INVARIANTS OF THE QUARTIC BINARY FORM AND PROOFS OF
CHEN’S CONJECTURES ON INEQUALITIES FOR THE PARTITION
FUNCTION AND THE ANDREWS’ SPT FUNCTION
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ABSTRACT. An extensive amount of study has been done on inequalities for the partition func-
tion, emerged primarily through works of Chen. In particular, the Turan inequality and the
higher order Turdn inequalities for p(n) has been one of the most predominant theme. Among
many others, one of the most notable one is Griffin, Ono, Rolen, and Zagier’s result in which
they proved that for every integer d > 1, there exists an integer N(d) such that the Jensen poly-
nomial of degree d and shift n associated with the partition function, denoted by Jg’"(x), has
only distinct real roots for all n > N(d), earlier conjectured by Chen, Jia, and Wang and Ono
independently. Later, Larson and Wagner have provided an estimate of upper bound for N(d).
This phenomena in turn implies that the discriminant of J;f’”(z) is positive; i.e., Discx(Jg’") > 0.
For d = 2, Disc, (J}™) > 0 when n > N(2) = 26 is equivalent to the fact that (p(n))n>26 is log-
concave. In 2017, Chen undertook a comprehensive investigation on inequalities for p(n) through
the lens of invariant theory of binary forms of degree n. Positivity of the invariant of a quadratic
binary form (resp. cubic binary form) associated with p(n) reflects that the sequence (p(n))n>26
satisfies the Turdn inequality (resp. (p(n))n>95 satisfies the higher order Turdn inequality). Chen
further studied on the two invariants for a quartic binary form where its coefficients are shifted
values of integer partitions and conjectured four inequalities for p(n). In this paper, we give
explicit error bounds for the asymptotic expansion of the shifted partition function p(n — ¢) for
any non-negative integer £. As an application of these infinite family of inequalities, we confirm
the conjectures of Chen. Moreover, three family of inequalities related to the partition function
have been studied in this paper, namely, higher order Laguerre inequalities, higher order shifted
differences, and higher order log-concavity. In context of higher order Laguerre inequalities for
p(n), we settle a conjecture of Wagner. For higher order shifted difference of p(n), we extend a
result of Gomez, Males, and Rolen. In context of higher order log-concavity for p(n), we prove
discuss on the asymptotic growth for the r-fold applications (with r € {1,2,3}) of the operator
L on p(n) defined by L(p(n)) = p(n)? — p(n — 1)p(n + 1) and propose a conjecture on infinite
log-concavity in this regard. Furthermore, we will show how to construct a unified framework to
prove partition function inequalities of the above types and discuss a few possible applications of
such construction. Finally, we prove all the Chen’s conjectures related to the inequalities for the
Andrews’ spt function, denoted by spt(n), arising from invariants of quartic binary form using
inequalities for the shifted partition function.
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1. INTRODUCTION

Throughout this paper, we consider only sequences of real numbers. A sequence (a,)n>0 is
said to satisfy the Turdn inequlaities or to be log-concave, if

a2 — ap_1ap41 >0 forall n>1, (1.1)

see . We say that a sequence (a,),>o is said to satisfy the higher order Turdn inequlaities if
for all n > 1,
4(0“2 - an—lan+1)(a721+1 - anan+2) - (a’nan+1 - an—lan+2)2 > 0. (12)

The Turan inequalities and the higher order Turan inequalities are related to the Laguerre-Polya
class of real entire functions , . A real entire function

0 k

o) =Y as (1.3)

k=0

is said to be in Laguerre-Pdlya class, denoted by 1(z) € LP, if it is of the form

W(x) = cxe o B H(l + ﬁ)e_ﬁ7

x
k=1 k
(o)
where ¢, 3,z are real numbers, a > 0, m € Z>,, and E x,f converges. Any sequence of
k=1

polynomials with only real zeroes, say (P, (x))n>0, converges uniformly to a function P(x) € LP.
For a more detailed study on the theory of the LP class, we refer to . Jensen proved that
a real entire function ¢ (z) is in LP class if and only if for any d € Z>,, the Jensen polynomial
of degree d associated with a sequence (a;,)n>0:

d

Jhz)=>" (Z) apz

k=0

has only real zeroes. Pdlya and Schur [61] proved that for a real entire function 1(x) € LP and
for any n > Zsg, the n-th derivative (™ (x) of ¥)(z) also belongs to the LP class, that is, the
Jensen polynomial associated with ¢ (z)

d
d
5 =3 () awena

k=0
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has only real zeroes. Observe that for d = 2 and for all nonnegative integer n, the real-rootedness
of J&"(x) implies that the discriminant 4(a2; — a,a,12) is nonnegative. Pélya’s work [54] on LP
class is closely connected with the Riemann hypothesis. He showed that the Riemann hypothesis
is equivalent to real rootedness of the Jensen polynomial J¢"(z) for all nonnegative integers d
and n, where the coefficient sequence {a, },>o is defined by

1 "Ny o,
(—1 +427) A<§+z> :ZHZQ,

n=»

with A(s) = 77%/2T'(s/2)¢(s) = A(1 — s), where ¢ denotes the Riemann zeta function and I’
denotes the Gamma function. In 2019, Griffin, Ono, Rolen, and Zagier |32, Theorem 1] proved
that for all d > 1, J%"(x) has only real roots for all sufficiently large n.

Now we discuss in brief the inequalities of the partition function. A partition of a positive
integer n is a weakly decreasing sequence (A1, Aa, ..., A.) of positive integers such that A + Ay +
-+++ A, = n. Let p(n) denote the number of partitions of n. Estimates on the partition function
systematically began with the work of Hardy and Ramanujan [34] in 1918 and independently by
Uspensky [66] in 1920:

as n — 00. (1.4)

Hardy and Ramanujan’s proof involved an important tool called the Circle Method which has
manifold applications in analytic number theory. For a well documented exposition on this
collaboration, see [45]. During 1937-1943, Rademacher [55, 56, [57] improved the work of Hardy
and Ramanujan and found a convergent series for p(n) and Lehmer’s [43 |44] considerations
were on the estimation for the remainder term of the series for p(n). The Hardy-Ramanujan-
Rademacher formula reads

V12 X A(n) k ki
n) = 1— —— Jerm* 4 [ 14+ —— Je " ™/E| 4 Ry(n,N), (15
P = 1 2 |\ ) 2 N, (19)
where .
u(n) — g\/m’ Ak(n) _ Z 6—2m’nh/k+7ri5(h7k)
h mod k
(h,k)=1
with
k—1
poogpp L\ [hp phuyp 1
h, k) = LA o [ [ A e o
s(hs k) ;<k M 2><k Lk:J 2)’
and

T2 N2/ N ’ . oun) 1 N :

Independently Nicolas [50] and DeSalvo and Pak [23, Theorem 1.1] proved that the partition
function (p(n)),>926 is log-concave, conjectured by Chen [15]. DeSalvo and Pak [23| Theorem
4.1] also proved that for all n > 2,

p(n—1) 1 p(n)
= 1+ =) > 2 1.7
o) ( w) 7 dnr ) 47
conjectured by Chen [15]. Further, they improved the term (1 + 1) in (1.7) and proved that for

all n > 7,
(n—1) 240 (n)
- p(n) (1 " (24n)3/2> > (1.8)
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see [23| p. 4.2]. DeSalvo and Pak [23] finally came up with the conjecture that the coefficient of
1/n%? in (1.§) can be improved to m/v/24; i.e., for all n > 45,

p(n—1) W p(n)
p(n) (1 " \/ﬂn?’/Q) = p(n+1) (1.9)

which was proved by Chen, Wang and Xie [18, Sec. 2]. Paule, Radu, Zeng, and the author [8|
Theorem 7.6] confirmed that the coefficient of 1/n%2 is indeed 7/+/24, which is the optimal; i.e.,
they proved that for all n > 120,

p(n)? > <1 + ﬁ - %)p(n — Dp(n+1). (1.10)

Chen [16] conjectured that p(n) satisfies the higher order Turdn inequalities for all n > 95 which
was proved by Chen, Jia, and Wang [17, Theorem 1.3] and analogous to the inequality ((1.9)),
they conjectured that for all n > 2,

1 -1
HE =) < (”ﬁ)m—unum with = 2P gy
n

p(n)

settled by Larson and Wagner [42, Theorem 1.2]. In [17], Chen, Jia, and Wang conjectured]] that
for any integer d > 1 there exists an integer N(d) such that the Jensen polynomial of degree d
and shift n associated with p(n) has only real roots which was settled by Griffin, Ono, Rolen,
and Zagier [32, Theorem 5] and inspired by their work, Larson and Wagner [42, Theorem 1.3]
proved that N(d) < (3d)2(50d)*®. Proofs of the inequalities, stated before, primarily relies
on the Hardy-Ramanujan-Rademacher formula and Lehmer’s error bound but with
different methodology.

While studying on the higher order Turan inequality for p(n), Chen [16] undertook a compre-
hensive study on inequalities pertaining to invariants of a binary form. A binary form P(z,y)
of degree d is a homogeneous polynomial of degree d in two variables x and y is defined by

d
n i, n—1i
Py(z,y) = Z (Z.)aix Yy

=0

where (a;)i1<i<n € C". But we restrict a; to be real numbers. The binary form P,(z,y) is
transformed into a new binary form, say Q(Z,7y) with

d
Q4T Y) = Z (?) Ty
=0

myy M2

under the action of M = (
Ma1 Mag

) € GLy(R) as follows:

()= (G)

The transformed coefficients (¢;)o<;<q are polynomials in (a;)o<i<q and entries of the matrix M.
For k € Zsy, a polynomial I(ag,ay,...,aq) in the coefficients (a;)o<i<q is called an invariant of
index of k of the binary form Py(z,y) if for any M € GLy(R),

I(@, @y, ..., aq) = (det M)¥I(ag,ay, ..., a,).

'Independently conjectured by K. Ono
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For a more detailed study on the theory of invariants, see, for example, Hilbert [35], Kung and
Rota [40], and Sturmfels [63]. We observe that I(ag, a1, as) = a} — agay is an invariant of the
quadratic binary form
Py(z,y) = asx® + 2a1xy + apy’
and the discriminant is 41(ag, a1, az). For a sequence (a,),>0, define
I-1(ag, ar, ag) = I(an 1, an, any1) = a5 — p10n41.
Therefore, if we choose a,, = p(n), then I,,_1(p(0), p(1),p(2)) > 0 for all n > 26 is the same thing
as saying (p(n))n>26 is log-concave. For degree 3,
I(ag, ay,as,a3) = 4(a® — apas) (a3 — ayas) — (ayay — agas)?
is an invariant of the cubic binary form P3(z,y) = azz® + 3ax2%y + 3a;xy® + apy® and the
discriminant is 271 (ag, a1, ag, ag). Similarly, setting a,, = p(n), the positivity of I,,_1(ag, a1, az, a3)
for all n > 95 is equivalent to state that (p(n)),>95 satisfies the higher order Turdn inequality.
Two invariants of the quartic binary form
Py(z,y) = agx® + 4asz’y + 6ay2°y? + 4a12y® + ay®
are of the following form
Alag, ar, a, az, as) = apas — 4araz + 3ag7
B(ao, a1, ay, az, as) = —agagay + ay + apaj + atay — 2a1aza;.
Setting a,, = p(n), Chen [16] conjectured that
A(an—la Qp, Qp+1, An4-2, an+3) >0 and B<an—17 Ap,y Apt1y An4-2, an+3) > 07
along with the associated companion inequalities in the spirit of (1.9 and (1.11]). Here we list

all the four conjectures with a,, = p(n).

Conjecture 1.1 (Eqn. (6.17), [16]).
Gp_10p43 + 3a72Hl > 4a,an,19 for all n > 185. (1.12)

Conjecture 1.2 (Conjecture 6.15, [16]). We have

2

m
4(1+ 10 ) antnrs > apranas +3a2,, for all n > 218, (1.13)

Conjecture 1.3 (Eqn. (6.18), [16]).
af’lﬂ + an_la?HQ + aiamg > 20,0 110n12 + Qp_10n410n13 for all n > 221. (1.14)

Conjecture 1.4 (Conjecture 6.16, [16]). We have
3
(1 + W> (2050410012 + Qp_1Gp4110543) > aiﬂ + an_laiJr2 +a’a,,3 for all n > 244.

(1.15)

We prove all the four conjectures along with the confirmation that the rate of decay n%/16n?
(resp. 73/72v/6n%/?) in (1.2) (resp. in (1.4))) is the optimal one, as stated in Theorem [1.5| (resp.
Theorem . We also ensure that the rate of decay is 7/v/24n/? in context of (I.11]) can not
be improved further by proving Theorem [1.9] Let a,, := p(n).

Theorem 1.5. For all n > 218,
w2 9 w2 6
4(1 + W)&nan_;,_g > Qp—1Qp43 + 3CLn+1 > 4(1 + ﬁ - W)ananH. (116)
Corollary 1.6. Conjecture[1.1] and[1.3 is true.
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Theorem 1.7. For all n > 244,
1 —713 2 3 2 2
( —+ 72\/67’},9/2)( ApQp41Qp+42 + an—lan+1an+3) > an+1 —+ an_la/n+2 + anan+3

(1.17)

i 8
> (1 + oo ﬁ) (20n,an+10n12 + Qp_10n110n43).
Corollary 1.8. Conjecture and[1.]] is true.
Theorem 1.9. For all n > 115,
T 2 2 2
(1 + m) (AnGpi1 — Gp_1Gn42)” > 4(a; — an—lan+1)(an+1 — ApGny2)
_ ; (1.18)

> <1 + m - E> (AnGni1 — an71Gn+2)2-

Remark 1.10. We observe that Theorem[1.9 immediately implies the following three statements:

(1) (p(n))n>o5 satisfies the higher order Turdn inequalities [17, Theorem 1.3].
(2) For alln > 2, (1.11)) holds 42, Theorem 1.2].
(3) Tainars Us the optimal rate of decay of the quotient

4((12 - an—lan—l—l)(aEH_l - anan+2)/(anan+l - an—lan+2)2-
2. PLAN OF PAPER

The rest of this paper is organized as follows. In Section [3] we shall present a couple of lemmas
from [8, 7] that will be helpful in later sections. Section {| prepares the set up by determining
the coefficients in the asymptotic expansion of p(n — ¢) with ¢ € N along with its estimates. An
infinite family of inequalities for p(n — ) is presented in Section . Section @ presents proofs of
the Theorems [1.5] [1.7, and [1.9] In Section [7, we presents further applications including higher
order Laguerre inequalities, higher order shifted difference, and higher order log-concavity for
p(n). Section [§ presents a unified framework on proving inequalities for p(n) of types discussed
in this paper. Finally, we conclude this paper by proving all the Chen’s conjectures stated before
in context of the Andrews’ spt function in Section [9}

A note for the reader: We intentionally did not define (and consequently, did not make
any reference to the works done in the respective contexts) the notions of higher order Laguerre
inequalities, higher order shifted difference, and higher order log-concavity for a sequence. We
refer the reader to see Subsections for the details. Similarly, the reader will find a
comprehensive detail on Andrews’s spt function in Section [9

3. PRELIMINARIES

This section presents all the preliminary lemmas required for the proofs of the lemmas pre-
sented in subsequent sections.

Lemma 3.1. [7, Lemma 3.3] For j, k € Zso with k < 24}

zk:(‘”i(l;) () ={ oy i, omoranse (31)

i=0 J\ J—k

Lemma 3.2. [7, Lemma 4.1] Let x1, 2, ...,x, <1 and y1,...,y1 be non-negative real numbers.

Then
1—a)(1—x5)--(1— - -
(L))o (Lom) g §n s
j=1 j=1

(T+y) (I +y2) - (1 +yn)

IThis condition has been tacitly assumed in the proof of |7, Lemma 3.3] but not written explicitly.



CHEN’S CONJECTURES ON ON INEQUALITIES FOR p(n) AND spt(n) 7

Lemma 3.3. [7, Lemma 4.2] For t > 1 and non-negative integer u < t, we have

G MG (1_u2+%>.

2t = (14 20)(t+u)(t), — 2t t

Lemma 3.4. [7, Lemma 4.3] Fort > 1 and non-negative integer u < t, we have

u

2ut+l_ 1 2t Z(—t)i(—l)i>2u+1_4u3+6u2+8u+3
2t T 142t 14204 (tHa)(t) T 2t 122

1=

Throughout the rest of this paper,
oy = %\/ 1+ 24¢.

Lemma 3.5. [7, Lemma 4.4] We have

o a2u o anu 1 . o u2a2u 042 a

UZ:O 2l = cosh(a), 2 ) =5 sinh(«), UZ:O @)l = Zcosh(oz) + Zsmh(a),
> 3 2u 302 2 1

Z 1;2;‘ = % cosh(a) + % sinh(a),

u=0 )

300 L 202 7y cosh(a) + (60 + o) sinh(a)
an . (2u)' —1605 8} (8] 16 (0% ) S1Innf o ).

Lemma 3.6. |7, Lemma 4.5] Let u € Z>q. Assume that any1 — an > by — by for alln > u,
and lim,,_, a, = lim,_,. b, = 0. Then

b, > a, for all n > u.
Lemma 3.7. Fort > 1 and k € {0,1,2,3} we have

k

i ukazv < C(0)

Bl (u)! — 7
where
4 ok
Ck = 0%182 ) g = 0
Ol = VI (14 (V) a0

, (>1

(1+2[V0])(2 +2[V])!

uka%“

Proof. Applying Lemma E with a,, = > 7 and b, = CZ—gZ), bpi1 — bn < apy1 — ay is

u=n+1 (2u)!
2n+2
equivalent to show that f(n) := % < Ck(£). To prove f(n) < Ci(¥), it is sufficient to

show that f(m) < Cy(¢) for a minimal m such that f(m) is maximal. In order to find such m, it is
enough to that 2% < 1 for all n > max{[v/], 1}, and therefore, max f(n) = f([VI]) = Cr(0)
NnEL>q

f(n)
n a?(n+2)k+2(2n+1
for all £ > 1 and for £ = 0, ngafof(n) = f(1) = Cx(0). Now, fgc(:)l) = (ani)(znzr;})g((nﬂ)?ﬂnz <1
holds for all all n > max{[v//],1}. O

Lemma 3.8. [§, Equation 7.5, Lemma 7.3] For n,k,s € Z>, and n > 2s let

4,/5 (s+k—1) 1

b = —
bl = I\ so1 )
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then

2s—1
2

t

O<i(_

Lemma 3.9. [§, Equation 7.9, Lemma 7.5] For m,n,s € Z>, and n > 2s let

) D o). (3.2)

nk

2 s
Cm,n(s) = En_m’
then
Cmn(8)  ~= [1/2) (—1)ks*
NG <;(k) o <0 (3.3)

Lemma 3.10. (8, Equation 7.7, Lemma 7.4] Forn,s € Z>1, m € N and n > 2s let

2 —1
5m,n($) = n_m (S —;T 1 )7

0< gﬂ (;j) <_ni)k < Bon(s). (3.4)

4. SET UP

then

Using the Hardy-Ramanujan-Rademacher formula for p(n) and Lehmer’s error bound, we have
the following inequality for p(n) due to Chen, Jia, and Wang.

Lemma 4.1. [17, Lemma 2.2 | For all n > 1206,

V12en™ (1— 1 — 1 ><p(n)<\/ﬁeu(n) (1— L + L ), (4.1)

24n — 1 u(n)  p(n)to 24n —1

where forn > 1, u(n) := 5v/24n — 1.

The definition of u(n) is kept throughout this paper. Paule, Radu, Zeng, and the author
extended Lemma [4.1] as follows.

Theorem 4.2. [§, Theorem 4.4] For k € Z>s, define
. 1(36
= 2. 1
ik 24<7T2 v(k)? + )
5k loglog k

where v(k) := 2log6 + (2log2)k + 2klogk + 2kloglog k + gk

and n > g(k) such that (n,k) # (6,2), we have
12¢#") 1 1 12¢#") 1 1
Vi2e (1 - — ) <p(n) < Vi2e (1 - + ) (4.2)

2n—1\  p(n)  pn)F 2n—1\  p(n) " pn)F

. Then for all k € Z>,

By making the shift n — ¢ in p(n) for any ¢ > 0, we obtain the following result.

Lemma 4.3. Let { € Z>y. For k € Zso, let g(k) be as in Theorem |{.2. Then for all k € Z>-
and n > g(k) + € such that (n, k) # (6,2), we have

V/12eH(n=0) 1 1 V12et(n=0) 1 1
‘ (1— — k) < pn—rt) < ¢ 1— + .

24(n—0) —1 pn—20) pn—1=~) 24(n—1¥) —1 pn—20) p(n—~0)*k
(4.3)
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V12 erln=0)

1
Rewrite the term A —0) =1 ( — = 6)) in the following way:

\/ﬁ e,u(n—ﬁ) 1 o 1 71-\/271/3 ﬂ\/Zn/S (\/1—L24‘Z 1) 1+ 240N\ 1 1
24(n—€)—1<1_u(n—€)> T 3 C /(1_ 24n ) <1_u(

-~
=:A; (n,E) N

n—1~0))

-~

=:Az(n,0)
(4.4)
Now we compute the Taylor expansion of the residue parts of A;(n,¢) and As(n,¥), defined in

E9.

Definition 4.4. Fort,l € Z>q, define

er(t,0) == § (“1' 1+ 240 (12— Dot o~ (1D (D o0 )
(24" ; Z 0+ )2 — 1)'% , otherwise
and
1 > 1 \2t
EI(%,E) - ;el(t,ﬁ)(%)  n> 1. (4.6)
Definition 4.5. For t,l € Z>, define
—__T (=DM1/2 = ) (1 +240)' )"( ) 20
01(t,0) == 12\/6<1+24£>< (24+ 27 t+u+1 I ) (4.7)
and
1 i 1 \2t+1
ol<ﬁ,£) - ;ol(t,€)<%) >l (4.8)

Lemma 4.6. Let Ai(n, () be defined as in ([A.4). Let E1(n, () be as in Definition[{.4 and O1(n, ()
as in Definition[{.5. Then

1 1
Ai(n,0) = B, <%€> + 01(%,@. (4.9)
Proof. From , we get
Mo t) = /T (V)

i (m\/2n/3)* < Ll 1)'“

prd k! 24n
2. (m4/2/3)* [k » 11240\
- k§< k!/ ) (\/ﬁ)k;(z')(_l)k ( L _2'_4n >

_ iwkﬂ(\/ﬁ)kz( ) - Zi (1/2) éi;) 24()7

=0

e

J

i
o
<.
Il
=)
.

1+24Z
Setting z := \/Lﬁ and ¢ := W\/g, Ay ( 12,6) = eZ(V =" 1) is an analytic function in z, and

therefore its Taylor expansion in a neighborhood of 0 is of the form »".° a:(€)z"; ie., > 72, f}fﬁ)
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for some constants (a:(¢)):>o. Hence, due to the uniqueness of the Taylor expansion of A;(n, ),

we have for k£ > 27 in (4.10)),
k .
Z k 2
( .> (/L/. ) - 0.
im0 \' J

Consequently, we need only to consider the range 0 < k < 2j in (4.10]). Split S := {(k,i, Jj) €
Z3,:0<i<k<2j}=J V(t), where for each ¢ € Z>,

teZZO
V(2t) = {(2u,i,u+1t) € Z2: 0 <i < 2u}

and
VEi+1) ={Qu+1Liu+t+1)€Z):0<i<2u+1}.
For r = (k,i,j) € S, we define

S(r) = (m/2/3)% (—1)k=1+i (1 + 240)) (/:) (zé2) and f(r) = k— 2

k! (24)
Rewrite as
Z LG (—) +Z S S ( )2t+1. (4.11)
t=0 reV(2t) t=0 rev(2¢t+1)
Now

S 3 s ( Ly i 1+24e> ( (égjo‘?u&(“’“) <%>

t=0 rev(2t) t= u=0
(4.12)
where by Lemma |3.1],
2u . 1, fu=t=0
(2 2 .
Er(u,t) == Z(—l)l< u) ( i/ ) — 0, ifu>t
=0 t utt QU(UQ&TS}(_wua otherwise

Consequently, we have

Z > s ( ) =E1<%74>- (4.13)

=0 reV(2t)

After simplifying, it follows that

> % so()"

t=0 reV(2t+1)

(14 240) (= 1) 1+24£ - S 1\ 21
126 (Z 2u+ 1) Ol(“’t)) (ﬁ) ’

t=0 u=

(4.14)
where by Lemma 3.1,

2u+1 . .
(2u+1 1/2 0, ifu>t
O(u,t) = (1) < . ) ( / ) = { _ @uiD)(1/2 )1 () -

i=0 g u+t+41 (uri)! , otherwise
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Therefore, we have

Z > S ( )2t+1—01<%7£>- (4.15)

t=0 reVv(2¢+1)
From (4.11), (4.13), and (4.15), we get (4.9). O
Definition 4.7. Fort € Z>, define
1 - 1\2t (1 + 240)"
E2<—,£> - eg(t,ﬁ)(—) with ea(t,0) = ) (4.16)
vn tz:; vn (24)t

Definition 4.8. Fort € Z>, define

O%%,é) _ 202@’6)(%)%1 with oq(t, 0) = _w\?ﬂ <—?;/2> (—1)t((2144)rt 240)" )

Lemma 4.9. Let Ay(n, () be defined as in ([A.4). Let Ex(n, £) be as in Definition[{.7 and Os(n, ()
as in Definition[{.8 Then

1 1
Proof. Following the definition of Ay(n,¢) from (4.4) and expand it as follows:

Aol ) = (1 - ;4721“)1 a Wﬁﬂ%( - ;4i4£)3/2
- E2<%,€> +OQ(%,£). (4.19)
This completes the proof of . ([l
Definition 4.10. Following the Definitions[{.4H4.8, we define
5671(%,@ — El(%,@ @(%,5), (4.20)
Se,2<in,£) — 0, (%5) 02(%,6), (4.21)
SO,1<%,€> - El(%x)@(%,z), (4.22)
and
50,2(%,6) — @(%,6)01(%,6). (4.23)
Lemma 4.11. For each i € {1,2}, let Se’i<%,€) and So,i<%,€> be as in Definition |4.10,

Then

VTS o0 e
=51 7 ) " WZ( (fg)”‘”(;ﬁé))' 2

Proof. The proof follows immediately by applying Lemmas and to (4.4)). O
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4.1. Coefficients in the asymptotic expansion of p(n — /).

Definition 4.12. Fort,{ € Z>y, define

Si(t,0) = ; H)s(l/f S ; G j‘jﬂgﬁq)!azu, (4.25)
and
Goa(t,6) == % (1 + Su(t, e>). (4.26)

1
Lemma 4.13. Let S, <T,€> be as in (4.20). Let g.1(t,€) be as in Definition|f.14. Then
n

1 - 1 \2t
S&l(ﬁ,ﬁ) - ; ge,l(t,z)(%> . (4.27)
Proof. From , , and , we have
1 00 t—1
Sea(gmt) = 1+ Z(elu,e) +es(t,0) + D enls, Dealt — s,@) (
t=1

)%.

Si-

s=1

(4.28)
Combining (4.5)) and (4.16)), we obtain

t—1

(14 240)
er(t,0) + ea(t, 0) + 2 er(s, O)es(t — s,0) = (2—4)t(1 +81(6.0)) = gea(£,0), (4.29)
which concludes the proof of (4.27)). O
Definition 4.14. Fort € Z>, and { € Z>q, define
t—1 s
—3/2 (=D"(=8)u__ 5
Syt 0) =3 (1/2 — ), v 4.30
o(t,0) =3 _(1/ S)H<t—s—1) (s +u+ D)l(2u) (4:30)
s=0 u=0
" (-1~ + 200y
-1 (14 24¢
= . 4.31
et St (1.31)
1
Lemma 4.15. Let S, (T,€> as in (4.21) and geo(t,€) as in Definition|4.14. Then
n

5672(%, 0) = g Gealt,0) (%)Qt. (4.32)

Proof. From (4.8)), (4.18) and ([4.21)), we have
5672(%,5) - O«%,E)@(%,K)
= i (tz 01(8,0)09(t — s — 1,€)> (%)ﬂ

t=1 \s=0

=S geg(t,z)(%)zt (by (@7 and (@EI7)). (4.33)
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Definition 4.16. Fort € Z>y and { € Z>o, define

i 12_55-1—1 23/2 i - u_su 2
Ss(t: ) = Z( / )s ) 2 (sg-i))!(;uzl)!%u’ (4:34)

s=1 u=1

and
(6 (=D)'(1+240)"

/24 - (24)f
432+ (1+ 240)7”

6 2304+/67

<(‘§/2)+Ss<t,€>>, ift>2

o (t, 0) == , ift=1. (4.35)

| Tv/24’
as in (4.22)) and g,1(t,¢) be as in Definition|4.16. Then

ift=0

1
Lemma 4.17. Let Sol<—,€>
) \/ﬁ

S (%6) - tf;go,l(t,e) (%)M. (4.36)

Proof. From ([4.6)), (4.17) and (£.22), it follows that
So,l(%@ _ E1<\}_ 6)02(\/5 e)
= Go1(0, E)\/_ + g01(1, 6)7 i": (OQ(t) +§;el(s,€)02(t — S,£)> (%)21%1

1 \2t+1
= Goa(0, 6)\/_+go11€—+2901t€( ) (by (4.5) and ([(.17)).

NG Vi
(4.37)
O
Definition 4.18. Fort € Z>, and { € Z>, define
t ~ _ (=1)"(=s)
=y (=1)°(1/2 - “ 4.
Sa(t, 0) ;( )°(1/2 = 5)s1 2 (5—|—u+1)!(2u)!a€ , (4.38)
and (1 + 240) (1 + 240)"
m(l+ +
02(t, l) == — Sa(t,0). 4.39
st €)= TS S ) (439

1
Lemma 4.19. Let 5'072(7%) be as in (4.23)) and g,2(t,¢) be as in Definition|f.18 Then
n

50,2(%,5) _ g Golt, 0) (%)m. (4.40)

Proof. From ([4.8)), (4.16) and (4£.23)), it follows that
1 1 1
So,l(%,e) — Ol(ﬁ,f)&(%,é)
00 t
1 \2t+1
= 01<S,£)€2(t - Sv£)> =
S 2
o 1 \ 2641
- Zggvgg,@(%) (by (EF) and (E16)). (4.41)
=0
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U
Definition 4.20. For each i € {1,2}, let gei(t,£) and go;(t,0) be as in Definitions [{.13{4.1§

We define a power series

thé( ) Zg2t€< )t—i-i_o:g(Qt—l—l,E)(%)%H,

where
g(2t,0) := gea(t,€) + geo(t,€) and g(2t +1,0) := go1(t,£) + goa(t,?). (4.42)
Lemma 4.21. Let G(n, () be as in Definition[{.20. Then
12 et(n=0) 1 1
Vi2e (1 - ) - eV2/3 . G(n, 0). (4.43)
24(n—1) —1 pu(n —4) 4nv/3
Proof. Applying Lemmas to Lemma [4.9] we have (4.43). O

Remark 4.22. Using Sigma due to Schneider [60] and GeneratingFunctions due to Mallinger
40/, we observe that for all t > 0,

9(2t,0) = gea(t, ) + gea(t, ) = ware and g2t +1,€) = go1(t,€) + goa(t, ) = wary14, (4.44)

where
t+1

(14240 S~ (t4+1\ t+1—k /m\t=2k 1
PO == ) —(—) S 4.45
9lb0) = wee =" kZ:O k) r1—260\6) (11240 (4.45)
Note that for ¢ = 0, we retrieve wy as in O’Sullivan’s (51, Proposition 4.4] work. Adapting the
proof methodology in [51, Proposition 4.4] for p(n), can do similarly for p(n — £) and conclude

the identity (4.45) by uniqueness of Taylor expansion of an analytic function (without using the
computer algebra packages mentioned above).

4.2. Estimation of (S;(t,¢)). We present the Lemmas [4.24 which will be needed in the
Subsection [£.3] A brief sketch of proofs of these lemmas are presented in the Section [11]

Definition 4.23. Let Cy,({) be as in Lemma[3.7. Define

CE(0) .= % + Co(0) + aj cosh(av) —81- Qy Silﬂh(ag)7
L 212

CY(0) .= Cy(0) + - 1 cosh(ay) + sinh(ay).

24

Lemma 4.24. Let Si(t, ) be as in Definition[{.14 and C£(£), C¥(€) as in Definition[4.23. Then
forallt>1,

L 1)t u
_ G 2(4) < S0 ( i) (cosh(ay) — 1) + iOég sinh(ay) < ¢ 2(5) (4.46)
t ( 5) (fti) 2t t
Definition 4.25. Let C’k( ) be as in Lemmal[3.7. Define

cosh(ay) sinh(ay)  agsinh(ay) = 2C1(¢)

c —

Call) = ==t T " af
h(ay) = sinh(ap) = 2Cy(0)

Uy . _CO0S

02,1() 2 + 2a£ + a% )

csh(f) := cosh(ay) + aysinh(ay),

8C3(¢)  (aZ +1)cosh(ay) = (af + 12a) sinh(ay)
S + ,
a2 1 24
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csh(f) N 405 (0)

CE(l) = CHL(0) +

2 al
csh(/
cs) = cf0 - 4 .

Lemma 4.26. Let So(t, () be as in Definition and C£((),CY({) as in Definition[f.23. Then
forallt > 1,

GO _S(t0) (<L sinh(ar) _ CY(0).

—5 — 5, cosh(a) + (4.47)
! ) ) af '
Definition 4.27. Let Cy({) be as in Lemma[3.7. Define
3a? cosh(ay) + Tay sinh(ay) + 2 cosh(ay) — 2
0371(€> — {4 ( E) 4 8( Z) ( ﬁ) +O()(€),
9a sinh 14 2402 h 18y sinh
Conl(l) 1= o sinh (o) + (o + a;icos (o) + 18ay sinh(ay) +20(0) + O (0),
sch(¢) = aj cosh(ay) + 2a,sinh(ay),
sch(/
CE(0) = C31(0) + Cs2(0) — 2( ),
h
CU(t) = 3C,(0) + X 2(@.
Lemma 4.28. Let S3(t, ) be as in Definition[{.16 and C£(¢), C¥(€) as in Definition[4.27. Then
forallt > 2,
L Y u
10 < St | (Z1) aysinh(ay) + 1 — cosh(ay) < Cs (6) (4.48)

5 T3
! ) ()
Definition 4.29. Let Cy({) be as in Lemma[3.7. Define
af  (a? +6)cosh(ay) + 3ay sinh(ay)

Ciall) = =+ 16 ’
h 20 (¢
Cf(g) = 0471(6) - cos 4<Oé€) + ?))( ),
U (a2 4+ 12) cosh(ay) + 3ay sinh(ay) + 12Cy(¢)

Lemma 4.30. Let Sy(t, ) be as in Definition[{.18 and C£(¢), C¥(€) as in Definition[4.29. Then
fort>1,

£ t, 0 —1)! sinh 1 “r
— C‘;Q( ) < Sl ’_)3 — (_g) sinh{ae) - Zcosh(ag) < 04752( ) (4.49)
(_1)t( t2) ( t2) e
4.3. Error bounds.
Lemma 4.31. For all k € Z>1, { € Z>p, andn > { + 1,
14+240F S (14240)0  24(0+1) (1 + 240)*
(L4200 §~ (42401 _ 20+ 1) (14240 w50
(24n)*k (24n)t 23 (24n)*
Proof. Equation (4.50) follows from
L (14240) (14 240)F 24n 24n 24(0 4 1)
= d1 < for allm > £+1.
2oty = iy 2ooi—1 M gy erellnzir

t=k
U
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Lemma 4.32. For alln,k,s € Z>1, { € Zzo, andn >0+1,

o0

1 (1+240) D (142400 12(0+1) (1 + 240)
(l{? + 1)5—5 24n < tz (24n) < 5(k + 1)5—% (24n)k

Proof. We observe that

i {(2) i 2;:2 t+1(1+24€)
(24n)t ts  (24n)t
t=k t=k

For allt > 1,

From (4.52) we obtain

<
— 24n)t — ts (24n)t = /7 el (24n)t
For all £ > 1,
i H(F) (1 4 240)" >i CFI+240 1 (14240°
— (24n)t  — (24n)! (k+ 1)z (24n)*
and
i (—1)"(72) (1 + 240)* _ 4 i 1 (1+240)
p— ts (24n)t T (t+ 1)~z (24n)!
0 t
s (. S (1 + 240)
Valk+1)7z = (24n)
4-24(0+41) 1 (1 + 240)*
(by
= 23T (k41)z  (24n)* (.50)).
12 (0+1) 1
< = . -
5 (k+ 1) (24n)
Equations (4.54]) and (4.55) imply (4.51] -

Lemma 4.33. Forn € Z>1, k,{ € Z>p, andn > 40 41,

—8\ (—1)1(1 + 240)" Vi + 1(1 + 240)*
0< Z < ) (24n)t <4v2 (24n)k

24n
240 4+ 1’

Proof. Setting (n, s) ( 2> in (3.2), it follows that for all n > 4¢ + 1,

= /-3 —1t VEF1(1+ 240)%
Z( ) DR 7

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)
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Definition 4.34. Let C£(¢) and C¥({) be as in Definition[{.25 Then for all k > 1 and £ > 0,
define

k
Gogsinh(a) (1) 12004 1) ) (240 ’
5vk + 1 5(k+1)3/271 24n

Ly(k, ) = (cosh(oze) -

and

2k
[ 24(¢+1)cosh(ay) aysinh(ap) — 12(0+1) 14 240
Gik, €) := ( 23 vk 1 * 5(k 4 1)3/2 ertt) 24n

Lemma 4.35. Let Ly(k,?) and Uy (k,{) be as in Definition|4.34. Let g.1(t,€) be as in Definition
[4.13 Then for all k € Z>y andn > 40 +1,

Lu(k, 0) ( ) < del (t,0) ( )Qt < Ul(k:,f)(%)%. (4.57)

Proof. From (4.26]) and (4.46)), it follows that for ¢t > 1,

V') (D' () e 24!
cosh(ay) — Q—ttaz sinh(ay) — t—thI (0) < (1 n 24€> Gen(t) =1+ 51(t,0)
1) —1)t(2
< cosh(ay) — %ae sinh(ay) + %C?(é)
(4.58)
Applying (4.50) and (4.51)) with s = 1 and 2, respectively, to (4.58]), we obtain (4.57)). O

Definition 4.36. Let C£(¢) and CY () be as in Definition[{.28. For allk > 1 and ¢ > 0, define

o _24(6 + 1) cosh(ay) B 120+ 1) 4, 1+ 24¢ 2k
Ly(k, () := ( 23 - _]ch2 (E))( o )

and

ot = s+ 2 T P o) (1)

Lemma 4.37. Let Ly(k,0) and Us(k,€) be as in Definition . Let ge2(t,0) be as in Definition
.14 Then for all k € Z>y and n > 40 + 1,

Lao(k, 0) ( ) < dez (£, 0) ( >2t < Uz(k,é)(%yk. (4.59)

Proof. From (4.31]) and (4.47)), it follows that for ¢t > 1,

— cosh(ay) + (_1)t(_t§) Siniiae) _ (—1)t(_t2) CH () < (1 EA;M)tgez(tf) = (—1)"1 S (L, 0)

< — cosh(ar) + (-1 CE) szi% + (_Dt(_tQ) CE(0)
(4.60)

Applying (L50), (51) with s = 1 and (L50) to ([L60), we get (L59). 0



18 K. BANERJEE

Definition 4.38. Let C£(¢) and CY(¢) be as in Definition[{.27. For allk > 1 and ¢ > 0, define

k
Lo(k. 0) = — _ 6oy sinh(ay) N 24+/2 cosh (o) VEk + 1 N 2(0+1) CY(0) 1+ 24¢ 2kt
ame /11 240 /11 240 51t 240V + 1 24n

and

2k+1
6-24(0+1) 20+ 1) CE(0) 1+ 244
Us(k,0) = [ =252 ), sinh(ay) + 1+24¢ _
(k. ) <23m/1 Tox " () 5mv/1+ 240 VE + 1 24n

Lemma 4.39. Let Ly(k, () and Us(k, () be as in Definition[4.38. Let go1(t, () be as in Definition
/.10 Then for all k € Z>y andn > 40 + 1,

o0

1\ 2k+1 1 \2t+1 1\ 2k+1
Ls(k,0) — <Y gon(t,O)| — < Us(k,0)| — . (4.61)
K (ﬁ) tz:; ! (ﬁ) K <\/ﬁ>
Proof. Define ¢ (t,0) := —%%(—l)t(tg). From (4.35) and (4.48)), it follows that for

t>2,

6ay sinh(ag) 6 cosh(ay) (—1)' (—%) B 60 (¢) (—l)t(*t%)
w1+ 240 w1+ 240 71+ 240 t

ar \ S (t.0)
3( 4.62
<<\/ 24€+1> Gou (£, ) = ) (4.62)

<60648111h(0[g) 6COSh(Oég)( 1)75(_%) 605 (0) (—1)?5(—;)
o1+ 240 7 /14+ 240 i+240 t

We observe that (4.62)) also holds for ¢ € {0,1}; see (4.35)). Now, applying (4.50)), (4.51]) with
s =1, and (4.56) to (4.62)), we conclude the proof. O

Definition 4.40. Let C£(¢) and C¥(¢) be as in Definition[{.29. For allk > 1 and ¢ > 0, define

k
Ll f) VI 2H(coshay) | 24(¢+Dsinh(ay) | 12(0+ CH(0) YA
nme 6 2vVEk +1 23ay 5(k + 1)3/2 24n,
and
k
Uy o TYITZH (600 1) cosh(ag) _ sinb(ag) | 1200+ )OF(O) ( [T240 o
IR N o 5k + 1)3/2 24n '

Lemma 4.41. Let Ly(k, 0) and Uy(k, () be as in Definition[.40. Let go2(t, () be as in Definition
.18 Then for allk € Z>y and n > 40 + 1,

M(k,ﬁ)(%)%ﬂ < i go,g(t,€)<%)2t+l < U4(k,z)<%>%+l. (4.63)
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TVl +240

roof. Define co(t, l) = ~1)t(~2). From (4.39) and (4.49), it follows that for
Proof. Defi 14 5 (T,

t>1,
3
2

71+ 24Ccosh(ar) (=1)'(7?) 71+ 24sinh(ay)  7v/1+ 240 CY(0) (=1)(72)

12 t 60&5 6 t2

or Su(t, 0)
< ( 24€+1> Go2(t,0) ZCz(t,f)m

_ 71+ 240 cosh(ay) (—1)t(—§) 71+ 244sinh(ay) . /14240 CE(0) (—1)t(‘§) .

12 t 6055 6 t2

(4.64)
Now, applying (4.50) and (4.51) with s = 1 and 2, respectively, to (4.64)), we have (4.63)). O
Definition 4.42. For k> 1 and ¢ > 0, define

- (240 + 1)? (k+3)(240+ 1)
no(k, 6) = k%}ﬁo{ 6 24 '

Definition 4.43. Let no(k, ) be as in Definition . For k>1 and ¢ > 0, define
~ 1 1+ 244 ~ 1 k(1 4+ 24¢
Ly(k,l) = ———=7 | 1 — et and Us(k, ) == =1+ (1+240) )
(050\/ 24) 4 TL()(]C,Z) (Ozo\/ 24) 3- n0<k7l)

Lemma 4.44. Let Ly(k, (), and Uy(k, €) be as in Definition . Let no(k, €) be as in Definition
[4-43 Then for all k € Zs1 and n > ng(k, (),

eV 2n/3 Eg(k},f) \/ﬁ er(n—0) 1 o™V 2n/3 (72(]{/,’ ﬁ)

< < . 4.65
3y M -0 -1 —0F s (469
Proof. For all k> 1 and ¢ > 0, define
12 n(n—120) 1 m/2n/3 1
Eln k) = V12 U k) =
24(n — ) — 1 u(n —2) 4nv/3 N
and
/20 —1y240
O k.0) E(n,k,0) e \/?<V o 1) (1 1+24g)—’“;2
n,k,l) = = - :
U(n,k,0) (Oé()\/ﬂ)”C 24n
Using (3.3) with (m,n,s) — (1,24n,24¢ + 1), we obtain for all n > 20 + 1,
14240 | 1+244 = (1/2\ (—=1)™
2n 24n mZ::l < m ) (24n)™ <0,
and consequently for n > ng(k,?),
(1424 /2y /1 1E240
1— 12t <o o <V < o 1> <1 (4.66)
4 TL()(]{/’,g)
Therefore
1 14240\ -5 1 1 14240\ -5
1-— l——) <9,k 0) < —— (1 — :
(ao\/ﬂ)k< 24n ) ( 4 /no(k,€)> (ao\/ﬂ)k< 24n )

(4.67)
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14 24¢
24n

We estimate (1 —

odd.
For k = 2r with r € Z>:

> H by splitting it into two cases depending on whether k is even or

=1+

(1 1—|—24€> ’“*2_(1 1—|—24€> (r+1)
24n 24n

s (—(r + 1)) (=1)7(1 + 246)
p Jj (24n)7
(

r41)(1424¢)
12

—(r+ 1)\ (=1 (142407 (r+1)(240+1)
0< Z: < , > (24n)i < 12n ’

From (3.4) with (m,s,n) — (1,7 + 1, 24“1) for all n > , we get

which is equivalent to

1+ 240N\ -2 k+2)(240 + 1
1 < (1 - ) <14l )2(4n ) forall n > no(k,0). (4.68)
For k =2r 4+ 1 with r € Z>¢:
1+ 240N\ %2 1+ 240N\ %32 (2N (—1)7(1 + 240)7
(1 il ) :(1 + ) S (=1)°(1 +240)
24n 24n ‘= J (24n)i
24
Using (3.2) with (m,s,n) — (1,r + 2, ﬁ), for all n > %, we get
SN (—1)7 (r+2)(1+240)
0< - <
> (0 e <
which is equivalent to
1+ 240N\ -2 k(1 + 240
1< (1 - ) <1+ % for all n > ng(k, £). (4.69)

From (4.68)) and (4.69)), for all n > ny(k,¢) it follows that

1+ 240N\ -2 k(1 + 24¢)
1< (1- ) ]+ T 4.70
24n * 3-no(k, ) (4.70)
From (4.67) and (4.70]), we conclude the proof.
0]

5. INEQUALITIES FOR p(n — /)

Definition 5.1. Let (L;(k, €))1<i<4 and (U;(k, £))1<i<4 be as in Definitions|4.3414.40. Let Uy(k, ()
be as in Definition[§.43 Then for all w € Zxy with [w/2] > 1, define

0= a([2])+ 1 [51.) o 21.) (|20 - Bt
o= ([51.0) [ 21.) (| 2]+ 0| 2).) v

Lemma 5 2 Let g(k) be as in Theorem and no(k,0) as in Definition [{-43. Let g(t,0)
be as in Let L(w,l) and U(w,f) be as in Definition [5.1 If m € Zs and n >
max{1, n0(2m E) g(2m) +£} then

V2B (P gt 0)  L(2m, 0) eV (gt ) U(2m, ()
A3 (Z i + NG )<p(n—€)< 3 (Z NG + N )

and
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Proof. Following Definition and from Lemma [£.21] we have

o0 2m—1 o0
1 \¢ 1 \¢ 1\t
S o0(z) = 2atn(z) + 2 ewo(7)
2m—1 00
1\ 2641
_ Z:g(t,ﬁ ( n) —|—Zg 2t€< ) +;th+1 0) (\/ﬁ)
2m—1 00 1
= ) g(t,0) ) (gea(t.0) + gea(t, 0) (—=
S o() 3 (o
d 1\ 2t4+1
+Zgolt‘€ +902t€ (%)
(5.1)
Using Lemmas by making the substitution & +— m, it follows that
Ly(m, €) + Ly(m, £)  Ly(m, ) + Ly(m, ¢ - 1\t
1(m7 )+2m2(m7 )+ 3<m, );i_m_é(m’ ) < Zg(t7£)(_)
\/ﬁ \/H t=2m \/ﬁ
Uy (m7 E) + UQ(ma E) U3(m7 é) + U4<m’ 6)
\/ﬁzm + ﬁ2m+1 :
(5.2)
Moreover, by Lemma [£.44] with k& = 2m, it follows that
VI et V23 [ (2m, 1) 53

<
T Y | A PV B
Combining (5.2) and (5.3), and applying to Lemma [4.3] we conclude the proof. O

Lemma 5.3. Let E(k) be as in Theorem and no(k,?) as in Deﬁmtz'on Let g(t,0)
be as in Equation (4.45). Let L(w,l) and U(w,l) be as in Definition Ifm € Zso and
n > max{1, ny( 2m+1 E) g(2m + 1) + (}, then

eV (N gt 0)  L(2m+1,0) VIS (I g(t0) | U@Em+1,0)
/3 (Z i Im+1 <p(n—1) < 3 Z it Zm+ 1 :
n “ /n NG A3\ Vn vn

Proof. The proof is analogous to the proof of Lemma [5.2] 0

Definition 5.4. Let g(t,() be as in ([4.45), L(w,?),U(w,?) as in Definition [5.1 If w € Zx
with [w/2] > 1, define

—wz_lg(t,f)(%y—l—% and U, ( wzlgté( ) +—U\(/I%’f).

t=0

Theorem 5.5. Let g(k) be as in Theorem [4.9 and no(k, () as in Definition[4.44 Let L,(w,?)
and U, (w, £) be as in Definition[5.4 Ifw € Zxy with [w/2] > 1 andn > max{g(w)+{, no(w, )},
then
e 2n/3£ ) , 6771/271/3
n(w, ) < p(n—
3 (w,6) <p(n—1) < -~ 7
Proof. Putting Lemmas [5.2] and |5.3| together, we obtain ((5.4)). O

Up(w, 0). (5.4)
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6. PROOF OoF THEOREMS [I.5] [1.7], AND [I.9
Proof of Theorem .' To prove the lower bound of ([1.16]), it is equivalent to show that

2 6
—4 —2)2>4(1 — — —1). 1
p(n —4)p(n) + 3p(n —2)° > ( + 6037  (n- 3)7/2>p(n 3)p(n —1) (6.1)
Since 1 + i — i > 1+ m — 0 for all n > 5, it is enough to show that
160 ni/? 16(n —3)3  (n—3)2 = s v
4 3 o saf1s T 5 3 1 6.2
p(n —4)p(n) + 3p(n —2)* > +w—m p(n —3)p(n —1). (6.2)
Choosing w = 12 and applying Theorem [5.5] for all n > 2329, we have
) 67n/2n/3 2 )
p(n —4)p(n) + 3p(n — 2)° > L,(12,4) - £,(12,0) + 3 £;(12,2) |, (6.3)
An\/3
and )
€7rw/2n/3 ” y A
n—3)p(n—1) < (12,3) -U,(12,1) . 6.
pn=3pn =1 < (T ) (Ua12:3)- 02,1 (6.4

Therefore, it suffices to show that

2 5

_ _>un(12,3) U, (12,1). (6.5)

2

Using the Reduceﬂ command within Mathematica, it can be easily checked that for all n > 625,

(6.5) holds.

Similarly, to prove the upper bound of (1.16)), it is equivalent to prove that

2
5 7r
p(n —4)p(n) +3p(n —2)° < 4 (1 + m)p(n —3)p(n —1). (6.6)
72 72
Since 1 + 602 <1+ m for all n > 4, it is enough to show that
2
p(n —4)p(n) + 3p(n —2)* < 4 (1 + #)p(n —3)p(n —1). (6.7)
Choosing w = 12 and applying Theorem [5.5] for all n > 2329, we have
67”/271/3 2
p(n —4)p(n) +3p(n —2)* < | ——— | |U.(12,4) - U, (12,0) + 3 U*(12,2) |, (6.8)
4n\/§
and )
3 D (22 (2a02,3) - £a020 6.9
n— n—1 > —— 2(12,3) - £,(12,1) |. :
pin =3l =) > (0= ) (£02:3) £,02.0 (6.9)
Therefore, it suffices to show that
2
U,(12,4) - U,(12,0) + 3 UZ(12,2) < 4(1 + #)ﬁn(m, 3)- £,(12,1). (6.10)

IReduce uses cylindrical algebraic decomposition for polynomials over real domains which is based on Collin’s
algorithm |20]. Cylindrical Algebraic Decomposition (CAD) is an algorithm which proves that a given polynomial
in several variables is positive (non-negative).
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In a similar way as stated before, it can be easily checked that for all n > 784, holds. We

conclude the proof of Theorem by verifying the inequality for all 218 < n < 2328 with

Mathematica. 0J
Proof of Theorem : To prove the lower bound of , it is equivalent to show that

p(n—2)° 4+ p(n — 4)p(n — 1)* + p(n — 3)*p(n) >

<1 + s -8 ) (2p(n = 3)p(n — 2)p(n — 1) + p(n — 4)p(n — 2)p(n)).

72V/6(n —3)%2  (n—3)°

(6.11)
As 1+ i ! >14+ ™ 8 for all n > 4. it suffices to show that
o~ _ ’ W
72/6n%2  nd 72y/6(n —3)%2  (n—3)° B
p(n—2)* + p(n —4)p(n — 1)* + p(n — 3)*p(n) >
3 7 (6.12)
(1 + W — ﬁ) (2]9(” = 3)p(n —2)p(n — 1) + p(n — 4)p(n — 2)17(”))

Choosing w = 15 and applying Theorem [5.5] for all n > 4047, we have
p(n = 2)° +p(n —4)p(n —1)* +p(n — 3)°p(n) >

671*\/2n/3
L£3(15,2) + L, (15,4) - £2(15,1) + L£2(15,3) - £,,(15,0) |,
4n\/§
(6.13)
and
2p(n = 3)p(n — 2)p(n — 1) + p(n — 4)p(n — 2)p(n) <
™V 2n/3 (6.14)
2-U,(15,3) - Uy, (15,2) - U, (15,1) + U, (15,4) - U, (15,2) - U,(15,0) .
4n\/§
Similar to the proof of , it can be easily checked that for all n > 1444,
L£3(15,2) + L£,(15,4) - £2(15,1) + £2(15,3) - L,(15,0) >
i 7
(1 + W — $> (2 U, (15,3) - U,(15,2) - U, (15, 1) + U, (15,4) - U, (15, 2) -L{n(15,0)>
(6.15)

Analogously, one can prove that for all n > 2916,
U3(15,2) + U, (15,4) - U>(15,1) +U?(15,3) - U,(15,0) <

(1 + W) (2 Ln(15,3) - £4(15,2) - £,,(15,1) + L, (15,4) - £,(15,2) - £,,(15, 0)),
(6.16)

which is sufficient to prove the upper bound of - We conclude the proof of Theorem |1 -
by verifying the inequality ((1.17] - for all 244 < n < 4047 with Mathematica.
Proof of Theorem |1 - 1.9: Corresponding to , we show
2
)(Mn—%ﬂn—h—pm—SmmD >

4(p(n = 2)* = p(n = 3)p(n — 1) (pn — 1) = p(n = 2)p(n) ).

T
14—
( V24032 (6.17)
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and
A(p(n = 2)* = p(n = 3)p(n = 1)) (p(n = 1)* = p(n = 2)p(n)) >
(1 + m — %) (p(n —2)p(n—1) —p(n — 3)p(n))2-
(6.18)

Applying Theorem with w = 13, and following the similar method worked out in the proof
of Theorem we obtain ([[.18]) for all n > 2842. For 115 < n < 2841, we verified ((1.18)
numerically with Mathematica. 0

7. APPLICATIONS

7.1. Higher order Laguerre inequalities. If a polynomial p(z) satisfies

p'(x)? = pla) - p(x) >0, (7.1)

then we say that p(x) satisfies Laguerre inequality. Laguerre [41] proved that if p(z) is a poly-
nomial having only roots, then p(x) satisfies ([7.1). Later in 1913, Jensen [37] obtained a gener-

alization of
L(p(o) = 5 30 ()P @) 2 0. (7:2)

where p®)(z) denotes the kth derivative of p(z). The case n = 1 gives the classical Laguerre
inequality . For a detailed study on the Laguerre inequalities of order m, we refer to |21}
67]. Considering the discrete version of (7.2)), define that a sequence (a,),>o satisfies Laguerre
inequalities of order m if

L.(a,) :== Z(—l)m+k (2]?) a(n+k)a(2m — k+n) > 0. (7.3)

Wagner [67] proved that p(n) satisfies ((7.3) with m > 1 and for sufficiently large n. Moreover,
he proposed the following conjecture.

Conjecture 7.1. [67] For 1 < m < 10, p(n) satisfies the Laguerre inequality of order m for
n > N(m), where

| m [1]2][s] 4[5 [ 6] 7] 8] 9] 10|

N(m) | 25| 184 531 | 1102] 1923 | 3014 | 4391 | 6070 8063 | 10332 |

The case m = 1 was settled by DeSalvo and Pak [23]. Wang and Yang [68, Theorem 2.1]
settled the case m = 2. Recently, Dou and Wang [25, Sections 2 and 3] resolved the cases
3 <m < 9. Dou and Wang |25 page 8] also proved that p(n) satisfies the Laguerre inequality
of order 10 for all n > 218573927203706866261 but in order to conclude for m = 10, they had to
verify the remaining quintillion gap which was impossible to check with computer and therefore,
the case m = 10 remains open.

For 2 <m < 15, let N(m) denotes the actual cut off for n such that (p(n)),>n@m) satisfies the
Laguerre inequality of order m, w(m) denotes the truncation point as given in Theorem [5.5, and
Np(m) denotes the cut-off from which point on we are able to show (using Theorem that
(p(n))n>Ny(m) satisfies Laguerre inequalities of order m. T(m) denotes the time (in seconds)
taken in computation with ‘Reduce’ command in Mathematica.
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Enumeration of cut-off Enumeration of cut-off
m N(m) | w(m) | Ng(m) | T(m) m N(m)| w(m) | Ng(m) | T'(m)
2 184 |11 1873 0.76 7 4391 | 34 29034 | 25.34
3 531 15 4049 1.53 8 6070 |39 40138 | 40.88
4 1102 | 20 8164 | 4.61 9 8063 | 45 56180 | 126.91
5 1923 | 23 11436 | 7.51 10 10382 | 50 71893 | 177.34
6 3014 |30 21577 | 11.46 11 13037 | 55 89803 | 366.15

Enumeration of cut-off
m N(m)|[w(m) | Ng(m) | T(m)
12 16038 | 63 109966 | 419.18
13 19393 | 68 132433 | 659.63
14 23110 72 157254 | 673.56
15 27199 | 78 184471 | 754.29

From the above tables, we have the following theorem.

Theorem 7.2. For 2 < m <15,
L,(p(n—2m)) >0 forall n> N(m). (7.4)

Remark 7.3. We observe that Theorem 7.3 settles the Conjecture[7.1. Now, in spite of having
Wagner’s proof on positivity of L,,(p(n)) for all but finitely many n, a natural question arises:
what is the growth of L,(p(n)) as n — oo? More explicitly, how to get an effective estimate of
N(m) such that for alln > N(m), L,,(p(n)) > 07

Based on numerical evidences (checked 1 < m < 200), we propose the following conjecture.

Conjecture 7.4. For allm € Z>,,

k=0

and for allm € Z>y and 0 <v < 3m — 1,

(_;)m Z<_1)k (ZZL) ZQ(S, 2m — k)g(3m — s, k) = 0.

k=0 s=0

If the above conjecture is true for m > 1, then by choosing w(m) = 3m+1 in Theorem [5.5] can
derive an effective estimate for N(w(m)) and prove that L,,(p(n —2m)) > 0 for all n > N(m).
As a consequence, it will follow that as n — oo,

O\ (@2m— 1) eVl
Lntv) ~ (57) o (%ﬁ) '

7.2. Higher order shifted difference. Let A be the difference operator defined on a sequence
(a(n))n>0 by A(a(n)) :=a(n+1)—a(n). A r-fold applications of A is denoted by A”". Recently,
Gomez, Males, and Rolen [27] generalized the A operator by introducing a shift parameter j,
defined as A%(a(n)) := a(n) — 2a(n — j) + a(n — 2j), and studied the positivity of A%(p(n)).
Consequently, they also proved that Nip(m,n) — Np(m + 1,n) > 0, where the k-rank function
Ni(m,n) which counts the number of partitions of n into at least (k—1) successive Durfee squares
with k-rank equal to m (see [26]). Following Theorem we obtain the asymptotic expansion
of Af(p(n)) == 31 _o(=1)™(")p(n —m - j) for any positive integer r, which finally leads to a
completion the work of Odlyzko [52] on A"p(n) (setting j = 1) by proving its asymptotic growth.
Works related to the positivity of A"p(n) can be found in [30, 33, [2, |39)].
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Following the notation from [31], here {" } denotes the Stirling number of second kind which
counts the number of ways to partition a set of n elements into m nonempty subsets. Here we
state three facts about {:1} which will be referenced later.

Fact 7.5. [31, Table 264] {"}= (") =0,
Fact 7.6. [31, Table 264] {"}= (") =1,

Fact 7.7. [31, Table 265, Eq. (6.19)] m!{"}= Z (7’;) k™ (—1)™*.
k=0

Lemma 7.8. Let g(t,() be as in Equation[4.45. Then for allr > 1,

r

S () S M ()

(7)1

71'

36(1 +12j7) + (r* + 3r 4+ 2)

1
\/ﬁ’ﬂrl )
Proof. Following (4.45|), we have

T

Sea() o)

m=0
T r+1 .
r 1+24m -
= —]_m
m:O( ) (m);< _4‘6n )
t+1\ t+1—-k (W)t—% 1
pr E ) (t+1—2k)!\6 (14 24m - j)F
t41
_r—i—l 2 (t—l-l) t+1—k <Z>t2k< 1 )t
=\ k (t+1—2k)!\6 —44/6n
() zame gyt
m=0 m
r+1 % "
B <+1> t+1-k <7r>t 2k< 1 )t
e\ k(1 2k)1\6 44/6n

~

S e e (1)

1l S B
(e @ )

t

~

Il
o
=
o

t

e:( > 245)(— 1)%!{f} (by Fact[7.7). (7.6)

From Fact , we have {f} = 0 for all £ < r and by Fact , {:} = 1. Therefore, the minimal
choice for (¢,k,¢) = (r,0,r) so that the sum on the right hand side of ([7.6) to be non-zero. For
t = r+ 1, we have two choices; i.e., (k,¢) = (1,r) and for k = 0, £ € {r,r + 1}. Therefore, we
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have

-3\ 1
- <%> Vi’
A (1) s () e s
z(ﬁ\/g)jﬁ—(%) T @12+ 0 81 2) —= (7.8)
U

C ()—(7T J)M] (L4 12j) + (% + 37 1 2)

r+1\J - 6 4 36 Jr r r 9

_ [7/2] . [(r—1)/2] ,

U,(j) = Ulr +2,2m - §) — Lir+2,2m+1)j
=3 (o, )0 +2:2m5 S (gns )2l 2 2 1)

and

_ (/2] , [(r—1)/2] ,

L.(j) = L(r+2,2m-5) — Ulr + 2, (2m + 1)§).
0= 3 (o JHrr22m = 3 (5, U2 emr )

Lemma 7.10. For all n > max{ﬁ(r +2)+7r-j,no(r+2,r- j)}, we have

NTE (LG eV [ 0(4)
3 (Mr<n7.7)+ \/ﬁH_z) < Aj(p(n)) < A3 ( r(n, ) + \/ﬁr+2>7 (7.9)
where
T i< Gl Crnl))
MT( 7J) \/ﬁr \/ﬁrJrl .
Proof. We split A%(p(n)) as follows:
8o = 0 (Yot m e
lr/2] [(r—1)/2]
_ (; )p(n —2m - j) Z <2mr+ 1>p(n —(2m+1)-j).
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Applying Theorem for each of the above two factors, we obtain ((7.9)). ([l
Consequently, from Lemma [7.10] we obtain the following result.

Corollary 7.11. For allr,j € Z>y,

, mog\ eV
Aj(p(n))N(\/6_n> T3 as m — 0o. (7.11)

Corollary 7.12. For j =1 and r € Z>1, we have

A" (p(n)) ~ (J;_T) e4nj§/ as n — oo.

More generally, we have the asymptotic expansion of A%(p(n)) of the following form stated
below.

Theorem 7.13. For all r,j € Z>4,

Al(p(n)) ~ in—\/j?<7\r/_6_iy Z g:/é? as n — 0o, (7.12)
where :
lt) = ”””‘zz(ﬂ)( e () e}

k=0 £=0
Proof. Letting w — oo, from it follows that

A(p(n)) = i(—l)m (m)p(n —m-j)

r

(S ()| oo

m=0 o Vn

From Lemma [7.8 for 0 < ¢ <r — 1 we have

r

Y (-1 ( ):z;gt’ )y (7.13)

m=0 n
and therefore from (7.13)) and (7.13)), as n — oo, it follows that

85000 ~ S0 (1 ), (714

m=0 t>r

Now,
(t+1)/2
1 (t+1) t+1—k t— 2k

S5 >m< )<1+24m e

o (—4v/6n)t \ K t+1—2k'< ) m

(t+1)/2 t—k r
=22 > i (245) (=1 (, )m
= =0 = (—4von)t ( g t+1_2k 6> m=0 m

(t+1)/2 t—k

>3 5 (1) () () e ()
Alt,r)

<

t>r /=0

)rl
=: (—-1)" T’!Z —1)7"7“!214(15—1—7’, T)

t>0
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j% o >y (Zi;)( f) 0 f:ff_l%)!(%)t_%(zzxj)f{fjr}. (7.15)

k=0 ¢=0

Applying ([7.15)) to ((7.14)), we finally obtain ([7.12)). O
Corollary 7.14. For j € Z>y,

e™ 2n/3 g j

Agl‘ (p(n)) ~ 12\/_713/2 t

asn — oo, (7.16)

where

0 - i(@ib( IR )

=0 ¢=0

Remark 7.15. Replacing n — n —k —m + 1 := ny and plugging j = 1 in Corollary for

all m > n/2, we have the full asymptotic expansion of Ni(m,n) with respect to the base ﬁ
But in order to get the asymptotic expansion with respect to the base ﬁ, we directly employ
Theorem and obtain for m >n/2,
my/2n/3 a.(t
n—o00 4n\/§ =0 \/ﬁ
where
gk(t) = g(ta k+m— 1) - g<t7k + m)
For k = 1,2 we get the asymptotic expansion of M(m,n) and N(m,n) respectively.
Corollary 7.16. For j € Z>,,
67‘(‘\/2 92
A3(p(n)) ~ 242 al as n — 0o, (7.18)
J 24\/_n2 ; \/—t

where

_ 2t+6 LR ft+2\ [t—1 1 N P
924(t) = (—4v/6)t M:O(uz)( )(t+3—2k)!(6> (247" (27 1),

Remark 7.17. By making the substitution n — n —k —m + 1 := ny and plugging 7 = 1 in

Corollary for allm > n/2, we have the full asymptotic expansion of Ny(m,n)—Ni(m+1,n)

with respect to the base \/rlTk" But in order to get the asymptotic expansion with respect to the

base ﬁ, we directly employ Theorem and obtain for m > n/2,

VI L Gilt)

nooe Any/3 >0 V'

Ni(m,n) — Nxg(m + 1,n)

(7.19)

where
g(t) =gt k+m—1)—=2g(t,k+m) +g(t,k + m+1).

For k = 1,2 we get the asymptotic expansion of M (m,n)—M(m+1) and N(m,n)—N(m+1,n)
respectively.
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7.3. Higher order log-concavity. The notion of log-concavity can be further generalized in
the following way. Consider the operator £ defined on a sequence A := (a,)n>0 C Rsg by
;C(A) = ./41 = (bn)nZO with

by = a(z) and b, = ai — Qp_1Qpy1, forn > 1.

Hence a sequence A is log-concave if and only if £(A) is a non-negative sequence. A sequence is
k-log-concave if j-fold applications of £ on A, denoted by £7(A), is a non-negative sequence for
all 0 < j < k. A sequence is called infinitely log-concave if it is k-log-concave for all £ > 1. For
example, Briandén [10] proved that the sequence of binomial coefficients ((Z))O <<y, 18 infinitely

log-concave for all n > 0 which was conjectured by Boros and Moll [9]. For a more detailed study
on infinite log-concavity of sequences, we refer the reader to [49]. In context of the partition
function, DeSalvo and Pak proved that (p(n)),>96 is log-concave. Hou and Zhang 36}, Page 128],
Jia and Wang [38, Theorem 1.6] proved that (p(n)),>a20 is 2-log-concave.

Theorem 7.18. Forr € {1,2,3} and n > max{§(3 22" —2)4+2r,ne(3-2" —r, 27“)} =: N(r),

cr (e ~ of —2 7.20
(p(n —7)) = A3 \/§r2+r+l\/§r2fr+1\/ﬁ3(2r_1) + W (7.20)

Proof. Forr =1, L(p(n —1)) = p(n —1)? — p(n)p(n — 2). Applying Theorem [5.5 with w = 4,
for all n > N(4) = 151 we have

AT
£lpn 1) = ( v ) (Z“ e +O($)>

e”\/m ’ ) s
- ( 4n\/_> (2\/6713/2—'—0(@))'

Now for r = 2, applying Theorem with w = 10, for all n > N(10) = 1473 it follows that

6”%/3492 2—2,2,
Lo — 2)) = ( wﬁ) (Zg (t,2) jﬁ(f Baa(t.1) | O<%)>

(7.21)

—_

Define

, (7.22)
B 67“/2n/3 3 N O( 1 >
-\ 43 24+/6n9/2 ns/ )
Define
gg(t,g) = gg(t,£>2 — 92<t,€ — 1)92@,6 —+ 1)
Finally for r = 3, from Theorem with w = 22, for all n > N(22) = 10273 we get
8
/203 2L g5(t,3)% — g3(t, 4)gs(t, 2) 1
£3(p(n . 3)) — (6 ) (Z gs3\t, g3\t, %)gs(t, + O<—>
4nv/3 — n ntl
=0 vn (7.23)

B e 2n/3 8 o~ +O<1)
\ 4nV3 1728+/6n21/2 nit) |
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For r € {1,2}, we obtain the following two inequalities for L£"(p(n — r)) using (5.4). For all
n > 676,

e”m ’ s 4 ! ] e”\/m ’ T 4 7 94
4n/3 2+/6n3/2 2 <L -1)) < An/3 21/613/2 * n? )’ (7:24)

and for all n > 5499,

4 4
m/2n/3 3 1 m/2n/3 3 1
i Y N S O A o T 10} (ray)
4nv/3 246092 n An/3 24/6n%2 n

Equations (7.24) and (7.25) retrieve that (p(n))ns26 is log-concave and (p(n))nsa02 is 2-log-
concave respectlvely along with respective asymptotic growths.

Following the proof of Theorem [7.18] it suggests that for all n > N(r),

eﬂ'\/m 3271 7” r r—
L (p(n— 1)) = ( 4n\/§) < Z g:(t, (t,ﬁj Dgo(t,r — 1) +O<ﬁ>>’

where g,(t,7) = g,_1(t,7)> — g,_1(t,r — 1)g,_1(t,r + 1) for all r > 2 and ¢, (¢t,7) = g(¢t, 7).
Moreover, following ([7.21))-(7.23)), it further suggests that

3(27—1)

Z gr(tar)Q _gr(t7r+ ]-)gT(tar_ 1) G’I‘

t=0 \/ﬁt - \/53(27”71) 7

where G, = ¢,(3(2" — 1),7)* — ¢.(3(2" — 1),7 + 1)g-(3(2" — 1), — 1). This finally leads us to
make the following conjecture.

Conjecture 7.19. Let N(r) be as in Theorem[7.1§ for r € Z>y. Then for all n > N(r),

21 e 2n/3 z
L'pn—1r)~ as n — 00. 7.26
p( ) \/§T2+T+1\/§12—r+1\/ﬁ3(2r—1) 4nv/3 ( )

In other words, p(n) is infinitely log-concave.

8. A UNIFIED FRAMEWORK TO PROVE INEQUALITIES FOR p(n)

In [5, Section 5], the author provided a unified framework to prove multiplicative inequalities
for p(n) given in the following form: for T' € N and (s;,r;) € Z%, for all 1 <i < T,

T T
Hp(n +5;) > Hp(n + 1),
=1 =1

using an infinite family of inequalities for logp(n + j) with j € Zsg, see [5, Theorem 3.9].
But in the literature, we found several examples for inequalities of p(n) which do not fit into the
multiplicative set up, for example the higher order Turan inequalities. In this context, the author
also discussed explicitly in [5, Section 7] the limitation of using |5, Theorem 3.9] to construct
a framework to prove inequalities for p(n) which is not multiplicative type and indicated what
might be a possible way to prove such inequalities in a systematic way. First, we note that
all the inequalities for the partition function stated in previous sections can be written in the
following form: for (c;,d;) € N, (s;;,7:;) € Z3, with 1 <4 < T and 1 < j < max{ My, M,},

My T
>_ci]Ip(n=si)) >Zd Hp ~Tig).
j=1 =1 i=
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We call the above inequality is an additive-multiplicative inequality for p(n).
Define

My T Mo T
PMl,T< Z H Sz] and PMLT(I', n) = Z dj Hp(n — ri,j)'
j=1 =1 j=1 =1

In this subsection, we will construct a unified framework to determine

(1> sign of (PMLT(s?n) - PMz,T(rv n))v
(2) and the cut off Ny ar, (s, 1) such that for all n > Ny, o, r(s, 1),

sign of (P, r(s,n) — Py, r(r,n)) is consistent.

Here we list down the steps so as to determine two facts stated above which finally verify whether
a given additive-multiplicative inequality for p(n) holds or not. To begin with, let us define

DM1,M2,T<S7 I',TL) = PMI,T(S,R) — PM27T(I‘, n)

e (Step 0): Associate

—ﬁ)HigE;’;).

2n

4n f
and Py, r(s,n) has same number of products 7', and therefore, we can extract out

T
T\/ﬁ) from Dy, ar,7(S, T, 1), which is always positive. So, in order to determine the

g(t,0)
\/ﬁ

Note that here we excluded the exponential term <~ because both factors Py, r(s,n)

associated

WE

sign of Dy, ap, r(s, 1, n), it is sufficient to consider the power series
t

Il
=)

with p(n — ¢).
e (Step 1): Map

Dagy vy (s, r,n) HZCJ gts” Zdnzgtr”

=1 t=0 i=1 t=0

\ J/

oo

SCPTRPRER

1
NG

e (Step 2): Now we can decide the sign of Dy, ar, (s, r,n) if Ps,r<

)7&0 let

) # 0. Consequently,

for Psr(\/l_

ord (P(%)) —m with m € N.
n
e (Step 3): So,

1 1
sign (D, ap7(s,r,n)) = sign (Gsr(m)) , where Gg(m) = [F} (PS,,r <—>) :
n NG
Now, there are two cases: (i) Gs,(m) > 0 and (ii) Gs,(m) < 0.
e (Step 4): In order to verify the consistency of sign of Dy, ar, 7(s,r,n), choose w = m+1,
where w is the truncation point stated in Theorem [5.5|
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e (Step 5): Consider the case Gs,(m) > 0. Applying Theorem [5.5{ with w — m+ 1, we get

My T
1
Dy 7 (s, x,m) > Z%Hﬁ (m+1,5;;) ZdeUn(erl,n,g)—p[sll(\/ﬁ),
i= J=1 =1

where

d
1 Asr k .
P —=) = ’ <k) with Agy(m) = Gsp(m) and d < T - (m +1).

k=m

e (Step 6): Determine the cutoff Npj ar, (s, r), such that for all n > Ny g, r(s, 1),
1
pha (— > 0.

Jn

e (Step 7): Consider the case Gs,(m) < 0. Applying Theorem [5.5{ with w — m+1, we get

Mo T
1
Datyta(®:m,m) < Z%HU o+ 1) = Sy T2 + L) =2 (72 ).
i= j=1  i=1

where

L) _ : Bax(k) = m) an - (m
<—>—I;n \/ﬁk with Bs,r(m>—GS,r( ) dd<T ( +1)'

1
In this case, estimate Nyg, ar, 7(s, 1), such that for all n > Nyg ar, 1(s, 1), p[ﬂ« (7> < 0.
n

Now we will discuss in brief about motivation behind considering the framework given above in
context of works done on inequalities for p(n).

We mainly focus on two type of inequalities for the partition function: the higher order Turan
inequality and determinantal inequalities associated with the Hankel matrix.

(1) Recall that (p(n)),>9s satisfies the higher order Turdn inequality if for all n > 95,
4 (p(n)* = p(n = Dp(n+ 1)) (p(n +1)* = p(n)p(n +2))
= (p(n)p(n+1) = p(n — p(n +2))* > 0.

Making the shift n — n — 2, can reformulate the left hand side of the above inequality
into the following form:

2 4
D2,3,4(S, r, n) = Z Cj Hp(n - Sz‘,j) - Z dj Hp(n - Ti,j)a

j=1 =1 j=1 i=1
with (Ml, M27T) = (2, 3,4), (Cj)1Sj§27(d )1<]<3, (Sz])%<1<47 and (le)%zzié are GXPIICItly
<< S

determined. Next, following Step 1, we see that

- Gs r(t) 1 7T3 1
D S, r,n)— 7 = Ps r( ) - +
254(8:7) thl N Vi) T 12v6 i

1

Hence, ord (Ps,r (T> = 9 and sign of Dy34(s,r,n) is positive which proves that
n

p(n) satisfies the higher order Turén inequality for sufficiently large n. So, in order to

determine a finite cutoff N(w) (so as to verify the remaining cases using any computer

algebra system) such that for n > N(w), the inequality holds for p(n), we need to choose

a w so that we can apply Theorem [5.5)and follows the Steps 4, 5, and 6. According to Step
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1
4, it is immediate that the minimal choice for w is ord Ps,r(—> +1=9+1=10.

NG

Therefore, we see that the unified framework explains why Chen, Jia, and Wang [17,
Lemma 2.2] started with the following inequality (cf. Lemma for p(n):

12k 1 1 V/12eH(™) 1 1
‘ (1 — — > < p(n) < ¢ 1-— +

24n — 1 w(n)  p(n)to 24n — 1 p(n) — p(n)to

to prove the higher order Turdn inequality for p(n).

Jia and Wang [38, Theorem 1.5] proved that det (Ms(p(n))) > 0 for all n > 222, where
My(p(n)) = (p(n =i+ J))1<ij<p, With & € Zso. This in turn proves that the Hankel
matrix with entries in p(n) and its shifted values is totally positive. Note that for the
case k = 2, det (Ma(p(n))) > 0 for all n > 26 due to DeSalvo and Pak [23, Theorem
1.1]. Jia and Wang [38| Conjecture 1.7] conjectured that for any k > 2, there exists N (k)
such that det (My(p(n))) > 0 for all n > N (k). Recently, Wang and Yang [69, Theorem
4.1] settled the conjecture of Jia and Wang for the case k = 4 and proved the inequality
with N(4) = 656. Moreover in [69, Section 6], they draw an outline of extending their
iterative construction to prove det (My(p(n))) > 0. But what precludes to determine an
effective cutoff N (k) so that the inequality det (My(p(n))) > 0 holds is to determine the
truncation point w(k) depending on k € Zsy because the key tool they used in proving
these inequalities was

12k () 1 1 V12t 1 1
—€<1— - ><p(n)< < (1- + .

24n — 1 p(n)  p(n) ™ 24n — 1 p(n) — p(n)e®

Wang and Yang concludes the paper by saying that for large k, one only needs to find
w(k) in order to follow their set up to settle the conjecture of Jia and Wang.

Following our framework, first make a shift n — n—k and consider the matrix M (p(n)) =
(p(n —k —i+ j))lgi,jgk' Using the formula of determinant, we have

det (m(p(n))) = (Sgn(a) [Tptn—k—i+ a(i))) .

(1))

tk+i—
Next, associating p(n —k —i+o(i)) to Z gt k+i : o
>0 Vn

the order of the power series P <\/Lﬁ>, where

, we finally needs to compute

k

N ) 1
by (%) => (Z sgn(o) [ [ otk +i —U(Z))> NG

t=0 \oc& i=1

So, the minimal choice for w(k) is ord (Pk <¢Lﬁ)> + 1. Still there is a subtle problem to

conclude the proof (following the setup of Wang and Yang) of the conjecture because we
have to ensure that for each k € Z>, and for some ¢ > 0,

For k € {2,3,4,5}, we have (w(k))s<k<s = (4,10,19,31) which seems to suggest that
w(k) = w + 1. Therefore to settle the conjecture [38, Conjecture 1.7], it remains to
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prove that for k € Zso,

k(k—1)

and for all 0 < v < =5,

We leave this as an open problem.

9. CHEN’S CONJECTURES ON THE ANDREWS’ SPT FUNCTION

Andrews [4] defined the smallest parts function spt(n) for any integer n > 1 as
spt(n) = Z mult (s(A)),
AFn

where mult (s(\)) denotes the multiplicity of the smallest part s(A) in a partition A of n. For
n =4, spt(n) = 10. The generating function of spt(n) is given by

[ . 00 q”
Spt(n)q - Z n\2(mn+1. )
n=1 n=1 (1 —dq ) (q + 7Q)oo

where (a;¢)o := [[ —o(1 — ag™). Ahlgren and Andersen [1, Theorem 1] obtained a Hardy-
Ramanujan-Rademacher type exact formula for spt(n) as the following conditionally convergent
infinite series

spt(n) = %(2477, — 1)% Z Ak]in) ([1/2 - [3/2) (%/T) )

where Ak (n) is the Kloosterman sum defined after (L.5). To obtain an estimate for the error
term of this conditionally convergent series in spirit of the work done by Lehmer for p(n), Ahlgren
and Andersen used the spectral theory of automorphic forms. Using the algebraic formula (see
[1, Theorem 2]) and traces of singular moduli, Dawsey and Masri |22, Theorem 1.1] gave an
asymptotic formula for spt(n). Recently, Gonzalez |29, Theorem 1.2] substantially improved the
result of Dawsey and Masri by proving that for n > 1,

spt(n) = V3

P o240 —1
where u(n) = §+/24n — 1. Moreover due to Gonzélez, we have the following estimation of spt(n)
in terms of p(n) which we will use to prove inequalities for spt(n).

"™ 1 B (n) with |E,(n)| < 4.1¢"5,

Lemma 9.1. (29, Corollary 1.4] Let u(n) be as stated before. Then for alln > 1,

mp(n) N 6v/3

ORI
27 7r2(24n—1)6 + En),

spt(n) =

where |E(n)| < 4.11e"5”

Dawsey and Masri |22, Theorem 1.2] settled the conjectures of Chen (see [16, Conjectures
6.7-6.11]) on inequalities for spt(n). But conjectures on postivity of invariants of cubic form and
quartic binary forms with coefficients in spt(n) made by Chen still remains open. Here we list
all the remaining conjectures of Chen.

Let b, := spt(n).
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Conjecture 9.2. [16, Conjectures 6.12 and 6.14]

(1) (bn)n>108 satisfies the higher order Turdn inequality.
(2) Let
bn+1bn71

by

Unp =

Then for all n > 2,

s
1+ ——— ) (1 — vy0n41) > 4(1 — 0,)(1 — vpiq).
(14 ) (Lt > 40 = )1 = )

Conjecture 9.3. [10, Eqn. (6.20) and Conjecture 6.15]
(1) For all n > 205,
bn1bnss + 3621 > Abybyo.
(2) For all n > 260,

71_2
4 (1 +3 6n3> bubnsa > by_1bnys + 302, ;.

Conjecture 9.4. (10, Eqn. (6.21) and Conjecture 6.16]
(1) For alln > 241,

b2y + bp1biio + 02byys > 26,00 1bnye + by 1by1bngs.
(2) For all n > 290,

7TS
<1 " 72\/5n9/2> (20nbn 110042 + by 1bni1bnys) > by + Dy 1bp o + Dobass.

Theorem 9.5. (1) For alln > 74,

T b? s 1
L+ 5 > > (1t o= = =] 9.1

(2) For allm > 143,

T
(2 bbb > 46— s
3/2 n n
vain T 9 , (9.2)
> (14 —or = ) (s = bucabueo)
(3) For all n > 265,
72 9 w2 3
4 (1 + W) bnbni2 > bp_1bpis + 3bj, 4 >4 (1 + 62 W) bnbnt2. (9.3)
(4) For all n > 290,
3
(1 + —) (2bn6n+lbn+2 + bnflbn+1bn+3) > b3+1 —|— bn,1b2+2 + b2 bn+3
9/2 n n n
72 (9.4)

3 5!
> (1 + W — E) (2bnbn+1bn+2 + bn—lbn+1bn+3)'

Corollary 9.6. Conjectures are true.

Before we move on to the proof of Theorem (9.5 in the following subsection, we shall derive
an infinite family of inequalities for spt(n — ¢) in Theorem using Lemmas and
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9.1. Inequalities for spt(n). Let g(k) be as in Theorem [1.2) and p(n) be as in Lemmal[d.1] For

k € Z>1, define
1 24k + 48 ?
“(k):=—[1 2 ) log(k + 4
7 24(*(( . >°g*‘0>’ (95

n(k,€) = max{g(k), g" (K)} +
Lemma 9.7. For ( € Z>o, k € Z>2, and n > n(k, (),
w(n—e) 2 p(n—2) 2

E ¢ <1——k><spt(n—€)<£ ‘ (1+—k>.

T \/24(n—0)—1 p(n —0) T \/24(n —0) -1 p(n —0)
Proof. From Lemmas and [£.2] we have for n > g(k)

24n — 1 6v/3
— () + 5o

27 w2(24n — 1)

V24n — 1 v/12eM™ 1 1 n

< ¥ o (1 - k:) 2 ut e 44115
T

27 24n — 1 p(n) * wu(n) i 24n — 1)

spt(n) < e 4 411"

p(n) 1 41112 s
V3 e e“(z”“‘(”)) , (9.6)

T \/24n —1 ( p(n)k V3 2
and

p(n)

et _411e 2

V24n — 1 6v/3
27 p(n) + w2(24n — 1)
L V20— 112t (1 - L) P LR R S
27 24n — 1 p(n)  p(n)k m2(24n — 1)
_ V3 e (1 1 4 126_@u(n)) 0.7)
T \/24n —1 p(n)k V3 2 ) '

Next, we show that for all n > ¢g*(k),

4.11-126_@;471) 1

V3 2 )t
4.11-12 n
< 28.5, it suffices to prove 28.5 et un) 1 7. Setting x = M, we aim to
\/g 2 w(n) 2
show that 28.5 e ™"z < ﬁ which is equivalent to prove the following inequality:
r— (k+1)logz > klog2 + log 28.5.
Define fi(z) := x — (k+ 1)logx and observe that fi(z) is increasing for all x > k + 1. So it is
enough to prove that fi(z¢) > klog2+log28.5 with zq > k+ 1. Choose zg = (2k +4) log(k +4)
and observe that for all £ > 1, o > k + 1. Now, it can be easily derived that for k > 1,
fr(zo) = (2k 4+ 4) log(k +4) — (k + 1) log ((2k + 4) log(k +4)) > k + 4 > klog2 + log 28.5.

Therefore, for all x > xg, we see that fr(z¢) > 0, which in turn, concludes the proof of .
Applying (9.8)) to and (9.7)), we obtain for n > max{g(k), g*(k)}

spt(n) >

(9.8)

Since

3 (n) 2 3 m(n) 9
ie— 1 — —— ] <spt(n) < £ ¢ 1+ Ak (9.9)
T /24n — 1 p(n) T 24n — 1 p(n)
Consequently, applying the shift n — n — ¢ in , we conclude the proof. O

Next, we proceed to determine explicitly the coefficient sequence in the Taylor expansion of
V3 _ et . /TS
Ry Yo after extracting out the factor < Nt
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Lemma 9.8. Fort € Z>, define

N+

(1 + 240)*

w*(t,0) = m 2 (Z)m <%)t * m

Then

\/_§ ep(n—0) e7r\/2n/3 ZW*@’E)
T V24 -0 -1 m/8n & yn'

Proof. Applying Lemma [£.6] we have

8 e S () o () ). o

50 - (-4 () (5 () - 55

-

(9.11)
Now,
() () - (S48 (£42) v 9 i
1
= er(k,O)es(t — k,0) | —
S (Sresn)
= es(t, 0) er(k,O)es(t — k, 0 M,
Z( +Z )) NP R
with
cor oy — e (PN () oy 3\ B Hea g DR,
9720 =(=1) ( 24 ) (( ] ) +k:1 (t—kz) k ; (k + w)l(2u — 1)1
(by and (0.11)) ( |
9.12

Similarly, applying (4.8]) and ( -, we get

o) 5 o -10) - 5500

t>0

and subsequently, by (4.7) and (9.11)), it follows that
240+ 1 ) !

g (2t +1,0) = (=1)*! 127:/6(24€+ 1) (




CHEN’S CONJECTURES ON ON INEQUALITIES FOR p(n) AND spt(n) 39

Combining (9.12)) and ( - we rewrite (9.10]) a.

\/g et(n—10) ™V 2n/3 g (t, f)

T VAm-0-1 8 = Ji

Now, it remains to show that g*(¢,€) = w*(¢,€) for t > 0. Set v := 7, = m/% and w := w, =
2441 Tpep

(9.14)

\/g e,u(nfé) e 2n/3 e'y(\/l+w71) e 2n/3 Z . ( ) .

— = . =: cr (y)w™.

T /24n—¥0)—1  m/8n V14w ™8n = !
e'y(\/lJriwfl)

Integrating once with respect to w, we see that

vV1+w

2
cr(7) = (m + 1) coeff fm1) (_67(\/1471)—1))
Y

m+1 K
:(m+1)coeff[wm+1]< kg}{—( 14+w
Jr

a3 (3)" ooty %(h ))

s k=11 T+2\F

(m+1 Z ( ) — coeff[wmﬂ,k] ( 5 ) (by setting z := z(w) = V1 + w)
m+1 —m—1+k
Z ( ) m coeff[wm <1 _g Z) . (915)
k=0

From [31} p. 203], we know that for y = /1 + 2z and m € C\ Zxo,
1+9\" = m [m—j\a
— = — —. 9.16
(=) =xas () 010
Applying (9.16) to (9.15)), after simplifying, we have

(7)) = ki:o ;::: (,7(1__1),:)! (m,j k)

and consequently, it follows that

> e (w ZZQerk (m—k v(m/—:k> (W %n)mk <_242£4J7;1>m

m>0 m>0 k=0

SE () (V) ()
Sl P G I

r>0 k+m=r
k<m
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T

() ;(Z)m@)"%aéw o)

r>0

Due to uniqueness property of the Taylor expansion of an analytic function, we conclude that
g (t,0) = w*(t,¢) for all t > 0. O
Next, we move on to estimate an error bound for the absolute value of the remainder part

w*(t, 0 . . . .
of the series } . (—t> truncated at £ — 1 for k € Z>, using estimations for the coefficient

sequences (g*(2t,0))i>0 and (¢g*(2t + 1, £));>o in the following lemma.
Let no(k, ¢) be as in Definition 4.42| For k € Z>,, define

5 24
EWN(k,0) = (%Jr O”f/;i) sinh (ozg)) ( 125‘”) ,

3 R
EP(k, 0) = m( A vt (o) Cosh(“f)> ( Hz%) ’

6v2  6v2
9 1 k(1 + 24¢0)
B 0= vz (“ 3ok, 6))
E*(k,0) := EW(k, 0) + EB(k, 0) + 2EB (K, 0). (9.18)

&
~

S~—

——

Theorem 9.9. For w € Zsy, { € Z>o, and n > max{n(w,{), ny(

e™V/20/3 (“ Wt 0 E*(w, ) emV/2n/3 (w LW (t, 0) .\ E*(w,€)>

S\ & T ><spt(n—€)< pay

Proof. Split the series in Lemma [9.8] as

For all t > 1 and using ((9.12)), we have

1+ 240\" _1 i

AL RIS

k ul . u
(%>\ i
t—k)| 2k 4’“: ]0k+j+1)(2u—1)!
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) (x(

<

1+ 24¢
24

2t

t

> + aysinh () Z

41

t 2k

(%)

2k - 4k

)

1+ 240\" 1 o7, Slnh &g . 2m 4m
< < >
_( 24 )(\/ﬂ Zk3/2 since . _\/mform_l
- 1+ 240\ LJragsmh(ag)g 3 |
24 J 2/ 2
and consequently, it follows that
t>[5] \/ﬁ
2
1 oaysinh(ay) . (3 1+ 240
<[ — —
- (ﬁ 2\/m ¢ 2 Z 24n
t>[5]
o[ 2
(1 (XgSiIlh(Oég)C 3 1+ 24¢ fﬂz 1+ 240
T 2\/7 2 24n et 24n
orw
(4 +ozgsinh(04g)C 3 1+ 240 =y 1+ 240\"
- T 2\/m 2 24 N =\ 2n
orw
(1 +agsinh(ag)c 3 1+ 24¢ =y 1
= \/r 27 2 24 Nor =¥}
(as n > ng(k,0) > 20+ 1)
EM(w, ¢
= —\/(ﬁﬂ ) (9.20)
Next, for all ¢ > 0 and applying (9.13)), we get
L+ 240\ <[ 2\ ][]/ 2 (1) (=k)ulof
R, 2412+1( ) ( ) <__ )
o201 < a0 (S5 ) 012 (2 F) L2 e i
w 1+ 240\' <~ | /1 b (=1) % (—k)u| a2
< (240 + 1 ( ) (— — k) £
12v/6 ) 24 —I\2 k1 ; (k+u+1)!(2u)!
14240\t (1 t 2k k ulop o
S— (24£+1)( - g) —+Z<’“)kz Lo =9) o
12v/6 24 2 4£2-4 < [[io(k + 7+ 1) (2u)!
w 14240\ L 1 o
< 240+ 1 1+
- 24\/6( )( 24 ) kl‘/WkuZ:(]k+“+1(2“)!
7r 14240\ 1 &~ 1 & a2
< 240 4+ 1 14— —
- 24\/6( +1) ( 24 > + ™ ; E3/2 ; (2u)!
T 14 240\" cosh(a) v 1
< 240+ 1 1



42 K. BANERJEE
7r 14 240\° cosh(o@{@))
240 + 1 14— el
24/6 ( ) ( 24 > ( Nz

g (2t +1,0) lg*(2t + 1, ¢)|
2 < D
T 2t | = 2t4-1
>[5 v >[5 v

<

and therefore,

T Cosh(ae)C(§)> (1 - 24£>t 1
< 240+ 1) (14 ———222
< 24\/6( ) ( Nz t>;1] 24 S
/7 cosh(ay)¢(2) 1+ 240 2t+1
_ ™ )¢
_m(12+ & ) 3 ( 2 )
254
2l 241
o1 (X 4 Yreosh(add() YA S 5 ([ o
. . 24 Vit = \V "2an
<Vl =+ V7 cosh(a)¢(3) 1+ 24¢ A5 1 1\ 2+
S 12 12 24 \/ﬁw >0 V2
(as n > no(k, €) > 20 + 1)
_ B0 -
V. '

Applying (9.20) and (9.21)) to Lemma we obtain for n > max{g(w), ¢*(w), no(w, )},

emV2/3 (0L, *(t, 0) E[”(w,ﬁ) + Bl (w, ¢) V3 etn=0)
8n (t:o V' V' ) N3 24(n — 1) —1
2n/3 (1 wH(t, z EM (w, ) + EB(w, 0)
(t() V' V"
(9.22)
Finally, it can be deduceﬂ that for n > ng(w, £),
V3 er(n=0) ‘ 2 e™V20/3 9 13 (k,0) (9.23)
™ 24(n—€)—1 p(n — )k 7T\/8_n N '
We finish the proof by applying (9.22)) and ( - ) to Lemma O

Here we only provide brief sketch of proof of Theorem as it is analogous to the proofs
given in Section [6]

Proof of Theorem : Applying Theorem with w = 7,12, 11, 15, we conclude that ,
(19.2)), , holds for n > 1135, 3667, 3018, 6097 respectively. For the remaining cases, we
verified numerically with Mathematica. O

Remark 9.10. Using Theorem one can also prove the higher order Laguerre inequalities,
higher order log-concavity (for example, 2-log-concavity), determinantal inequalities, and higher
order shifted differences for spt(n), to name a few. Moreover, adapting the set up devised by
Griffin, Ono, Rolen, and Zagier , Theorem 3], one can appropriately choose the sequences

2We omit the detail due to similarity with the proof of Lemma
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(A(n))n>0 and (6(n))n>o so as to conclude that for all but finitely many n, the Jensen polynomial
Jgd

ot (x) associated with the sequence (spt(n))n>0 has all real roots.

10. CONCLUDING REMARKS

In this section, we discuss on two aspects of the work done on inequalities for p(n): (1)
regarding the proof methodology adapted for Theorem and (2) advantages and disadvantages
of the unified framework presented in Section

(1) First, we show schematically how one can derive a similar family of inequalities for p(n—/)
from [7, Theorem 7.5, and then will discuss about why might not be classified a standard
proof methodology.

From [7, Theorem 7.5], we have for w € N and for n > N(w),

p(n) = 4n\/i <Zg + O<c, (\/lﬁw>>

with N(w) and C,, are explicitly determined. Therefore making the shift n — n — ¢ with
{ € Z>g, for n > N(w) + ¢, we immediately get

0= (S s o, (7))

Now in order to derive analogous result stated in Theorem first we need to extract

2n

the factor © \/\/; and it takes the following form:

(n_é)_eﬂ\/?e”\/%sw_”\/? w*@i N ("o 1
g  dny3 1— ﬁ t=0 n' m—o \ 1T n <Cu Vvn”
n

- \/1—_€\/_ <W19<t> > (o ()

After splitting the inner infinite sum as

S (e ()7 - Ew % (Do ()

t m=

w— o ot 1 2m—+t
wXan X ()0 ()

t=0 m:l‘w}l*tJJrl

w—1 [1]
_ g <t7€) + E[l} (w7£)’

EWM(w,0)=0
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Similarly, the coefficients can be obtained explicitly from the Taylor expansion of

/2n—2¢ 2n
SV T3 T"™W B
1_£

and after truncating the series at w — 1, it follows that

VIR _Zg%e $ 9200 | 5~ 9P
\/ﬁt \/ﬁt t=w \/ﬁt

1__
n

and consequently, estimate the error term as

1
2 _
E[ ] (w,ﬁ) = OSCE,]Z (W) .
Altogether these estimations lead to the following asymptotic estimate:
i /2 fw—1 2]

eV g2(t,0) ( 1 )
n—1{)= +0 —
0= T8 (S0 o (4

— g, 0)

+0 =
t=0 V' <CyltCu V') )

w-l ¢ w—2 w—2
Z ax Z bt = Z Z apbi_pat + ¥ Z Z @k+1bw+mf1fk$t,
=0 t=0 k=0 =0 et
we have
e7r 2?” w—1 t [] [] . ;
n—=VY) = 2k7£ lt—k,ﬁ (_)
4 ) Any/3 \ = = 9= (k, g™ ) N
1 ww—2w—2 ] ¢
+<_ ZQMH Og' (w+m—1—k,0)
7)) 2 L
w—1 [2] w " y
g W <1> gL, 0) (1)
+ O _ 0= + O RS
2 <cl+ell \ Un ; o e\ Um
PLAVA S i, g(t, )

4n\/3§ paure \/ﬁt

=t
w—1
g2t f)
n

1\" < gll(t, 0) ( 1 )w
L NG <c? +cll), Jn ; NG <ct, NG

where ¢g(t, ) be as in (4.45). Finally, one needs to bound the three residual sums in the
above equation so as to obtain a result of the form
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We abandoned this approach because, our goal was to determine an asymptotic esti-
mate of the coefficients (g(¢,¢)):>o appeared in the asymptotic expansion of p(n — ¢) in
the following form:

FE0) —1(t,0) < g(t,0) < f(t,0) +ult, 0), (10.1)

with lim,_, o % =1, im0 % =0, and lim;_, 7;82 = 0. Precise descriptions for

such an estimations are given in Section [4] along with the inequalities of the form (10.1]).
In order to derive a similar asymptotic estimation in the present context (the alternative
approach we have discussed in the previous paragraph), we need to derive inequalities
for (gM(k, 0))x>0, (9 (k, £))r>0, and the convolution of these two sequences. Even if we
can derive such an estimate, this alternative approach to prove inequalities related to
the partition function (for instance, log-concavity, higher order Turdn inequality etc.)
is somewhat a pretentious one. The reason is that the methodology we have depicted
reflects that in order to prove the inequalities (mentioned above) for a sequence, say
(¢(n))n>0, arising from Fourier expansion of a modular form of negative weight which
admits a Rademacher type exact formula, one first needs to estimate error bounds for
the asymptotic expansion ¢(n) and then follow this framework to get a similar result
for the shifted version ¢(n — ¢). Whereas, what we have shown in this paper is that,
we can estimate error bounds for asymptotic expansion of ¢(n — ¢) explicitly in a more
straight forward way. In brevity, we showed that how one can generalize systematically
the framework constructed by Paule, Radu, Schneider, and author in [7] earlier so as to
prove inequalities for p(n), and inevitably it shows that to prove inequalities for p(n), we
need not to follow the result [7, Theorem 7.5], which has already been subsumed in the
present work.
Now, we discuss about advantages and disadvantages of the framework presented in
Section [8

In Section [§ we have shown that how one can prove inequalities for the partition
function of the form:

My T Mo T
> i [pn=sis) 2> d;i [ ptn—riy).
j=1 =1 =1 =1

along with determination of cutoff N (M, My, T') for n. One can construct a similar
structure to prove inequalities (of above type) for a broader class of sequences associated
with modular objects. In the following points, we shall consider sequences (and provide
example of such a sequence) arising from Fourier expansion of modular forms (of certain
types), mock modular forms, and mixed mock modular forms. Here we omit the defi-
nitions of modular/mock modular/mixed mock modular forms, for a detailed exposition
on these class of functions, we refer the reader to |11, 53].

(a) We know that the Fourier coefficients, say (as(n)),>0, of a modular form f of negative
weight (half-integral or integral) over a subgroup of finite index of the full modular
group admits a convergent series representation (analogous to p(n)) due to work of
Rademacher and Zuckerman [58, |70]. Having such an expression for as(n) (cf. |58,
70, Theorem 1.1]) in hand and after estimating the Kloosterman sums following the
footsteps of Lehmer’s work [43], it remains to estimate the error bound for the I,(f)-
Bessel function to get an infinite family of inequalities for af(n—/). Now estimations
for the error bound of the asymptotic expansion of I-Bessel function has been done
in [6]. Therefore, one can immediately adapt the framework done in Section |§] to
prove log-concavity, higher order Turan inequality, etc. for as(n). For instance,
can choose as(n) to be the cubic partition function, following the Rademacher type
exact formula due to Mauth [47] and construct a similar framework as demonstrated
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before. In a more general setting, one can adapt our set up to prove inequalities for
sequences arising from Fourier expansion of a certain class of eta-quotients which
admit Rademacher type series expansion (cf. [19, 64]).

(b) In case of mock modular form, one of the most notable example is the coefficient
sequence (af(n)),>o arising from Ramanujan’s third order mock theta function f(q)
(which is mock modular form of weight %) Using the theory of Maass-Poincaré
series, Bringmann and Ono [13 Theorem 1.1] obtained a Rademacher type condi-
tional convergent series expression for af(n) which settled a conjecture of Andrews
and Dragonette. Now, in order to get an asymptotic expansion for as(n) along with
estimations of error bound, first we need to estimate an error bound after truncating
the condinitional convergent series for a(n) at a point, say N. Following the work
done in [29] for the Andrews’ spt function, it seems that one can derive a similar er-
ror bound for a(n), which will presumably improve the bound obtained by Gomez
and Zhu [28]. After getting such an asymptotic estimation for ay(n), the rest is
straight forward.

(c) Last, but not the least, consider the function counting partitions without sequences,
denoted by pa(n), whose generating function is a mixed mock modular form of weight
0. For a more detailed study on the function, we refer the reader to [3]. Extend-
ing the Hardy-Ramanujan circle method, Bringmann and Mahlburg [12] obtained a
Rademacher type formula for ps(n). Very recently, Mauth [48] obtained an asymp-
totic estimate for pa(n) to prove that (pa(n)),>4se is log-concave. One can make use
of [48, Lemma 2.11] to derive an asymptotic expansion for the shifted version; i.e.,
p2(n—¥) so as to adapt our set up to prove the class of inequalities discussed before.

Summarizing the points above, it can be fairly state that whenever we have a Rademacher

type exact for a sequence arising from modular or mock modular or mixed mock modular

form, one can adapt our framework and prove certain class of inequalities discussed so
far.

In order to demonstrate the disadvantages of the framework built up in Section [§]
let us prepare the premise by recalling a result due to Griffin, Ono, Rolen, and Zagier
[32, Theorem 5] which states that J&"(x) has all real roots for sufficiently large n and
consequently, conjectured the cutoff N(d) ~ 10d?logd such that for all n > N(d),
J9™ () has all real roots. Larson and Wagner [42] estimated an upper bound for N(d) <

(3d)?4(50d)>® which is of super exponential growth, far away from O(d?logd). One of
the main reason for deviation in a large scale is that the interpretation of real rootedness
property of a polynomial was done in the realm of algebra; that is, by using the Hermite-
Sylvester criteria, see [42, Section 2]. Now, reformulating the Hermite-Sylvester criteria
in terms of the generic inequalities for the shifted partition function:

My T Mo T
> ¢ H —si5) =Y _d; [ ptn —riy),
j=1 i=1 j=1 i=1

we see that as the degree d of Jg’”(x) increases, the number of product 7" also increases
and here the difficulty lies in to get a good approximation for N(d). Without going
into much detail, it would be safe to say that the reason behind it is in the asymptotic
estimation of HiT:1 p(n — s; ;) (using Theorem |5.5/ for 7" times), multinomial expressions
turns up in the coefficients of the asymptotic expansion and estimating such coefficients in
general with an asymptotic precision seems to be a difficult task. So, instead adapting the
algebraic set up, it would be nice to develop an analytic one by studying the polynomials
J¢"(x) and the Hermite polynomial Hy(z).
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11. APPENDIX

In the proofs of Lemmas [4.24] we follow the same notations and the proof strategy as in
[7, Subsection 5.2].
Proof of Lemma |4.24}: Following Definition [4.12] write S (¢,¢) as follows:

—1)ua2t < (—1)° /1 (=8)u
2u — 13! Z s <§ B S)s+1 (s +u)!

Si(t, l) =

(—s —u)y

- —5— —_—. 11.1
— (2u—1 = st+u \2 ° u)s-‘ru-i—l (s +2u)! (11.1)
::S:?t,u)
From [7, Eqn. (5.6)], we have
Sutw) =~ (72 ) 5L A (11.2)
1\t ¢ 2 14, ) .
where
H=t)u(=1)" (=D 1 2t~ (=1il(=1)
Ay(t,u) = - ) + , .
1) (1+20)(t + u)(t), (7 v T ; (t +14) (1),
Now by Lemmas [3.3] and [3.4]
-t 1w w? (-1t 1 2 1 u? b
————— —_< < — S o) — .
Ap(t,u) < + u<3t2 t) topt 2 (11.3)

Equations (11.1]) and ((11.2), it follows that
=3\ G a2 A (L)
Si(t,0) = (-1 2) S st 11.4

Applying (11.3]) to (11.4), we get the following lower bound of S;(¢, ¢),

Y t 2 t 2u to 2 2u
<—Si>(f7(?3> - (c% S o L
Y o 2u o 2 1 2u 1 L 22w
(-2 Ed--E &) -1 -aie
Y 00 9y 0 2u © 2. 2u
() (S S s
(by Lemma [3.7] and (_1)t > — forall ¢t > 1)
(7))
(120 1) o 1) - 0 ot

1
—— (% cosh(ay) + % sinh(o@)

—1)! 1
(by Lemma 3.5/ and ((_—3; e <1 forall ¢t> 1)
2
t
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-1 t inh L
= D coshiag) — 1) = & S“;t @) _ Oét(f) (by Definition ) (11.5)
2
t
For the upper bound estimation, we have for all t > 1,
Sl(tag)
_3
(_1)t( t2>
(—1)t ! aZt 1 ! uaz® 1 < o 2 <& uaz® 1 < u?ad" 1 < udav
=3 2'_222' EZ2'+§ 2u)l 22 20 32 2u)!
(tQ) u:l( U) u:l( U) u:l( U) u=1 ( u) u=1 ( U) u=1 ( U)
—1)t 1 14 1 1
< ((_tg)) (cosh(ay) — 1) — gl sinh(ay) + C;g ) + yIm cosh(ay) + oLl sinh(ay)
1 (a? . 1 [ 3a? (e +1)
+2_152 <Z cosh(ay) + T smh(o@) + v (? cosh(ay) + ———=——= sinh(ay)
(by Lemmas and >
1\t 1 U
< ((3)) (cosh(ay) — 1) — 57 sinh(ay) + Cltz(g) <by Definition ) (11.6)
2
t
Combining (11.5) and (11.6]), we arrive at (4.46]) which concludes the proof. [l
Proof of Lemma|4.20; Following Definition [4.14} write Sy(t,¢) as follows:
t—1 t—1
(=1)"a7" 1 -3 (=5)u
So(t,0) = — - — 2 T
2(t: ) ; (2u)! ;(2 S>s+1 t—s—1/)(s+u+1)!
t—1 t—u—1
(—1)ua2 (1 ) ( -3 ) (—s —u)y
_ LR STy
UZ:; (2u)! 52:; 2 T i\t —s—u— 1 (S—i—?u—i—l)!j (11.7)
::S;?t,u)
From [7, Eqn. (5.13)], we have
_3
Sg(t, U) = < t2> (—1>u+1 <A271(t, U) -+ A272(t, U)>, (118)
e 24t — w)(~1). (1)
A271(t,u) =
(T+26)(1 4 2u)(t + u)(t)y
and ‘
(=1t 1 2t~ (Z1)'(=t)i
Ago(t,u) = .
22(t, u) () T T iy 2:: (t+1)(t);
Combining ((11.7)) and (11.8)), we get
_3
Sa(t, ) = —< t?) (52,1@,@) + sm(t,g)), (11.9)
where
t—1 a?“ t—1 a?u
t.l) = Agq(t d t,l) = Aot 11.1
s2,1(t, ) 2 (2u)! 21(t,u) and sgs(t, ) 2 2u)! 2.2(t,u) ( 0)
By Lemma [3.3] we have
1 2 1 t—
_EEETY gty < (11.11)
1+2u (14 2u) ’ t(1+ 2u)
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Applying (11.11]) into (11.10)) we obtain

t—1 -1 9 t—1 t—1 2u
1 w4 u+ 3 2 1 uay

T 2,2u ) < e

2 2u+ ; Guvny 4 <ol —; Jur1 tuz%(2u+1)!’

and consequently,

- - (11.12)
> gt (D g oy e
—(u+ )l t\ = Qut 1) = (2ut )
By Lemma [3.7] it follows that
0 2u
lo% 20, (¢ uaz® 26’2(5)
< and . 11.13
;(Qqul)!_ ol t2 Z (2u+1)! = a?t? ( )
Applying (11.13)) into (11.12]) and by Lemma 3.5, we obtain
inh CE (0 inh CY, (¢
sinh(ar) _ G20 < st 0) < S 20, (11.14)
Qy QO t
Next we apply Lemma [3.4] and get
2 1 4ud 4 6u®+8 3 —1)t+t 2 1 —1)ttt
utl A+ bu+8u+3  (CDT )< 2l BV (11.15)
2t 12¢2 (*5) ’ 2t (*5)
t t
Plugging (11.15)) into ((11.10]), we obtain
I o= Qu+1Da2t 1 = Q2u+Da? (1) SN a2 1 ipg
2t = (2u)! 2t 4 (2u)! (,t%) 2u 122 - 2u
1 o0 2U+1 -1 t+1 > a2u -1 t+1 > a2u
u= ' ( t2) u=0 ( t2) u=t !
(11.16)
where p3(u) = 4u® + 6u* + 8u + 3. By Lemma [3.7] we obtain
00 2u
7 402 2U + 1 803(4)
< and . 11.17
Z(Qu)! - ol t2 Z - oz? t2 ( )
=t
Note that for all t > 1,
-1 t 22t+1 1
(=" _ (11.18)

= <1
(?) t+1 (iﬁz)

Combining (11.17)) with (11.18]) and applying Lemma to (11.16)), we obtain

(=n csh(ar)  Coplar) (—1)tt! csh(ayp) — 4Cy(¢)
h - = < < h )
(_t%) cosh(ay) + 57 o S Sp9(t,0) < _t% cosh(ay) + 5 o 12
(11.19)

Applying (11.14)) and (11.19)) to (11.9), we obtain (4.47). O
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Proof of Lemma[§.28 Recalling Definition [4.16] rewrite S3(¢, ) as follows:

0.0 - Z@ufﬁz 5- >SH<;_1> <i‘5323!

¢
( 1U2u ( (=s—u)u
= - — 85— . (11.2
Z:(2u—1‘ “s+u s+u+1 t—s—u (s +2u)! (11.20)

J/

= Sg(t u
From |7, Eqn. (5.34)], we have

St u) = (‘ti) (—1)“(A3,1(t, w) + As ot u)), (11.21)
where
(142t — 2u)(—t), (—1)
Asa(tu) = 2(1 + 26)u(t + u)(t),
and

A372(t,u) _ <_1)t+1 + 1 + 2t i (_t>1(_1>z

(—t%) L+2t 142t & (t+49)(t);
From (|11.20)) and (11.21)), it follows that

_3
Sy(t,0) = ( t2> (s32(0) + s32()). (11.22)
with
¢ t
831t£ UZ_; 2u—1 AgltU) and S32t£ UZ:; 2u—1 AthU) (1123)
By Lemma 3.3, we have
3u + 2u + = 1
—= < A3 (t,u) — — < 11.24
4ut salt ) 2u 0. ( )
Applying (11.24]) into (11.23) and by Lemmas and , we obtain
Cs51(£
— 3;( ) < s31(t,¢) + 1 — cosh(ay) < 0. (11.25)
Now, by Lemma we obtain
4u? + 6u® + 8u + 3 -1t 2 1
AT A O H8utS gy SN 2url (11.26)

12¢2

Applying ((11.26]) to (11.23)), it follows that

1) o~ o I QutDa _ (-1) o
s3a(t, 0) + (<t§’; uz:; (2u—1)! g; ((2u—)1)! = ((3) Z ! (11.27)

and

D' e 1N (2ut 1)
£, %22 (a1 2
s32(t,0) + ~— ; (2u —1)! Qt; (2u—1)! —

1 = p3(u)a?s 1 i (2u+ 1)o7
1262 &= (2u —1)! 2t (2u—1)! ~

(11.28)

=t+1
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where p3(u) = 4u® + 6u® 4+ 8u + 3 is as in (11.16). By Lemma we obtain

o0 2u oo
< d < . 11.2
Z(2u—1)!— t2 an Z u—l = 2 (11.29)
u=t+1 u=t+1
Applying (11.29) and Lemma Lemma [3.5] into (11.27) and (11.28), we have
14 —1) 1 14
_ Q’)LQ() < 539(t,0) + uo@ sinh(ay) — —sch(ay) < 3012< ) (11.30)
t ( t2) 2t t
Applying ((11.25)) and (11.30]) into (11.22)) we arrive at (4.48)). O
Proof of Lemma |4.30; Following Definition | write Sy(t, () as follows:
ua2u (—S)
0 - SRS,k
Salt,0) Z (2u)! ; s+1(s+u+1)!
u 2u t
_ (=1)"ag" s+u< _ ) (s wu 11.31
; 2u Z " sutl (s +2u+ 1)1 (11.31)
::SIt,u)
From [7, Eqn. (5.53)], we have
_3
S4(t,’u,) = ( t2) (_1>u+t <A4,1(t,u) + A4,2(t, U)), (1132)
where
H=t)u(=1)"
Ayqi(t,u) =
2l = oA w) T u s D,
and
1 [((-1 1 2t (=1)i(—1);
A472(t, U) = — — - .
1+ 2u (—t%) 1+2t 142t ; (t+1)(t);
From (|11.31)) and (11.32)) it follows that
_3
Su(t, 0) = (_1)t( t2) <54,1(t,£) + 54,2(15,6)), (11.33)
where
t a2u t a%u
— 4 -
8471<t, 6) = UZ:O WAél’l(t?u) and 8472(15) = UZ:O (2u)'A4’2(t) (1134)
Lemmas and imply that
1 wHu+ 3 1
—1-——2] <4 < —. 11.
At < ; > < Awi(bu) < 4 (11.35)
From (|11.35)) and (11.34)), we obtain
1 o= o' 1 & o 1 @ Hutd)a” 1 o of"
— - S < tl) < — . (11,
42 = (2u)l AP o (2u)) 48 (2u)! < st 0 < 7 ;O (2u)! (11.36)
Applying Lemmas and to ([11.36)), it follows that
1 Cya(0) 1
4—tQCOSh( ay) — % < s4q(t,0) < 4—tQCOSh(()Zg). (11.37)
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Now, by Lemma we obtain
1 —1) 2 1
0 < Agalt,u) — <( u + ) < () (11.38)

L42u (72) _1+2u12t2’
where p3(u) is as in ((11.16]). Plugging 1} into , it follows that

(1) —  af )* 2u—|—1
e 2 (2u—il)' st ) - 2u+1 ( ) =

u=t+1

) (11.39)
1 pau)of” 1 2u—|—1
12¢> £ (2u+ 2 Zl 2u+1
Using Lemma [3.7], we get
e 2u o0 2 1 e 2u Cn(¢
S gt < y Blal sn al GO
u:t+1( U+ ) ¢ u=t+1 u+ u:t+1( u) t

Plugging (11.40) to (11.39) and using Lemma we finally obtain

2C,(0) (—1)*sinh(ay) = cosh(ay) _ (o + 6) cosh(ay) + 3ay sinh(ay) + 1200(4)
- S S4.2 (ta 6) - 3 + S
32 (*ti) Qy 2t 242
(11.41)
We conclude the proof by combining ((11.37]), (11.41]), and (11.33)). U
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