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MACMAHON’S PARTITION ANALYSIS XV: PARITY

GEORGE E. ANDREWS AND PETER PAULE

Dedicated to the memory of our friend Marko Petkovšek.

Abstract. We apply the methods of partition analysis to partitions in which the parity of
parts plays a role. We begin with an in-depth treatment of the generating function for the

partitions from the first Göllnitz-Gordon identity. We then deduce a Schmidt-type theorem
related to the false theta functions. We also consider: (1) position parity, (2) partitions with

distinct even parts, (3) partitions with distinct odd parts. One of the corollaries of these last
considerations is a new interpretation of Hei-Chi Chan’s cubic partitions. A second part of our
article is devoted to the algorithmic derivation of identities and arithmetic congruences related
to the generating functions considered in part one, including cubic partitions. To this end,
Smoot’s implementation of Radu’s Ramanujan-Kolberg algorithm is used. Finally, we give a
short description which explains how to use the Omega package to derive special instances of
the results of part one.

AMS Mathematics Subject Classification: 05A17, 11P83, 11Y99, 66W30.

Keywords: Göllnitz-Gordon partitions, Schmidt-type identities, parity of parts, MacMahon’s
partition analysis, q-series, partition congruences, Radu’s Ramanujan-Kolberg algorithm, the
Omega package.

1. Introduction

This paper is a natural successor to the last two in this series on MacMahon’s partition analysis.
These three papers collectively apply the Schmidt phenomenon to: first, ordinary partitions [9],
second, partitions with n copies of n [10], and now to partitions in which parity plays a role.

Section 2 is devoted to the collection of some necessary background results. Section 3 is devoted
to our prototypical example, the first Göllnitz-Gordon series. The partition analysis not only yields
the familiar series, but also points naturally to the combinatorial construction of the series.

Section 4 is devoted to variations on the Göllnitz-Gordon theme by mixing it with parity
conditions related to the indices of the parts.

Section 5 will be devoted to the simplest portion of this project. Here we begin with (starting
from the largest part) each part with even index being even. For example, the six relevant
partitions of 8 are 8, 6 + 2, 5 + 2+ 1, 4 + 4, 4 + 2+ 2, 2 + 2+ 2+ 2. Naturally, we have three other
cases depending on the parity of the part and the parity of the index. This also yields nice results
in the case of Schmidt specializations.

Section 6 is devoted to partitions with distinct evens, and Section 7 to distinct odds.

In joint collaboration with the authors of this article, partition analysis has been implemented
by Axel Riese in the form of the Omega package written in Mathematica. Section 8 will give a
brief description of how to use Omega to compute special instances of the results presented in
Sections 2 to 7.

As in the predecessor articles [9] and [10] we will use Smoot’s implementation [27] of Radu’s
Ramanujan-Kolberg algorithm [24] to derive a variety of identities and arithmetic congruences re-
lated to the combinatorial generating functions of this paper. Section 9 is devoted to results related
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2 GEORGE E. ANDREWS AND PETER PAULE

to a generating function which arose from a Schmidt process considered in Section 7. Section 10
continues on the Ramanujan-Kolberg theme and presents results related to cubic partitions.

Finally, in Section 11 the reader finds supplementing descriptions on the usage of Smoot’s
package to put her/him into the position to derive all the results presented in Sections 9 and 10
by herself/himself.

2. Background

Our main tool is MacMahon’s partition analysis, [21, Sec VIII] and [22, Ch. 10]. The MacMahon
operator Ω≥ is given by

(2.1) Ω
≥

∞
∑

s1=−∞

· · ·

∞
∑

sr=−∞

As1,...,srλ
s1
1 . . . λsrr :=

∞
∑

s1=0

· · ·

∞
∑

sr=0

As1,...,sr ,

where the domain of the As1,...,sr is the field of rational functions over C in several complex
variables and the λi are restricted to a neighborhood of the circle |λi| = 1. In addition, the
As1,...,sr are required to be such that any of the series involved is absolute convergent within the
domain of the definition of As1,...,sr . In practice the As1,...,sr are usually monomials in r or fewer
variables.

Also, we should mention what we mean by Schmidt type partitions. Schmidt’s original obser-
vation was posed as a problem in the American Mathematical Monthly [26] which we state in the
form of a theorem:

Let p(n) denote the number of partitions of the integer n, and let f(n) denote the number of
partitions a1+a2+a3+ . . . satisfying a1 > a2 > a3 > . . . and n = a1+a3+a5+ . . . . For example,
p(5) counts the 7 partitions 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, and 1+1+1+1+1,
and f(5) counts the 7 partitions 5, 5 + 1, 5 + 2, 5 + 3, 5 + 4, 4 + 3 + 1, and 4 + 2 + 1. Then

p(n) = f(n), n ≥ 1.

This concept of summing a subset of the summands of a partition will recur throughout this paper.

As technical ingredients we need a couple of elementary lemmas related to actions of the Ω≥

operator.

For non-negative integer n let

(2.2) χ(n) :=

{

1 if n is even

0 if n is odd
.

Lemma 2.1. We have

(2.3)
∑

N≥1

xNλN−χ(N) =
xλ(1 + x)

1− x2λ2
.

Proof.
∑

N≥1

xNλN−χ(N) =
∑

N≥1

x2Nλ2N−1 +
∑

N≥1

x2N−1λ2N−1

= (1 + x)
∑

N≥1

x2N−1λ2N−1 =
xλ(1 + x)

1− x2λ2
.

□

From [21, p. 102, Entry 348] we know

(2.4) Ω
≥

1

(1− xλ2)
(

1− y
λ

) =
1 + xy

(1− x)(1− xy2)
.

We need a slight generalization of this in the following lemma. The above proof is typical so
we omit subsequent details that only involve the summation of geometric series.
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Lemma 2.2. For an integer A ≥ 0,

(2.5) Ω
≥

λ−2A

(1− xλ2)
(

1− y
λ

) =
xA(1 + xy)

(1− x)(1− xy2)
.

Proof.

Ω
≥

λ−2A

(1− xλ2)
(

1− y
λ

) = Ω
≥

∑

r,s≥0

xrysλ2r−s−2A =
∑

r≥A

2r−2A
∑

s=0

xrys =
xA(1 + xy)

(1− x)(1− xy2)
.

□

Lemma 2.3. For an integer A ≥ 0,

(2.6) Ω
≥

λ−2A−1

(1− xλ2)
(

1− y
λ

) =
xA+1(1 + y)

(1− x)(1− xy2)
.

Proof.

Ω
≥

λ−2A−1

(1− xλ2)
(

1− y
λ

) = Ω
≥

∑

r,s≥0

xrysλ2r−s−2A−1 =
∑

r≥A+1

2r−2A−1
∑

s=0

xrys =
xA+1(1 + y)

(1− x)(1− xy2)
.

□

Lemma 2.4. For an integer A ≥ 0,

(2.7) Ω
≥

λ−2A

(1− xλ2)
(

1− y
λ2

)(

1− z
λ2

) =
xA

(1− x)(1− xy)(1− xz)
.

Proof. As before. □

Lemma 2.5. For an integer A ≥ −1,

(2.8) Ω
≥

λ−2A−1

(1− xλ2)
(

1− y
λ2

)(

1− z
λ2

) =
xA+1

(1− x)(1− xy)(1− xz)
.

Proof. As before. □

3. The Göllnitz-Gordon Identity

This result is stated classically as

(3.1)
∑

k≥0

qk
2

(−q; q2)k
(q2; q2)k

=

∞
∏

n=1

1

(1− q8n−1)(1− q8n−4)(1− q8n−7)

where (A; q)0 := 1 and

(A; q)N := (1−A)(1−Aq) . . . (1−AqN−1).

The following theorem greatly refines the kth term of the left hand side of (3.1). Now the exponent
of the variable xi accounts for the ith part of the partition in question.

Theorem 1. The generating function for partitions with k parts and difference 2 between parts
(> 2 between evens) is

(3.2)
x2k−1
1 x2k−3

2 . . . x3k−1xk(1 + x1)(1 + x21x2)(1 + x21x
2
2x3) . . . (1 + x21x

2
2 . . . x

2
k−1xk)

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . . (1− x21x

2
2 . . . x

2
k)

.
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Proof. The Ω≥ operator allows us to embed the various difference conditions in the exponents of
the λ’s. Hence, in terms of partition analysis our generating function is given by the following
expression (MacMahon used the term “crude generating function” for such objects):

Ω
≥

∑

n1,...,nk−1≥0

nk≥1

xn1

1 xn2

2 . . . xnk

k λ
n1−n2−χ(n1)−2
1 λ

n2−n3−χ(n2)−2
2 . . . λ

nk−1−nk−χ(nk−1)−2
k−1

= Ω
≥

x1λ1(1 + x1)λ
−2
1

1− x21λ
2
1

·
x2

λ1
λ2

(

1 + x2

λ1

)

λ−2
2

1−
x2
2
λ2
2

λ2
1

·
x3

λ2
λ3

(

1 + x3

λ2

)

λ−2
3

1−
x2
3
λ2
3

λ2
2

. . .

xk−1

λk−2
λk−1

(

1 + xk−1

λk−2

)

λ−2
k−1

1−
x2
k−1

λ2
k−1

λ2
k−2

×
xkλ

−1
k−1

1− xk

λk−1

(by Lemma 2.1)

= Ω
≥

x1x2 . . . xk−1xk(1 + x1)
(

1 + x2

λ1

)(

1 + x3

λ2

)

. . .
(

1 + xk−1

λk−2

)

λ−2
1 λ−2

2 . . . λ−2
k−1

(1− x21λ
2
1)
(

1−
x2
2
λ2
2

λ2
1

)(

1−
x2
3
λ2
3

λ2
2

)

. . .
(

1−
x2
k−1

λ2
k−1

λ2
k−2

)(

1− xk

λk−1

)

.(3.3)

We now proceed to eliminate the λ’s in the order λ1, λ2, . . . , λk−1. Each elimination uses Lem-
mas 2.4 and 2.5 for λ1, . . . , λk−2. The final elimination uses Lemma 2.2.

In the first step we eliminate λ1 from (3.3):

x1x2 . . . xk−1xk(1 + x1)

× Ω
≥

(

1 + x2

λ1

)

λ−2
1

(1− x21λ
2
1)
(

1−
x2
2
λ2
2

λ2
1

)

·

(

1 + x3

λ2

)

. . .
(

1 + xk−1

λk−2

)

λ−2
2 . . . λ−2

k−1

(

1−
x2
3
λ2
3

λ2
2

)

. . .
(

1−
x2
k−1

λ2
k−1

λ2
k−2

)(

1− xk

λk−1

)

= x1x2 . . . xk−1xk(1 + x1)

× Ω
≥

( x21
(1− x21)(1− x21x

2
2λ

2
2)

+ x2
x41

(1− x21)(1− x21x
2
2λ

2
2)

)

×

(

1 + x3

λ2

)

. . .
(

1 + xk−1

λk−2

)

λ−2
2 . . . λ−2

k−1

(

1−
x2
3
λ2
3

λ2
2

)

. . .
(

1−
x2
k−1

λ2
k−1

λ2
k−2

)(

1− xk

λk−1

)

(by Lemmas 2.4 and 2.5)

=
x31x2 . . . xk−1xk(1 + x1)(1 + x21x2)

1− x21

× Ω
≥

(

1 + x3

λ2

)

λ−2
2

(1− x21x
2
2λ

2
2)
(

1−
x2
3
λ2
3

λ2
2

)

·

(

1 + x4

λ3

)

. . .
(

1 + xk−1

λk−2

)

λ−2
3 . . . λ−2

k−1

(

1−
x2
4
λ2
4

λ2
3

)

. . .
(

1−
x2
k−1

λ2
k−1

λ2
k−2

)(

1− xk

λk−1

)

.(3.4)

To eliminate λ2 from (3.4) use again Lemmas 2.4 and 2.5 to obtain

x51x
3
2x3 . . . xk(1 + x1)(1 + x21x2)(1 + x21x

2
2x3)

(1− x21)(1− x21x
2
2)

× Ω
≥

(

1 + x4

λ3

)

. . .
(

1 + xk−1

λk−2

)

λ−2
3 . . . λ−2

k−1

(1− x21x
2
2x

3
3λ

2
3)
(

1−
x2
4
λ2
4

λ2
3

)

. . .
(

1−
x2
k−1

λ2
k−1

λ2
k−2

)(

1− xk

λk−1

)

.

The pattern up through λk−2 is now clear and easily proved via mathematical induction. Here is
the final stage where we treat the elimination of λk−1:
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x2k−3
1 x2k−5

2 . . . x3k−2xk−1xk(1 + x1)(1 + x21x2) . . . (1 + x21x
2
2 . . . x

2
k−2xk−1)

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . . (1− x21x

2
2x

2
3 . . . x

2
k−2)

× Ω
≥

λ−2
k−1

(1− x21x
2
2 . . . x

2
k−1λ

2
k−1)

(

1− xk

λk−1

)

=
x2k−3
1 x2k−5

2 . . . x3k−2xk−1xk(1 + x1)(1 + x21x2) . . . (1 + x21x
2
2 . . . x

2
k−2xk−1)

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . . (1− x21x

2
2x

2
3 . . . x

2
k−2)

×
x21x

2
2 . . . x

2
k−1(1 + x21x

2
2 . . . x

2
k−1xk)

(1− x21x
2
2 . . . x

2
k−1)(1− x21x

2
2 . . . x

2
k−1x

2
k)
.

□

Remark. Note how beautifully Lemma 2.2 with A = 1 completes the proof. Note also that
Lemma 2.3 was unnecessary but was included for completeness.

Finally setting all the xi = q in (3.2), we obtain the kth term in the Göllnitz-Gordon series

qk
2

(1 + q)(1 + q3) . . . (1 + q2k−1)

1− q2)(1− q4) . . . (1− q2k)
.

In addition, one may read off from Theorem 1 the combinatorial interpretation of the series.
Indeed, the result is precisely the construction given in [2].

4. Partitions With Distinct Even Parts

The generating function for partitions with distinct even parts is clearly given by

(4.1)

∞
∏

n=1

1 + q2n

1− q2n−1
.

So, we really do not need partition analysis to reveal the obvious. However, by using partition
analysis we shall obtain some appealing results relating Schmidt-type partitions with overparti-
tions. As in the previous section, the variable xi keeps track of the ith part of the partition. The
only difference between Theorem 2 and Theorem 1 is that 0 has replaced 2. Now parts may repeat,
but even parts differ from other parts by at least 1.

Theorem 2. The generating function for partitions with k parts and distinct evens is

(4.2)
x1x2 . . . xk(1 + x1)(1 + x21x2)(1 + x21x

2
2x3) . . . (1 + x21x

2
2 . . . x

2
k−1xk)

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . . (1− x21x

2
2 . . . x

2
k)

.

Proof. The proof is almost identical with the proof of Theorem 1. The only change is the disap-
pearance of the 2’a in the lambda exponents. Thus the monomial x2k−1

1 x2k−3
2 . . . xk is replaced by

x1x2 . . . xk. □

Now, if we set each xi = q, we easily verify our initial observation in this section. Namely, the
generating function for partitions with distinct even parts can be represented as

(4.3)
∑

k≥0

qk(−q; q2)k
(q2; q2)k

=

∞
∏

n=1

1 + q2n

1− q2n−1

by [5, p. 17, eq. (2.2.1)].

Theorem 3. Consider Schmidt-type partitions in which: (1) there is an odd number of parts; (2)
only the parts of odd index (starting from the largest part) are summed; and (3) no even part is
repeated. The generating function for these partitions is

(4.4)
(−q; q)∞
(q; q)∞

∞
∑

n=1

(−1)n−1q(
n+1

2 ).
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Proof. In (4.2) we replace k by 2n+ 1 and set x2i+1 = q, x2i = 1 for each i. Summing over all n,
the result is the desired generating function,

∑

n≥0

qn+1(−q; q)2n+1

(q2; q2)2n(1− q2n+2)
=
q(1 + q)

1− q2

∑

n≥0

(−q2; q2)n(−q
3; q2)nq

n

(q2; q2)n(q4; q2)n

=
q(1 + q)

1− q2
(−q2; q2)∞(−q3; q2)∞

(q4; q2)∞(q; q2)∞

∑

n≥0

(−q2; q2)n(−q
2)n

(−q3; q2)n
(by [5, p. 38, last line])

=
(−q; q)∞
(q; q)∞

∞
∑

n=1

(−1)n−1q(
n+1

2 ) (by [6, p. 227, Entry 9.3.1, a = q]).

□

Corollary 1. The number of overpartitions of n in which the first missing non-overlined part is
even equals the number of Schmidt-type partitions of n listed in Theorem 3.

Proof. The generating function for the partitions in question is given by

(−q; q)∞
(q; q)∞

∑

n≥1

(−1)n−1q(
n+1

2 ) =
(−q; q)∞
(q; q)∞

∑

n≥0

(

q(
2n+2

2 ) − q(
2n+3

2 )
)

=
∑

n≥0

q1+2+3+···+2n+1

∏

m≥1(1 + qm)
∏

m≥1

m ̸=2n+2

(1− qm)
,

and the latter expression is the generating function for the overpartitions in question. □

Example. The six Schmidt-type partitions of 4 are

4, 3 + 3 + 1, 3 + 2 + 1, 3 + 1 + 1, 2 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1.

The relevant overpartitions are

3 + 1, 3 + 1, 2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1.

Theorem 4. Consider Schmidt-type partitions in which: (1) there is an even number of parts;
(2) only the parts of odd index (starting from the largest part) are summed; and (3) no even part
is repeated. The generating function for these partitions is

(−q; q)∞
(q; q)∞

∞
∑

n=0

(−1)nq(
n+1

2 ).

Proof. In (4.2) we replace k by 2n and set x2i+1 = q, x2i = 1 for each i. Summing over all n, the
result is the desired generating function,

∑

n≥0

qn(−q; q)2n
(q2; q2)2n

=
∑

n≥0

(−q; q2)n(−q
2; q2)nq

n

(q2; q2)n(q2; q2)n

=
(−q; q)∞
(q; q)∞

∑

n≥0

(−q; q2)n(−q)
n

(−q2; q2)n
(by [5, p. 38, last line])

=
(−q; q)∞
(q; q)∞

∞
∑

n=0

(−1)nq(
n+1

2 ) (by [6, p. 227, Entry 9.3.1, a = 1]).

□

Corollary 2. The number of overpartitions of n in which the first missing non-overlined part is
odd equals the number of Schmidt-type partitions of n listed in Theorem 4.
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Proof. The generating function for the partitions in question is given by

(−q; q)∞
(q; q)∞

∑

n≥0

(−1)nq(
n+1

2 ) =
(−q; q)∞
(q; q)∞

∑

n≥0

(

q(
2n+1

2 ) − q(
2n+2

2 )
)

=
∑

n≥0

q1+2+3+···+2n

∏

m≥1(1 + qm)
∏

m≥1

m ̸=2n+1

(1− qm)
,

and the latter expression is the generating function for the overpartitions in question. □

Example. The eight Schmidt-type partitions of 4 are

4+3, 4+2, 4+1, 3+3+1+1, 3+2+1+1, 3+1+1+1, 2+1+1+1+1+1, and 1+1+1+1+1+1+1+1.

The eight relevant overpartitions are

4, 4, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1, 2 + 1 + 1.

5. Partitions With Distinct Even Parts

One of the valuable aspects of partition analysis is that it allows us to discover truly novel
generating functions. For example, let W (n) denote the number of partitions of n in which if a
part with odd index is odd then it is greater than the next part. Then

∑

n≥0

W (n)qn = (1 + q)

∞
∏

n=1

1 + q4n−1 + q4n + q4n+1

1− q2n
(5.1)

= 1 + q + q2 + 2q3 + 4q4 + 5q5 + 6q6 + 8q7 + 12q8 + . . . .

Thus W (7) = 8 with the eight relevant partitions being

7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 3, 4 + 2 + 1, 3 + 2 + 2, 2 + 2 + 2 + 1.

As in all the previous cases, we use partition analysis to prove a more refined result in which the
variable xi keeps track of the ith part. Before stating the theorem we introduce a variant of χ(n)
where the roles of even and odd are swapped:

For non-negative integer n let

(5.2) ψ(n) := 1− χ(n) =

{

0 if n is even

1 if n is odd
.

Lemma 5.1. We have

(5.3)
∑

N≥0

xNλN−ψ(N) =
1 + x

1− x2λ2
.

Proof. Analogous to the proof of Lemma 2.1. □

Theorem 5. The generating function for partitions into at most N parts in which odd indexed
parts that are odd are larger than the next part (with the exponent on xi being the ith part of the
partition under consideration) is: if N = 2ν,

(1 + x1)(1 + x21x
2
2 . . . x

2
2ν−1x2ν)

∏ν−1
j=1

(

1 + x21x
2
2 . . . x

2
2j−1(x2j + x2jx2j+1 + x22jx2j+1)

)

∏2ν
j=1(1− x21x

2
2 . . . x

2
j ),

,(5.4)

and if N = 2ν + 1,

(1 + x1)

∏ν
j=1

(

1 + x21x
2
2 . . . x

2
2j−1(x2j + x2jx2j+1 + x22jx2j+1)

)

∏2ν+1
j=1 (1− x21x

2
2 . . . x

2
j )

.(5.5)
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Proof. First note that the case N = 2ν follows from the case N = 2ν + 1 by setting x2ν+1 = 0.

We now proceed by mathematical induction on N odd. If N = 1, then clearly the generating
function is

1

1− x1
which is what the theorem asserts.

Next we rewrite the case N = 2ν + 1 in terms of the “crude generating function”; i.e., as the
result of the action of the Ω≥ operator:

(5.6) Ω
≥

∑

n1,...,n2ν+1≥0

xn1

1 xn2

2 . . . x
n2ν+1

2ν+1 λ
n1−n2−ψ(n1)
1 λn2−n3

2 . . . λ
n2ν−1−n2ν−ψ(n2ν−1)
2ν−1 λ

n2ν−n2ν+1

2ν .

Observe that the n2i series are simple geometric series, while the n2i−1 series are of the form as
in Lemma 5.1.

Thus the previous Ω≥ expression equals

(5.7) (1 + x1) Ω
≥

(

1 + x3

λ2

)(

1 + x5

λ4

)

. . .
(

1 + x2ν−1

λ2ν−2

)

(1− λ21x
2
1)
(

1− λ2x2

λ1

)(

1−
λ2
3
x2
3

λ2
2

)

. . .
(

1− λ2νx2ν

λ2ν−1

)(

1− x2ν+1

λ2ν

)

.

To reduce the 2ν + 1 case to the 2ν − 1 case, we must eliminate both λ1 and λ2.

To eliminate λ1, we apply Lemma 2.2 to obtain

1 + x1
1− x21

Ω
≥

(1 + x21x2λ2)
(

1 + x3

λ2

)(

1 + x5

λ4

)

. . .
(

1 + x2ν−1

λ2ν−2

)

(1 + x21x
2
2λ

2
2)
(

1−
λ2
3
x2
3

λ2
2

)

. . .
(

1− λ2νx2ν

λ2ν−1

)(

1− x2ν+1

λ2ν

)

=
1 + x1
1− x21

Ω
≥

(

1 + x21x2λ2 + x21x2x3 +
x3

λ2

)(

1 + x5

λ4

)

. . .
(

1 + x2ν−1

λ2ν−2

)

(1 + x21x
2
2λ

2
2)
(

1−
λ2
3
x2
3

λ2
2

)

. . .
(

1− λ2νx2ν

λ2ν−1

)(

1− x2ν+1

λ2ν

)

.

The above expression new separates into 4 terms (according to the 4 term expression in the
numerator). In each of these we eliminate λ2 according to the relevant instance of Lemmas 2.4
and 2.5.

Hence the piecewise expression is equal to
(5.8)

1 + x1
1− x21

·
1 + x21x2 + x21x2x3 + x21x

2
2x3

1− x21x
2
2

Ω
≥

(

1 + x5

λ4

)

. . .
(

1 + x2ν−1

λ2ν−2

)

(1 + x21x
2
2x

2
3λ

2
3)
(

1− λ4x4

λ3

)

. . .
(

1− λ2νx2ν

λ2ν−1

)(

1− x2ν+1

λ2ν

) .

Now this expression involving Ω≥ is precisely of the same form as the original Ω≥ expression
in (5.7) except that each index is increased by 2, ν is replaced by ν − 1 and x1 is replaced by
x1x2x3. I.e., we have a first order recurrence between the N = 2ν + 1 and the N = 2ν − 1 case.
Now we note that the product on the right in (5.5) satisfies the same recurrence. Thus (5.5) is
proved by mathematical induction. As noted previously, (5.4) follows from (5.5). □

6. Partitions With Distinct Odd Parts

Also in the next theorem the exponent of xi is devoted to the ith part of the partition in
question.

Theorem 6. The generating function for partitions with at most k parts and distinct odds is

(6.1)
(1 + x1)(1 + x21x2)(1 + x21x

2
2x3) . . . (1 + x21x

2
2 . . . x

2
k−1xk)

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . . (1− x21x

2
2 . . . x

2
k)

.

Proof. Exactly as in the proof of Theorem 2 with the change being that χ(N) is replaced by
ψ(N) = 1− χ(N). □
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Corollary 3. If we now invoke the Schmidt process where only odd subscripted summands are
summed, then the single variable generating function is

1

(q; q)∞(q2; q2)∞
.

Remark. This is the generating function for the “cubic” partitions considered by Hei-Chi Chan [12].

Proof. We let k → ∞ in Theorem 6 and then set x2j+1 = q, x2j = 1. This yields

(−q; q)∞
(q2; q2)2∞

=
1

(q; q)∞(q2; q2)∞
.

□

As a final comment in this section we note that we may do partition analysis to partitions where
all parts differ by at least 2 and odd parts differ from other parts by at least 3. This will produce
n-variable generating functions for the partitions in the so-called little Göllnitz theorems [3, Thms.
2.9 and 2.10] and [3, pp. 166–167].

7. Position Parity

This final topic is less intricate than the previous topics. However, it possesses a few surprises.

Theorem 7. Let A(n) denote the number of partitions of n in which the even indexed parts
(ordered from largest to smallest) are even. Let B(n) denote the number of partitions of n with
no repeated odds and no part ≡ 3 (mod 4). Then for n ≥ 0,

A(n) = B(n).

For the proof we need the following elimination rule [21, p. 102, Entry 348],

(7.1) Ω
≥

1

(1− xλ)
(

1− y
λ2

) =
1

(1− x)(1− x2y)
.

Proof of Theorem 7. As in previous results, we consider the multivariable case in which the ex-
ponent of xi is the ith part of the partition. The generating function for the A(n)-partitions
is

Ω
≥

∑

n1,n2,n3,···≥0

xn1

1 x2n2

2 xn3

3 x2n4

4 . . . λn1−2n2

1 λ2n2−n3

2 λn3−2n4

3 λ2n4−n5

4 . . .

= Ω
≥

1

(1− x1λ1)
(

1−
x2
2
λ2
2

λ2
1

)(

1− x3λ3

λ2

)(

1−
x2
4
λ2
4

λ2
3

)

. . .

=
1

1− x1
Ω
≥

1

(1− x21x
2
2λ

2
2)
(

1− x3λ3

λ2

)(

1−
x2
4
λ2
4

λ2
3

)(

1− x5λ5

λ4

)

. . .
(by (7.1))

=
1

(1− x1)(1− x21x
2
2)

Ω
≥

1 + x21x
2
2x3λ3

(1− x21x
2
2x

2
3λ

2
3)
(

1−
x2
4
λ2
4

λ2
3

)(

1− x5λ5

λ4

)

. . .
(by (2.4))

=
(1 + x1)(1 + x21x

2
2x3)

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3)

Ω
≥

1

(1− x21x
2
2x

2
3x

2
4λ

2
4)
(

1− x5λ5

λ4

)

. . .
(by (2.7) and (2.8))

...

=
(1 + x1)(1 + x21x

2
2x3)(1 + x21x

2
2x

2
3x

2
4x5) . . .

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . .

.

(7.2)



10 GEORGE E. ANDREWS AND PETER PAULE

Putting each xi = q, we find the resulting generating function the A(n) to be

(7.3)

∞
∏

n=0

1 + q4n+1

1− q2n+2
,

which is clearly also the generating function for the B(n). □

If we perform the Schmidt process of setting x2i+1 = q and x2i = 1, we obtain a generating
function

(−q; q2)∞
(q2; q2)2∞

=

(

∑∞
r=0(−q)

(r+1

2 )
)−1

(q2; q2)∞
(by [5, (2.2.13)])

=
1

(q; q)∞(q4; q4)∞
.(7.4)

Remark. This generating function continues the theme of cubic partitions from Corollary 3.
Namely, as special instances k = 2 and k = 4 of generating functions of the form

(7.5)
1

(q; q)∞(qk; qk)∞
=

∞
∑

n=0

pk(n)q
n.

The pk(n) can be interpreted as the number of 2-color partitions where one of the colors appears
only in parts that are multiples of k. These numbers satisfy a variety of arithmetic congruences.
For example, for n ≥ 0,

(7.6) p2(25n+ 22) ≡ 0 (mod 5),

as proven in [13, Thm. 1.3], and

(7.7) p4(25n+ 20) ≡ 0 (mod 5),

as proven in [1, eq. (1.11)]. There is quite some literature concerning congruences for various k,
and there are also infinite families of congruences for powers of 3 and 5. In addition to the two
references mentioned, here is an incomplete selection of further articles: [11], [12], [14], [15], [18],
[28], and [29]. It was Byungchan Kim [19, p. 1] who coined the name “cubic” partitions. Kim [19,
before Thm. 1] also points to the work of Eggan [17] who independently, and as special instances
of a more general context, also considered infinite families of cubic partitions modulo powers of 3
and 5.

In Section 10 we return to the theme of cubic partitions. In particular, we will show how (7.6)
and (7.7) can be proven algorithmically with an implementation of Radu’s Ramanujan-Kolberg
algorithm [24].

Continuing with “Schmidtization” of Theorem 2 and (7.2), one can similarly treat the case
where the odd indexed parts are even. The resulting generating function is

(7.8)
(1 + x21x2)(1 + x21x

2
2x

2
3x4)(1 + x21x

2
2x

2
3x

2
4x

2
5x6) . . .

(1− x21)(1− x21x
2
2)(1− x21x

2
2x

2
3) . . .

,

the perfect complement to (7.2), and the single generating function is

(7.9)
(−q3; q4)∞
(q2; q2)2∞

being the complement to (7.3).

It is plausible to consider next partitions where the even indexed or odd indexed parts are
odd. The results do not apparently lead to any striking partition identities or other results of
combinatorial or arithmetic interest. So, we will only record one such result.

The generating function for partitions with 2n− 1 parts, where the odd indexed parts are odd,
is given by
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(7.10)
x1x2 . . . xk(1 + x21x2)(1 + x21x

2
2x

3
3x4) . . . (1 + x21 . . . x

2
2n−3x2n−2)

(1− x21)(1− x21x
2
2) . . . (1− x21x

2
2 . . . x

2
2n−1)

.

Perhaps it is worth noting that the case n = 3 relates to triangles with integer sides.

Proposition 1. The number of partitions of n into three parts wherein the first and third are odd
equals the number of triangles with integer sides and perimeter n.

Proof. Setting n = 2 and each xi = q in (7.10), we find that the generating function for partitions
in which the first and third part is odd is

q3(1 + q3)

(1− q2)(1− q4)(1− q6)
=

q3

(1− q2)(1− q3)(1− q4)
,

and this is also the generating function for the number of triangles with perimeter n and integer
sides [16]. □

8. How to Use the Omega Package

In joint collaboration with the authors of this article, partition analysis has been implemented
by Axel Riese in the form of the Omega package, [7] and [8], written in Mathematica. In this
section we briefly describe how to use Omega to compute special instances of results presented in
the Sections 2 to 7.

After placing the package in a directory where we open a Mathematica session, we read it in as
follows1:

In[1]:= << RISC‘Omega‘

Omega Package version 2.49 written by Axel Riese (in cooperation
with George E. Andrews and Peter Paule) © Research Institute for

Symbolic Computation (RISC), Johannes Kepler University Linz

Example 1. As a first example, we derive special instances of Lemma 2.2. The case A = 0 is the
left side of (2.4). MacMahon called an expression of this kind a crude generating function; we
input it as follows:

In[2]:= crude0 =
1

(1 − λ2x)
(

1 − y

λ

) ;

Next we eliminate λ:

In[3]:= OR[crude0, {λ}]

Out[3]=
xy + 1

(1 − x) (1 − xy2)

Let us do each of the cases A = 1 and A = 2 of (2.5) “in one stroke”:

In[4]:= OR[
λ−2

(1 − λ2x)
(

1 − y

λ

) , {λ}]

Out[4]=
x
2
y + x

(1 − x) (1 − xy2)

and

In[5]:= OR[
λ−4

(1 − λ2x)
(

1 − y

λ

) , {λ}]

Out[5]=
x
3
y + x

2

(1 − x) (1 − xy2)

We remark that the package can handle quite complicated (crude) generating functions; how-
ever, it cannot do this in generic form. For instance, the integer variable A in Lemmas 2.2 to 2.5
needs to be specified to a concrete integer.

1The package is freely available at https://caa.risc.jku.at/software upon password request via email to the
second named author.
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Example 2. As another example, let us see how Omega deals with the special instance k = 4 of
Theorem 1. From (3.3), the elimination problem in this case is,

Ω
≥

x1x2x3x4(1 + x1)
(

1 + x2

λ1

)(

1 + x3

λ2

)

λ−2
1 λ−2

2 λ−2
3

(1− x21λ
2
1)
(

1−
x2
2
λ2
2

λ2
1

)(

1−
x2
3
λ2
3

λ2
2

)(

1− x4

λ3

)

.

Omega eliminates all the λj variables “in one stroke” as follows:

In[6]:= OR
[x1x2x3x4(1 + x1)

(

1 +
x2
λ1

)(

1 +
x3
λ2

)

λ
−2

1 λ
−2

2 λ
−2

3

(1 − x2
1λ

2
1)

(

1 −
x2
2
λ
2
2

λ
2
1

)(

1 −
x2
3
λ
2
3

λ
2
2

)(

1 −
x4
λ3

)

, {λ1, λ2, λ3}
]

Eliminating λ3 . . .

Eliminating λ2 . . .

Eliminating λ1 . . .

Out[6]=
x
7
1

(

x
6
1x

6
3x

2
4x

10
2 + x

3
3x4x

5
2 + x

2
1

(

x
5
3x

2
4x

7
2 + x

4
3x4x

7
2 + x

3
3x4x

6
2

)

+ x
4
1

(

x
6
3x

2
4x

9
2 + x

5
3x

2
4x

8
2 + x

4
3x4x

8
2

))

(1 − x1) (1 − x21x
2
2) (1 − x21x

2
2x

2
3) (1 − x21x

2
2x

2
3x

2
4)

In[7]:= Factor[Numerator[%]]

Out[7]= x
7

1x
5

2

(

1 + x
2

1x2

)

x
3

3

(

1 + x
2

1x
2

2x3

)

x4

(

1 + x
2

1x
2

2x
2

3x4

)

We note that Omega follows built-in criteria for how to choose the order in which the λj
variables are eliminated; here λ3 first, then λ2, and finally λ1, as Omega indicates in the output.
The user can execute these steps also individually, for instance, to eliminate in the first step only
λ3 is done as follows:

In[8]:= OR
[x1x2x3x4(1 + x1)

(

1 +
x2
λ1

)(

1 +
x3
λ2

)

λ
−2

1 λ
−2

2 λ
−2

3

(1 − x2
1λ

2
1)

(

1 −
x2
2
λ
2
2

λ
2
1

)(

1 −
x2
3
λ
2
3

λ
2
2

)(

1 −
x4
λ3

)

, {λ3}
]

Eliminating λ3 . . .

Out[8]=
x1x2x

3
3x4

(

λ1λ
3
2 + λ3

2x1x2 + λ3
2x2 + λ1λ

3
2x1 + x

2
3 (λ2x1x2x4 + λ2x2x4 + λ1λ2x1x4 + λ1λ2x4)

)

λ3
1λ

7
2 (1 − λ2

1x
2
1)

(

1 −
x2
3
x2
4

λ2
2

)

(

1 −
x3
λ2

)

(

1 −
λ2
2
x2
2

λ2
1

)

The criteria used by Omega for the elimination of the λjs originate from considerations of
generic situations. This means, if the user in specific situations chooses a different elimination
order could lead to more compact representations or to more transparent patterns better suitable
for mathematical induction. We restrict to show what happens if, as in the proof of Theorem 1,
in the first step λ1 instead of λ3 is eliminated:

In[9]:= OR
[x1x2x3x4(1 + x1)

(

1 +
x2
λ1

)(

1 +
x3
λ2

)

λ
−2

1 λ
−2

2 λ
−2

3

(1 − x2
1λ

2
1)

(

1 −
x2
2
λ
2
2

λ
2
1

)(

1 −
x2
3
λ
2
3

λ
2
2

)(

1 −
x4
λ3

)

, {λ1}
]

Eliminating λ1 . . .

Out[9]=

x
3
1

(

x
2
1

(

x23x4x
2
2

λ2
+ x3x4x

2
2

)

+
x2x

2
3x4

λ2
+ x2x3x4

)

λ2
2λ

2
3 (1 − x1) (1 − λ2

2x
2
1x

2
2)

(

1 −
x4
λ3

)

(

1 −
λ2
3
x2
3

λ2
2

)

In[10]:= Factor[%]

Out[10]=
x
3
1x2

(

x2x
2
1 + 1

)

x3x4 (λ2 + x3)

λ2λ3 (x1 − 1) (λ2x1x2 − 1) (λ2x1x2 + 1) (x4 − λ3) (λ3x3 − λ2) (λ2 + λ3x3)

The factorization Out[10] of expression Out[9] indeed gives the first elimination step used in
our proof of Theorem 1:

x31x2x3x4
(

1 + x21x2
)

(

1 + x3

λ2

)

λ22λ
2
3 (1− x1) (1− x21x

2
2λ

2
2)

(

1−
λ2
3
x2
3

λ2
2

)(

1− x4

λ3

) .

Example 3. As another example we revisit the proof of Theorem 5 for odd N ; i.e., N = 2ν + 1.

The first non-trivial case is ν = 1. According to (5.7) the expression for the crude generating
function is

In[11]:= crude1 =
1 + x1

(

1 − λ2
1x

2
1

)

(

1 −
λ2x2
λ1

) (

1 −
x3
λ2

)

In contrast to the order used in the proof of Theorem 5, we now eliminate λ2 first:

In[12]:= crude1a = OR[crude1, {λ2}]
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Eliminating λ2 . . .

Out[12]=
1 + x1

(1 − λ2
1x

2
1)

(

1 −
x2x3
λ1

)(

1 −
x2
λ1

)

For this step, we note that Omega executes one of MacMahon’s most elementary rules [21,
bottom of p. 92].

Next we let Omega eliminate λ1,

In[13]:= crude1a = OR[crude1a, {λ1}]

Eliminating λ1 . . .

Out[13]=
1 + x

2
1

(

x2 + x3x2 + x3x
2
2

)

(1 − x1) (1 − x21x
2
2) (1 − x21x

2
2x

2
3)

which confirms the statement of Theorem 5 for N = 3.

Remark. We want to note that in this step Omega executes another elimination rule of MacMa-
hon [21, p. 103, Entry 348], a different generalization of (2.4).

The next case is ν = 2; i.e., N = 5. According to (5.7) the expression for the crude generating
function is

In[14]:= crude2 =
(1 + x1)

(

1 +
x3
λ2

)

(

1 − λ2
1x

2
1

)

(

1 −
λ2x2
λ1

)

(

1 −
λ
2
3
x2
3

λ
2
2

)

(

1 −
λ4x4
λ3

) (

1 −
x5
λ4

)

Now one sees the advantage of proceeding as in our proof. Namely, in order to eliminate again
λ2 first, one would need to introduce another elimination rule. And, we can see that also Omega
prefers the elimination order as used in our proof:

In[15]:= OR[crude2, {λ1, λ2}]

Eliminating λ1 . . .

Eliminating λ2 . . .

Out[15]=
1 + x

2
1(x2 + x2x3 + x

2
2x3)

(1 − x1) (1 − x21x
2
2) (1 − λ2

3x
2
1x

2
2x

2
3)

(

1 −
λ4x4
λ3

)(

1 −
x5
λ4

)

In the output expression Out[15] one can see that the pattern for mathematical induction takes
ground: compare the λ-pattern to the expression Out[11].

Example 4. The final example for this section concerns the proof of Theorem 7. Consider the
instance

Ω
≥

∑

n1,n2,n3,n4≥0

xn1

1 x2n2

2 xn3

3 x2n4

4 λn1−2n2

1 λ2n2−n3

2 λn3−2n4

3 λ2n4

4 .

Omega supports to rewrite this crude generating as a rational function:

In[16]:= crude4 = OSum[x
n1
1 x

2n2
2 x

n3
3 x

2n4
4 λ

n1−2n2
1 λ

2n2−n3
2 λ

n3−2n4
3 λ

2n4
4 , {n1 ≥ 0, n2 ≥ 0, n3 ≥ 0, n4 ≥ 0} , λ]

Out[16]= Ω
≥

1

(1 − λ1x1)

(

1 −
λ2
2
x2
2

λ2
1

)

(

1 −
λ3x3
λ2

)

(

1 −
λ2
4
x2
4

λ2
3

)

Then one eliminates the λj as follows:

In[17]:= crude4a = crude4[[1]]

Out[17]=
1

(1 − λ1x1)

(

1 −
λ2
2
x2
2

λ2
1

)

(

1 −
λ3x3
λ2

)

(

1 −
λ2
4
x2
4

λ2
3

)

In[18]:= OR[crude4a, {λ1, λ2, λ3, λ4}]

Eliminating λ4 . . .

Eliminating λ3 . . .

Eliminating λ2 . . .

Eliminating λ1 . . .

Out[18]=
1 + x

2
1x3x

2
2

(1 − x1) (1 − x21x
2
2) (1 − x21x

2
2x

2
3) (1 − x21x

2
2x

2
3x

2
4)

The instance for 6 variables x1, . . . , x6 works as follows:

In[19]:= crude6 = OSum[x
n1
1 x

2n2
2 x

n3
3 x

2n4
4 x

n5
5 x

2n6
6 λ

n1−2n2
1 λ

2n2−n3
2 λ

n3−2n4
3 λ

2n4
4 λ

n5−2n6
5 λ

2n6
6 ,

{n1 ≥ 0, n2 ≥ 0, n3 ≥ 0, n4, n5 ≥ 0, n6 ≥ 0} , λ]



14 GEORGE E. ANDREWS AND PETER PAULE

Out[19]= Ω
≥

1

(1 − λ1x1)

(

1 −
λ2
2
x2
2

λ2
1

)

(

1 −
λ3x3
λ2

)

(

1 −
λ2
4
x2
4

λ2
3

)

(

1 −
λ5x5
λ4

)

(

1 −
λ2
6
x2
6

λ2
5

)

In[20]:= crude6a = OR[crude6[[1]], {λ1, λ2, λ3, λ4, λ5, λ6}]

Eliminating λ6 . . .

Eliminating λ5 . . .

Eliminating λ4 . . .

Eliminating λ2 . . .

Eliminating λ1 . . .

Eliminating λ3 . . .

Out[20]=
1 + x

2
1x

2
2x3 + x

2
1x

2
2x

2
3

(

x
2
1x

2
2x3x5x

2
4 + x5x

2
4

)

(1 − x1) (1 − x21x
2
2) (1 − x21x

2
2x

2
3) (1 − x21x

2
2x

2
3x

2
4) (1 − x21x

2
2x

2
3x

2
4x

2
5) (1 − x21x

2
2x

2
3x

2
4x

2
5x

2
6)

In[21]:= Factor[Numerator[crude6a]

Out[21]=

(

1 + x
2

1x
2

2x3

)(

1 + x
2

1x
2

2x
2

3x
2

4x5

)

This output confirms the form of the infinite product on the right side of (7.2).

9. Some Identities derived with Radu’s Ramanujan-Kolberg Algorithm

As in [9] and [10] we include a couple of identities and arithmetical theorems related to the new
generating functions considered; all these results were derived using Smoot’s implementation [27]
of Radu’s Ramanujan-Kolberg algorithm [24]. More details on the usage of Smoot’s package are
given in Section 11.

The first object we look at is the result when we perform the Schmidt process of setting x2i+1 = q
and x2i = 1 in (7.8); namely, the generating function

(9.1)
(−q2; q2)∞
(q2; q2)2∞

=
(q4; q4)∞
(q2; q2)3∞

.

This leads us to consider the replacement q2 → q and to define

(9.2) S(q) =

∞
∑

k=0

s(k)qk :=
(q2; q2)∞
(q; q)3∞

= 1 + 3q + 8q2 + 19q3 + 41q4 + 83q5 + 161q6 + . . . .

We note that S(q) is a relative to

D(q) =

∞
∑

k=0

d(k)qk :=
(q2; q2)∞
(q; q)4∞

,

the generating function for the Schmidt-type partitions obtained by summing the linking nodes
in the plane partition diamonds of unrestricted length [9, Thm. 4]. Another relative to S(q) is

∞
∑

k=0

PDN1(k)qk :=
(q2; q2)∞
(q; q)5∞

,

the generating function for the Schmidt-type partitions obtained by summing the linking nodes of
modified partition diamonds of unrestricted length which was studied extensively in [10, Thm. 4].

In contrast to d(k) and PDN1(k), the s(k) do not seem to satisfy simple congruences involv-
ing small primes only. Nevertheless, with the help of Smoot’s implementation [27] of Radu’s
Ramanujan-Kolberg algorithm [24], we found various identities we think are worth being listed.
Details about how to derive and prove some of these identities are given in Section 11.

Theorem 8. We have

(9.3)

∞
∑

n=0

s(2n)qn ·

∞
∑

n=0

s(2n+ 1)qn ≡ (q; q)11∞ (mod 2).

Theorem 9. We have

(9.4)
∞
∑

n=0

s(3n)qn ·
∞
∑

n=0

s(3n+ 1)qn ·
∞
∑

n=0

s(3n+ 2)qn ≡ q
(q3; q3)∞(q9; q9)6∞

(q; q)10∞
(mod 2).

Theorem 10. We have

(9.5)

∞
∑

n=0

s(3n)qn ·

∞
∑

n=0

s(3n+ 1)qn ·

∞
∑

n=0

s(3n+ 2)qn ≡ q
(q2; q2)25∞
(q; q)3∞

(mod 3).
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Theorem 11. We have

(9.6)

∞
∑

n=0

s(5n+ 4)qn ≡
(q2; q2)6∞(q5; q5)15∞
(q; q)18∞(q10; q10)5∞

(mod 4).

Notice that
(q2; q2)6∞(q5; q5)15∞
(q; q)18∞(q10; q10)5∞

= S(q)6 ·
1

S(q5)5
.

In view of this relation we want to conclude this list with a couple of identities for the inverse

(9.7) T (q) =
∞
∑

k=0

t(k)qk :=
1

S(q)
=

(q; q)3∞
(q2; q2)∞

= 1− 3q + q2 + 2q3 + 2q4 − q5 − 4q6 + . . .

which seems to have a somewhat richer arithmetic structure than S(q).

Before stating our identities beginning with Theorem 12, we provide some combinatorial facts
on T (q) and the t(k).

Proposition 2. For k ≥ 0,

t(k) ≡ Q(k) (mod 4),

where Q(n) is the number of partitions of n into distinct parts,
∑

n≥0

Q(n)qn = 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + . . . .

Proof. By the fact (1− q)2 ≡ (1 + q)2 (mod 4),

T (q) =
(q; q)3∞
(q2; q2)∞

≡
(−q; q)2(q; q)∞

(q2; q2)∞
(mod 4)

= (−q; q)∞ =
∑

n≥0

Q(n)qn.

□

Proposition 3. For k ≥ 0 we have that t(k) is even if k is not a pentagonal number. Otherwise
t(k) is odd.

Proof.

(−q; q)∞ ≡ (q; q)∞ (mod 2)

=

∞
∑

j=−∞

(−1)jqj(3j−1)/2.

□

Corollary 4. For k ≥ 0,

(9.8) t(5n+ 3) ≡ t(5n+ 4) ≡ 0 (mod 2).

Proof. Pentagonal numbers are all ≡ 0, 1, 2 (mod 5). □

Now, as announced above, we are ready to list further identities.

Theorem 12. We have

(9.9) f ·

∞
∑

n=0

t(5n+ 1)qn = −4− 3 t,

where

f =

(

q2; q2
)

∞

(

q5; q5
)2

∞

q(q; q)∞(q10; q10)4∞
and t =

(

q2; q2
)

∞

(

q5; q5
)5

∞

q(q; q)∞(q10; q10)5∞
.
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Theorem 13. We have

(9.10)

∞
∑

n=0

t(5n+ 3)qn ·

∞
∑

n=0

t(5n+ 4)qn = 4
(q; q)∞(q5; q5)∞(q10; q10)3∞

(q2; q2)∞
.

We note that the factor 4 distributes over the series on the left which gives an alternative proof
of Corollary 4.

Consider the series expansion of the product on the right side of (9.10),

(q; q)∞(q5; q5)∞(q10; q10)3∞
(q2; q2)∞

=

∞
∑

n=0

c(n)qn.

Theorem 14. For this generating function we have

(9.11)

∞
∑

n=0

c(5n+ 4)qn =
(q; q)3∞(q10; q10)3∞
(q2; q2)∞(q5; q5)∞

.

Theorem 15. We have

(9.12)

∞
∑

n=0

t(5n)qn ·

∞
∑

n=0

t(5n+ 2)qn =
(q5; q5)6∞
(q10; q10)2∞

= T (q5)2.

Note that we obtained the square of a dilated version of T (q). The dilation q → q5 implies for
j ∈ {1, 2, 3, 4} and n ≥ 0,

(9.13)

5n+j
∑

k=0

t(25n+ 5j − 5k)t(5k + 2) = 0,

and the square implies for odd n ≥ 0,

(9.14)

5n
∑

k=0

t(25n− 5k)t(5k + 2) ≡ 0 (mod 2).

Theorem 16. We have

(9.15)

∞
∑

n=0

t(7n+ 2)qn =
(q7; q7)3∞
(q14; q14)∞

= T (q7).

The dilation q → q7 implies for j ∈ {1, 2, . . . , 6} and n ≥ 0,

(9.16) t(49n+ 7j + 2) = 0.

Concerning T (q) we restrict to list one more relation.

Theorem 17. We have

(9.17)

∞
∑

n=0

t(7n)qn ·

∞
∑

n=0

t(7n+ 1)qn ·

∞
∑

n=0

t(7n+ 5)qn ≡ −
(q7; q7)9∞
(q14; q14)3∞

(mod 4).

Notice that

(q7; q7)9∞
(q14; q14)3∞

= T (q7)3.



MACMAHON’S PARTITION ANALYSIS XV: PARITY 17

10. Cubic Partitions and the Ramanujan-Kolberg Algorithm

In this section we return to the theme of cubic partitions (7.5) which we are now reconsidering
being equipped with Smoot’s implementation of Radu’s Ramanujan-Kolberg algorithm. For con-
venience, we recall the defining generating function for the case k = 2 where we write a(n) = p2(n)
for short; i.e.,

(10.1)
1

(q; q)∞(q2; q2)∞
=

∞
∑

n=0

a(n)qn.

Again we present a couple of results which seem to be new and which we obtained algorithmi-
cally. With regard to how this was done, the reader finds supplementing descriptions in Section 11
which should put her/him into the position to derive these and also all our other entries her-
self/himself.

The cases a(2n) and a(2n+ 1).

Theorem 18. We have

(10.2)

∞
∑

n=0

a(2n)qn ·

∞
∑

n=0

a(2n+ 1)qn =

(

q2; q2
)2

∞

(

q8; q8
)2

∞

(q4; q4)∞(q; q)7∞
.

Notice that this implies

(10.3)
∞
∑

n=0

a(2n)qn ·
∞
∑

n=0

a(2n+ 1)qn ≡ (q; q)11∞ (mod 2);

i.e., modulo 2 we see the same pattern as in (9.3).

The case a(3n+ 2).

Theorem 19. We have

(10.4) f ·

∞
∑

n=0

a(3n+ 2)qn = 3(8 + t),

where

(10.5) f =
(q; q)∞

(

q2; q2
)7

∞

(

q3; q3
)6

∞

q(q6; q6)12∞
and t =

(q; q)
5
∞

(

q3; q3
)

∞

q(q2; q2)∞(q6; q6)5∞
are produced by Smoot’s package.

Applying the algorithm described in [4, Thm 10.3], which converts power series into product
form, to the term

q(8 + t) = 1 + 3q + 6q2 + 4q3 − 3q4 − 12q5 − 8q6 + 12q7 + 30q8 + . . . ,

one obtains

(10.6) q(8 + t) = (q3; q6)6∞ ·
(q3; q6)3∞
(q; q2)3∞

=
(q2; q2)3∞(q3; q3)9∞
(q; q)3∞(q6; q6)9∞

.

Hence, using the product on the right side,
∞
∑

n=0

a(3n+ 2)qn = 3
1

f
(8 + t) = 3

(q6; q6)12∞

(q; q)∞ (q2; q2)
7
∞ (q3; q3)

6
∞

· q(8 + t)

= 3

(

q3; q3
)3

∞
(q6; q6)3∞

(q; q)4∞ (q2; q2)
4
∞

,(10.7)

which is Chan’s identity [11, Thm. 1].

We remark that also the proof of the first equality in (10.6) can be done algorithmically with
another symbolic computation method by Radu [25]. Together with the algorithmic production of
the relation (10.4) this gives a purely algorithmic derivation and proof of Chan’s identity (10.7).
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The case a(9n+ 8).

Another aspect of the method concerns the possibility of iterating it. Consider the power series
expansion of Chan’s product,

(

q3; q3
)3

∞
(q6; q6)3∞

(q; q)4∞ (q2; q2)
4
∞

=

∞
∑

n=0

c(n)qn.

Theorem 20. Smoot’s package computes

(10.8) f ·

∞
∑

n=0

c(3n+ 2)qn = 9(8 + t) p(t),

where

(10.9) f =
(q; q)4∞

(

q2; q2
)22

∞

(

q3; q3
)15

∞

q5 (q6; q6)
39
∞

and t =
(q; q)5∞

(

q3; q3
)

∞

q (q2; q2)∞ (q6; q6)
5
∞

,

and

(10.10) p(t) = 15552 + 6480t+ 1017t2 + 72t3 + 2t4.

The factor 9 on the right of (10.8) implies that 9 | c(3n + 2), which by (10.7) implies that for
n ≥ 0,

27 | a(3(3n+ 2) + 2) = a(9n+ 8);

which is in correspondence to the special case k = 2 of Chan’s infinite family [12] of congruences
modulo powers of 5.

The case a(25n+ 22). We recall (7.6); i.e., for n ≥ 0,

(10.11) a(25n+ 22) ≡ 0 (mod 5).

In this case the Ramanujan-Kolberg proof is a bit more tricky, but up to a human observation
can be done also algorithmically as follows.

To prove (10.11) we start with the arithmetic subsequence a(5n+ 2).

Theorem 21. Smoot’s package gives

(10.12) f ·

∞
∑

n=0

a(5n+ 2)qn = p(t),

where

(10.13) f =
(q; q)3∞

(

q2; q2
)9

∞

(

q5; q5
)10

∞

q5 (q10; q10)
20
∞

and t =

(

q2; q2
)

∞

(

q5; q5
)5

∞

q(q; q)∞ (q10; q10)
5
∞

and

(10.14) p(t) = t(48− 28t+ 53t2 + 7t3 + 3t4).

Now the crucial (human) observation is this:

p(t) ≡ 3t(1 + t)4 (mod 5).

In view of this nice factorization and our experience made with (10.6), we again apply the algorithm
from [4, Thm 10.3], which converts power series into product form, to the expression

q(1 + t) = 1 + 2q + q2 + 2q3 + 2q4 − 2q5 − q6 − 4q8 − 2q9 + . . . .

As the result of this conversion we obtain

(10.15) q(1 + t) =
(q2; q2)4∞(q5; q5)2∞
(q; q)2∞(q10; q10)4∞

.
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Hence, using the product on the right side,

∞
∑

n=0

a(5n+ 2)qn ≡ 3
1

f
t(1 + t)4 ≡ 3

(

q10; q10
)20

∞

(q; q)3∞ (q2; q2)
9
∞ (q5; q5)

10
∞

(qt)
(

q(1 + t)
)4

(mod 5)

≡ 3

(

q10; q10
)20

∞

(q; q)3∞ (q2; q2)
9
∞ (q5; q5)

10
∞

·

(

q2; q2
)

∞

(

q5; q5
)5

∞

(q; q)∞ (q10; q10)
5
∞

·
(q2; q2)16∞(q5; q5)8∞
(q; q)8∞(q10; q10)16∞

(mod 5)

≡ 3

(

q2; q2
)8

∞

(

q5; q5
)3

∞

(q; q)12∞ (q10; q10)∞
≡ 3

(

q2; q2
)8

∞
(q ; q)

15
∞

(q; q)12∞(q2; q2)5∞
≡ 3 (q; q)3∞(q2; q2)3∞ (mod 5).(10.16)

Consider the power series expansion of the product on the right side of (10.16),

(q; q)3∞(q2; q2)3∞ =

∞
∑

n=0

A(n)qn.

Theorem 22. Smoot’s package computes,

(10.17)

∞
∑

n=0

A(5n+ 4)qn = 25 q
(

q5; q5
)3

∞

(

q10; q10
)3

∞
.

The factor 25 on the right of (10.17) implies that 25 | A(5n+ 4). Hence for all n ≥ 0,

A(5n+ 4) ≡ 0 (mod 5),

which by (10.16) implies that for n ≥ 0,

(10.18) a(5(5n+ 4) + 2) = a(25n+ 22) ≡ 0 (mod 5),

which is (7.6) and also the special case α = 0 of Xiong’s infinite family of congruences [28, Thm.
1.3].

Remark. An alternative proof of(10.18) emerges when using the first product in (10.16),
(

q2; q2
)8

∞

(

q5; q5
)3

∞

(q; q)12∞ (q10; q10)∞
=

∞
∑

n=0

B(n)qn.

For this generating function Smoot’s package computes,

(10.19) f ·

∞
∑

n=0

B(5n+ 4)qn = 5 t p(t)

with f, t being products involving only terms of the form (1−qα)β , and where p(t) is a polynomial
in t of the form

p(t) = 872415232 + 7952400384t+ · · ·+ 367t12.

We conclude this section with a few results on cubic partitions b(n) := p4(n); i.e., for the case
k = 4 of (7.5) which is

(10.20)
1

(q; q)∞(q4; q4)∞
=

∞
∑

n=0

b(n)qn.

The cases b(2n) and b(2n+ 1).

Theorem 23. We have

(10.21) f ·
∞
∑

n=0

b(2n)qn ·
∞
∑

n=0

b(2n+ 1)qn = −2 + t,

where

(10.22) f =
(q; q)5∞

(

q8; q8
)4

∞

q (q4; q4)∞ (q16; q16)
4
∞

and t =

(

q8; q8
)

∞

(

q2; q2
)5

∞

q(q; q)2∞ (q4; q4)
2
∞ (q16; q16)

2
∞

are produced by Smoot’s package.
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Applying the algorithm described in [4, Thm 10.3], which converts power series into product
form, to the term

q(−2 + t) = 1 + 2q4 − q8 − 2q12 + 3q16 + 2q20 − 4q24 − 4q28 + 5q32 + . . . ,

one obtains

(10.23) q(−2 + t) =
(q8; q8)6∞

(q4; q4)2∞(q16; q16)4∞
.

Consequently, we found and proved the following identity.

Theorem 24. We have

(10.24)
∞
∑

n=0

b(2n)qn ·
∞
∑

n=0

b(2n+ 1)qn =
1

qf
· q(−2 + t) =

(

q8; q8
)2

∞

(q4; q4)∞ (q; q)5∞
.

The case b(25n+ 20). We recall (7.7); i.e., for n ≥ 0,

(10.25) b(25n+ 20) ≡ 0 (mod 5).

Also in this case the Ramanujan-Kolberg proof is bit tricky, but again—up to some extra
(human) insight—can be done algorithmically as follows.

To prove (10.11) we start with the arithmetic subsequence b(5n).

Theorem 25. Smoot’s package computes

(10.26) f ·

∞
∑

n=0

b(5n)qn = p1(t) + p2(t)(s− t),

where

f =
(q; q)5∞

(

q4; q4
)9

∞

(

q10; q10
)10

∞

q11 (q2; q2)
2
∞ (q20; q20)

20
∞

, t =

(

q4; q4
)4

∞

(

q10; q10
)2

∞

q2 (q2; q2)
2
∞ (q20; q20)

4
∞

, and s =

(

q4; q4
)

∞

(

q5; q5
)5

∞

q3(q; q)∞ (q20; q20)
5
∞

;

in addition,

p1(t) = 125− 250t+ 190t2 − 79t3 + 11t4 + 3t5 and p2(t) = −15t2 + 14t3 + t4.

Now the extra insight is this:

p1(t) ≡ 3t3(−2 + t)(−1 + t) (mod 5) and p2(t) ≡ t3(−1 + t) (mod 5).

This turns the right side of (10.26) into

p1(t) + p2(t)(s− t) ≡ t3(−1 + t)
(

3(−2 + t) + s− t
)

(mod 5).

As in our proof of 5|a(25n+22), in view of this factorization we again apply the algorithm from [4,
Thm 10.3], which converts power series into product form, to

q2(−1 + t) = 1 + q2 + q4 + 2q6 + 2q8 − 2q10 − q12 − 4q16 − 2q18 + 5q20 + 2q22 + . . . ,

and to the expression

q3
(

3(−2 + t) + (s− t)
)

= 1 + 8q + 42q2 + 176q3 + 635q4 + 2057q5 + 6134q6 + . . . .

As the result of this conversions we obtain

q2(−1 + t) =

(

q4; q4
)

∞

(

q10; q10
)5

∞

(q2; q2)∞ (q20; q20)
5
∞

≡

(

q2; q2
)24

∞

(q4; q4)
24
∞

(mod 5)(10.27)
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and

q3(3(−2 + t) + (s− t)) =

(

q2; q4
)4

∞
(q4; q4)2∞

(

q10; q20
)4

∞

(q; q2)3∞(q5; q10)∞ (q20; q20)
2
∞

=
(q2; q2)7∞(q10; q10)5∞

(q; q)3∞(q4; q4)2∞(q5; q5)∞(q20; q20)6∞

≡
(q2; q2)32∞

(q ; q)8∞(q4; q4)32∞
(mod 5).(10.28)

Now, collecting things:
∞
∑

n=0

b(5n)qn =
1

f

(

p1(t) + p2(t)(s− t)
)

≡
1

q11f
· (q2t)3 · q2(−1 + t) · q3

(

3(−2 + t) + s− t
)

(mod 5)

≡

(

q2; q2
)2

∞

(

q4; q4
)100

∞

(q; q)5∞ (q4; q4)
9
∞ (q2; q2)

50
∞

·

(

q2; q2
)24

∞

(q4; q4)
48
∞

·

(

q2; q2
)24

∞

(q4; q4)
24
∞

·
(q2; q2)32∞

(q ; q)8∞(q4; q4)32∞
(mod 5)

≡

(

q2; q2
)32

∞

(q; q)13∞ (q4; q4)
13
∞

.(10.29)

Finally, consider the power series expansion of the product on the right side of (10.29),
(

q2; q2
)32

∞

(q; q)13∞ (q4; q4)
13
∞

=

∞
∑

n=0

C(n)qn.

Theorem 26. Smoot’s package computes

(10.30) f ·

∞
∑

n=0

C(5n+ 4)qn = p1(t) + p2(t)(s− t),

where

f =

(

q5; q5
)

∞(q; q)4∞
(

q4; q4
)8

∞

(

q10; q10
)10

∞

q10 (q2; q2)
10
∞ (q20; q20)

19
∞

, t =

(

q4; q4
)4

∞

(

q10; q10
)2

∞

q2 (q2; q2)
2
∞ (q20; q20)

4
∞

and

s =

(

q4; q4
)

∞

(

q5; q5
)5

∞

q3(q; q)∞ (q20; q20)
5
∞

;

in addition,

p1(t) = 25(−1 + t)2(499− 199t+ 143t2 + 17t3) and p2(t) = 50(−1 + t)2(63 + 31t).

Consequently, one can extract the common factor 25 from the expression on the right of (10.30)
which implies that 25 | C(5n+ 4). Hence for all n ≥ 0,

C(5n+ 4) ≡ 0 (mod 5),

which by (10.30) implies that for n ≥ 0,

(10.31) b(5(5n+ 4)) = b(25n+ 20) ≡ 0 (mod 5),

and which completes the algorithmic derivation and proof of (7.7).

11. How to Use Smoot’s Ramanujan-Kolberg Package

In this section we briefly describe how to use Smoot’s package RaduRK [27], an implementation
of Radu’s Ramanujan-Kolberg algorithm written in Mathematica.2 In particular, we list all the
procedure calls needed to derive, and thus to prove, all of the theorems stated in the Sections 9
and 10.

2The package is freely available at https://caa.risc.jku.at/software upon password request via email to the
second named author.
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To prepare for the usage of RaduRK, follow the installation instructions given in [27], and
invoke the package within a Mathematica session as follows:

In[22]:= << RaduRK‘

math4ti2: Mathematica interface to 4ti2
(http://www.4ti2.de)

© 2017, Ralf Hemmecke <ralf@hemmecke.org>

© 2017, Silviu Radu <sradu@risc.jku.at>

RaduRK: Ramanujan–Kolberg Program Version 3.4
2021 written by Nicolas Smoot
<nicolas.smoot@risc.jku.at>

© Research Institute for Symbolic Computation (RISC), Johannes
Kepler University Linz

Before running the program, one needs to set the two global key variables q and t:

In[23]:= {SetVar1[q], SetVar2[t]}

Out[23]= {q, t}

11.1. Algorithmic proofs of Theorems 22, 23, 25, and 26. Our first example to illustrate
the usage of the RaduRK package is the derivation and proof of Theorem 22 which we restate
for convenience. Consider the third power of the inverse of the generating function of cubic
partitions (10.1),

α(q) := (q; q)3∞(q2; q2)3∞ =

∞
∑

n=0

A(n)qn,

then

(11.1)

∞
∑

n=0

A(5n+ 4)qn = 25 q
(

q5; q5
)3

∞

(

q10; q10
)3

∞
= 25 q α(q5).

Proof of Theorem 22. The input for the algorithmic derivation and proof of (11.1) is done with
the procedure call

In[24]:= RK[10, 2, {3, 3}, 5, 4]

After a few seconds, Smoot’s package returns

Out[3] =

N : 10
{M, (rδ)δ|M}: {2, (3, 3)}

m: 5
Pm,r(j): {4}

f1(q) :
(q2;q2)

2

∞
(q5;q5)

7

∞

q3(q;q)2∞(q10;q10)13∞

t:
(q2;q2)

∞
(q5;q5)

5

∞

q(q;q)∞(q10;q10)5∞

AB: {1}
{pg(t): g ∈AB} {25t2}
Common Factor: 25

The interpretation of the output is as follows:

• The assignment {M, (rδ)δ|M} = {2, (3, 3)} comes from the second and third entry of the
procedure call RK[10,2,{3, 3},5,4]; this corresponds to specifyingM = 2 and (rδ)δ|2 = (r1, r2) =
(3, 3) to define the generating function of the A(n) by the respective product,

∞
∑

n=0

A(n)qn =
∏

δ|M

(qδ; qδ)rδ∞ = (q, q)3∞(q2, q2)3∞.



MACMAHON’S PARTITION ANALYSIS XV: PARITY 23

• The last two entries in the procedure call RK[10,2,{3, 3},5,4] correspond to the assignment
m = 5 and j = 4, which means that we are interested in the generating function

∞
∑

n=0

A(mn+ j)qn =

∞
∑

n=0

A(5n+ 4)qn.

In the output expression Pm,r(j) these parameters m and j are used; i.e., here Pm,r(j) = P2,r(4)
with r = (rδ)δ|2 = (3, 3).

• The first entry in the procedure call RK[10,2,{3, 3},5,4] corresponds to specifying N = 10,
which fixes the space of modular functions the program will work with:

M(Γ0(N)) := the algebra of modular functions for Γ0(N).

Remark. For the definition of notions such as Γ0(N) or M(Γ0(N)), together with a general in-
troduction to Radu’s Ramanujan-Kolberg algorithm, see [23]. For the proof of correctness and
further details of the algorithm, resp. of the implementation, see [24], resp. [27].

• The output Pm,r(j) = P5,r(4) = {4}, where r = (3, 3), means that there exists a q-product

f1(q) =

(

q2; q2
)2

∞

(

q5; q5
)7

∞

q3(q; q)2∞ (q10; q10)
13
∞

,

which is also delivered by RaduRK as an output, such that

f1(q)
∏

k∈P5,r(4)

∞
∑

n=0

A(5n+ k)qn = f1(q)

∞
∑

n=0

A(5n+ 4)qn ∈M(Γ0(N)) with N = 10.

Note. In general, the set Pm,r(j) need not be a singleton. For example, Pm,r(j) = {0, 1} in the
proof of Theorem 23 as discussed in the next example. If Pm,r(j) is a singleton one speaks of an
identity of Ramanujan-type and of Kolberg-type, otherwise.

• The output

(11.2) t =

(

q2; q2
)

∞

(

q5; q5
)5

∞

q(q; q)∞ (q10; q10)
5
∞

, AB = {1}, and {pg(t) : g ∈ AB} = {25t2}

presents a solution to the following task: find a modular function t ∈M(Γ0(N)) and polynomials
pg(t) such that

(11.3) f1(q)
∞
∑

n=0

A(5n+ 4)qn =
∑

g∈AB

pg(t) · g.

In general, the elements of the finite set AB constitute a ❈[t]-module basis of M(Γ0(N)), resp.
of a large subspace of M(Γ0(N)). The elements g of AB are ❈-linear combinations of modular
functions in M(Γ0(N)) which are representable in q-product form such as f1(q) and t. In the
specific case under consideration, the program delivers (11.2), which means, p1(t) = p(t) = 25t2

and

f1(q)

∞
∑

n=0

A(5n+ 4)qn = 25t2 · 1.

Multiplying both sides by 1/f1(q) completes the algorithmic derivation and proof of (11.1). □

Next we revisit Theorem 23 for the case k = 4 of cubic partitions (7.5),

1

(q; q)∞(q4; q4)∞
=

∞
∑

n=0

b(n)qn,

which is a statement of Kolberg-type,

(11.4) f ·

∞
∑

n=0

b(2n)qn ·
∞
∑

n=0

b(2n+ 1)qn = −2 + t,
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where f and t are as in (10.22). Recall, Kolberg-type simply means that running the RaduRK
package leads to a set Pm,r(j) containing more than one element. This is seen in the output of
the corresponding procedure call where we choose m = 2 and j = 0,

In[25]:= RK[16, 4,{−1, 0,−1}, 2, 0]

Proof of Theorem 23. The procedure call as in In[25] produces the Ramanujan-Kolberg type
identity (11.4) in the following format:

Out[25] =

N : 16
{M, (rδ)δ|M}: {4, (−1, 0,−1)}

m: 2
Pm,r(j): {0, 1}
f1(q) : f as in (10.22)
t: t as in (10.22)

AB: {1}
{pg(t): g ∈AB} {−2 + t}
Common Factor: None

□

Remark. This time the output relation involves modular functions in M(Γ0(N)) with N = 16.
But now, according to the output Pm,r(j) = {0, 1}, the witness identity involves a product of
generating functions,

f1(q)
∏

k∈Pm,r(j)

∞
∑

n=0

PDN1(2n+ k)qn = f1(q)
∞
∑

n=0

PDN1(2n)qn
∞
∑

n=0

PDN1(2n+ 1)qn = −2 + t,

Identities involving products in this form were first studied in systematic manner by Kolberg [20].
The entry “Common Factor” in the last output line refers to a possible common factor of all the
integer coefficients of −2 + t. Here this common factor is trivial (= 1), which is indicated by
“None.”

As a last explicit Ramanujan-Kolberg example we present the RaduRK derivation and proof of
Theorem 25 which is obtained with the procedure call

In[26]:= RK[20, 4,{−1, 0,−1}, 5, 0]

Proof of Theorem 25. The procedure call as in In[26] produces:

Out[26] =

N : 20
{M, (rδ)δ|M}: {4, (−1, 0,−1)}

m: 5
Pm,r(j): {0}
f1(q) : f as in Thm. 25
t: t as in Thm. 25

AB: {1, s− t} with s, t as in Thm. 25
{pg(t): g ∈AB} {p1(t), p2(t)} as in Thm. 25
Common Factor: None

According to (11.3) this output means that

f1(q)

∞
∑

n=0

b(5n)qn =
∑

g∈AB

pg(t) · g = p1(t) · 1 + p2(t) · (s− t),

which is (10.26). □

Proof of Theorem 26. The algorithmic derivation and proof of (10.30) works exactly as in the
proof of (10.26); it is done with the procedure call

In[27]:= RK[20, 4, {−13, 32,−13}, 5, 4]
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□

11.2. Algorithmic proofs of Theorems 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17. In this
subsection we provide short descriptions of algorithmic derivations and proofs of our results related
to the partition generating functions S(q) and T (q) which were defined in (9.2) and (9.7) as

S(q) =

∞
∑

k=0

s(k)qk :=
(q2; q2)∞
(q; q)3∞

and T (q) =

∞
∑

k=0

t(k)qk :=
1

S(q)
.

Proof of Theorem 8. The procedure call

In[28]:= RK[16, 2, {−3, 1}, 2, 0]

produces the following output:

Out[28] =

N : 16
{M, (rδ)δ|M}: {2, (−3, 1)}

m: 2
Pm,r(j): {0, 1}

f1(q) :
(q;q)13∞(q8;q8)

6

∞

q3(q4;q4)∞(q2;q2)6∞(q16;q16)8∞

t:
(q8;q8)

∞
(q2;q2)

5

∞

q(q;q)2∞(q4;q4)2∞(q16;q16)2∞

AB: {1}
{pg(t): g ∈AB} {−32 + 32t− 14t2 + 3t3}
Common Factor: None

This means that

f1(q)

∞
∑

n=0

s(2n)qn ·
∞
∑

n=0

s(2n+ 1)qn =
∑

g∈AB

pg(t) · g = (−32 + 32t− 14t2 + 3t3) · 1.

Observing that

−32 + 32t− 14t2 + 3t3 ≡ t3 (mod 2),

Theorem 8 follows:

1

f1(q)
t3 =

q3
(

q4; q4
)

∞

(

q2; q2
)6

∞

(

q16; q16
)8

∞

(q; q)13∞ (q8; q8)
6
∞

(

q8; q8
)3

∞

(

q2; q2
)15

∞

q3(q; q)6∞ (q4; q4)
6
∞ (q16; q16)

6
∞

≡
(q; q)

4
∞ (q; q)

12
∞ (q ; q)

128
∞

(q; q)13∞ (q; q)
48
∞

(q; q)
24
∞ (q; q)

30
∞

(q; q)6∞ (q; q)
24
∞ (q ; q)

96
∞

(mod 2)

≡ (q; q)11∞ (mod 2).

□

Proof of Theorem 9. The proof of Theorem 9 works the same as the proof of Theorem 8. Hence
we restrict to state the corresponding input line whose output is explicitly stated in the proof of
Theorem 10,

In[29]:= RK[18, 2,−3, 1, 3, 0]

□

Proof of Theorem 10. We start with the procedure call which is the same as for the proof of
Theorem 9,

In[30]:= RK[18, 2,−3, 1, 3, 0]
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We obtain as output:

Out[30] =

N : 18
{M, (rδ)δ|M}: {2, (−3, 1)}

m: 3
Pm,r(j): {0, 2, 1}

f1(q) :
(q;q)30∞(q6;q6)

11

∞
(q9;q9)

12

∞

q11(q2;q2)10∞(q3;q3)13∞(q18;q18)24∞

t:
(q6;q6)

∞
(q9;q9)

3

∞

q(q3;q3)∞(q18;q18)3∞

AB: {1}
{pg(t): g ∈AB} {p1(t)}
Common Factor: None

where

p1(t) = 1024t+ 1536t2 + 1152t3 + 4224t4 + 2880t5 + 3168t6 + 2784t7 + 2016t8

+ 1206t9 + 313t10 + 24t11

≡ t(1 + t)9 (mod 3).

Applying the algorithm described in [4, Thm 10.3], which converts power series into product form,
to the term

q(1 + t) = 1 + q + q3 + q6 − q9 − q12 + q18 + 2q21 − 2q27 − 3q30 − q33 + . . . ,

gives

(11.5) q(1 + t) =

(

q9; q9
)

∞

(

q2; q2
)2

∞

(q; q)∞ (q18; q18)
2
∞

.

Hence we obtain
∞
∑

n=0

s(3n)qn ·

∞
∑

n=0

s(3n+ 1)qn ·

∞
∑

n=0

s(3n+ 2)qn =
1

f1(q)

∑

g∈AB

pg(t) · g =
1

f1(q)
· p1(t)

≡
q11

(

q2; q2
)10

∞

(

q3; q3
)13

∞

(

q18; q18
)24

∞

(q; q)30∞ (q6; q6)
11
∞ (q9; q9)

12
∞

·
t

q9
·
(

q(1 + t)
)9

(mod 3)

≡
q
(

q2; q2
)10

∞
(q; q)

39
∞

(

q2; q2
)216

∞

(q; q)30∞ (q2; q2)
33
∞ (q; q)

108
∞

·

(

q2; q2
)3

∞
(q; q)

27
∞

(q; q)
3
∞ (q2; q2)

27
∞

·
(q; q)

81
∞

(

q2; q2
)18

∞

(q; q)9∞ (q2; q2)
162
∞

(mod 3)

≡ q
(q2; q2)25∞
(q; q)3∞

(mod 3).

This completes the proof of Theorem 10. □

Proof of Theorem 11. The proof of Theorem 11 works as the proof of Theorem 8. Hence we
restrict to state the corresponding procedure call,

In[31]:= RK[10, 2, {−3, 1}, 5, 4]

□

Proof of Theorem 12. All the constituents of Theorem 12 are computed with the procedure call,

In[32]:= RK[10, 2, {3,−1}, 5, 1]

□

Proof of Theorem 13. The procedure call,

In[33]:= RK[10, 2, {3,−1}, 5, 3]



MACMAHON’S PARTITION ANALYSIS XV: PARITY 27

delivers as output:

Out[33] =

N : 10
{M, (rδ)δ|M}: {2, (3,−1)}

m: 5
Pm,r(j): {3, 4}

f1(q) :
(q2;q2)

2

∞
(q5;q5)

4

∞

q(q;q)2∞(q10;q10)8∞

t:
(q2;q2)

∞
(q5;q5)

5

∞

q(q;q)∞(q10;q10)5∞

AB: {1}
{pg(t): g ∈AB} {4t}
Common Factor: 4

These data constitute all the ingredients of Theorem 13. □

Proof of Theorem 14. The procedure call,

In[34]:= RK[10, 10, {1,−1, 1, 3}, 5, 4]

delivers as output:

Out[34] =

N : 10
{M, (rδ)δ|M}: {10, (1,−1, 1, 3)}

m: 5
Pm,r(j): {4}

f1(q) :
(q2;q2)

2

∞
(q5;q5)

6

∞

q(q;q)4∞(q10;q10)8∞

t:
(q2;q2)

∞
(q5;q5)

5

∞

q(q;q)∞(q10;q10)5∞

AB: {1}
{pg(t): g ∈AB} {t}
Common Factor: None

These data constitute all the ingredients of Theorem 14. □

Proof of Theorem 15. The procedure call,

In[35]:= RK[10, 2, {3,−1}, 5, 0]

delivers as output:

Out[35] =

N : 10
{M, (rδ)δ|M}: {2, (3,−1)}

m: 5
Pm,r(j): {0, 2}

f1(q) :
(q2;q2)

2

∞
(q5;q5)

4

∞

q2(q;q)2∞(q10;q10)8∞

t:
(q2;q2)

∞
(q5;q5)

5

∞

q(q;q)∞(q10;q10)5∞

AB: {1}
{pg(t): g ∈AB} {t2}
Common Factor: None

These data constitute all the ingredients of Theorem 15. □

Proof of Theorem 16. The procedure call,

In[36]:= RK[14, 2, {3,−1}, 7, 2]
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delivers as output:

Out[36] =

N : 14
{M, (rδ)δ|M}: {2, (3,−1)}

m: 7
Pm,r(j): {2}

f1(q) :
(q2;q2)

∞
(q7;q7)

4

∞

q2(q;q)∞(q14;q14)6∞

t:
(q2;q2)

∞
(q7;q7)

7

∞

q2(q;q)∞(q14;q14)7∞

AB:
{

1,
(q2;q2)

8

∞
(q7;q7)

4

∞

q3(q;q)4∞(q14;q14)8∞
− 4t

}

{pg(t): g ∈AB} {t, 0}
Common Factor: None

This means that

f1(q)

∞
∑

n=0

t(7n+ 2)qn =
∑

g∈AB

pg(t) · g = t · 1 + 0 ·
(

(

q2; q2
)8

∞

(

q7; q7
)4

∞

q3(q; q)4∞ (q14; q14)
8
∞

− 4t
)

= t,

and dividing by 1/f1(q) completes the proof of Theorem 16. □

Proof of Theorem 17. The procedure call,

In[37]:= RK[14, 2, {3,−1}, 7, 0]

delivers as output:

Out[37] =

N : 14
{M, (rδ)δ|M}: {2, (3,−1)}

m: 7
Pm,r(j): {0, 1, 5}

f1(q) :
(q2;q2)

3

∞
(q7;q7)

12

∞

q6(q;q)3∞(q14;q14)18∞

t:
(q2;q2)

∞
(q7;q7)

7

∞

q2(q;q)∞(q14;q14)7∞

AB:
{

1,
(q2;q2)

8

∞
(q7;q7)

4

∞

q3(q;q)4∞(q14;q14)8∞
− 4t

}

{pg(t): g ∈AB} {−8t+ 24t2 + 3t3, 8t}
Common Factor: None

This means that

f1(q)

∞
∑

n=0

t(7n+ 2)qn =
∑

g∈AB

pg(t) · g

= (−8t+ 24t2 + 3t3) · 1 + 8t ·
(

(

q2; q2
)8

∞

(

q7; q7
)4

∞

q3(q; q)4∞ (q14; q14)
8
∞

− 4t
)

≡ −t3 (mod 4)

and dividing by 1/f1(q) completes the proof of Theorem 17. □

11.3. Algorithmic proofs of Theorems 18, 19, 20, and 21. In this subsection we provide
short descriptions of algorithmic derivations and proofs of our results related to the partition
generating function of cubic partitions (10.1),

1

(q; q)∞(q2; q2)∞
=

∞
∑

n=0

a(n)qn.
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Proof of Theorem 18. The procedure call,

In[38]:= RK[16, 2, {−1,−1}, 2, 0]

delivers as output:

Out[38] =

N : 16
{M, (rδ)δ|M}: {2, (−1,−1)}

m: 2
Pm,r(j): {0, 1}

f1(q) :
(q;q)7∞(q8;q8)

4

∞

q(q4;q4)∞(q2;q2)2∞(q16;q16)4∞

t:
(q8;q8)

∞
(q2;q2)

5

∞

q(q;q)2∞(q4;q4)2∞(q16;q16)2∞

AB: {1}
{pg(t): g ∈AB} {−2 + t}
Common Factor: None

Applying the algorithm described in [4, Thm 10.3], which converts power series into product form,
to the term

q(−2 + t) = 1 + 2q4 − q8 − 2q12 + 3q16 + 2q20 − 4q24 − 4q28 + 5q32 + . . . ,

gives

q(−2 + t) =

(

q8; q8
)6

∞

(q4; q4)
2
∞ (q16; q16)

4
∞

.

Hence we obtain

f1(q)

∞
∑

n=0

a(2n)qn ·

∞
∑

n=0

a(2n+ 1)qn =
∑

g∈AB

pg(t) · g =

(

q8; q8
)6

∞

q (q4; q4)
2
∞ (q16; q16)

4
∞

,

and dividing by 1/f1(q) completes the proof of Theorem 18. □

Proof of Theorem 19. The derivation and proof of Theorem 19 is obtained with the procedure
call

In[39]:= RK[6, 2, {−1,−1}, 3, 2]]

which produces f and t as in (10.5). □

Proof of Theorem 20. The derivation and proof of Theorem 20 is obtained with the procedure
call

In[40]:= RK[6, 6, {−4,−4, 3, 3}, 3, 2]

which produces f and t as in (10.9) and p as in (10.10). □

Proof of Theorem 21. The derivation and proof of Theorem 21 is obtained with the procedure
call

In[41]:= RK[10, 2, {−1,−1}, 5, 2]

which produces f and t as in (10.13) and p as in (10.14). □

12. Conclusion

Apart from applying the Schmidt process in various ways, the major key idea in our article
is to combine MacMahon’s partition analysis with parity coded by the functions χ(n) and ψ(n);
see (2.2) and (5.2), respectively. To exploit this idea further, we are planning to integrate such
kind of functions into the Omega package. For instance, it would be convenient to deal with
expressions such as (5.6) in the same way as the Omega procedure call OSum does in Example 4;
see In[16] and Out[16].

Another major objective of our article is to show the huge potential of Radu’s Ramanujan-
Kolberg algorithm. Equipped with Smoot’s implementation in the form of the Mathematica
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package RaduRK, without trying to be exhaustive we derived a variety of results presented in the
Sections 9 and 10. All of these identities are related to the combinatorics and to the partition
analysis presented in the first part of our article. On this and similar combinatorial ground we
expect that many more identities and arithmetic congruences are waiting for being discovered.

On the other hand, as already mentioned, the s(k) defined by (9.2) at least at the first glance
do not seem to satisfy simple congruences involving small primes, in contrast to the related d(k)
and PDN1(k).
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