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Abstract

The automatic conversion of parametrically defined curves or surfaces into their
implicit form is of fundamental importance in geometric modeling. Different methods
in elimination theory, like resultants and Grébner bases, have been used for solving
this problem. The advantage of the Grébner bases method is that no extraneous
factors are introduced.

In this paper we use Grobner bases for the implicitization of rational parametric |
curves and surfaces. One way to solve this problem is to homogenize the given curve |
or surface and to proceed as in the case of polynomial parametric curves or surfaces.

As the introduction of additional variables makes the computation process more
costly we have tried to cope with this problem without homogenization.

In this paper we prove that the implicit form of a curve or surface given by the
rational parametrization

2 3
2!1::2l T2 :29— T3 = Z—,
q1 q2 43

where the p’s and ¢’s are univariate polynomials in y; or bivariate polynomials in
¥Y1,Y2 over a field K, can always be found by computing

GB({g1:21 - p1, g2 2 — P2, g3 23 — p3}) N K[z1, 23, 23],

where GB is the Grobner basis with respect to the lexical ordering with z; < z; <
z3 < y1 < ya, if for every 4, € {1,2,3}, i # 5:
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Pi» Qi Pj, 9 have no common zeros.

Since we can always assume that p; and g; are relatively prime (i = 1,2,3), the

above condition is always satisfied, if the p’s and ¢’s are univariate. Therefore, the st ! 4 — /"‘/2"(
above result leads immediately to an implicitization algorithm for arbitrary rational r
parametric curves. v Ya, Y.

Furthermore, we present an algorithm for the implicitization of asbitrary rational
parametric surfaces and prove its termination and correctness.
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1 Introduction

The automatic conversion of parametrically defined curves or surfaces into their implicit
form is of fundamental importance in geometric modeling. Different methods in elimi-
nation theory, like resuitants (see for instance [SAG84]) and Grébner bases (see [AS84],
[Buc87]), have been used for solving this problem. The advantage of the GrSbner bases
method is that no extraneous factors are introduced.

In this paper we use Grobner bases for the implicitization of rational parametric
curves and surfaces. One way to solve this problem is to homogenize the given curve or
surface and to proceed as in the case of polynomial parametric curves or surfaces (see
[AS84] and [Buc87}). As the introduction of additional variables makes the computation
process more costly we have tried to cope with this problem without homogenization.

In this paper we prove that the implicit form of a curve or surface given by the
rational parametrization
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where the p’s and ¢’s are univariate polynomials in y; or bivariate polynomials in y;, 72
over a field K, can always be found by computing

GB({g1-21 —p1, @2 T2 ~ P2, q3- T3 — p3}) N K21, 22, 23],

where G'B is the Grobner basis with respect to the lexical ordering with ) < 25 < 23 <
Y < Va2 if for every Z:J € {132:3}5 i 75 J

Pi, G, Pj, 4 have no common zeros.

Since we can always assume that p; and ¢; are relatively prime (i = 1,2,3), the above
¢, E condition is always satisfled, if the p’s and g¢’s are univariate. Therefore, the above
result leads immediately to an implicitization algorithm for arbitrary rational parametric
curves.
Furthermore, we present an algorithm for the implicitization of arbitrary rational
parametric surfaces and prove its termination and correctness.
In section 2 we state the problems we are concerned with. In section 3 a few theorems
are proved which are necessary for showing the correctness of the algorithmsﬂ which-we
present in section 4.
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T ghout the papeK be a field and K the algebraic closure of K.

ety J be an ideal and gy, ..., gm polynomials in Klzy,...,zn). V(J) denotes the variety
P02~ of J, ie. the set

3.«@7»4/:( {a € K" | f(a) =0 for every f € J}. P
Instead of V(Ideal({g1,..
Let L be a field with
f € K[ml?"-,mn]:
Ve f e Jif and only if fla,...,a,) = 0.

A/f'CJLN" ')70?{14"-’, Ve s 'f

VT g0 =
m})) we will often write V({g1,...,9m})- {g2,1)
C L. Then (as,...,an) € L™ is a generic zero of J if for every \/('{?7{..?\)
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)
It is well-knowy'that an ideal is prime if and only if it has a generic zero with coordinates

in a}g@% see for instance [vdW87]).
VAga o
:%2 ?f/a € In this paper we want to solve the following two problems:

Implicitization Problem for Rational Parametric Curves:

C@iven: ational parametrization of a curve

i P1

! s w(l) ™
th qz

where p1,p2,p3 € K([y1), q1, 92,03 € K[y;] — {0} and

~9> p; and g; are relatively prime (i = 1,2,3).
Hind: implicit representation of this curve, i.e. polynomials g1,...,gm in K[z1, 29, 23)
such that
RS V({g1,. .., gm}) = V(P"),
where P’ is th% ideal in K(zy,z,, 3] with 5\}(&5}'1“6'/‘) AL A
2 At eine "natyet
Gehit dag ?3..’ 1_03’ Pﬂ) € K(yi5\~'/// ~ ¢
:‘mmer% 41 92 q3 e B S R W’? Ao
as generic point. “endu it t Prodleans 1.

Implicitization Problem for Rational Parametric Surfaces:
. . . s
@ven:g rational parametrization

A
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where p1,p2,p3 € K{y1,%2], ¢1,92,93 € K{y1,72) — {0} and

H

pi and g; are relatively prime (¢ = 1,2, 3).

S
Qecxdeé/whefﬁer the parametric object Js “a surface, i.e. whether the transcendence
degree of

(P2 P2 Py ot dos Bef. odaFab
@1 92 @
(over K') is 2. In this case
fﬁnd \implicit representation of this surface, i.e. a polynomial ¢ in K(z1,z2,23) such
that /»\,‘ ]
Vi{g)) = V() s s st Ren
where P’ is the prime ideal in K[z, z3, ma ] with )

(2,22 p3) € K(yl,yzg)

41 Q’z

frhaer eih Poly -
r——"“A

as generic point.
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of the unit sphere is a solution of the above problem.@ Bemets )

3 Theorems ,

b

Throughout the paper let py, ps, p3 € Ky, %2} and g1, ¢z, 3 € Ky, 2l - {Ojituch that
Pi, gi are relatively prime (i =1,2,3). Lo
Let
h=q z1-p, fri=q 2 —P@ fai= g3 23 il
I:= Ideal({f1, f2) fa}) in K[ml,mg,xg,yl,m@ '

and{Q;, , Qr rlma,ry ideals in K{z,,z,, 23, y1, ¥2] such that

(&/‘,}\ an---ﬂQr

is a reduced primary decomposition of I. Furthermore, let P be the prime ideal in
K[wl,wz,ms,yl,yg] which has .
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as generic point, L——-\_—.ﬁm-w
Theorem 1 There ezists an i€ {1,.. ., T} with

Qi=P

and for every j € {,...,r} - {i}: "‘x.\

@iN Ky, v2) # {0}

Proof: In this proof we use the following notation:
For a given ideal F in K[z1,,, 3, ¥, ¥2] the ideal in K{(y1,y2)iz1, 72, T3] generated
by F is denoted by F*.

Obviously,
I* is a zero-dimensional prime ideal.

By [Grd70] p.92, there exists exactly one element i of {1,...,r} with

Qin K[ﬁil,yzl = {0}.



Furthermore,

=i,
Hence, QF is prime and therefore, by [Gr670] p.92,
@ is prime.
A
SWaanw | [ As the dimension of Q; is 2 and
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-1 is & zero of @y, — ¢
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For the rest of the paper let us assume that CQ ;
Q1=
For
and that @y,...,Q, are ordered in such a way that there-exists 2 v € {1,...,7} such
82 tand
Q1,...,Qy are isolated primary components and
Qu+1,- .-, @ are embedded primary components.
It s
Vel kmovwh LObwousiy,

At V) =V(P)uU...uV(R), (1)
where P; is the radical of @; for i = 1,...,r

- G |
Let R be a prime ideal in K[x;,z,, T3, Y1, ¥2)- EV'L{WC N Fx 73 S
We know from [vdW67] p.139 that
L e
e ddeqine ICR 7
/—},7_/'{4/;\!.1-*:/(7422334 ig /
[
thereexistsaje{l,...,r}witthgR. Z & P,(/S/E”
Hence, -~

forevery j € {1,...,9}: I C RC P;implies R = P;. T
By Krull's Primidealkettensatz (see for instance [Gro70) p.jj),

dim(P;) > 2 (F=1,...,v), (2)

where dzm(ﬁ, ) denotes the dimension of P;.
Definition: Let (b1,b2) € K2, We denote the number of elements in the set

{1€{1,2,3} | pi(b1,b2) = g;(b1,b3) = 0}

’a

\ by zero(by, b3).
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Example 2 We consider again the parametrization of the unit sphere
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Then for (0,0), (¢,0) € Q?, where, § denotes the algebraic closure of Q:
L/“‘““*“"”ﬁﬁ""““"““—wﬁ—"” - ~ ahen veuiu
zero(0,0) =0 and zero(:,0)=3. e by Ao # bk,

Theorem 2 Let j € {2,...,v} and (ai,az,ag,bl,bz)sthe generic zero of the prime ideal
P; in Koy, 22, 23,%1,%2]. Then

b1, by € K and dim(P;) < zero(by, by).

Proof: First of all, we know from Theorem 1 that the transcendence degree of
K(b1,b2) is smaller than 2.

Let us assume that the transcendence degree of K(by,b2) is 1.

Let 7 € {1,2,3}. From the fact that

Pi, g are relatively prime

it follows that e et
1 QLOWS & } - o ﬂé . z
dim(Ideal({pi,:})) = 0, 7 fuhren
where Ideal({p;,qi}) is considered as an ideal in K[y1 ,%2 . Hence,
(b;;‘gg")'“isnéiommoﬂ #6760 of pi and g;.
i ;
As f; is an element of P;, i Gy C/@( @>
e
a; is algebraically dependent on {b;,55}. / Q/t’/orék E\{/) “"hj ' C;\f
!
Thus,
This is a contradiction to (2).
Therefore,
bi,by € K.

If {b;,b2) is no common zero of p; and ¢; then
a; is algebraically dependent on {b1,b2}.
Thus, the transcendence degree of K(ay,az, a3, b1,bz) is kﬁ:{é'i;nel zero(by, by). Therefore,

o
dim(P;} < zero(by,by).



Theorem 3
INK(zq,22,z3) = {0}
Uil
there exists a (b1, b2) € K? with zero(by,b;) = 3.

Proof: (=:) If
IN K{xy,z2,23) = {0}

then there exists a j € {2,...,7} with
Qj n K[m11m2: "33] = {0}

Hence,
P; N K[z, 22,23 = {0}.

Then, by definition of v, there exists a k € {2,..., v} with
PN Kizy, 2,23} = {0},

Therefore,
dim(Pk) > 3.

By Theorem 2,
b1,b2 € K and zero(by, by) = 3,

where (a1, a3, a3, b1, by) is the generic zero of P,
(<=:) Let (b1,b2) € K? such that
zero(by, bs) = 3.
The element
(21,22, 23, b1, b3)

of K(zy, 2z, 33)5 is a common zero of fi, fa, f3 and therefore a zero of every polynomial
in I. Hence,
In K[-’Dl,ﬂ?;,m;;] = '{0} L

Theorem 4
V{I)# V(P)
implies
that there ezists a (by,b3) € K? with zero(by, by} > 2.
Proof: If
V(1) # V{P)
then, by (1),
v > 2

Let {ay, a3, as, b1, b;) be the generic zero of ;.
By Theorem 2 and (2),

(b1,b2) € K? and zero(by,by) > 2. »



4 Algorithms
If for every (i,7) € {(1,2),(1,3),(2,3)}
Pi, %, Pj, 95 have no common zeros

then, by Theorem 4 and the elimination property of Grobner bases, we can obtain the
implicit form of the curve or the surface given by

1 2 3
£1=p— mzrp— Z3=p—

q1 g2 q3
by computing
{91, 1 9m} = GB({gq1 -1 - 1, g2 23 — P2, q3 - T3 - p3}) N K[zy, 23, 23],

where G B has to be computed using the lexical ordering determined by @1 < 23 < z3 <
W <y

Obviously, the equivalent conditions in Theorem 4 are satisfied if a polynomial para-
metric surface or a rational parametric curve is given:

Corollary 1
a) (Parametrization by polynomial functions:)
fa=g=g=1thenV(I)=V(P).
b) (Rational parametrization of curves:)
1 p1:p2,P3, 41, 92,93 € Klp] then V(I) = V(P).

Hence, we have solved the implicitization problem for rational parametric curves.
Example 8 The implicit equation of the unit sphere cannot be found by computing
GB({g1 21 ~p1, g2 T2~ P2, g3 Ta—pa}) N K{z1,25,23] :

Since there exists a (b1,b;) € QF with zero(by,b;) = 3 (see Ezample 2), we know from
Theorem 3 that

Ideal({g1-z1 ~p1, @222 ~ p2, @3- 23~ pa}) N K[z1, 20, 23] = {0}
and therefore

GB({q1 21~ 1, 222 — P2, g5+ 23— p3}) N Klzy, 20,23 = 0. o

The following algorithm masters such difficulties and solves the implicitization prob-
lem for rational parametric surfaces.

Definition: Let h,g be polynomials in K(zy,22,23,¥) such that ¢ has no non-
trivial factor in K[y:] and let p be a polynomial in K[y;] with A = ¢ p. Then

h’/!fl =g



implicit.surface (in: py,pz, p3, 41,42, g3; out: g)

input: py,p2,p3 € K[31,%2), @1,02,95 € K31, %2 — {0} and

pi and g; are relatively prime (i = 1,2,3).

output: g in K|z, 5, 3] such that if the transcendence degree of
P1 P2 P3
K P """)
91 92 43
is 2 then
9 ¢ K and V({g}) = V(P"),
where P! is the prime ideal in Klz;,T,, 3] with
D1 P2 P3
(_r T
g1 92 43
as generic point and
g=1

otherwise,

for every (i,5) ¢ {(1,2),(1,3),(2,3)} do

Gz = GB({fi, i}) N K[z1, 22, 73, 31]

Fligy = A{bp, | R € G p}
G 1= GB(F1,9) U Fu,3) U Fa3) U {f1, f2, f3}) N K21, 22, 23]
g := ged(G)

where G B has to be computed using the lexical ordering determined by o1 < 23 <
3 < ¥ < 2.

Example 4 Again we consider the unit sphere given by

Ty = ———zy—?m-———- Ty = ~—-—————~»~2y1y2 Tz = --———-—————-y22“y%—1_
L+yi+4d T+ o} + 9} 1+ 38 +93

Using implicit_surface we obtain

G2 = {22 + yizs — my1 — yies},

Fagy = {~z2 + z1m},

Gr13) = {e} + 221y — of — 1+ yie? + 22 + 4223},

Faay = {2y? + 2? ~ 1 + 23},

G(23) = {—2] — 272 + ¥? + ¢ — yied — 9Pz} — yial},

Flogy = {yied + o — v} + yi23},

G = {2? + 22 + 22 - 1},

9 :=a?+ 23 4 23 — 1, the implicit representation of the unit sphere. o

As termination of the algorithm is obvious it remains to prove its correctness.

9



Lemma 1 Let h € K{zy,2;,23), R an ideal in K(z,,2,,23] with dim(R) < 2 and
I:=Ideal({h})NR. Let{f1,..., fm} be a basis of R and {g1,...,gn} a basis of I. Then
ﬂ) ng(fls' -':fm) = 1;
b) ged(gr,. .., gn) = h.

Proof:

a)If gcd(f1,..., fm) # 1 then the two-dimensional ideal generated by ged(fiy ..y fm)
is a superideal of R. This is a contradiction to the fact that the dimension of R is less
than 2.

b) As {g1,...,9n} C Ideal({R}),
h divides ged(gy,...,gn).
Let us assume that there exists a p € K[z1,22,23) — K with
ged(ga, ... gn) = h-p.
As ged(fy, ..., fm) = 1 there exists an f € R that is not divisible by p. Hence,
h-f € Iand h-pdoes not divide A - f.

This is a contradiction to ged(gs,...,ga) = h -p. o

Proof of correctness:
Let (1,7) € {(1,2),(1,3),(2,3)}. If

Idedl({ f;, £;}) N K[z1, 22,23, 11) = {0}

then
ng(ff>fj) # i

As
ged{ f;, f;) divides p; and ged(f;, f;) divides ¢,

this is a contradiction to the fact that p; and ¢ are relatively prime. Hence,
Ideal({f;, f;}) 0 Klz1, 22,33, 31) # {0}

and therefore

G‘B({fi’fj}) N K{ml,mz,wg,yq] Z {D} and F(i,j) A {O} (3)
Furthermore,
FipC P
and therefore
Icp,

where R
I:= Ideal(F(Lz) U Fy a3y U Fazy U {f1. fa, f3}).

10



Let P be a prime ideal in K(z3,22,%3, %1, ¥2] with
ICP and P#£P

and let (ay, ap, a3, by, b3) be the generic point of P.
Assumption: dim(P) > 1.
Then,
Pg P,
As I C P there exists an 1 € {2,...,v} with
E; C P.
By Theorem 2,
bi,by € K.
As dim(P) > 1 there exist 7,k € {1,2,3} such that j # &k and

{a;,ar} is algebraically independent over K.

From (3) we know that there exists a non-zero polynomial

flzi e, m) € F(j,k)-

By definition of Fi; 4,
f(a:j)mkabl) ;é 0.
This is a contradiction to the fact that {a;, ax} is algebraically independent over K.

Thus, P is the only prime ideal that is a superideal of I and has a dimension greater
than 1. Hence, I can be written in the form

PNR,
where R is an ideal in K[z, 22, T3, ¥1,¥2} with dim(R) < 2. Therefore,

fﬂK[ml,mz,m3] = (PN Kz, 29, 23))N{RNK[21, 2, 23]) and dim{RN K [z1, 2, 23]) < 2.
(4)

It follows from the elimination property of Grébner bases that
G is a basis of I N K|zy, z9, 23], (5)
where G := GB(Fu 5y U Fug)U FlayU{f1, fa, f3}) N K21, 22, 23).

Case:
the transcendence degree of K(&, ‘22-, E~3_) is 2.

1 42 43
In this case P N K[z, 2,23 is a prime ideal of dimension 2. Thus, there exists a
P € K[zy,22,23] with
Ideal({p}) =FPnN K[:L‘1, :62,33}.

By Lemma 1, (4) and (5§),
ged(G) = p.

1



Case:

the transcendence degree of K(P—I—, &, B5';») is less than 2.
91 92 93
In this case dim(P N K{z1,z2,23]) is less than 2 and therefore, by Lemma 1, {4) and
(8),
ged(G)=1. o
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