2,5 + K3,3 = 0 (F0,1)K0,1 + K2,6 + (F3,1)K3,2 = 0
(F2,1)K2,7 + (F3,2)K3,3 = 0 K0,0 + K2,0 + K3,0 = 0
(F0,1)K0,3 + K2,8 = 0 (F0,1)K0,4 + (F2,1)K2,8 + K2,9 = 0
(F0,1)K0,5 + (F2,1)K2,9 = 0 (F0,2)K0,1 + (F2,2)K2,1 + (F3,3)K3,0 = 0
(F0,2)K0,0 + (F2,2)K2,0 = 0 (F0,2)K0,2 + (F2,2)K2,2 + (F3,3)K3,1 = 0
(F2,3)K2,0 + (F2,2)K2,5 = 0 (F0,2)K0,3 + (F2,2)K2,3 + (F3,4)K3,0 = 0

Which, once simplified, permits to rewrite the o.f. – K2,0 is not dangerous – in
a surprisingly simple way, with smaller degrees than expected

O =
N(F)
D(F)

K2,0 =
−F0,2F2,2F3,6 + F0,2F2,3F3,3 + F 2

2,2F3,6 − F2,2F2,3F3,3

F0,2F2,2
K2,0

4 [3, DRL] F4 = (x2yz + 3x2y + 2xz , xy2z + xy2 + yz , x2y2 + 1)

This is a less lucky system, because two K variables remain in the o.f., and
numerical analysis is compulsory.

O = (F2,1)K2,1 ; P4 =


K0,0 + K1,0 + K2,0 = 0
(F0,1)K0,0 + (F1,1)K1,0 = 0
(F0,2)K0,0 + K0,1 + (F1,2)K1,0 + K1,1 = 0
(F0,1)K0,1 + (F1,1)K1,1 + K2,1 = 0
(F0,2)K0,1 + (F1,2)K1,1 + (F2,1)K2,0 = 0

12

The simplified system has only 5 equations with 7 variables: we then obtain

O = (F0,1 − F1,1)K1,0 + (F0,1)K2,0

11 Conclusions

We presented an approach to zero testing in numerical Gröbner bases compu-
tations with not exact initial coefficients. The use of syzygies and the ad–hoc
introduced multi–component coefficients permitted to obtain equations to be ful-
filled by the coefficients of the initial polynomials and of the syzygies. If, within
interval tolerances, the doubtful coefficient can be zero, a new equation must be
taken care of, otherwise intervals can be refined and computations proceed.

We tried to adopt mostly a symbolic approach, making use of numerical in-
formation whenever available. A deeper analysis of the numeric behaviour on
real–life examples is planned.

References

1. W. W. Adams, P. Loustaunau. An Introduction to Grobner Bases, Graduate
Studies in Mathematics, Volume 3, AMS, 1994.

2. G. Alefeld, J. Herzberger Introduction to Interval Computations, Academic Press,
New York (1983)

3. C. Bonini, K.–P. Nischke, C. Traverso Computing Gröbner bases numerically: some
experiments, proceedings SIMAI (1998)

4. T. Becker, V. Weispfenning Gröbner Bases: A Computational Approach to Com-
mutative Algebra, Graduate Studies in Mathematics, Volume 141, Springer Verlag,
1993 (second edition, 1998).

5. M. Caboara, C. Traverso Efficient Algorithms for ideal operations, ISSAC 98,
ACM Press (1998)

6. D. Cox, J. Little, D. O’Shea. Ideals, Varieties, and Algorithms, Springer–Verlag,
1991 (second corrected edition, 1998).

7. D. Cox, J. Little, D. O’Shea Using algebraic geometry, Springer-Verlag (1998)
8. FRISCO A Framework for Integrated Symbolic/Numeric Computation, ESPRIT

Project LTR 21024, 1996–1999, European Union.
9. L. Migheli Basi di Gröbner e aritmetiche approssimate, Tesi di Laurea, Universitá

di Pisa (In italian) (1999)
10. K. Shirayanagi Floating Point Gröbner Bases, Journal of Mathematics and Com-

puters in Simulation 42, pp. 509–528 (1996)
11. H.J. Stetter Stabilization of polynomial system solving with Gröebner bases, pro-

ceedings ISSAC, pp. 117–124 (1997)
12. C. Traverso Hilbert functions and the Buchberger algorithm, Journal of Symbolic

Computation 22, n. 4, pp. 355–376 (1996)
13. C. Traverso, A. Zanoni Numerical Stability and Stabilization of Groebner Basis

Computation, Proceedings of the 2002 International Symposium on Symbolic and
Algebraic Computation, Universit de Lille, France, ACM Press, Teo Mora ed., pp.
262–269 (2002)

14. A. Zanoni Numerical stability in Gröbner bases computation, Proceedings of the

8th Rhine Workshop on Computer Algebra. H. Kredel, W. K. Seidler, ed. pp.
207–216 (2002)

15. A. Zanoni Numerical Gröbner bases, PhD thesis, Università di Firenze (2003)

