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Abstract

The unpolarized and polarized massive operator matrix elements Ag’; and AAS; contain

first—order factorizable and non—first—order factorizable contributions in the determining
difference or differential equations of their master integrals. We compute their first—order
factorizable contributions in the single heavy mass case for all contributing Feynman di-
agrams. Moreover, we present the complete color—( factors for the cases in which also
non—first—order factorizable contributions emerge in the master integrals, but cancel in the
final result as found by using the method of arbitrary high Mellin moments. Individual
contributions depend also on generalized harmonic sums and on nested finite binomial and
inverse binomial sums in Mellin N—space, and correspondingly, on Kummer—Poincaré and
square-root valued alphabets in Bjorken—z space. We present a complete discussion of the
possibilities of solving the present problem in N—space analytically and we also discuss the
limitations in the present case to analytically continue the given N—space expressions to
N € C by strict methods. The representation through generating functions allows a well
synchronized representation of the first—order factorizable results over a 17-letter alphabet.
We finally obtain representations in terms of iterated integrals over the corresponding al-
phabet in x—space, also containing up to weight w = 5 special constants, which can be ratio-
nalized to Kummer—Poincaré iterated integrals at special arguments. The analytic x—space
representation requires separate analyses for the intervals = € [0,1/4],[1/4,1/2],[1/2,1]
and z > 1. We also derive the small and large x limits of the first—order factorizable con-
tributions. Furthermore, we perform comparisons to a number of known Mellin moments,
calculated by a different method for the corresponding subset of Feynman diagrams, and
an independent high—precision numerical solution of the problems.



1 Introduction

Precision data on deep—inelastic scattering structure functions allow precision measurements of
the strong coupling constant as(Q?) = a,(Q?)/(47) [1-4], the extraction of the parton distribu-
tion functions (PDFs), cf. e.g. [5,6], and the measurement of the charm quark mass m.. [7]. To
suppress higher twist effects [8-10] one chooses Q%2 25GeV?, which is also the asymptotic region
for the charm contribution to the structure function Fy(z,@?) [11]. Besides the detailed knowl-
edge of the evolution of the PDFs in Quantum Chromodynamics (QCD) [12-34] one needs the
massless [14,32] and massive Wilson coefficients in the single-mass [17-19,35-39] and two—mass
cases [40-44] to three-loop order for neutral current interactions.

While many of the contributing massive operator matrix elements (OMEs) have been cal-
culated both in the unpolarized and polarized case [15-19,29, 31, 32, 35-45], the constant part
to the unrenormalized OMEs AS; and AAS’;, denoted by ag’; and Aag’;, are still missing. All
logarithmic contributions are known, however, [35,37]. Furthermore, the massive OMEs provide
the transition matrix elements in the variable—flavor number scheme in the single-mass [46] and
the two-mass case [40]. The transitions of heavy flavors becoming light to two—loop order were
studied in Refs. [47,48], also including two—mass effects.

The OMEs can be expressed in terms of a basis of Feynman integrals called master integrals.
These master integrals fulfill systems of first—order differential equations. Equivalently, one can
uncouple these to scalar linear higher—order differential operators. One important question,
for example to classify which function spaces occur in the solutions, is whether the differential
operators can be factorized into first-order factors. In the following we call those parts of
the final result which are determined by master integrals that fulfill first—order factorizable
differential equations first-order factorizable contributions and the remaining part non—first—
order factorizable contributions.

In this paper we present all first-order factorizable contributions (also called d’Alembertian
solutions) for the Feynman diagrams contributing to aS; and Aag’;. We compute the polarized
OMEs in the Larin scheme [49].! The results for the complete OMEs in Mellin N-space can
also be subdivided according to color factors and ( values, which are multiplied by functions
that evaluate to rational numbers for fixed values of N. These rational numbers fulfill recurrence
relations that can be determined by using the method of arbitrarily high Mellin moments [51]. In
this way, we find solutions to complete color—( factors, even in some cases where non—first—order
factorizable master integrals emerge, since their contributions cancel in the final result. Out of
25 color—( values, 10 remain to be computed and we will deal with their first—order factorizable
terms here for all contributing diagrams. The remaining terms, containing also non—first—order
factorizable contributions, are the subject of a forthcoming paper [52], since the algorithms to
compute them are rather different from the ones of the present paper.

Furthermore, we also present the solutions in Mellin N—-space we have obtained for the
complete project. In a series of color—( terms with non—first—order factorizable contributions
we computed closed form difference equations at very high degree and order. These define
recurrent functions which may be used for shift relations of the analytic continuations from
N € N to N € C within the analyticity region of the problems. Moreover, one may calculate
the asymptotic solutions of difference equations of this kind and of individual building blocks
also in the first—order factorizable case, such as generalized harmonic sums [53] and nested finite
binomial sums [54]. These serve as numeric initial conditions for the shift relations in N € C.

1To describe the scale dependence of the polarized structure function g; (x, Q?), the Wilson coefficients have to
be computed in the same scheme [32] and one needs to refer to parton distributions in this scheme, the evolution
of which is ruled by the anomalous dimensions in the Larin scheme [20,31]. For the non-singlet case see Ref. [50].



The asymptotic expansions for harmonic sums [55,56] were derived in Refs. [57,58]. Besides the
results in the first—order factorizable case, we will also present details of the technologies used
in the present calculation.

The paper is organized as follows. In Section 2 we present the basic computation steps to
obtain the results in Mellin N-space. A subset of Feynman diagrams turns out to be given in
terms of master integrals which are first-order factorizable and therefore lead to product—sum
representations using the algorithms of Refs. [59-72] implemented in the package Sigma [73,74].
As we mentioned above, it is also possible to compute a series of complete color—( values, even
though their master integrals may contain non-first-order factorizable contributions, as long as
these contributions cancel in the determining recurrence, which then turns out to be first-order
factorizable. In Section 3 we present these contributions to ag’;(N ) and AGS;(N ), except for
irreducible diagrams resulting in purely rational and (3 terms. The structure of the first—order
factorizable contributions to Feynman diagrams contributing to the purely rational and (3 terms
in N—space is discussed in Section 4. Here we also consider the principal structure of high
moments to all contributions. In Section 5 we compute the t—space representation of the first—
order factorizable contributions of the OMEs from the associated set of differential equations to
the required depth in the dimensional parameter ¢ = D — 4. Here t € R denotes a resummation
variable, cf. Eq. (2.1). From this representation we perform the analytic continuation to x—
space. The final expressions are given by G—functions, see Eq. (2.3), over root—valued alphabets
and corresponding G—constants at special values x = 3. The contributing G—functions of x
over the root—valued alphabet can be rationalized and mapped to Kummer—Poincaré iterated
integrals [75-81], at the expense of a root—valued main argument. We expand the G—functions
of x into series around x = 0,1/2 and 1 and give precise numerical representations for the G—
functions at special values of xy. The letters of the latter quantities can be rationalized.? In
Section 6 we perform the expansions around x = 0 and x = 1 for the first—order factorizable
terms to determine their contributions to the most singular terms of ag’; and A@g’;. This requires
the calculation of a series of G—functions, Eq. (2.3), with root valued letters at = 1. We also
investigate color rescaling relations. In Section 7 we present numerical results, and Section 8
contains the conclusions. In the Appendices A-D we summarize a series of technical aspects,
such as the asymptotic expansions of contributing generalized harmonic sums, of characteristic
aspects of nested (inverse) binomial sums and their asymptotic expansion, the calculation of
special G—constants, and the analytic continuation to N—space.

2 The main steps of the calculation

The Feynman diagrams of the OMEs (A)Ag’; are generated by QGRAF [82] using the Feynman
rules of Refs. [83,84]. The Lorentz- and Dirac algebra has been performed with Form [85,86], the
color algebra by using color [87], and the integration by parts reduction [88-93] by using the
package Reduze 2 [94,95]. The diagrams have been calculated in Mellin N—space using different
techniques which are described in Refs. [96,97] for the first-order—factorizable contributions.
These included summation technologies based on difference ring theory [59-72], encoded in the
package Sigma [73,74], the solution of differential equations [98,99] and using SolveDE of the
package HarmonicSums [53-57,100-112] as well as the differential equation solver for first—order
factorizable systems of Ref. [99]. Differential equations are decoupled using the package OreSys
[113-115]. Finally, we applied also the multiple Almkvist—Zeilberger algorithm [116, 117] as
implemented in the package MultilIntegrate [118]. We thus obtain first a representation in

2We will also say that the corresponding G—functions are rationalized.



N-space for all first—order factorizable contributions.

One may even envisage the complete solution of the problem in N—space. Here the first step is
to obtain closed form difference equations for all color—( values by using the method of arbitrary
high Mellin moments [51] and guessing algorithms [119,120] implemented in Sage [121,122]. For
the color factors C%’ ATr and CpC4TF this task is very demanding in terms of computer time
and requires an amount of moments far beyond 15000, which is the level currently obtained for
other color factors in the unpolarized case. In the polarized case we computed 11000 moments.
At present it is only possible to solve those color—( contributions which are related to first—order
factorizable difference equations. Solving them leads to nested product—sum representations.
Even though individual Feynman diagrams may contain master integrals that fulfill non—first—
order factorizable differential equations, in some cases it is still possible to solve the corresponding
color—( contribution if the non—first—order factorizable terms cancel in the sum over all Feynman
diagrams.

Because of the fact that we cannot easily solve some of the large difference equations, which
will also apply to the yet missing ones, we have chosen a different strategy in the cases of
non—first—order factorizable difference equations by referring to x—space directly. The N—space
expressions are first resummed into the t—space representations [123,124] by

F@):ii#WmNL“mhteR. (2.1)

N=1

Likewise, we can do this also for the master integrals directly and express the first—order factor-
izable master integrals as functions of ¢. This covers 1009 of the total 1233 Feynman diagrams
which contain only first-order factorizable master integrals. We obtain the corresponding z—
space representation F(z) from F(t) using the method described in Ref. [125] by computing the
discontinuity of F'(1/x),

F@)_—ELDﬁ%F(l). (2.2)

iy’ i

This leads to G—functions, which are defined by

— —

G({fi(r). ()} 2) = / Cdyh (1) CUF)} ). (2.3)

0

Here the letters f; belong to an associated alphabet 2 of length m,

A= {filz)}Z, - (2.4)

In general some of the letters are given by higher transcendental functions. Both the G—functions
in t—and z—space have to have representations as Riemann integrals individually, which requires
to remove singularities if they are present in some letters. In the course of the calculation
different constants will emerge as G—functions, (2.3), evaluated at a series of special values of
z € [0,1]. All G-functions of x and the constants shall be further reduced algebraically at the
end of the calculation and, if possible, simplified to known special functions, using algorithms
of the package HarmonicSums. As it turns out later, it will also be useful to apply the t—space
representation to the nested binomial sum contributions.
The results in N— and in z—space are related by a Mellin transform [126-130)]

Mf(2)](N) = / dreV 1 (2). (2.5)
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In the following we will present the results in Mellin N—space. The unrenormalized OME AQg
has the following structure [84] both in the unpolarized and polarized cases®

A ) > A 12
Ag, <m—2,as,g,N) = Y aAl) <m—25N) (2.6)
K =1 H
A mQ e/2 2 (0)
Ay = <F> /ngg + Al + g + T | +O(), (2.7)
s~ 2
i _ (N Ly ey (1) 2
Ay = <F> L_? Qo2 T ZC0u () t Qo) T Eue) | TOE), (28)
- n2\se/2[ 1 1 1
@ _ (M (-3) (-2) -1 ., @
Agy = (F) [8_30Qg,(3)+_2Q ® T Qs T | T O(E), (29)

with 7 the unrenormalized mass, G, = §2/(167?) the unrenormalized strong coupling constant
and p the renormalization and factorization scale. The renormalization of the OMEs proceeds in
four steps, cf. [84]: the renormalization of the heavy quark mass, of the strong coupling [131-147],
of the local composite operators, and the subtraction of the collinear singularities due to massless
sub-graphs [84].

3 First-order factorizable recurrences for complete color-{ con-
tributions

In the following we will consider the constant parts of the unrenormalized unpolarized and
polarized OMEs, a(3) (V) and Aag’;(]\f ). The additional contributions resulting from lower—order
terms due to renormahzation were given in Refs. [36,37].

The calculation of 2000 Mellin moments has been sufficient to determine all color-¢ contribu-
tions to CLS;(N ) and AaSé(N ) obeying first—order—factorizable recurrences by using the methods
of Refs. [51,119,120] for generating the recurrences and the methods of Refs. [59-72] for comput-
ing the closed form solutions. These are all contributions oc Ng, with Nz the number of massless
flavors,* and all other terms except the purely rational ones and those o (3 of O(Tr) and O(T?)
of the irreducible Feynman diagrams, which contain o F; terms [125,148] in z—space. This im-
plies that their recurrences are not first—order factorizable. Here we include also the reducible
contributions®, which leads to a part of the rational and (3 terms. In the unpolarized case also
the Feynman dlagrarns with external Faddeev—Popov ghosts [149] contribute to the first—order
factorizable terms. The yet missing part concerns only irreducible Feynman diagrams.

For the color-( structures which can be obtained fully in closed form, we obtain

1
agy = 1+ (D]

X{CF{CATF

3In the polarized case the symbol A is put in front of the respective coefficient. Structurally the relations are
the same as those of (2.7-2.9).

4A direct computation of the Ny terms in the unpolarized case using summation methods has been performed
before in [15].

SThese are self-energy insertions on external lines of the Feynman diagrams.

852¢, Pr3 B 288(3 Puy
3(N - )N2(1+ N)2(2+ N2 5(N — 1)N2(1 + N)2(2 + N)2




C2P25 o 451C2P29
I8(N —1)N3(1+ N)3(2+ N)?  9(N —1)N3(1+ N)3(2+ N)?
32P, 125:C P
(N —1)N2(14+ N)2(2+ N)? (N—-1)N(1+N)(2+N)

[_8(1 +3N +3N?)(,

+

+ 32p0) S, o

+Bs4 ag

+1651¢2 | S_o + (325} — 853 — 85 3+ 165 _51)C

N+ N)

288

20 P
——51C2 CoPsy

9N —1)N4(1+ N)4(2+ N)?
. 1653P24 4 2(N - 2)C2P30
SL(N —1)N3(1+ NB2+ N2 9N — N (1 + N)4(2 + N)3
852P33 + P37
27(N — 1)N4(1+ N)4(2+ N)3 " 243(N — 1)NS(1 + N)5(2 + N)5
56(3 Py 256 128 224(; 64
" 9(N —1)N2(1+ N)2(2+ N) [ or T g T ]S”L[ 9

3252P;

T2
T 8IN2(1+ N)2(2+ N)

+ Np |-

_|_

+Py 27 9 9

ST — —S4

27 9 52 54_ _831 _5211

166
3

128 128 256 ]
16Py5 32(24 + 83N + 49N? + 10N?) S,

* T 243N2(1+ N)3(2+ N) * 27N2(1+ N)(2+ N)

16(12 + 28N + 11N? +5N3)(, 32(24 4 83N + 49N? + 10N?) S}
IN2(1+ N)(2+ N) ! 8IN2(1+ N)(2+ N)

3N2(1+ N)(2+ N)

128( =2 — 3N + N?)Sy1 |  80(6+ 11N +4N?+ N?)S1(
IN2(1+ N)(2+ N) 9

40
+ply) [—35’%(2

) 144(N — 2)(3 + N)(2P,
85262 } * CATF{ 5(N —1)N2(1+ N)2(2 + N)2
B 48%C2P18 + 431C2P31
3(N=1)N2(1+ N)2(2+ N)2 ' 9(N —1)2N3(1+ N)3(2+ N)?
202 P35 4P7
_ —16p©
N 1IN NI N B (N —1)N2(1 4+ N)2(2 + N)? 0Pa Sl]
4855 P 2882
(0) i 262148 . 2
oy | TSN SN+ M Ny |t ]Sl
8C2P9 3
S E NG T TV 485,y | S_y + (—165% — 895 — 8S_g
4C2P28
F165-21)6, } + Cal 9N —1)N3(1+N3B(2+N)?
AN |- 648271P4 _ 1608_3P5 _ 165’%P1()
PIT2TN(T+ N)2(2+ N)2 2TN(1+ N)2(2+ N)2  8IN(1 + N)2(2+ N)?




64572’1P16 8S%P20

N DN (I + NP2+ NE T RIN(I+ NP2 1 N)?
325, Py 855 Pag

TRIN DN+ NP2 N2 RN DNl + NP2+ NP
4(o Py 836

9N —1)N3(1+ N)3(2+ N)3  243(N — 1)N5(1 + N)3(2 + N)5

1888 224 224 160 176 16
_’_pg(;) [[ —SQ 1 — 648_2 1 — —C3] Sl _5_35'1 [_32 CQ] 5,2

27 3

80 640 64(—1 + 2N)S; 160 32
54 — S5+ —Si+ |- 3257 + —Ss+ (| S-
+27 9 5 T g 4 [ (N—1)N + 1+ 3 2+3C2 2
352, 32 64(—142N)S_5; 128 160 416
+—5 51— 58 == 3 Sp— 58— 8
g ~31 + (N—1)N 3 2,2 1 2,1,1
16 448(1+ N + N?)¢3 16¢2 P

+645_911 + gszCz +

9(N —1)N(1+ N)(2+ N) [_ IN(1+ N)2(2+ N)2

_ 16SQP11 16P32
TN+ NEQ2+ N2 T 243(N — )N (1 + N)'(2 + V)

+ . 6451(N)P16 + 32P21 S
9(N —1)N2(1+ N)2(2+ N)? ' 8IN(L+N)3(2+N)3 |~ 2
40 80 160(4—N+N2+4N3+N4)51§2
) — g2 —S —5_
TPag | 30162+ g St ON(L+ N2(2+ N)2
) 16B4(N — 1)( — 24 3N + 3N?) 452(,Ps
+CTr | — +
N2(14 N)? N2(1+ N)?2(2+ N)
8512 Prg ColPas 0) 16¢,
—2 13251(y| S,
TN L NP N) TN N2 N P || TN Ny O
8(2 + 3N + 3N?) Sy
—16S53¢, — ( NOT N ) 5262 + (325195 + 1655 + 165_3 — 325_51)C
4N = 1)( =2+ 3N +3N?)F | 64 ) s
5N2(1 T N)2 — 3 qg TFC3 + O(rat) + O(Cg) (31)
with the polynomials P;

P, = N*4+2N%® -3N? 4N —4, (3.2)
P, = 3N*4+6N>4+TN?+4N +4, (3.3)
Py = 3N* 4 14N® 4 43N? + 48N + 20, (3.4)
Py = 5N* 4+ 11N? 4+ 50N? + 85N + 20, (3.5)
Py = 5N*+4 14N? + 53N? + 82N + 20, (3.6)
P; = 5N*+20N? +59N? + 76N + 20, (3.7)
P, = 10N* + 185N? + 789N? + 521N + 141, (3.8)
Py = 11N*+22N? — 59N? — 70N — 48, (3.9)
Py 11N* 4+ 22N% — 47TN? — 58N — 36, (3.10)
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—377441N° — 1484940N® — 1459136 N7 — 806374 NS — 465872N° — 281016 N*
—22912N% 4 33504 N? + 18432N + 3456, (3.37)
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and
N2 4+ N+2
p® = (3.39)

N(N +1)(N+2)

The above expressions can all be represented in terms of nested harmonic sums [55, 56]

Sha(N) = (Sig]?#)ksa(k), So=1, ba €7Z\{0}, (3.40)

for which we use the shorthand notation Sz(N) = Sz. The constant B, is given by

2 13 1
and
00 .’L’k
Li,(z) = —, |z < 1. 3.42
W= K (3.42)

The constants (,, n > 2, denote the Riemann ¢ [126,150] function evaluated at integer argument
n?

Cn = kz % (3.43)
=1

The SU(N.) color factors are given by Cy = N,,Cr = (N? —1)/(2N,), Tr = 1/2, with N, = 3
for QCD.

The contribution to the constant part® Aag’;(]\f ) of the polarized three-loop OME AAS; in
the Larin scheme is given by

1 855Q18 1653012
Ad) = Z[1 = (~1)N T2|N 2 -
agy = 311 = (=1) ]{CF F F[27N4(1+N)4(2+N) SIN3(1+ NP2+ N)
n Q20 N 32(10N® +49N? 4+ 19N — 24) S, 16Q5
243N6(1 + N)5(2 + N) 27N2(1+ N)(2+ N)  243N%(1 4 N)2(2 + N)
256 128 32(651 4 442N + 175N? + 10N®) 64
_ A g, — Z2E Ap0) — —“Ap® 2
o7 NPag s T3 BPag B2 |5 SINZ(1+ N)2 1 N) g BPag B2 | 51

32( — 24 + 19N + 49N? + 10N?) 5% 32 128 128 256
ApO| —=8) — =57 — —55, + =8
SIN2(1+ N)(2 + N) TPy | Topr T g2 T Tyos T g

6Here the same conditions as for Eq. (3.1) apply.
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8(2+ 3N + 3N?) S,

. 144Ap%) (— 2+ 3N + 3N?)

16
N(l n N) + 1653 + <_M1—‘|‘]V) + 3281> S_o+16S5_5 — 325_271) (o

2 2
T
5N(1+ N) G| +CaTr

Bs (—36Ap§13>2(2 +N) - 16Apgg>sl)

2Qh7 4Qs 0 4(24 — 83N + 11N?) S}
+(9N4 )4+<9N3 3_32Ap¢(1g)52 Sl_

(1+N (1+N) 3N2(1+4 N)?
AApY) (— 48 + 11N + 11N?) S,
0) @3 a9 0 0
_16Ap((1g)51 - SN T ) _ 8Ap((19)53 _ SApég)S_g
8Apy (— 36+ 11N + 11N?) . ,
(— NI ) — 48ApPLYS) | S_a + 164D S 51 | G2
144( — 843N +3N?) 288 64
0 2 0)r3
A0y, ( SN+ N) ?Sl> ] 9 Apég)TF@} +O(at) + O(Gy), (3.44)

with the polynimials

Q1
Q2
OF
Q4
Qs
Qs
Q7
OF
Qo
Q10
Qll
Q12
@13
C214
Q15
Q16

Q17
Q18

Q19

@20

= 3N'4+6N3— N2 —4N + 12,
= 13N*4+23N3 4+ 4N? — 14N — 5,

(3.45)

(3.46)

= (3.47)
= 65N* + 364N° + 883N + 614N — 648, (3.48)
= 230N* — 1154N?* — 2405N? — 709N — 66, (3.49)
= 15N° +15N* — 103N® 4 33N? — 20N — 36, (3.50)
= 69N° 4+ 69N* — 55N + 51N? — 338N — 36, (3.51)
= 103N° + 103N* — 79N + 317TN? — 612N — 144, (3.52)
= 337N° +403N* — 541N® — 583N? — 300N + 108, (3.53)
= 491N® 4 2837N* + 6440N? + 10244N? + 10934 N + 1328, (3.54)
= 4N°® —201N° — 143N* + 246 N® — 1328 N* + 1368 N + 1296, (3.55)
(3.56)

(3.57)

(3.58)

(3.59)

= 45N°® + 135N° + 211N* + 101N? — 68N? + 384N + 216,

= 153N® +459N° + 527N* + 217N3 — 4AN? — 48N + 8,

= 333N°®+999N° + 805N* — 7TN3 — 14N? — 300N — 216,

= —261N" —522N% 4 3712N° 4 5362N* — 5623N? — 7144N? — 276 N

22N* + 183N3 + 1027N? + 2022N + 580,

29N® — 1005N° — 3859N* — 5139N? — 4486 N? — 2172N + 1944,

+144, (3.60)

= 69N" + 138N® — 667N° — 541N* + 952N3 — 1277N? + 990N + 432, (3.61)
= 57TN® + 376N + 1488N° + 1958 N° — 461N* — 510N® + 1676 N* — 1656 N

—1296, (3.62)

= 3597N'° 4+ 19335N? + 36218 N® + 27506 N” — 1294N® — 13534 N>

+12977N* — TN® — 4122N? — 8388 N — 3240, (3.63)

= 1577T7TN' + 76086 N + 111457N'° — 96922 N? — 540757N® — 841318N”

—810709N°% — 26710N? + 826216 N* + 92256 N3 — 345888 N? — 289440N
—77760 (3.64)
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and

N -1
Apl) = ——— 3.65
P = NN+ 1) (3:65)
The first moment of Aagg vanishes for the computed color—( contributions, as it does at first
[151] and second order [48,152]. At first order, this is even true for general values of m?/Q?
cf. [48,152].7 The available parts of aS’; and Aa(g’; are expressed in terms of the following set of
14 harmonic sums

{5—4; S—37 S—27 Sh 527 537 547 5—3,17 5—2,17 S—2,27 52,17 53,17 5—2,1,17 52,1,1}- (366)

Correspondingly, the following set of 21 harmonic polylogarithms [101] spans the expressions in
xr—space

{H—1, Ho, Hy,Ho —1,Ho1, Ho—1,—1, Ho—1,1, Ho,0,—1, Ho 0,1, Ho1,—1, Ho 1,1, Ho—1,—1,—1, Ho,—1,0,15
Ho0,—1,-1, Ho0,-1,1, Ho,0,0,-1, Ho,0,0,1, Ho01,-1, Ho 01,1, Ho1,1,1, Ho,0,0,0,1 } (3.67)

after algebraic reduction [102]. The harmonic polylogarithms are defined by

v 1 1 1
Hpa(x =/ dyfo(y)Ha(y), foly G{—,—,—}- 3.68
@)= [ whoH). Bl € {7 T (369)
The corresponding expressions in N— and z—space are given in ancillary files in computer readable
form.

4 The IN-space structure of the remaining diagrams

In the following we summarize the results we have obtained in Mellin N—space, both for the cases
of first-order factorizable and non—first—order factorizable recurrences. One possible strategy to
follow is to obtain closed form recursion relations for all color—( contributions and to perform an
analytic continuation to N € C. One has to derive the asymptotic expansion of these recurrences
and use their shift properties

N+1—N (4.1)

to reach any point in the analyticity region for N € C. It finally turns out that it is very
time—consuming to obtain the recurrences for the purely rational terms of O(7T%), while those of
O(T'r(3) still can be obtained on the basis of up to 15000 Mellin moments, see Table 3 below.
In the polarized case a maximal number of 11000 Mellin moments has been computed.
Analyzing the sequences of Mellin moments for the purely rational terms of the color factors
TrC%, TrC?, TrCrCy, TACr and TAC 4 one observes that these contributions to aS; and Aag’;

"For other OMEs and Wilson coefficients, as e.g. in the polarized non-singlet case, the first moment (cor-
responding to the polarized Bjorken sum rule) is not vanishing [153,154] and also obtains power corrections of

O((m?/Q*)*) [155].
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ci 200 1000 2000
CpT?2 | —589-107° | —2.14-107% | —1.65-107%
CuT?| —1.38-107% | —8.12-107% | —6.89-107%
C2Tp | 1.96-107°% | 9.83-1072% | 1.41-107°%

CrOaTr | 9.84-107% | 4.29-1072% | 5.93.1076%°
C%Tp | 291-107°% | 1.16-1072% | 1.59-107°%

Ac; 200 1000 2000
CpT?| —553-107° | —2.82-107% | —3.68-107%
CuT?| —1.06-107% | —4.48-107* | —5.57-10"%
C2Tr | —1.52-10757 | =3.51-10727 |  9.90 - 107°%

CrCuTp | —8.21-107°7 | —1.68-1072% | —1.19- 1077
C%Tp | 2.71-107°% | 2.61-1072* | 1.14-10757

Table 1: Relative approximation of the ratio of color factors, cf. Eq. (4.2), as a function of N =
200, 1000, 2000 for aS; and Aagg)]. The corresponding coefficients are ¢; and Ac;.

N agy;,sol,irr N Aag’; solirr

2 | —201.6595414
4| -1525.640364 3 | —847.6187716
6 | -1715.840721 5 | —1460.511965
10 | —1741.066914 9 | -1687.025772
100 | -966.5291789 99 | -969.8344024
200 | —737.1136471 | 199 | -738.5607476
1000 | —358.5858699 | 999 | —358.7549068
2000 | —254.2324483 | 1999 | —254.2957895
5000 | —156.9872766 | 4999 | ~157.0039294

Table 2: Valugs of some moments of the irreducible contributions of the first—order factorizable
diagrams (A)aS;(N) in QCD for Ny = 0.

individually diverge strongly for large values of N. The coefficients of the same color factors
with an additional factor of (3 show the same behavior. The sum over the purely rational terms

13



and the (3 terms for each color factor separately, however, tends to zero, i.e.
rle](N)

Nl—I};o W + (3 =0. (4.2)

Here r[c;] denotes the corresponding rational pre—factor of the color factors, which we illustrate
in Table 1. Therefore, the respective recurrences are not independent. On the other hand, they
cannot be easily joined in an exact manner, but only approximately by rationalizing (3 with a
high number of digits in the numerator and denominator. One therefore would have to deal with
diverging asymptotic representations, which have to be handled analytically.

In N-space individual terms rise with factors 2V or 4 and it is hard to see how these
contributions cancel analytically. We therefore list a series of moments for the sum of the first—
order factorizable diagrams to the irreducible contribution to (A)aS;(N ) in the unpolarized and
polarized cases, setting the known Np—terms to zero and the color factors to those of QCD in
Table 2. They are first rising and then slowly falling towards N — oo, which suggests that
intermediate contributions rising oc 2V or larger do finally cancel in the set of the first—order
factorizable terms. Similar to what has been observed in Ref. [38] for Aé{f,), even the values of the
irreducible contributions of the first—order factorizable diagrams in the unpolarized and polarized
cases approach each other for large values of V. As will be shown in Section 6, both aS; and

Aag’; tend to zero as N — oo for the first—order—factorizable contributions. In xz—space the most

singular contributions are o In*(1 — z), k > 0,k € N. Because the Qgchannel is off-diagonal,
no §(1 — z) and [In"(1 —z)/(1 — x)h—distributions, with k£ > 0, will be present in z—space.

Unpolarized | Color/¢{ | Moments | Order | Degree | First order | Size of rec.
factors [Mbyte]
CrT? 3150 27 654 15 11.75
CaT? 9858 46 1407 30 105.08
CrT3(s 1092 15 238 7 0.89
CaTEs 2156 24 447 14 5.52
C2Tr(s 9858 58 2024 304.79
CrCaTr(s 12826 65 2602 563.50
CATr(s 14036 68 2848 709.63
Polarized
CrT? 1395 18 279 9 1.69
CrT3(s 480 10 104 4 0.15
CaAT3C3 1702 21 352 11 3.46
CiTr (s 8787 55 1803 233.36
CrCaTr(s 10340 60 2146 363.35

Table 3: Characteristics of non—first—order factorizable recurrences in the unpolarized and polarized
cases, by the required number of moments, their order and degree, their first—order factors, and their
size.
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A further problem is given by the fact that the asymptotic representation is not easily obtainable
to a sufficient number of terms for non-first-order factorizable recurrences if the recurrences are
very large. On the other hand, in the first-order factorizable cases, analytic techniques are
available to compute the asymptotic representations as will be outlined in Appendices A and B.
While for non-first—order factorizable recurrences their first—order factors can all be split off, the
respective factors of higher than first—order cannot be algorithmically determined yet. Therefore
one is left with some recurrences of a larger order, the final solution of which is not given by
product-sum representations, but by higher transcendental functions to be determined.® In
Table 3 we summarize the characteristics of the cases of non-first—order factorizable recurrences
we have computed.

To illustrate the complexity of the problem, the largest rational number in the input for the
determination of the recurrences has a size of 31k digits in the numerator and of 26.6k in the
denominator. The largest recursion obtained has a size of ~ 0.7 GB.

The first—order factors are split off by using algorithms of Sigma [73,74] leaving a non—first—
order factorizable remainder. For very large recurrences this process can take several months of
computation time, and we did not perform this computation in these cases, since a very large
remainder recurrence is obtained for which the analytic solution cannot be given at present.

One may consider asymptotic solutions of the non—first-order factorizable difference equations
following Refs. [157-160]. For the color factors CrT2(3 related to the smallest corresponding
recurrences we calculated the fundamental system of order o = 15 and o = 10 in the unpolarized
and polarized case, respectively. These systems are computed by the HarmonicSums command
REAsymptotics[rec,f[n],7],% where f [n] is the function obeying the homogeneous recurrence
rec and 7 is the desired expansion depth. The systems of the asymptotic solutions are given by

{TCFT%C?, 15 } _
B =
k=1

N
1 N 174 115915 10928670 | [ 9 (=N
N4 197N>  197NS 197N7 8 = N

158191326 L 3264014438 449608338428 n 1 (—1)™
19272263N> = 57816789N6  1561053303N7 N2 ’

N3 19272263N° N 57816789N6 1561053303 N7

1 321703313 7167720182 1124854321331] (=)™

N4 10272263N° | 578167SONS  1561053303N7

)

1 156571794 2861638081 431900140522 ] (1)

3486911695 n 3980355789289 859592977355719
77089052N5  6938014680N6 1873263963607

1 3 7 15 31 63 N

—f—(m—m—f—m—m—i—m—ﬁ)ln(]\o](—l) )
1 n 1260823915355237  24450999262196856571 n 1 370565089177
10 1046073508500V 6 296561839659750N7 N 348691169502

8There exist only very few studies for solutions of this kind, cf. [156].
9Commands described here and in the following refer to the package HarmonicSums, unless denoted otherwise.
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n 1286040852281 7299389618221 1795444741338  124663841290259
348691169503

52303675425 N4 * 3486911695N5 69738233900/N6

+69738233900]\77 N2 N3 N+ N5 N6 NT

1 1
412778573182657) (V) + <i N S I ﬁ) 1112(]\/)] (—1)V,

N3 + 18054 N4 * 9027N> * 162486 N6 * 731187N7

r N
1 162553 388414 29532113 571451720] ( 1)
8 b

1 n 191225 n 147338 . 31187665 n 591255400 1\
N3 26118 N* ~ 4353N®%  235062N6 ~ 1057779N7 | \8)

1 10178885 42829585 1605361621 122618276090

N * 237654N4  118827N5 - 712962N6 9624987N7
1 46443703 197209085 7403011091 282535272647

N? N A75308N*  237654N° i 1425924 N6 9624987N7
1 2528753 11998345 460898245 17701180264

N T 158436N7  TO2ISNS | 475308N6  3208320N7
76310107 845948561 66371498737  36692791628777

633744 N4 B 792180N° + 9506160 N6 B 898332120N7
1 1 3 7 15 31 63
+<N_m+ﬁ_m+ﬁ_ﬁ+ﬁ> ln(N),
1 551687998205741  7787774926751531 11810146290512240171

10 824149155600N° * 8241491556006 77882095204200N7
( 2317251527 19487025602 29435287829 546390092023

3433954815N  3433954815N2 * 2289303210N3  6867909630N4

N N?

+1751952232097 20751649513859 i 514700153390909 In(N) + L1
4578606420N°>  13735819260/N6 96150734820N7

7 15 3 31 63 9
—m—i—ﬁ—Fm—m-i-ﬁ)ln (N),

N
1 N 11886 +111473+27764898 9 0 9 Ni
N4 " 325N5 ' 65N 325N7 8 8] N8’
10
{AT,CCFT%@ kl} _
NV 1 . 183 +2123+369303
8 N+ T 4AN5 T 9N6 T 4NT |V

1 6167375 n 251053021 6845892761 n 269421699821 (—1)¥
N 2538N* 2538 N° 2538 N6 4374N7 ’

1 1377791 . 49777453 1270724105 . 47946548525 (1)
N?  2538N* 2538N? 2538 N6 4374N7 ’

1 205031 5548237 125746313 4443239285

L _ 1\
N3 5076N4+5076N5 5076 N ¢ * 8748 N7 ]( )
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44549521 9803624797 n 281386223183  80403763171913
60912N4 304560N° 304560 N6 3674160N7

N N2+N3 N4 * N> N6 N7

1 14 194 2666 36386 493754 6667634
( - + ) ln(N)] (D",

176076128920087  2170077025499773 n 153855500975294933063
32075655120 N? 8018913780N6 18186896453040N7

96551923 L 2198167821 205984981993 n 1479535025071
44549521N ~ 44549521N2 267297126 N3 133648563 N4

409866696159859 . 926453767962681  390121843311426469 (N)
2672971260N° 445495210 N6 14033099115N7

1 14 194 2666 36386 493754 6667634\ N
(N_WJFW_ FOC I R )mW)](_l)’

(263556004 5053141 47194 2765 1 ]( 1)N

SOLON7  SOIN® ' 99N® 99N T NB )

T90NT T 8IN®  ON5  ont T N3 | \g

1 403557 1066131187 25497634607 1600616428213

N 1346]\[3+ 109026N* 109026 N3 - 327078 N6
_ 838217215706339

8831106 N7 ’
1 664689 1356819775 29465309123 1762154712985

N? ~ I8844N? | 1526364N?  1526364N° | 4579002N°
897121773060599 N 1

 123635484N7 } 0 (<§> F) ' (4.4)
More efforts are needed to compute the respective systems for the larger recurrences. In a final
numerical step one has to combine these solutions. This combination is not unique, as the result
is necessarily approximate. Details on this will be given in a later publication. Here the problem
is also that a series of particular solutions strongly diverges as N — oo. These contributions
cancel against contributions in other color—( factors as outlined above.

Let us now turn back to the first-order factorizable contributions and consider the Feynman
diagrams which are solely determined by these. Still one may use the techniques available for
first—order factorizable problems for individual Feynman diagrams contributing to the sets of
color—( factors not yet being covered by the results in Section 3. The final strategy is then
to transform these results to x—space where also the non—first—order factorizable contributions
will be solved, cf. [52]. Working on a diagram-by—diagram basis we have obtained the N—space
solutions for the first—order factorizable cases, which we will discuss now.

The results are given in terms of generalized harmonic sums [53,161, 162], cyclotomic sums

[100], and finite (inverse) binomial sums [54] in form of polynomials over Q(/N) in Mellin N-space,
beyond the harmonic sums. The cyclotomic sums can be shown to be reducible to harmonic sums

209001079 | 1211485 2521 97 1](1)N
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in all contributing Feynman diagrams. The generalized harmonic sums are defined by

a({e,dy, N) = Zk— ({dY, k), ba; e N\{0}, ¢ d; € Z\{0}. (4.5)

All these quantities obey first—order shift relations in a hierarchy of terms, such as

N

Spa({e,d}, N +1) — Spa({c, d}, N) = %sa({d’}, N) (4.6)

for the harmonic and generalized harmonic sums and synonymous relations for nested (inverse)
binomial sums. Their recurrences are of the type

BS(N) = Y f(k), (4.7)

BS:(N) = > g(k)BSs(k), (4.8)

and one obtains
BS:(N) —BS(N —1) = f(N), (4.9)
BSo(N) — BSo(N —1) = g(N)BS3(V). (4.10)

Using Eqs. (4.6, 4.9, 4.10) the respective outermost sum is removed. What remains is to provide
these sums in the asymptotic region N € C, |N| — oc.

The following sums contribute to the first—order factorizable contributions. In the linear
representation these are 72 harmonic sums up to weight w = 5, while the following 33 harmonic
sums remain after algebraic reduction [102],

{517 Sla 5727 S27 5737 537 8747 847 5757 SS? 572,717 872,17 52,717 52,17 572,27 5727737 572,37 S2,737

S2.3,5-3.1,931,5-41,541,521,1,5-21,-2,5-21,1,5-221,521,-2, 5221, 5-31,1,53,1,1, 5-2,1,1,1,

52,1,1,1}- (4.11)

Their asymptotic representations have been given in Ref. [57].
Furthermore, the following 45 generalized harmonic sums

{&({—2}»,81 ({3}) s s-2ms ({3}) s sii s ({52}).
) 0 e 1
s () s ({2 e (]
Ty

18



1 1 1
Si12 ({2, 5> }) Si1,3 ({ 2, 1}) ,S11,3 ({17 5,2} ,S1,21 ({572, 1}) ;
bt ] =y - 1 ) o

2
1
727171}> 731,1,1,1 ({2757 }) Sllll {2 71})7
1 1
1,2, -, —1 S 1,2, -,1
{ ) 727 }) )y ~1,1,1,2 ({ 27 }) 9

1 1

—,2,1,1 S —2,1,1

{27 [E) })7 2,1,1,1 <{27 ) 4y })7
1 1 1

Sl,l,l,l,l ({5727 17171}> 751,1,1,1,1 ({]—7 5)2717 1}) 751,1,1,1,1 <{]—727 57 ]-7 1})} (412)

contribute.

The asymptotic expansion of these sums can be performed by using the HarmonicSums com-
mands SExpansion and BSExpansion, respectively. In course of this the following additional 17
sums emerge, which have to be dealt with in the same way

1 1 1
{52({2})751,1({2, 1}), 5113 ({57 172}) 5122 <{§727 1}) ,S131 ({572; 1}) ;
1 1 1
5’1,1,1,2 ({57 2a ]-) 1}) 731,1,1,2 <{27 17 1a 5}) 751,1,2,1 ({5, 2) 17 1}) 3

1
Sl,l,l,l,l ({57 17 27 1a 1}) 9 52,2({27 1})a 31,3({17 2})7 51,172({1a 27 1})7 Sl,l,l,l({27 17 1a 1})7

1 1 1
SQ,I({27 1})7 51,1,1,2 ({17 57 27 1}) 751,1,1,2 ({57 1a 27 1}) asl,l,l,Q <{17 57 2a 1}) }

(4.13)

Si1.2.1

\‘P—‘
N~ N~
> —
\.M
—_
H/_/ -
~_
n K
=
T =
T 7—‘
T o
TN TN N

In some cases a certain generalized harmonic sum has to be re-shuffled before by using SRemove-
LeadingIndex, SRemoveTrailingIndex, or by using more general shuffling relations. The set of
constants, which are multiple zeta values in the case of harmonic sums [112], is now extended to
those of generalized harmonic sums at infinity with the additional numerator weights

Lot (4.14)
53

One may map these constants to G—functions at argument x = 1 or the associated general-
ized harmonic polylogarithmic constants [53]. Here one applies first the command GLRemove-
Pole[fct,al with a € [0,1] the pole positions, to obtain the Cauchy principal value of the
respective integrals. Examples for constants even reducing to multiple zeta values [112] are

Hop0,1/2(1) = —Lis (%) - i In*(2) + In*(2)¢, + ilCS, (4.15)
Hi2011,1(1) = Lis (%) - 1—;0 In°(2) + ; '(2)¢ + 4 In(2)¢3 + C2C3
155
=l (4.16)
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The generalized harmonic polylogarithms are defined by

H, ;(z) = /Oxdyfa(y)H,;(y), with fa(y)zyia. (4.17)

One example of an asymptotic expansion of a contributing generalized harmonic sum occur-

ring in the calculation of ag , 18 given by

_ 3204Tp(Ca —2CF)(N — 4) 1
T = NO+ N2+ N) S21,11 2,2, 1,1y, N

N2 N3 * N4 N5 N6 N7

(1 64 448 1216 2752 5824 11968
= CaTp(Ca — QCF){L15 (5) [ - + — ]

8 1832 6632 2135236 8 L 56 152 344

— — n°(2) | = —
+N4 27TN? * 2TN6  3375NT I )[ 1I5N2 ~ 15N3  15N* * 15N?

728 1496 88 616 1672 3784 8008 16456
] In*(2) [ - - ] G

T15N6 T 15NT SNZ  3N3 T 3NT 3NS5 T3NS 3NT

vt TN TN T N T

16 352+1072 12832 14 98 266 602 1274 2618§ :
N4 3N5 " 3N6  15N7 3152

Con[196 1372 amaa saxs sy seon2] , 14 98
T em s tant T3 T ane - sat | T T wm t e

266+602 1274+2618 279+1953 5301+11997 25389
N+ T N5 NG N7 [P ON2Z ' 9N3  2N4 | 2N NG

52173 Gt 16 1040 N 2648 142112 16 352 N 1072
ONT | " | N4 9N5 " 9NS6  225NT N4 3N5 ' 3N6
12832 1
— L }+O (ﬁ) . (4.18)

with
L=In(N)+ g, (4.19)

and vg the Euler—-Mascheroni constant. The asymptotic expansions of the contributing general-
ized harmonic sums are discussed in Appendix A and are given in an ancillary file in computer—
readable form. Here also generalized harmonic polylogarithms beyond multiple zeta values con-
tribute.

Now we turn to the remaining sums, which are nested binomial or inverse binomial sums.
We derive linear representations and eliminate algebraic relations between the binomial sums.
Moreover, they are reduced to a standard form removing summation index shifts. By these
operations also sums of lower kind are generated. The following 58 sums contribute

(71!)2 o (172 (2n)!

To=1 2
(TQ!) 723
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The nested binomial sums do not obviously have such a systematic representation like the
case for harmonic, generalized harmonic and cyclotomic sums. This is implied by the different
building blocks entering the different summands, which are central binomials in the numerators
and denominators, lower sums of different kind, rational expressions and powers of m*, m €
N,k € Z. Yet one may find a basis set by summation technologies of Sigma [73, 74| using the
underlying difference ring theory [69,70] and additional term synchronization with algorithms in
HarmonicSums.

A more synchronized picture emerges in t—space, as is outlined in Section 5. The correspond-
ing generating functions will then have a representation in terms of letters smoothing out the
more involved structures in the sum representations.

One may compute the asymptotic expansion of most of these binomial sums using the com-
mand BSExpansion, which relies on the inverse Mellin transform of the respective binomial sum.
This may not be easily derived because regularizations beyond the one given by the +-operation
are necessary. In these cases one needs to reformulate the corresponding expressions by individ-
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ual partial integrations first. By considering the Mellin inversion for the nested binomial sums
only, one needs to account for Mellin convolutions with the corresponding pre—factors, cf. [54].
In Appendix B we will list a series of expansions of nested binomial sums in the asymptotic
region. More expansions are given in an ancillary file.

Finally, we are going to use a different strategy to deal with the nested binomial sum contri-
butions to the unpolarized and polarized amplitudes in Section 5. In the end our goal is to obtain
first the z—space representation for all first-order factorizable contributions.'® At the end of the
calculation analytic structures are obtained in z—space which can be finally Mellin—transformed
and allow for representations in Mellin N-space evolution programs [163], see Appendix D.

5 From t-space to x-space

To obtain an even more uniform approach to the present problem, in particular for the nested
binomial sum contributions, we went back to the amplitude representation in t—space, the resum-
mation of the N—space representation into a generating function, cf. Eq. (2.1), in the unpolarized
and polarized case. We solved the first—order factorizable contributions in terms of G—functions
in the region around ¢ = 0. The t-representation in the unpolarized case is even in ¢ and in the
polarized case odd in t, [164,165]. I.e. it is sufficient to consider one of the regions

(=00, 0] or [0, 00). (5.1)

The following alphabet of 17 letters spans the contributing master integrals to the required
order in the dimensional parameter £ in the basis originally obtained by the integration—by—
parts reduction [94,95]

o {1 1 1 1 1 1 1 1 1 N re et

1t 14+t 2— 244t 4+t 1—2t" 142

VIA—1) i+t Jid—t) Jild+1) -1 \/t(4+t)}_ (5.2)

1—¢t 7 14t 7 1+t 71—t 7 142t = 1-2t
The alphabet exhibits the symmetry
t > —t, (5.3)

which is essential for the occurrence of either only even or only odd moments. With the exception
of 1/t, there are therefore only eight essential letters. The t—space representation is still very
close to the N—space representation, since the latter is obtained by performing a formal Taylor
expansion of the former one. In this way now also the finite nested (inverse) binomial sums
received a more systematic representation. As can be seen in the alphabet 2, Eq. (5.2), there
are letters for harmonic polylogarithms, Kummer—Poincaré integrals and root—valued letters, as
well as products of those with the former ones. Furthermore, the corresponding G—functions in
t contain respective combinations of subsets of all these letters.
We will consider the region ¢ € [0, 00), containing the following (pseudo)thresholds

1
to € {5,1,2,4}. (5.4)

0Let us note that also in the two-mass case the unpolarized and polarized pure singlet OMEs could not
be computed in terms of first—order factorizable structures in N—space, but it has been possible in x—space,
cf. Refs. [41,43].

23



The differential equations have to be solved in the regions ¢t € [0,1/2],[1/2,1],[1,2],[2,4], and
[4, 00), corresponding in x to the potential ranges for x € [2,00), [1,2],[1/2,1],[1/4,1/2],][0,1/4].
Finally, it will turn out that x € [0, 1], because the amplitude will exhibit an imaginary part
after the transformation

1
t— = 5.5

in the physical region only.

We begin by solving the amplitude in the region t € [0,1/2]. Here 10, 20, 44, and up to 1046
G-functions contribute for the terms O(1/¢*), k = —3, ..., 0, referring to the G-basis represen-
tation after algebraic reduction. On the other hand, there are only 730 contributing G—functions
at O(e°) in the original unpolarized and polarized amplitudes, where products of iterated in-
tegrals are expanded into their linear representations. This is typical for large alphabets, cf.
also Ref. [124]. Therefore we did not perform the algebraic reduction in the present case.

The formal Taylor series expansion in ¢ reproduces the moments computed by MATAD [84,166]
for N = 2,4,6,8,10 in the unpolarized case and for N = 3,5,7,9 in the polarized case.!’ The
solution in terms of G—functions shows that after the transformation (5.5) the amplitude both in
the unpolarized and the polarized case has no imaginary parts and, furthermore, no singularity
at t = 1/2. The solution of the differential equations in the present case and for the subsequent
regions are obtained as follows. As we have the solutions in terms of G—functions, we can
establish a hirachical system of coupled differential equations by differentiating with respect to
t. To base the iterated integrals at a new point ty, we can now transform the system to a new
variable t' = ty+t and integrate the differential equation again. The boundary values at the point
t' = 0 can be obtained by evaluating the previous representation at ¢t = ty. If the leftmost letter
is singular at ¢ = ty we can shuffle this letter to the right and obtain logarithmic singularities
at t = ty which have to match the ones generated by the expansion around ¢ = 0 of the new
representation. The hierarchical structure of the system allows to proceed from iterated integrals
of weight 1 up to the ones with weight 6. One then inserts the G—functions into the amplitudes
and checks whether an imaginary part remains. For t = 1/2 this is not the case and the real
part turns out to be non—singular. This implies that there are no contributions to the amplitude
for z > 1.

In the next step we use the representation at ¢ = 1/2 and solve the corresponding differential
equations in the region t € [1/2,1] repeating the above steps, with initial values at ¢ = 1/2 and
correspondingly for the thresholds t = 1,2,4. One may test the result in x—space by computing
Mellin moments and by comparing with the results above by MATAD.

The analytic continuation at ¢ = 2 and at ¢ = 4 does not generate additional imaginary
parts, which we established by flagging the respective imaginary parts occurring at each new
threshold for individual integrals and found that these contributions vanish in the amplitudes.
This requires the precise calculation of the contributing constants. The analytic proof of the
vanishing of the combination of the G—functions with different main arguments would be much
more difficult. This means that the result in z—space is continuous in = € (0, 1].

The results in z—space are given by G—functions over the 14 letter alphabet A,

{1 1 1 1 1 1 V1—dz VI—4dz V1—dz V1—4z

A, =

Y

21—z 142 1-22' 242" 2—2’ xr l1l—z 142 2+=z

)

V1+dxr /1+4x 1+ 42 1+ 4x (5.6)
x l—2 142z 2—-a2 | )

HWe did not compute the moment for N = 1.
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For the G—functions at argument x we perform algebraic reductions. This reduces 386 original
G—functions in the unpolarized case to 322, and 360 G—functions in the polarized case to 315.
The number of letters of the contributing G—constants is larger than the one in 2. There are 697
constants in the unpolarized case and 659 in the polarized case given by root—valued G—functions
at main argument x = 1/4,1/2,3/4 and 1. The algebraic reduction to a basis would enlarge the
number of contributing constants.

Since in all cases only one type of square-root factor appears in the letters, the letters for all
contributing G—functions can be rationalized. In a series of cases one has to remove poles in the
integration domain at x = 1/2. The letter 1/(1 — 2x) emerges for GL[{...},1/2] only, i.e. at
the integration boundary, which can be removed by GLRemovePole.!?

In the unpolarized case, 155 G—constants at z = 1/4 emerge, 161 at x = 1/2, 112 at x = 3/4
and 269 at = = 1, while in the polarized case 155 G—constants at = = 1/4, 127 at x = 1/2, 112
at = 3/4 and 265 at = 1 contribute. The constants with main argument x = 1/2 are all
generalized harmonic polylogarithms. These constants reduce to

1 1
{ 26 o Lis (3 ) oL (5 ) Hooa (1) B -a(0), Hoso-2(1), oz a1,

H3,0,1,71(1>7 H3,1,0,71(1)7 HO,1,0,0,72(1)7 H3,1,71,0,71(1>7 H3,1,71,0,1<1)7 H3,1,1,0,71(1) } (57)

For the generalized harmonic polylogarithms which do not reduce to multiple zeta values or
logarithms and polylogarithms of different argument, we present numerical values in an ancillary
file.

For the G—constants of main argument x = 1/4,3/4 one has first to rescale the letters such
that the main argument is z = 1. An example is

1 V1—47 J1—-47r| 1 1 V1—-7 VJ1-71
- = 1. .
{1—7’7 T  1-7 }’4] G[{4—7’ T T 4—7 (58)
Then the command SpecialGLToH rationalizes the G-function. Furthermore, denominators con-

taining quadratic forms need to be decomposed by the command LToGL [GLToL[GL[{....},c]]
which yields a proper input form for a numerical precision calculation. One obtains

TQZG

Ty =6+ V3i
1 1 1 1 1
X 1| |-4-¢C : 1] +G : 1
{Z\/_—|—T} [ {—’i\/§+7 —1+T} {—i 3+71 1+T} ]
1 1 1
+G 1| -G , | +VEIGI ———— 51| |4
(e ol ) el i |

+G +G

1 1 )
i3+1 —1+7|’

1 1 1
b b) 71
{—i\/§+7' —iV3+T —1+T} ]

1 1 1 a 1 1 1 1
—2\/_+7' —iV/3+7 147 W3+ iV3+T 14T’

2Here GL[...] denotes the respective G—function in the notation of HarmonicSums.

+2i\/§{G

, 1
Z\/_+T 1—1—7’}

-G

G ! , 1 L ! 1
B 2\/_—1—7' —1+7 —iV/34+7 147
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(1 1 1 1
+G_{z’\/§+7’z’\/§+7’1+r}’1 }+<_8+4ln(2)+12(} {m}lb
><G_ . O N O L L
i —4\A§%—T ’ iyﬂ§%—7 ’ —dyﬂ§%—T7]»+-T

! Ly (5.9)
AveFEt T i | '

G Hﬁ} , 1] —n(2) — %m(g) - %}r. (5.10)

+4(~2+1n(2))G — 4G

—4G

with

In this example no poles in = € [0,1] are present. The G-constants are given in terms of
Kummer—Poincaré integrals. Their amount is more than an order of magnitude larger than the
number of original constants. Kummer—Poincaré integrals can be evaluated by using methods of
Pari GP [167] or by [168], using the method of Holder convolution from Ref. [161].

Finally, we performed formal Taylor series expansions of the results in = around z = 0, 1/2
and 1 with 100 terms. The number of G—constants which emerge in the expansions around x = 0
and are not multiple zeta values [112] is 604, corresponding to 12719 terms after rationalization
and decomposition into Kummer—Poincaré integrals. For x = 1/2, 502 constants contribute, and
for x = 1 the number of constants is 213, see Appendix C. The set of the necessary constants
in the polarized case are a subset of those in the unpolarized case. The representations of the
expansions are given by

100 5

Fo(z) = Z a,(fl) In'(x)z", (5.11)
k=-—1 1=0
100 1 k

Fip(z) = Y af’ (x - 5) , (5.12)

k=0
100 5

Fi(z) = > o) ' (1 - 2)(1 - )", (5.13)
k=0 1=0

These representations can be matched at x = 2/10 and = = 7/10 and one may compute a
series of lower Mellin moments numerically at high precision, and also compare with the direct
numerical solution, see also Refs. [169-171]. The representations (5.11-5.13) can also be Mellin
transformed to construct a N—space representation for N € C, see Appendix D. The method of
iterated integrals in G-space shows the cancellation of diverging terms in the large N limit as
a”,a > 1. The largest number of constants contributes for the representation around z = 0, and
those for the expansion around x = 1 are, apart from very few new constants, a subset of those

around z = 0. The contributing constants are the same in the unpolarized and polarized cases.

6 The small and large x expansions

We can now perform the expansion of the results for the already solved parts of ag'; and AaS;
and for the first-order factorizable contributions both for x — 0 and x — 1. The final result is
not obtained directly, but will require a series of technical steps to be carried out because of the
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emergence of quite a series of Kummer—Poincaré integrals at special numbers, cf. Appendix C.
In the polarized case, even terms that cannot contribute seem to be present. It will, however,
turn out that the corresponding coefficients in front of the respective structures will arrange to
zero, requiring to solve three—fold iterated integrals with letters in root—valued alphabets.
In the small z limit there is a prediction in the unpolarized case from Ref. [172], given by
In(z)

. 64
agy”(x) = S CATr(1312 + 135(; — 180G — . (6.1)

This expression rescales with C'r/C4 in the pure singlet case, first calculated in Ref. [19]. The
contribution o ¢, has been computed in Eq. (3.1) and agrees with the corresponding term in
Eq. (6.1).

In the polarized case the leading singularity is located at N = 0 and does not derive from
the same dynamics as in the unpolarized case. Instead, one uses so—called infrared evolution
equations or similar techniques [173,174] in the massless case.!> Whether in this case also color
rescaling works is not clear a priori. From Eq. (3.44) we obtain the small  contribution

4
gC’FTﬁNF In°(z). (6.2)

This term cannot be color rescaled by Cr/Cy to the pure singlet contribution, cf. Ref. [39], which
after color rescaling would yield

T resc. 2
Ragy™ "™ (a) = —CaTr[8C4+9Cs n'(2). (6.3)

but no term oc Np. This situation is similar to the case of Aa(gQ and Aasqu &53)7 cf. [37],

where the leading singularity at small x of Aaqpi ’653) is oc In*(z), while one obtains AaffiQ x

(8/3)CrT#NpIn(x), due to which there is no color rescaling in this case either. The correspond-
ing color factors in Eq. (6.3) can still receive contributions from the non-first-order factorizable
contributions.

In deriving the small = limit of the irreducible contributions to the first order factorizable
terms in the polarized case, also potential contributions of O(In(z)/z) and O(1/x) emerge. Their
pre—factor has to be proven to vanish, which requires the calculation of special constants over
root—valued alphabets. This is shown in Appendix C. While the vanishing of the coefficient in
front of the O(In(x)/x) term can be shown analytically, we decided to show the cancellation of
the pre—factor of the O(1/z) term numerically to a precision of ~ 1000 digits, which is equivalent
to methods used in ‘experimental mathematics’, cf. e.g. [L75]. There are terms o< In°(z) in the
irreducible first—order factorizing terms to color factors which also contribute to the non—first—
order factorizing contributions. Since it has been known for longer that it is very difficult to
determine the small x behavior of a single scale quantity from a limited set of moments, we will
not intend this here, but solely rely on the analytic calculation in xz—space for all contributions.

In the large x limit the first—order factorizable contributions of the irreducible diagrams have
the structure indicated in Eq. (5.13).

In Mellin space the most singular term behaves like

Si(N)

TN

(6.4)

13The corresponding massive calculation has not been performed.
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and all other terms also vanish as N — oo. The corresponding decrease with N proceeds only
slowly as is illustrated in Table 4. One obtains

o 8
agy" (@) = F(Ca—CrP’In’(1 —2) + O(n'(1 - 2)) (6.5)
and
ACLS;@—}I(Q?) — ag;,x—}l(x) (66)

in the leading order. This equality holds numerically for z 2 0.95 at the level of up to 2.5 %.

Both the above large and small x limits correspond to the first—order factorizable terms only
and will receive additions from the diagrams which also receive contributions due to non—first—
order factorizable master integrals in part, being dealt with in a forthcoming paper [52].

N | S3(N)/N
10! 21.556
102 37.561
103 23.502
104 8.982
10° 2.583
106 0.618
107 0.130

Table 4: Numerical illustration of the decrease of the most singular part of the first—order factorizable
contributions in the large = limit.

7 Numerical Results

In the following we illustrate numerically the analytic results obtained for the contributing ir-
reducible Feynman diagrams which are first—order—factorizable. In Figures 1 and 2 the sum of
these contributions to ag’;(x) are illustrated in the whole x region and in the region of larger
values of = setting Nr = 3. Here we use the expansions around z = 0,1/2 and 1, which are
matched in their respective overlap regions. In Figures 3 and 4 we show the corresponding results
for the contributions to Aag’;(x). These partial results of the analytic calculation are shown as
quantitative illustrations, but they cannot be used for phenomenological analyses yet.
Let us define

M((A)al) (2)](N)
(A)r(N) = (A)M?)M(N)

—1, (7.1)
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Figure 1: The contributions due to the first—order factorizable Feynman diagrams to aS’;(x) as a
function of x rescaled by the factor x(1 — z). Full line (blue): expansion around = = 0; full line

(green): expansion around x = 1/2; full line (red): expansion around z = 1.
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Figure 2: The contributions due to the first—order factorizable Feynman diagrams to ag’;(x) as a
function of x rescaled by the factor x(1—x) for larger values of z. Full line (green): expansion around
x = 1/2; full line (red): expansion around = = 1.

with MOM denoting the moments calculated analytically in Mellin space. We have compared the
moments based on the analytic results with the sum of the Mellin moments of the first—order—
factorizable irreducible Feynman diagrams for N = 2,...,20 in the unpolarized case obtaining
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Figure 3: The contributions due to the first-order factorizable Feynman diagrams to AaS;(x) as a
function of = rescaled by the factor x(1 — z). Full line (blue): expansion around = = 0; full line
(green): expansion around x = 1/2; full line (red): expansion around z = 1.
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Figure 4: The contributions due to the first—order factorizable Feynman diagrams to Aagg)l(:c) as
a function of z rescaled by the factor x(1 — x) for larger values of x. Full line (green): expansion
around = = 1/2; full line (red): expansion around = = 1.

r(N) = {-1.74353-107%,4.73887 - 1071, —2.03360 - 10~ 2, —1.05471 - 104,
—5.99520 - 1071°, —6.88338 - 10~ '°, —6.77236 - 10~ '°, —6.77236 - 10717,
—7.21645 - 1071°, —7.43849 - 107}, (7.2)
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Similarly, in the polarized case we obtain for N = 3,...,21

Ar(N) = {-5.44219-107% -2.52013 - 10~ ", —1.39555 - 10~*, —6.99441 - 10~ *°,
—6.10623 - 107'°, —6.66134 - 107, —6.55032 - 10~1°, —7.32747 - 107,
—7.43849 - 1071°, —7.32747 - 107 °}. (7.3)

We have also solved the system of first order differential equations by calculating symbolic
series expansions around different values of ¢ and numerically matching these at points where
two neighboring expansions converge, choosing t = 0,1/7,1/4,3/4,4/3,2,4 and oo More details
regarding this method can be found in Refs. [170,171]. For the solution of large linear systems
of equations, which we encounter here, we make use of finite field techniques implemented in
FireFly [176,177]. A comparison to the analytic solution has been performed at the points

r€{107*,107%,1072,2-1072,7-102,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}  (7.4)
for the quantity
A a(?)),irr. numeric
(A)Tnum./an = ( ) 99 -1 (75)

(A)ag),irr. analytic
g

One obtains

Poum. fan = {7.75-107'°,1.86-107'%, 1.96-107'*,4.27-107"°,2.57- 107", 7.01- 107",
5.49-107%° 8.08-10718,8.92-107'%,1.04 - 1077,1.29 - 1077, 2.39 - 10719,
3.85-1071,2.46-107',1.39 - 107", 6.61 - 10~ *°} (7.6)

and

ATpum jan = {1.35-107'°,9.32-107'°,4.34 - 107"°,3.63 - 107"°,1.45 - 107'*,4.03 - 107",
9.13-1071°,5.22.10718 5.42-107'8,6.22-107'%,7.62-1072°,9.15 - 107,
1.78 -10719,3.86 - 10", 1.51 - 107?,6.80 - 10~2°}. (7.7)

Both the above numerical checks confirm our analytic results.

8 Conclusions

The massive OMEs Ag’; and AAS’; receive contributions from non-first-order and first—order
factorizable terms. In the present paper we have calculated the latter contributions. In Mellin
N-space these are given by harmonic sums, generalized harmonic sums and nested (inverse)
binomial sums. The Mellin inversion to z—space, in particular for the terms containing binomial
contributions, is most efficiently done by using the t—space representation. This requires to study
the five different regions ¢ € (0,1/2],[1/2,1],[1,2],[2,4] and ¢t € [4,00). In transforming to x—
space, only at = 1 an imaginary part is implied, which is not changed at the pseudo-thresholds
r = 1/4,1/2 and the amplitudes vanish for > 1. This implies continuity of the amplitudes
in z € (0,1]. The result in z—space, either obtained by direct Mellin inversion or by the t—
space method, are given by G—functions over a 14 letter alphabet and a large set of G-constants
at special numbers in the main argument. The integral representations of these constants can
all be rationalized and cast into Kummer—Poincaré type Riemann—integrals of complex—valued
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letters after regularization, if needed. These constants are calculated to 100 digits numerically.
The amplitudes are finally expanded into logarithmic-modulated Taylor series up to 100 terms
around r = 0,z =1/2 and = = 1.

We also discussed a series of results for the representations in Mellin N-space, including
non—first-order factorizable contributions. We determined all recurrences which required 15000
moments in the unpolarized case and 11000 moments in the polarized case, not covering a
smaller number of recurrences requiring an even larger number of moments, such as the purely
rational color—( terms o Tp%. This allowed us to compute all non—purely rational terms and
non (3 terms, despite the fact that the contributing diagrams partly contain non—first—order
factorizable contributions. The latter canceled in the sum when using the method of arbitrary
high moments and one obtains nested sum-product representations. For the purely rational
terms and their associated terms o (3 we have observed that the corresponding recurrences are
highly divergent in the limit N — oo, while the sum of these contributions vanishes in this
limit. The rational terms generate a factor of (3 dynamically for N — oco. One may calculate
the fundamental systems of the asymptotic representations of the non—first-order factorizable
recurrences, although this requires quite some effort for large recurrences. Furthermore, a series
of representations in N-space diverge o< a”, a = 2,4. These divergences have to be arranged
to cancel analytically.

We have also calculated the leading small and large = contributions from the first—order
factorizable terms to the singularities of O(In(z)/x) in the unpolarized and of O(In’(x)) in the
polarized case, as well as of O(In°(1 — x)) for z — 1. In the unpolarized case our results agree
with those for the (5 term given in the literature. In the polarized case we obtained the leading
small x contribution o Np. This term cannot be obtained by color rescaling from the pure
singlet term.

The master integrals computed for the present part of the project form analytic base case
integrals of the second part of the calculation of (A)aS’;, in which the non-first—order factorizable
contributions are computed. The corresponding 5 F; solutions have already been calculated in
Ref. [125] to O(£°). Ancillary files to this paper contain larger formulae and a series of technical
results.

A The asymptotic expansions of the contributing generalized
harmonic sums

In the following we list a series of examples of different depth of the asymptotic expansions of the
generalized harmonic sums which contribute to the present calculations. We present the terms
up to O(1/N1%). The complete set of expressions is given in an ancillary file. The asymptotic
representations are required in N-space programs, cf. [163]. Some of the contributions are
suppressed by a factor of 27V and a series of terms diverges like oc 2¥. The latter behavior
cancels in the amplitude, including contributions from the terms containing finite binomial sums.
The derivation of theses asymptotic expansions is not straightforward even using the package
HarmonicSums. In a series of cases the use of shuffle relations is required before these expansions
are performed. This is one reason to present the corresponding expressions in explicit form. For
|N| = 50 the relative accuracy of the representations amounts to values between 2.48 - 1072¢ and
0.95- 1076,

Examples for asymptotic expansions are given by

Sl({—Q}, N) ~
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18202 2588 1202684 941812 ¢
63N7T N8 45N9 3N |>F

Some of the above constants can be expressed in terms of polylogarithms. We present the
relations up to depth three, since from depth 4 classical polylogarithms do not usually provide
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a good basis. One obtains

H_L_Q(l)

H 50_-1(1)

%@ —1n%(2) + In(2) In(3) — %1112(3) — Liy [%] : (A7)
In?(2) — In?(3) — 2Li, H + G, (A.8)
] "
—21n%(2) + 21n(2) In(3) — In*(3) + ¢ — 2Li, [%] : (A.10)
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Here we used the relation
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and other ones for Liy(z), cf. [178-180]. The remaining generalized polylogarithms at argument
x = 1 can be calculated numerically, e.g. with the program of Ref. [168], and we have listed their
numerical values in ancillary files at an accuracy of 100 digits for completeness.

B The asymptotic expansions of nested binomial sums

We will give only some examples for the asymptotic expansion of nested binomial sums in the
following.' Also here aspects summarized in Ref. [57] play a central role, see also [181]. In N—
space one first splits off lower—order factors and expands them individually asymptotically. Then
one considers the t-representations and splits off potential distribution—valued contributions,
cf. [125]. The asymptotic expansion of these contributions is known [56]. After this the respective
quantities F'(N) are viewed as Mellin transforms of functions f(z), which are either analytic in
the vicinity of x = 1, or have to be first rewritten to obey this condition, [57]. These Mellin
transforms can then be expanded into asymptotic series, because they have representations in
terms of factorial series [182-184],

= k!
UN) :;ak+1N(N+1)...(N+k)'

(B.1)

Terms o< SF(N),k > 1,k € N, are no factorial series, but their asymptotic series are known.
Contributing I'-functions of non—integer arguments may imply other powers of N, as e.g. factors
of /N and also factors ¢ with a € Z\{0}. A comprehensive treatment of these contributions
is better given by the t—space representation, being more systematic. The examples for asymp-
totic representations given in the following were obtained by using the command BSExpansion.
Usually the resulting expressions have an involved form. One obtains the following asymptotic
expansions up to O(1/N'9)

T ov3 T T3 2N T 316N T 27648N° T 2654208N°
| 36974287 640361849 60994830787 5491071570791
63700992N5 ' 339738624N6 8153726976 N7 ' 1565515579392 N
2376532755785617  699435110164273561  115034280046636642783

T 12524124635136N9 | 601157982486528N10  14427791579676672N 11
x 272N/ N /x, (B.2)

FQ(N) _ i (2T1)! ~

1 2m 1 19 407 3587 612727
3

S
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n n 29 n 2425 n 276793 . 5000317 n 953111599
3 18N ~ 288N?  6912N3 = 663552N*  1769472N5 = 84934656 N6

107249721865 n 37133194953283 n 5464331904405803
2038431744N7 ~ 130459631616/N® = 3131031158784 N?

1A series of representations has been given in Refs. [38,54].
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.

The different G—constants at x = 1 have to be regulated in general and should be rationalized,
whenever possible. Then their letters should be partial fractioned, prior to calculating them
numerically.

To perform the inverse Mellin transform, one can compute first the t—representation by using
the command ComputeGeneratingFunction

1 1
Fi(t) = t{—z( — t_l)G[{\/zL—r\/F},t}}, (B.5)

=1 -V
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R = — [1— ! ] (B.6)

t—1 V1—4t
_ 5 Hoy(t)  Ho1(t)  (2+¢)Hop,-1(t) 1
B = t{_Q(t—1)+ t—1  2(t—1) 20—t @— 0 —1)i
x | —4G { (4—7‘)7},15 +5G {%},t —I—;G { (4—7)7,1i7},t]
Selfvaa s L ety L M) e

The binomial sums above can be represented by regularized Mellin transforms over an extended
support

- 1 27 1 1 LoogVN -1y
— |4 == S d B.
) [3+9\/§} (1 4N>+2‘4N/0 Ta=yra—y 9
F(N) = = | 4d , B.9
Fy5(N) 5 +<92 +9(4 1)4' "G e G - ,
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9 T T 147 9 T T T 147
V1— 11 +1+14
—1(4N—1)G U Fe] B T i G PRSI
9 4 —7 T'T T
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_ 4N - 1 ; 2—1—2N/ d
9 G {T’T’ T }’ + Jas 0 m(1_$)3/2(4_$)
1 .’L'N+1fb3(x)2(—1)N
d B.10
+/0 T a)(L+ 402 (B-10)
with
fu = 20 {1,”1+4T},1 e {1,1,V1+4T},1], (B.11)
T T T T T
fus(z) = 2G {l’\/1+47'}’1 oG \/1+4T71}’x]
T T T T
e {1,1, ”1+4T},1 e {”1+4T,1,1},x]. (B.12)
T T T T T T

While these functions of N evaluate to rational numbers for N € N, the N dependence cannot
be simply factored out as in the usual Mellin transforms.
The above constants have the following representation,

G[{g,},l] - 2—%, (B.13)
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— 4(2 + In(2))Lis [
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1++5
2

+41n(2)Lis + 4Liy %] — 4Liy [1 _2‘/5], (B.17)
and
H, 1 1.(V5) = —§In4(2) + gln3(2)—|—%ln(2)c2+ ggg In(v5-1) - E In?(2)
4&@ I (V56— 1) + éln(2) I (V5 — 1) — Li, B] L | +2\/5
—;1 In(2)¢s. (B.18)

The remaining constants are better calculated numerically, since the space of polylogarithms
will normally not suffice, but they have a representation in terms of Kummer—Poincaré iterated
integrals, see Appendix C. These G—functions at x = 1 are real and the imaginary contributions
cancel those of Lix(y) for y > 1. If more than two different letters occur, the corresponding
expressions become much more involved, but can still be rationalized if the root factor is the same.
Then also letters containing general quadratic forms in the denominators occur [103], which can
be decomposed into (complex) Kummer—Poincaré type letters [75-78] by partial fractioning.
This representation can be obtained by applying the command GLToL to the G—functions.

We also mention that the command SExpansion may be used for a partial asymptotic ex-
pansion of binomial sums, mapping to other binomial sums. An example is given by

N (7'1!)2 ZTl _(27—2)'273 173

3 P 1,4 533 6T 2%

—~ (2m)!'(1 + ) T N2 T 9N3  3N* T I5N5  180N® 630N
L1789 587 |2 8 2
2520N8 ' 1134N9 '~ 6300N10 ' | N2 3N3 ' N4

2 L1 4 3 {,
3N> 3N6 ' 3NT ' 3N8  9N9 5N

()2 en, o)

7=l (Tz!) 2 1 7 1
22 2r)ir? " [m VL

113 1 909 1 29067 1 232137 1

TS NS2Z T 1024 N2 T 32768 NO2 262144 N1/
3715061 1 29759813 1 1904293555 1

+4194304 N13/2 33554432 ]\715/2 + 2147483648 N1/2

15205631037 1 |,y \/_Z (2r)yr, L
17179869184 N'19/2 )

(7'1!)22T1: —(QTQ)IZW Ly

To=1
’ (72') ¢ 2
) i — 23 — 2055 + 6Gs .

T1=1

(B.19)
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In some cases, the contributing constants are related to solutions of algebraic equations of fourth
order.

In the examples given in an ancillary file the representations contained up to four singularities
in the region = € [0, 1] which had to be regularized. Furthermore, one has to algebraically reduce
the G-functions at © = 1 to remove divergences, resulting from the symbol G[{1/(1 — 7)},1].
The contributing 183 (root—valued) G—constants have a linear representation in terms of 7200
divergence free G-constants of the Kummer—Poincaré type. The asymptotic representations
of the binomial sums given in an ancillary file to terms of O(1/N'?) have absolute accuracies
between 4.04-1077 and 2.85-107%° at |N| = 50. The explicit sum representation of the binomial
sums can be obtained by using the command ToHarmonicSumsSum.

For the individual asymptotic expansions of the binomial sums also G—constants containing
two different root—factors contribute. Terms of this kind are absent in the physical amplitudes.
These G—constants can also be rationalized as described in [185], see also [186]. We present a
series of examples in Appendix C.

C The calculation of special constants

In the following we describe the technical steps in the calculation of a series of G—constants at
r = 1,1/4 determined by Kummer—Poincaré and root—valued letters

{ 1 1 VT—do VT—dz V1—dz V56 —do—1 5 —dab—dz—1

242" 1+ 32’ xr l—z " 14z’ l—2z 7 1+=x 2—x

2+ (C.1)

\/5—433—1}

As for the rationalizations to Kummer—Poincaré integrals, one transforms the square-roots

Va+br —1—1z. (C.2)

An example is

=

T

GLToStandardForm|[TransformGL[GL[{Sqrt[6 — 4VarGL|/(VarGL)},5/(4x)],x]|/.x — 4/5

ST

= 2o 2B+ avBa((-1h) - 1+ V)G (1), 22 v [0 1] + vBa ).

G +G //SpecialGLToH

1
0-vas o 4]
= 2-2V5-2In(2)v5+v5In(5) +2v51n (V5 — 1), (C.3)

where we used the notation of [168] in the next to last line. Another example is
vi—4r 1 1 v1i—1 1 1
T T’ T T1—Ar [’

G _
71_
43
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= —4+2iV3G [{ —iV3}1] + 26 [{-1},1]G [{ —iv5}, 1] — 213G [{iv3},1]
+2G [{-1}1,1]G [{iv3},1] =26 [{ = 1,.=vB},1] 26 [{ — 1,iv3}.1]
G [{ —¢\/§,—1},1] —G [{ —Nﬁ,l},l} e [{¢\/§,—1},1] —G [{z\/ﬁ,l},l} .

(C4)
Some of the emerging Kummer—Poincaré iterated integrals have to be regularized, for example.

G [{a},a] = —1In(a) — Si(c0), etc. (C.5)

Furthermore, also expressions like

GHLILY = SG?[{1),1] = 5S3(e0), ()
G111 = éG?’[{l},l]:—éSf(oo), etc. (.7)

emerge, cf. also [112], where S;(00) drops out in the amplitude.
By using the relations

Hoo(1) = In(3)—In(2), (C.8)
fo o) = ~Lia (-3 ). (©9)
Ho s(1) = %§2+1n2(2)—ln(2)ln(3)+Li2 (—%) (C.10)

one shows that the contribution of O(In(z)/x) to Aag’; vanishes.

In the O(1/x)-term also G-functions at argument x = 1/4, 1/2 and 1 occur. Their com-
bination has to be shown to vanish too. Since these constants are of higher weight than in the
case of the O(In(x)/x)—~term, we will rationalize these constants to Kummer—Poincaré iterated
integrals as has been outlined above. Of course, one can seek for basis representations of this
type of integrals, cf. [53,103], but in the end also the specific relations of these numbers have
to be exploited, since the G—functions will occur at different main argument in any of these
representations. The first constants are

G {@},1_ = —2-2In(2) +2v5+2In (V5 - 1), (C.11)
G {g},; = 2-2V5+3In(2) — 6In (3 - V5), (C.12)
G{Q}i Y (C.13)
G{g}% — 24 3I(2), (C.14)

| HO,_L_2(1—) = —%@, — %@ In(2) + ¢ In(3) — éln3(3) — Lis (—%)
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+2Lis (%) , (C.15)

—(y — In*(2) +21In(2) In(3) — %1&(3) — 2Lis (—%) .(C.16)

By using the implementation of [168] one shall in general rescale the main argument of the
G—functions to = 1 for the numerical calculation. The O(1/z) term contains G—constants with
root—valued letters and the above H-constants. It is given by

1 1 —1+4+6-1
A (O — 205)* T4 48G = L
€T 2—7'1—7 1—7
(14547 1 1 —1+65—4r 1
~32Q + T 1] +48G ks T 1
1—7 1—7 2—T 1—7 1—7
139G l 1 7—1—}—\/5—47' 1| 326 l’—1+\/5—477 1 1
T 1—7 1—71 T 1—7 -7
(—1+v5—4r 1 1 -
16G 1| —192In(2) |2 — =
+ { 1—7 ’1—7"1—7'}’] n()[ \/g}
(vI—4r 1 1] i 1 1 Vi—dr) 1
—96G T S el PR I R ViTe Y P = il
1—7 '"1—71"4 2—7 '1—171 7 1—=7 4
[ - 1 1 —1
e i 47, 1 ’1 160, [ [ V5 T 1 N
T 1—7- 4 3 T 1—7-
. \/1—47’1 ’1 s \/1—47’ 1 | 1 ’1
1+7 "7 4 T 1—7'1—71 4
I8G \/1—47’ 1 ’1 ’1 a0 1—47,17 1 71
T 1—7'714 T T1l—714
(1 1 vi—4r) 1] (1 vi—4r 1) 1]
196G = L T Te , L s
1+7"71 T 4 1+71 T 714
1 VE—4r 1 1 ] (vi=4r 1 1 )1] 2
_6G L Ta_ 71 +16G Ta sy s (4 + _3__161n(2>
3 1+7 '"7"1—71 247 1+7 7 |4 3

+16v/5 +481n(3) — 161n (3 — v/5) + 481n (V5 — 1)] G — 120¢5 + 3841n%(2) — 81n°(3)

1 1 .

1]};0.

: (C.17)

—961n*(5) — 192Li, l

One may perform the algebraic reduction [102]. After the rationalization there are still quadratic
forms in the denominators. The main argument will generally be different from 1. The decompo-
sition into Kummer—Poincaré numbers leads to 197 terms, which are rescaled to main argument
x = 1. These numbers were calculated to 1000 digits. In this way we showed that the O(1/x)
term vanishes at an accuracy of 107998, This accuracy can be further improved by calculating
the G—functions to an even higher precision. We also compared all these constants with the
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result obtained by using NumericalValues, which delivers 6-7 digits only. The numerical values
of the constants occurring in (C.17) are given in an ancillary file.

Accordingly, the expansion of the first—order factorizable terms of the amplitude around
r =0,1/2 and 1 to 100 terms lead to a much larger number of G—constants. Their calculation
proceeds in the same way.

In the asymptotic expansion of the finite binomial sums also G—functions with two different
root—factors out of the set

{\/x (z+1), Va(l—2x), \/1—x2} (C.18)

emerge. Structures of this kind can be rationalized by the transformation, cf. [185],

2

2y 1
v+ T
After rationalization, one expects letters of cyclotomy 4, [100], i.e. the emergence of m and the

Catalan number C [187], as well as of other cyclotomic constants. For the simplest integrals one
obtains

V141 —+1—1] (C.19)

/Oldx\/x(l—i-x) = 4\/_/ dy v 1+y)(1—y4):2\3/§_}11n(1+\/§)

14 y4)3
(C.20)
! B yA-y)d-y)
/0 de/x(1—1z) = 4\/_/ dy T =3 (C.21)
1 - Loy —y4)2 o
/0 dxv1—2? = 4/0 dym =1 (C.22)

/Oldw\/W/:dy\/m _ 32/ dx/ ot 2(1 — 22) ((1+x2)2312(1+yz)(1—y2)2

1+ :c4)3(1 + y4)

(C.23)

C 31 1
= —%+—+ 137_32 (1+v2)].

AimvgaiziézwajE:1£umﬁiwm¢%%l_ﬁX1+ﬁ2M1_¢P

(1+29)°(1+91)°

{L12 [1— V1] = Lis [1 4 (=1)**]

+Li, [;((1 — i) — \/5)} — Li, B((H@) \/5)} + Liy B(u +4) —@'\/ﬁ)}

2(1 +4)((1—1i) + \/5)] — 2iLi, B(l — i) ((1+14) + \/5)} } (C.24)

—Liy B ((— 1—z)+f)] +Li2[
+2L12[

One may easily write Eq. (C.24) in terms of several generalized hypergeometric functions. How-
ever, the representation in terms of polylogarithms and cyclotomic functions is obtained only by
rationalizing the integrand.
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D Analytic continuation to /N-space

One may use the representations of Eq. (5.11-5.13) to perform the analytic continuation to
N-space in the analyticity region in N € C. The following integrals contribute

(N, k,l;a) = / dez¥ "Il (2), k>0,1<5,kleN,acl0,1], (D.1)
0
b 1 F 1
L(N,k;b,a) = / dra™N 1 (5 — x) , b> 3 > a,a,b € [0,1], (D.2)
1
L(N,m:b) — / dea™ (1 —2), m<5meNbe01]. (D.3)
b

These integrals are related to incomplete Beta- and I'-functions [188]. However, we will use
different representations in the following, based on generalized harmonic sums, cf. [53], to allow
for simpler representations for N € C.

One obtains

Il (=)' "™ (a)

l
L(Nkl;a) = a0y i _‘m)! R (D.4)
m=0
and I; may be expressed in terms of generalized harmonic sums
o N+k
m =S, (a)(N+Ek)—S,(a)(N+k—1), v<6,veN,acl01], (D.5)

through which its first—order recurrence in N and the asymptotic representations are provided.
The function I, is written as

L(N,k;a,b) = I(N,k;b) — I,(N, k;a); (N, k;a) = I,(N, k;a,0). (D.6)
I, obeys
I(N,kja) = a* L k+kf(N+1k:—1-) (D.7)
2 y Ky @ - N 9 a N 2 5 ya), .
_ aN
I)(N,0;a) = e (D.8)

One may start with the initial condition (D.8) and needs no asymptotic expansion for the rep-
resentation in N € C in this case.
We write I35 by

B mib) = S, T i) (D.9)
N ~~
I3(N,m;b) = b"M[In™(1 — xb)](N), (D.10)
where
I3(N,0;b) = % (D.11)
I(N,1;b) = —% Si({b}) + (1= ") In(1 - b)|, (D.12)
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LN2D) = lz(slsm{b}) + S({b}) — Sua({h,11)) +2(S1 — Si({B})) In(1 — b)

—(1=b")In*(1 — b)] : (D.13)

The higher terms are given in an ancillary file. The recursions for the generalized harmonic sums
are given in Eq. (4.6). The asymptotic expansions of the generalized sums for |N| — oo read

1 1 1+0b 1+ 4b + b*
Sl({b}7N) - —ln(l—b)—i- _(l—b)N + (1—6)2N2 - (1_5)3]\73 ™ (1—b)4N4
(1+0)(14+10040%) | vy 1
_ D b 10 ) (D.14)
- 1 2 3(1+b) | A(L+4b+P?) |y
52({5}7N) - L12(b) + _<1 . b)N2 + (1 . b)2N3 - (1 _ b)3N4 (1 _ b)4N5 b
1
L0 (F) , (D.15)
3-b 31+4b+0* 43+ 82b+ Tb?

Sii({b,1},N) = 11112(1—17)+L12(b)+

2 T —0)PN? | 12(1—0PN?  12(1—b)iN

1 1
TO—oN | (1=02N

—549 — 3414b — 1964b2 — 74b° + b’
+ - +L
120(1 — b)5N®

_1+b +1+4b+b2_(1+b)(1+10b+52) N1
(1—0)3N3  (1—b)*N* (1—b)°N?
1
+0 | — ), etc. D.16
N6

The representations given in this appendix will also apply to the complete representations for

(3)(N) (3)(N)
Ao and AaQ . -
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