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Abstract

In /Bub5/, /Bu70/, /Bu76/ B. Buchberger presented an algorithm which, given a

over the field X), constructs a so-called Gribner-basis for the ideal. The
importance of Gribner-bases for effectively carrying out a large number of
construction and decision problems in polynomial ideal theory has been investi-
gated in /Bu65/, /Wi78/, /WB81/, /BuB83b/. For the case of two variables B. Buch-
berger /Bu79/, /BuB3a/ gave bounds for the degrees of the polynomials which are
generated by the Grobner-bases aigoritiua. However, no bound has been known until
now for the case of more than two variables. In this paper we give such a bound
for the case of three variables.

1. Introduction

In /Bub5/, /Bu70/, /Bu76/ B. Buchberger presented an algorithm which, given a
basis F for an ideal in K[xl,...,xn] (the ring of polynomials in n indetermina-
tes over the field K), constructs a so-called Grobner-basis G for ideal{F}, the
ideal generated by F. A Griobner-basis G can be characterized by the fact that
every polynomial has a unigue normal form w.r.t. a certain reduction relation
induced by 4. A large number of construction and decision problems in polynomial
ideal theory can be solved easily once a Grgbner-basis for the ideal has been
constructed (see /Bu65/, /Wi78/, /WB81/, /Bu83b/).

However, for a long time no bound was known for the compiexity of the
Grishner-hases algorithm, especially for the degrees of the polynomials which are
constructed by the Grobner-bases algorithm. In 1979 B. Buchberger /Bu79/ gave
such a bound, which was improved in /Bu83a/, for the case of two variables.

1} The work for this paper was supported by the Austrian Resaarch Fund under
grant Nr. 4567.
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Lazard /La83/ makes some remarks on this problem but he considers a special
class of ideals, In this paper we give a bound for the case of three variables,
where absolutely no special properties are required of the ideal.

The problem to be solved is the following:

given a basis F for a polynomial ideal in
K[x,¥,z]
construct a bound b such that the degree of
(P) : .
every polynomial which is constructed
during the execution of the Grobner-
bases algorithm on F is less than or

equal to b,

(P) is solved in the subsequent chapters. Expressed only in D and d, the
maximal and minimal degree of the polynomials in F, respectively, we get the
bound (8D + 1)'2d. For proofs of the various lemmata we refer to /Wi83/.

2. Reduction of the problem

Throughout this paper, we let the linear ordering {; on the set of power pro-
ducts be the graduated lexicographical ordering, i.e. power products are ordered
according to their degrees and lexicographically within the same degree.

By the “overlap lemma" /KB78/; /Bu79/, /BW79/ it suffices to consider only
"essential"” pairs of polynoﬁia]s during the execution of the Grobner-bases
algorithm, where a pair f,g in F is essential if there is no sequence
f=h1,...,h3=g in F such that

1pp{h;) divides Tem(1pp(f),Tpp(g)) for all 1<i<l,
deg(1em{1pp{h;),Tpp(hi41))) € deg(lem(1pp(f),Tpp(g)))  for all l<i<i-1,

where 1pp(f) denotes the leading power product of f w.r.t. {; and Tem{p,q) the
least common multiple of the power products p,q. So every polynomial h which is
added to the basis during the execution of the Grﬁbner—baées algorithm satisfies
the following two conditions:

(i) 1pp(h) is not a multiple of Ipp(f) for every f, which is already in the
basis,

(i1) deg{h) is not greater than the maximal degree of the least common
multiples of essential pairs of polynomials in the basis.

We call a sequence of polynomials hy,...,hs admissible w.r.t. F if h; satisfies
these two conditions w.r.t. Fud{hy,...,hy 1} for all 1. Then it is clear that the
following theorem holds.



Theorem 2.1: tet F be a finite set of polynomials in K[XI""’xn]'
Then every polynomial which is either in F or is generated during the execution
of the Grobner-bases algorithm on F has degree less than or equal to

max {max {deg(h) j heH} j H=F L {ny,...,hg}, hy,... he admissible w.r.t. F}.

So if we have a bound for the maximal degree of the polynomials in
Foufthy,.oo,hg}, where Ny,... N, are admissible w.r.t. F, then we have solved
problem (P). Such a bound is constructed in the next chapter. Actually the
notion of "admissibility" depends only on the leading power products of the in-
volved polynomials. So instead of sets of polynomials F we consider sets of
power products P,

3. A bound for admissible sequences of power products

Let V:={x,y,z} denote the set of variables or indeterminates.

By pp3 we denote the set of power products in x,y and z.

If p=x3yPzC is a power product then deg{p,x)=a, deg(p,y)=b, deg(p,z)=c and
deg(p}=a+b+c.

By lem(p,q) we denote the least common multiple of the two power products p,q.
We write p<q for “p divides q".

If Pepp3, veV and d ¢ IN then p* = {q ¢ pp3§ p<q for some p ¢ P},

mind(P,v) := min{deg{n,v){p e P}, and sect(P,d) := {p e P§ deg(p)=d}.

Def.: Let de N; P a nonempty subset of sect{pp3,d). Then
int(P) {p & sect(pp3,d) | deg{p,v)amind(P,v) for all veV} - P.
ext(P) sect(pp3,d) - (Puint(P)).

4}

il

An important notion in /Bu83a/ is the "essentiality" of pairs of polynomials in
some basis F. Since this notion depends only on the leading power products of
the polynomials in F, we can define it for sets of power products.

Def.: let P be a finite subset of pp3. Then

ess(P) := {{p.q} } p.qeP, p#q, and there are no ry,...,ry in P such that
p=ri, r1=q,
r; < lem{p,q) for all 1l<i<l, and
deg{lem(ri,ry 1)) € deg(lem(p,q)) for all 1<i<l-1}.

(Essential pairs in P.)




Def.: Let P be a finite subset of pp3. Then the maximal degree of essential
Jleast common multiples of P is defined as

mde1(P) := max{deg(icm(p,q))} (p,q)e ess(P)}.

Example 3.1: let P = {xgyzs, x%yzzs, xy3zs, qu223’ xysza, quqz, x3y52}.
ess(P) = {{(p1,ps),(py.p3),(Pp.P3),(P2.Pg)(P3:P5) s (PasPg)»(P5.P7) s {PgsP7) 3

For instance (pj,pg) is not in ess(P), since ry=py, ro=pp, r3=pg, ra=pg satisfy
the condition in the definition of "ess“.

So mdel{P)=11.

—

Def.: Let P<pp3. Then the width of P is defined as
w(P) = £ mind(P,v).
veV

Lemma 3.1: Let P be a finite subset of pp3, mymdel{P)}, p ¢ int(sect(P*,m)), veV. '
If p.vk ¢ P* for all k e N,
then for all w e V-{v} there is a kK ¢IN such that p.wk e P .

So int(sect(P*,m)) (m>mdel{P)) can be decomposed into the following four parts.

Def.: Let P be a finite subset of pp3, mamdel(P).

ker(sect(P*,m)) = {plp ¢ int(sect(P*,m)) and for all v ¢ V there is a k e N
such that p.vk e Pl

(Kernel of sect{P*,m).)

For v g V:

mar(sect(P*,m),v) := {p}p e int(sect(P*,m)) and for all k e N p.vk ¢ P*}.

(Margin of sect(P*,m) at v.)

Example 3.2:

Let P be as in
example 3.1,
m=11 {>mdel({P)).

AV - ViTAVA
A/ ASETAYAVA
INIALNY NN NN
INCEDLA NININ AN
AINININISINARIN N
TN N NNN KN,

ker(sect(P*,11))

“ :

X N
mar(sect(P*,ll),x) mar(sect(P*,ll),y)

The triangies symbolize the multipies of the indicated power products.
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Corollary to lemma 3.1: Let P be a finite subset of pp3, mmdel{P).

Then

int(sect(P*,m)) is the disjunct union of ker(sect(P*,m)), mar(sect(P*,m),x),
mar(sect(P*,m),y) and mar({sect(P",m),z).

In order to investigate the increase of "mdel™ if an "admissible” power product
p is added to the set of power products P, we need some means of measuring the
"distance" between p and P. The goal, of course, is to specify this "distance"
dist(p,P) in such a way that mdel(P u{p}) can easily be expressed in terms of
mdel(P) and dist{p,P).

Def.: Let Papp3, p = pp3.
dist(p,P) := max{deg{r)|p.r ¢ p* and p.s ¢ P* for all s¢r}.

(Distance between p and P.)

Lemma 3.2: let P be a finite subset of pp3, p ¢ sect(pp3-P*,mdel(P)).
Then mdel({P o {p}) = mdel{P) + dist{p,P).

Example 3.3: Let P be as in example 3.1.

Suppose p = Pg = x?yzzz is
added to P.
/\
LNININ NN\
AVAVAVAVAVAVAVAVAVA
dist(p,P)=2 . 1 VAN NNNNN/ "
% Y

The new essential pairs are (4,8) and (6,8).
So mdel{Pow{p}) = 13 = mdel(P) + dist(p,P).

Buring the execution of the Griobner-bases algorithm it is well possible that
a2 polynomial h is added to the basis F such that, for p=lpp(h),

deg(p) ¢ mdel({g € pp3 | there is a polynomial f e F with Ipp(f)=q}. Lemma 3.2
can be extended to deal also with this case.

Lemma 3.3: Let P be a finite subset of pp3, p ¢ pp3, deg(p)<mdel(P).
Then mdel{P v {p}) < mdel(P) + max{dist{p',P) | p<p’' and deg(p')=mdel(P)}.
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While “mdel™ increases if a new power product p is added to P, one notices a
decrease of the "interior" and (or) the "width" of P. This phenomenon is

“investigated in detail in the next few lemmata.
Lemma 3.4: Let P be a finite subset of pp3, p ¢ int(sect(P*,mdel(P))).

Then
I int(sect((Pu(p})*,mdel(P)+dist(p,P))) | <] int(sect(P",mdel(P)))] - dist{p,P).

Example 3.4: Let P and p be as in example 3.3.

AVAYAYAVAVA
In sect(pp3,13) the JAVAVAVAVAVAVA
indicated power products JAVAVAVAVAYAVAVAY
NN NNV NN

are eliminated from the

JAVAVAVAV AVAVAVAVAVAN

ANAVAVAY AV AVAVAYAVAVAY

AWAWs eV AVAVAVAVAVAVAVAN
\VAVAVAVAVAVAVAVAVAV/

“interior"

P00 s~

xf& Y 3

Lemma 3.5: Let P be a finite subset of pp3, p ¢ ext(sect(P*,mde1(P))),
t = w(P) - wPuipl).

Then

| int(sect((Puy{p})”mdel(P)+dist(p,P)))] <

| int{sect(P",mdel(P))) | + t.mdel(P) - (dist{p,P)-t).

1%

Example 3.5: Let P be as in example 3.1.

/NN N\
AV AVAYAYA
JAVAVAVAVAVAN
ININNN NN N

/NINNIN NN/ N\
JAVAVAY AVAVAVAVAVAN

A/ AVAY AY AVAVAVAVAN
A/ NAY AY AVAVAVAVAYA

AL VAYAY AY AVAVAVAVAYAVA

JAVAY/.Y AV AV AVAVAVAVAVAVAYAY
AYAV/ N AVAVAVLY WAV AWAW \VAVA

\

int{sect{{P u{p}) ,11+3))

1%

L dist{p,P)=3 »



Now we are ready for constructing a bound for the degrees in "admissible”
sequences of power products w.r.t. some starting set P. We achieve this bound
in two steps. First we construct a bound for such "admissible" sequences, where
every element of the sequence has degree as high as possible. In a second step
we prove that this bound holds for arbitrary "admissible" sequences.

Def.: Let P be a finite subset of pp3. Then
a sequence {pj,...,pg) in pp3 is called maximal w.r.t. P
& for all 1 <1 < s:

deg(p;) = mdel(P {p},...,pj_1}) and

Pi & (Pulpg,... ,p]-_.l})*-

Lemma 3.6: Let P be a finite subset of pp3, {py,...,pg) maximal w.r.t. P,
t =w(P) - wPulpy,....ps )5

k =] int(sect((P\J{pl,...,ps})*,mde1(PgJ{pl,---,ps})))l .

Then

mdel (P u{py,...,pg}) <

(.o {{{mde1(P)+] int(sect(P*,mdeI(P)))l ye2+1)-2+41)" ...)2+1 - k.

t times

Proof: By induction on t.
If t=0 then by lemma 3.4
mdeT{P U {pPy,...,Pg}) < mdel(P) +1 1nt(sect(P*,mde1(P)))i - k.

Now lTet t¥C.
We choose s’ such that
WP ulpy,...,pgr_1}) = w(P)-t' ¥ w(P)-t and
w(P U{pj,...,0513) = w(P)-t.
Let ,
k' :=]int(sect((Pulpy,---rPg'_1}) smdeT (P uipy,..eupsr 1 D) -
Then by induction hypothesis
mdel{P u{pys.eesPgro1}) <
(...{({mdel({P} +] int{sect(P",mdel(P))) [)12+1)'2+1)' ...)'2+{ - k',

. t' times o

S0
mdel (P {py,e0e,Pgr}) < C =~ k' + dist(pgs,P u{pyse--.Ps' 1)
L ]




By lemma 3.5
I =} int(sect((PLJ{pl,...,psa})*,mde1(PLJ{p1,...,psu})))i <
k' + {t-t').mdel(Puipy,...,pg1 1} - (d - (t-t')).
Now we get from lemma 3.4
mdel (P u{pj,...,pg}) < ¢ - k' +d + (I - k) <
c ~k' +d+ k' + (t—tl).Pd91(P\J{pl,...,psl_l}! -d+ (t-t') - k <

<c
(...((c:? +1)°2 + 1) ...)2 + % -k <

{(t-t') times
(... (((mdel(P) +] int(sect(P",mdel(P)))} o2+ 1)2+ 1) L.)2+ 1 -k

t times »

Def: Let P be a finite subset of pp3.
b(P} := max{mdel{P u{py,...,pg}) | (P1,-...pg) maximal w.r.t. Ph
(Bound for P.)

Theorem 3.1: Let P be a finite subset of pp3.
Then
B(P) < (...{{{(mdel(P) +i} int(sect(P*,mdeI(P)))i y+2 + 1)+2 + 1) L) 2 + {.

w(P} times
Proof: The assertion follows from lemma 3.6 if we set t=w(P) and k=0. e

Corollary to theorem 3.1: Let P be a finite subset of pp3.
Then

b{P} < (mdel({P) +]} int(sect(P*,mde1(P)))| + 1)'2W(P).

Theorem 3.1 gives a bound for the degrees of the power products in a sequence
(pl,...,pt) which is maximal w.r.t. P. But during the execution of the Grobner-
bases algorithm this maximality usually does not hold. So what remains to be
done is to show that b(P) is an upper bound for mdel(P u{qy,...,q5}), where the
sequence {qy,...,qq) 1S admissible w.r.t. P.

Lemma 3.7: Let P,Qepp3, P e Q”, mde1(P) > mdel(Q), g ¢ sect(pp3,mdel{Q}).
Then there is a p e sect(pp3,mdel(P)) such that
(*) q <p and dist{q,Q) + mdel{Q) < dist{p,P) + mdel(P).



Theorem 3.2: Let P be a finite subset of pp3, q;,...,q¢ € pp3 such that

deg(q;) < mdel(Pu{qy,...,q5_1}) for all l<iss,
Then there is a maximal sequence (pl,...,pt) w.r.t. P such that

mdel (P u{gy,...,q5}) <mdel{PuL{p;,...,p+}) and
*

(Putppoeespe ) g (Pulag,...hae))™

Proof: By induction on s.

§=1

s»1:

: If mdel{P u{q}) < mdel(P) then the assertion holds with t=0.

If mdel(Pu{q}) » mdel(P) then by lemma 3.3 there is a p; such that
deg(py)=mdel(P), q; < py, pp ¢ P* and
mdel(P u{qy}) < mdel(P) + dist(py,P) = mde1{P u{py}).
+ Temma 3.2
Obviously (Puipi})’e (Puigy )™ holds.

By induction hypothesis there are p;,...,py+ maximal w.r.t. P such that
mdeI(PL;{ql,...,qi_l}) < mdeI(PLJ{pl,..;,pt-}) and
(Pulpy,e.esppr}) € (Puiay,...,q5 1)) -
By lemma 3.7 for every q e sect(pp3,mdel(Pu{gy,...,q5_1})) there is a
p e sect(pp3,mdel (P u{py,...,Py }}) such that
g <p and

(*) mde 1 (PU{QI:"'sqsnl}) * diSt(Q:PU{qls“-sqs_l}) %

mdel (P {py,...,ppr}) + dist(p,P u{pys-e-sper ).
So

mdel(P u{qy,...,q5}) <
+ lemma 3.3

mdel (P u{qy,...,qg.1}) + max{dist(q',P u{gq,...,q5.1}) 1ag < ¢' and
deg(q')=mdel (P Uu{gy,---595.1}) } <
+ (*)
mdel (P u{py,...,pgr 1) + max {dist{p’',P ,{py,...,pe*}) ag < p' and
deg(p')=mdel (P u{py,...,pp+}) 3.

If sect({qs}*,mde1(P Uulpy,e...ppt l)) S (F’u{pl,...,pt»})* then the
assertion holds for t=t',

If A := sect({gg} mdel(PUDy,eee byt 1)) - (PUiPrrererpptd) =6
then we choose pysiq in A such that

dist(pyry1,P UlPraee.,pyr}) = max {dist(p' ,Puipy,....pp2 1) fp' € AL
Then we have



mdel(Pu{qy,e--5qs}) < mdel (P U {py,.-..pgr}) + dist(py ey P uiPyseesasPer})
= mdel (P {py,.-+ Pr 5P 41 })

+ lemma 3.2

and by the induction hypothesis

(PU{pls'--:pt"pt‘-i—l}) & (pU{QI,---,qS})- e

Corollary to theorem 3.2: lLet P be a finite subset of pp3, gj,...,Qq such that
deg{q;) < mdel(Py{qy,...,q5.1} for all I<iss.
Then mdel(Pu{qy,...,q53) < b(P).

Theorem 3.3: Lat F be a finite set of polynomials in K[x,y,z],
P = {plp=1pp(f) for some f e F}, hy,...,hg admissible polynomials w.r.t. F.
Then

max{deg(h) { h ¢ Fulhy,...,hg} } < b(P).

Proof: The leading power products of hy,...,hg satisfy the conditions of the
corollary to theorem 3.2. SO

max {deg(h} | h ¢ Fu{hy,...,hg} } <

mdel (P {Ipp{hy),....Tpp{he) 1) <
+ cor. to theorem 3.2

b(P}. ®

4. Conclusion
Combining theorem 2.1 and the corollary to theorem 3.2 we get

Theorem 4.1: Let F be a finite set of polynomials in K[x,y,z],

P = {pp(f) | f e F},

then every polynomial which is either in F or is generated during the execution
of the Grgbner-bases algorithm on F has degree less than or equal to b(P}.

From this bound for the degrees of the polynomials generated by the Griobner-
bases algorithm we can get one which only depends on the maximal and minimal
degree of the given basis F. This bound is of course much coarser than the one
given in the above theorems.
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Corollary to theorem 4.1: Let F be a finite set of polynomials in K[x,y,z],
d = min{deg{f){f e F}, D = max{deg(f){ f e F},
then every polynomial which is either in F or is generated during the execution

I

of the Grobner-bases algorithm on F has degree less than or equal to
(8p + 1)-29,

Proof: w(P) < d, mdel(P) < 2D,

. 3-1+2D

] int(sect(P*,mde1(P)))§ <f sect(pp3,2D) | = ( 20 ) =

2D+2)0 .a. W3
= ( ) < 20.3.

2B. ... .1
So by the corollary to thegrem 3.1
b(P) <

. * w{P)
(mdel(P) +} int(sect(P ,mdel{P))) ! + 1)-2 <
d
(2D + 6D + 1)-2 =
d

(8D + 1)-2 . @
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