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Abstract. An extensive amount of study has been done on inequalities for the partition func-
tion, emerged primarily through works of Chen. In particular, the Turán inequality and the
higher order Turán inequalities for p(n) has been one of the most predominant theme. Among
many others, one of the most notable one is Griffin, Ono, Rolen, and Zagier’s result in which
they proved that for every integer d ≥ 1, there exists an integer N(d) such that the Jensen poly-
nomial of degree d and shift n associated with the partition function, denoted by Jd,n

p (x), has
only distinct real roots for all n ≥ N(d), earlier conjectured by Chen, Jia, and Wang and Ono
independently. Later, Larson and Wagner have provided an estimate of upper bound for N(d).
This phenomena in turn implies that the discriminant of Jd,n

p (x) is positive; i.e., Discx(Jd,n
p ) > 0.

For d = 2, Discx(J2,n
p ) > 0 when n ≥ N(2) = 26 is equivalent to the fact that (p(n))n≥26 is log-

concave. In 2017, Chen undertook a comprehensive investigation on inequalities for p(n) through
the lens of invariant theory of binary forms of degree n. Positivity of the invariant of a quadratic
binary form (resp. cubic binary form) associated with p(n) reflects that the sequence (p(n))n≥26

satisfies the Turán inequality (resp. (p(n))n≥95 satisfies the higher order Turán inequality). Chen
further studied on the two invariants for a quartic binary form where its coefficients are shifted
values of integer partitions and conjectured four inequalities for p(n). In this paper, we give
explicit error bounds for the asymptotic expansion of the shifted partition function p(n− `) for
any non-negative integer `. As an application of these infinite family of inequalities, we confirm
the conjectures of Chen. Moreover, three family of inequalities related to the partition function
have been studied in this paper, namely, higher order Laguerre inequalities, higher order shifted
differences, and higher order log-concavity. In context of higher order Laguerre inequalities for
p(n), we settle a conjecture of Wagner. For higher order shifted difference of p(n), we extend a
result of Gomez, Males, and Rolen. In context of higher order log-concavity for p(n), we prove
discuss on the asymptotic growth for the r-fold applications (with r ∈ {1, 2, 3}) of the operator
L on p(n) defined by L(p(n)) = p(n)2 − p(n − 1)p(n + 1) and propose a conjecture on infinite
log-concavity in this regard. Furthermore, we will show how to construct a unified framework to
prove partition function inequalities of the above types and discuss a few possible applications of
such construction. Finally, we prove all the Chen’s conjectures related to the inequalities for the
Andrews’ spt function, denoted by spt(n), arising from invariants of quartic binary form using
inequalities for the shifted partition function.
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1. Introduction

Throughout this paper, we consider only sequences of real numbers. A sequence (an)n≥0 is
said to satisfy the Turán inequlaities or to be log-concave, if

a2n − an−1an+1 ≥ 0 for all n ≥ 1, (1.1)

see [62]. We say that a sequence (an)n≥0 is said to satisfy the higher order Turán inequlaities if
for all n ≥ 1,

4(a2n − an−1an+1)(a
2
n+1 − anan+2)− (anan+1 − an−1an+2)

2 ≥ 0. (1.2)

The Turán inequalities and the higher order Turán inequalities are related to the Laguerre-Pólya
class of real entire functions [24, 65]. A real entire function

ψ(x) =
∞∑
k=0

ak
xk

k!
(1.3)

is said to be in Laguerre-Pólya class, denoted by ψ(x) ∈ LP , if it is of the form

ψ(x) = cxme−αx
2+βx

∞∏
k=1

(
1 +

x

xk

)
e
− x
xk ,

where c, β, xk are real numbers, α ≥ 0, m ∈ Z≥0, and
∞∑
k=1

x−2k converges. Any sequence of

polynomials with only real zeroes, say (Pn(x))n≥0, converges uniformly to a function P (x) ∈ LP .
For a more detailed study on the theory of the LP class, we refer to [59]. Jensen [37] proved that
a real entire function ψ(x) is in LP class if and only if for any d ∈ Z≥1, the Jensen polynomial
of degree d associated with a sequence (an)n≥0:

Jda (x) =
d∑

k=0

(
d

k

)
akx

k

has only real zeroes. Pólya and Schur [61] proved that for a real entire function ψ(x) ∈ LP and
for any n ≥ Z≥0, the n-th derivative ψ(n)(x) of ψ(x) also belongs to the LP class, that is, the
Jensen polynomial associated with ψ(n)(x)

Jd,na (x) =
d∑

k=0

(
d

k

)
an+kx

k
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has only real zeroes. Observe that for d = 2 and for all nonnegative integer n, the real-rootedness
of Jd,na (x) implies that the discriminant 4(a2n+1−anan+2) is nonnegative. Pólya’s work [54] on LP
class is closely connected with the Riemann hypothesis. He showed that the Riemann hypothesis
is equivalent to real rootedness of the Jensen polynomial Jd,na (x) for all nonnegative integers d
and n, where the coefficient sequence {an}n≥0 is defined by

(−1 + 4z2) Λ
(1

2
+ z
)

=
∞∑
n=0

an
n!
z2n,

with Λ(s) = π−s/2Γ(s/2)ζ(s) = Λ(1 − s), where ζ denotes the Riemann zeta function and Γ
denotes the Gamma function. In 2019, Griffin, Ono, Rolen, and Zagier [32, Theorem 1] proved
that for all d ≥ 1, Jd,na (x) has only real roots for all sufficiently large n.

Now we discuss in brief the inequalities of the partition function. A partition of a positive
integer n is a weakly decreasing sequence (λ1, λ2, . . . , λr) of positive integers such that λ1 +λ2 +
· · ·+λr = n. Let p(n) denote the number of partitions of n. Estimates on the partition function
systematically began with the work of Hardy and Ramanujan [34] in 1918 and independently by
Uspensky [66] in 1920:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (1.4)

Hardy and Ramanujan’s proof involved an important tool called the Circle Method which has
manifold applications in analytic number theory. For a well documented exposition on this
collaboration, see [45]. During 1937-1943, Rademacher [55, 56, 57] improved the work of Hardy
and Ramanujan and found a convergent series for p(n) and Lehmer’s [43, 44] considerations
were on the estimation for the remainder term of the series for p(n). The Hardy-Ramanujan-
Rademacher formula reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N), (1.5)

where

µ(n) =
π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,

and

|R2(n,N)| < π2N−2/3√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (1.6)

Independently Nicolas [50] and DeSalvo and Pak [23, Theorem 1.1] proved that the partition
function (p(n))n≥26 is log-concave, conjectured by Chen [15]. DeSalvo and Pak [23, Theorem
4.1] also proved that for all n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
, (1.7)

conjectured by Chen [15]. Further, they improved the term (1 + 1
n
) in (1.7) and proved that for

all n ≥ 7,

p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
, (1.8)
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see [23, p. 4.2]. DeSalvo and Pak [23] finally came up with the conjecture that the coefficient of
1/n3/2 in (1.8) can be improved to π/

√
24; i.e., for all n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
, (1.9)

which was proved by Chen, Wang and Xie [18, Sec. 2]. Paule, Radu, Zeng, and the author [8,
Theorem 7.6] confirmed that the coefficient of 1/n3/2 is indeed π/

√
24, which is the optimal; i.e.,

they proved that for all n ≥ 120,

p(n)2 >

(
1 +

π√
24n3/2

− 1

n2

)
p(n− 1)p(n+ 1). (1.10)

Chen [16] conjectured that p(n) satisfies the higher order Turán inequalities for all n ≥ 95 which
was proved by Chen, Jia, and Wang [17, Theorem 1.3] and analogous to the inequality (1.9),
they conjectured that for all n ≥ 2,

4(1− un)(1− un+1) <

(
1 +

π√
24n3/2

)
(1− unun+1)

2 with un :=
p(n+ 1)p(n− 1)

p(n)2
, (1.11)

settled by Larson and Wagner [42, Theorem 1.2]. In [17], Chen, Jia, and Wang conjectured1 that
for any integer d ≥ 1 there exists an integer N(d) such that the Jensen polynomial of degree d
and shift n associated with p(n) has only real roots which was settled by Griffin, Ono, Rolen,
and Zagier [32, Theorem 5] and inspired by their work, Larson and Wagner [42, Theorem 1.3]

proved that N(d) ≤ (3d)24d(50d)3d
2
. Proofs of the inequalities, stated before, primarily relies

on the Hardy-Ramanujan-Rademacher formula (1.5) and Lehmer’s error bound (1.6) but with
different methodology.

While studying on the higher order Turán inequality for p(n), Chen [16] undertook a compre-
hensive study on inequalities pertaining to invariants of a binary form. A binary form P (x, y)
of degree d is a homogeneous polynomial of degree d in two variables x and y is defined by

Pd(x, y) :=
d∑
i=0

(
n

i

)
aix

iyn−i,

where (ai)1≤i≤n ∈ Cn. But we restrict ai to be real numbers. The binary form Pd(x, y) is
transformed into a new binary form, say Q(x, y) with

Qd(x, y) =
d∑
i=0

(
n

i

)
cix

iyn−i

under the action of M =

(
m11 m12

m21 m22

)
∈ GL2(R) as follows:(
x
y

)
= M

(
x
y

)
.

The transformed coefficients (ci)0≤i≤d are polynomials in (ai)0≤i≤d and entries of the matrix M .
For k ∈ Z≥0, a polynomial I(a0, a1, . . . , ad) in the coefficients (ai)0≤i≤d is called an invariant of
index of k of the binary form Pd(x, y) if for any M ∈ GL2(R),

I(a0, a1, . . . , ad) = (detM)kI(a0, a1, . . . , an).

1Independently conjectured by K. Ono
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For a more detailed study on the theory of invariants, see, for example, Hilbert [35], Kung and
Rota [40], and Sturmfels [63]. We observe that I(a0, a1, a2) = a21 − a0a2 is an invariant of the
quadratic binary form

P2(x, y) = a2x
2 + 2a1xy + a0y

2

and the discriminant is 4I(a0, a1, a2). For a sequence (an)n≥0, define

In−1(a0, a1, a2) := I(an−1, an, an+1) = a2n − an−1an+1.

Therefore, if we choose an = p(n), then In−1(p(0), p(1), p(2)) > 0 for all n ≥ 26 is the same thing
as saying (p(n))n≥26 is log-concave. For degree 3,

I(a0, a1, a2, a3) = 4(a21 − a0a2)(a22 − a1a3)− (a1a2 − a0a3)2

is an invariant of the cubic binary form P3(x, y) = a3x
3 + 3a2x

2y + 3a1xy
2 + a0y

3 and the
discriminant is 27I(a0, a1, a2, a3). Similarly, setting an = p(n), the positivity of In−1(a0, a1, a2, a3)
for all n ≥ 95 is equivalent to state that (p(n))n≥95 satisfies the higher order Turán inequality.
Two invariants of the quartic binary form

P4(x, y) = a4x
4 + 4a3x

3y + 6a2x
2y2 + 4a1xy

3 + a0y
4

are of the following form

A(a0, a1, a2, a3, a4) = a0a4 − 4a1a3 + 3a22,

B(a0, a1, a2, a3, a4) = −a0a2a4 + a32 + a0a
2
3 + a21a4 − 2a1a2a3.

Setting an = p(n), Chen [16] conjectured that

A(an−1, an, an+1, an+2, an+3) > 0 and B(an−1, an, an+1, an+2, an+3) > 0,

along with the associated companion inequalities in the spirit of (1.9) and (1.11). Here we list
all the four conjectures with an = p(n).

Conjecture 1.1 (Eqn. (6.17), [16]).

an−1an+3 + 3a2n+1 > 4anan+2 for all n ≥ 185. (1.12)

Conjecture 1.2 (Conjecture 6.15, [16]). We have

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2n+1 for all n ≥ 218. (1.13)

Conjecture 1.3 (Eqn. (6.18), [16]).

a3n+1 + an−1a
2
n+2 + a2nan+3 > 2anan+1an+2 + an−1an+1an+3 for all n ≥ 221. (1.14)

Conjecture 1.4 (Conjecture 6.16, [16]). We have(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3) > a3n+1 + an−1a

2
n+2 + a2nan+3 for all n ≥ 244.

(1.15)

We prove all the four conjectures along with the confirmation that the rate of decay π2/16n3

(resp. π3/72
√

6n9/2) in (1.2) (resp. in (1.4)) is the optimal one, as stated in Theorem 1.5 (resp.
Theorem 1.7). We also ensure that the rate of decay is π/

√
24n3/2 in context of (1.11) can not

be improved further by proving Theorem 1.9. Let an := p(n).

Theorem 1.5. For all n ≥ 218,

4
(

1 +
π2

16n3

)
anan+2 > an−1an+3 + 3a2n+1 > 4

(
1 +

π2

16n3
− 6

n7/2

)
anan+2. (1.16)

Corollary 1.6. Conjecture 1.1 and 1.2 is true.
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Theorem 1.7. For all n ≥ 244,(
1 +

π3

72
√

6n9/2

)
(2anan+1an+2 + an−1an+1an+3) > a3n+1 + an−1a

2
n+2 + a2nan+3

>
(

1 +
π3

72
√

6n9/2
− 8

n5

)
(2anan+1an+2 + an−1an+1an+3).

(1.17)

Corollary 1.8. Conjecture 1.3 and 1.4 is true.

Theorem 1.9. For all n ≥ 115,(
1 +

π√
24n3/2

)
(anan+1 − an−1an+2)

2 > 4(a2n − an−1an+1)(a
2
n+1 − anan+2)

>
(

1 +
π√

24n3/2
− 3

n2

)
(anan+1 − an−1an+2)

2.
(1.18)

Remark 1.10. We observe that Theorem 1.9 immediately implies the following three statements:

(1) (p(n))n≥95 satisfies the higher order Turán inequalities [17, Theorem 1.3].
(2) For all n ≥ 2, (1.11) holds [42, Theorem 1.2].
(3) π√

24n3/2 is the optimal rate of decay of the quotient

4(a2n − an−1an+1)(a
2
n+1 − anan+2)/(anan+1 − an−1an+2)

2.

2. Plan of paper

The rest of this paper is organized as follows. In Section 3, we shall present a couple of lemmas
from [8, 7] that will be helpful in later sections. Section 4 prepares the set up by determining
the coefficients in the asymptotic expansion of p(n− `) with ` ∈ N along with its estimates. An
infinite family of inequalities for p(n− `) is presented in Section 5. Section 6 presents proofs of
the Theorems 1.5, 1.7, and 1.9. In Section 7, we presents further applications including higher
order Laguerre inequalities, higher order shifted difference, and higher order log-concavity for
p(n). Section 8 presents a unified framework on proving inequalities for p(n) of types discussed
in this paper. Finally, we conclude this paper by proving all the Chen’s conjectures stated before
in context of the Andrews’ spt function in Section 9.

A note for the reader: We intentionally did not define (and consequently, did not make
any reference to the works done in the respective contexts) the notions of higher order Laguerre
inequalities, higher order shifted difference, and higher order log-concavity for a sequence. We
refer the reader to see Subsections 7.1-7.3 for the details. Similarly, the reader will find a
comprehensive detail on Andrews’s spt function in Section 9.

3. Preliminaries

This section presents all the preliminary lemmas required for the proofs of the lemmas pre-
sented in subsequent sections.

Lemma 3.1. [7, Lemma 3.3] For j, k ∈ Z≥0 with k < 2j1,

k∑
i=0

(−1)i
(
k

i

)(
i/2

j

)
=

{
1, j = k = 0

(−1)j2k−2j k
j

(
2j−k−1
j−k

)
, otherwise

. (3.1)

Lemma 3.2. [7, Lemma 4.1] Let x1, x2, . . . , xn ≤ 1 and y1, . . . , y1 be non-negative real numbers.
Then

(1− x1)(1− x2) · · · (1− xn)

(1 + y1)(1 + y2) · · · (1 + yn)
≥ 1−

n∑
j=1

xj −
n∑
j=1

yj.

1This condition has been tacitly assumed in the proof of [7, Lemma 3.3] but not written explicitly.
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Lemma 3.3. [7, Lemma 4.2] For t ≥ 1 and non-negative integer u ≤ t, we have

1

2t
≥ t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
≥ 1

2t

(
1−

u2 + 1
2

t

)
.

Lemma 3.4. [7, Lemma 4.3] For t ≥ 1 and non-negative integer u ≤ t, we have

2u+ 1

2t
≥ 1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
≥ 2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
.

Throughout the rest of this paper,

α` :=
π

6

√
1 + 24`.

Lemma 3.5. [7, Lemma 4.4] We have

∞∑
u=0

α2u

(2u)!
= cosh(α),

∞∑
u=0

uα2u

(2u)!
=

1

2
α sinh(α),

∞∑
u=0

u2α2u

(2u)!
=
α2

4
cosh(α) +

α

4
sinh(α),

∞∑
u=0

u3α2u

(2u)!
=

3α2

8
cosh(α) +

α(α2 + 1)

8
sinh(α),

and
∞∑
u=0

u4α2u

(2u)!
=

1

16
α2(α2 + 7) cosh(α) +

1

16
(6α3 + α) sinh(α).

Lemma 3.6. [7, Lemma 4.5] Let u ∈ Z≥0. Assume that an+1 − an ≥ bn+1 − bn for all n ≥ u,
and limn→∞ an = limn→∞ bn = 0. Then

bn ≥ an for all n ≥ u.

Lemma 3.7. For t ≥ 1 and k ∈ {0, 1, 2, 3} we have

∞∑
u=t+1

ukα2u
`

(2u)!
≤ Ck(`)

t2
,

where

Ck(`) =


Ck =

α4
` · 2k

18
, ` = 0

d
√
`e2
(

1 + d
√
`e
)k+2

α
2(1+d

√
`e)

`

(1 + 2d
√
`e)(2 + 2d

√
`e)!

, ` ≥ 1

.

Proof. Applying Lemma 3.6 with an =
∑∞

u=n+1

ukα2u
`

(2u)!
and bn = Ck(`)

n2 , bn+1 − bn ≤ an+1 − an is

equivalent to show that f(n) :=
n2(n+1)k+2α2n+2

`

(2n+1)(2n+2)!
≤ Ck(`). To prove f(n) ≤ Ck(`), it is sufficient to

show that f(m) ≤ Ck(`) for a minimal m such that f(m) is maximal. In order to find such m, it is

enough to that f(n+1)
f(n)

≤ 1 for all n ≥ max{d
√
`e, 1}, and therefore, max

n∈Z≥0

f(n) = f(d
√
`e) = Ck(`)

for all ` ≥ 1 and for ` = 0, max
n∈Z≥0

f(n) = f(1) = Ck(0). Now, f(n+1)
f(n)

=
α2
` (n+2)k+2(2n+1)

(2n+4)(2n+3)2(n+1)kn2 ≤ 1

holds for all all n ≥ max{d
√
`e, 1}. �

Lemma 3.8. [8, Equation 7.5, Lemma 7.3] For n, k, s ∈ Z≥1 and n > 2s let

bk,n(s) :=
4
√
s√

s+ k − 1

(
s+ k − 1

s− 1

)
1

nk
,
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then

0 <
∞∑
t=k

(
−2s−1

2

t

)
(−1)k

nk
< bk,n(s). (3.2)

Lemma 3.9. [8, Equation 7.9, Lemma 7.5] For m,n, s ∈ Z≥1 and n > 2s let

cm,n(s) :=
2

m

sm

nm
,

then

− cm,n(s)√
m

<

∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0. (3.3)

Lemma 3.10. [8, Equation 7.7, Lemma 7.4] For n, s ∈ Z≥1, m ∈ N and n > 2s let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (3.4)

4. Set Up

Using the Hardy-Ramanujan-Rademacher formula for p(n) and Lehmer’s error bound, we have
the following inequality for p(n) due to Chen, Jia, and Wang.

Lemma 4.1. [17, Lemma 2.2 ] For all n ≥ 1206,
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
, (4.1)

where for n ≥ 1, µ(n) := π
6

√
24n− 1.

The definition of µ(n) is kept throughout this paper. Paule, Radu, Zeng, and the author
extended Lemma 4.1 as follows.

Theorem 4.2. [8, Theorem 4.4] For k ∈ Z≥2, define

ĝ(k) :=
1

24

(
36

π2
· ν(k)2 + 1

)
,

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
. Then for all k ∈ Z≥2

and n > ĝ(k) such that (n, k) 6= (6, 2), we have
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
. (4.2)

By making the shift n− ` in p(n) for any ` ≥ 0, we obtain the following result.

Lemma 4.3. Let ` ∈ Z≥0. For k ∈ Z≥2, let ĝ(k) be as in Theorem 4.2. Then for all k ∈ Z≥2
and n > ĝ(k) + ` such that (n, k) 6= (6, 2), we have
√

12eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)
− 1

µ(n− `)k

)
< p(n−`) <

√
12eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)
+

1

µ(n− `)k

)
.

(4.3)
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Rewrite the term

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
in the following way:

√
12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3 eπ
√

2n/3
(√

1− 1+24`
24n

−1
)︸ ︷︷ ︸

=:A1(n,`)

(
1− 1 + 24`

24n

)−1(
1− 1

µ(n− `)

)
︸ ︷︷ ︸

=:A2(n,`)

.

(4.4)
Now we compute the Taylor expansion of the residue parts of A1(n, `) and A2(n, `), defined in
(4.4).

Definition 4.4. For t, ` ∈ Z≥0, define

e1(t, `) :=


1, if t = 0

(−1)t(1 + 24`)t

(24)t
(1/2− t)t+1

t

t∑
u=1

(−1)u(−t)u
(t+ u)!(2u− 1)!

α2u
` , otherwise

, (4.5)

and

E1

( 1√
n
, `
)

:=
∞∑
t=0

e1(t, `)
( 1√

n

)2t
, n ≥ 1. (4.6)

Definition 4.5. For t, ` ∈ Z≥0, define

o1(t, `) := − π

12
√

6
(1 + 24`)

(
(−1)t(1/2− t)t+1(1 + 24`)t

(24)t

t∑
u=0

(−1)u(−t)u
(t+ u+ 1)!(2u)!

α2u
`

)
(4.7)

and

O1

( 1√
n
, `
)

:=
∞∑
t=0

o1(t, `)
( 1√

n

)2t+1

, n ≥ 1. (4.8)

Lemma 4.6. Let A1(n, `) be defined as in (4.4). Let E1(n, `) be as in Definition 4.4 and O1(n, `)
as in Definition 4.5. Then

A1(n, `) = E1

( 1√
n
, `
)

+O1

( 1√
n
, `
)
. (4.9)

Proof. From (4.4), we get

A1(n, `) = eπ
√

2n/3
(√

1− 1+24`
24n

−1
)

=
∞∑
k=0

(π
√

2n/3)k

k!

(√
1− 1 + 24`

24n
− 1

)k

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

(√
1− 1 + 24`

24n

)i

=
∞∑
k=0

(π
√

2/3)k

k!
(
√
n)k

k∑
i=0

(
k

i

)
(−1)k−i

∞∑
j=0

(
i/2

j

)
(−1)j(1 + 24`)j

(24n)j

=
∞∑
k=0

k∑
i=0

∞∑
j=0

(π
√

2/3)k

k!

(−1)k−i+j(1 + 24`)j

(24)j

(
k

i

)(
i/2

j

)
(
√
n)k−2j. (4.10)

Setting z := 1√
n

and c := π
√

2
3
, A1

(
1
z2
, `
)

= e
c
z

(√
1− 1+24`

24
z2−1

)
is an analytic function in z, and

therefore its Taylor expansion in a neighborhood of 0 is of the form
∑∞

t=0 at(`)z
t; i.e.,

∑∞
t=0

at(`)√
n
t
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for some constants (at(`))t≥0. Hence, due to the uniqueness of the Taylor expansion of A1(n, `),
we have for k > 2j in (4.10),

k∑
i=0

(
k

i

)(
i/2

j

)
= 0.

Consequently, we need only to consider the range 0 ≤ k ≤ 2j in (4.10). Split S :=
{

(k, i, j) ∈
Z3
≥0 : 0 ≤ i ≤ k ≤ 2j

}
=:

⋃
t∈Z≥0

V (t), where for each t ∈ Z≥0,

V (2t) =
{

(2u, i, u+ t) ∈ Z3
≥0 : 0 ≤ i ≤ 2u

}
and

V (2t+ 1) =
{

(2u+ 1, i, u+ t+ 1) ∈ Z3
≥0 : 0 ≤ i ≤ 2u+ 1

}
.

For r = (k, i, j) ∈ S, we define

S(r) :=
(π
√

2/3)k

k!

(−1)k−i+j(1 + 24`)j

(24)j

(
k

i

)(
i/2

j

)
and f(r) := k − 2j.

Rewrite (4.10) as

A1(n, `) =
∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t
+
∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

. (4.11)

Now
∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t
=

∞∑
t=0

(−1)t(1 + 24`)t

(24)t

(
∞∑
u=0

(−1)u

(2u)!
α2u
` E1(u, t)

)( 1√
n

)2t
,

(4.12)

where by Lemma 3.1,

E1(u, t) :=
2u∑
i=0

(−1)i
(

2u

i

)(
i/2

u+ t

)
=


1, if u = t = 0
0, if u > t

2u(1/2−t)t+1(−t)u
t(t+u)!

, otherwise
.

Consequently, we have

∞∑
t=0

∑
r∈V (2t)

S(r)
( 1√

n

)2t
= E1

( 1√
n
, `
)
. (4.13)

After simplifying, it follows that

∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= −π(1 + 24`)

12
√

6

∞∑
t=0

(−1)t(1 + 24`)t

(24)t

(
∞∑
u=0

(−1)u

(2u+ 1)!
α2u
` O1(u, t)

)( 1√
n

)2t+1

,

(4.14)

where by Lemma 3.1,

O1(u, t) :=
2u+1∑
i=0

(−1)i
(

2u+ 1

i

)(
i/2

u+ t+ 1

)
=

{
0, if u > t

− (2u+1)(1/2−t)t+1(−t)u
(t+u+1)!

, otherwise
.
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Therefore, we have

∞∑
t=0

∑
r∈V (2t+1)

S(r)
( 1√

n

)2t+1

= O1

( 1√
n
, `
)
. (4.15)

From (4.11), (4.13), and (4.15), we get (4.9). �

Definition 4.7. For t ∈ Z≥0, define

E2

( 1√
n
, `
)

:=
∞∑
t=0

e2(t, `)
( 1√

n

)2t
with e2(t, `) :=

(1 + 24`)t

(24)t
. (4.16)

Definition 4.8. For t ∈ Z≥0, define

O2

( 1√
n
, `
)

:=
∞∑
t=0

o2(t, `)
( 1√

n

)2t+1

with o2(t, `) := − 6

π
√

24

(
−3/2

t

)
(−1)t(1 + 24`)t

(24)t
. (4.17)

Lemma 4.9. Let A2(n, `) be defined as in (4.4). Let E2(n, `) be as in Definition 4.7 and O2(n, `)
as in Definition 4.8. Then

A2(n, `) = E2

( 1√
n
, `
)

+O2

( 1√
n
, `
)
. (4.18)

Proof. Following the definition of A2(n, `) from (4.4) and expand it as follows:

A2(n, `) =
(

1− 1 + 24`

24n

)−1
− 6

π
√

24

1√
n

(
1− 1 + 24`

24n

)−3/2
= E2

( 1√
n
, `
)

+O2

( 1√
n
, `
)
. (4.19)

This completes the proof of (4.18). �

Definition 4.10. Following the Definitions 4.4-4.8, we define

Se,1

( 1√
n
, `
)

:= E1

( 1√
n
, `
)
E2

( 1√
n
, `
)
, (4.20)

Se,2

( 1√
n
, `
)

:= O1

( 1√
n
, `
)
O2

( 1√
n
, `
)
, (4.21)

So,1

( 1√
n
, `
)

:= E1

( 1√
n
, `
)
O2

( 1√
n
, `
)
, (4.22)

and

So,2

( 1√
n
, `
)

:= E2

( 1√
n
, `
)
O1

( 1√
n
, `
)
. (4.23)

Lemma 4.11. For each i ∈ {1, 2}, let Se,i

( 1√
n
, `
)

and So,i

( 1√
n
, `
)

be as in Definition 4.10.

Then
√

12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3

2∑
i=1

(
Se,i

( 1√
n
, `
)

+ So,i

( 1√
n
, `
))

. (4.24)

Proof. The proof follows immediately by applying Lemmas 4.6 and 4.9 to (4.4). �
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4.1. Coefficients in the asymptotic expansion of p(n− `).

Definition 4.12. For t, ` ∈ Z≥0, define

S1(t, `) :=
t∑

s=1

(−1)s(1/2− s)s+1

s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

α2u
` , (4.25)

and

ge,1(t, `) :=
(1 + 24`)t

(24)t

(
1 + S1(t, `)

)
. (4.26)

Lemma 4.13. Let Se,1

( 1√
n
, `
)

be as in (4.20). Let ge,1(t, `) be as in Definition 4.12. Then

Se,1

( 1√
n
, `
)

=
∞∑
t=0

ge,1(t, `)
( 1√

n

)2t
. (4.27)

Proof. From (4.6), (4.16), and (4.20), we have

Se,1

( 1√
n
, `
)

= 1 +
∞∑
t=1

(
e1(t, `) + e2(t, `) +

t−1∑
s=1

e1(s, `)e2(t− s, `)

)( 1√
n

)2t
.

(4.28)

Combining (4.5) and (4.16), we obtain

e1(t, `) + e2(t, `) +
t−1∑
s=1

e1(s, `)e2(t− s, `) =
(1 + 24`)t

(24)t

(
1 + S1(t, `)

)
= ge,1(t, `), (4.29)

which concludes the proof of (4.27). �

Definition 4.14. For t ∈ Z≥1 and ` ∈ Z≥0, define

S2(t, `) :=
t−1∑
s=0

(1/2− s)s+1

(
−3/2

t− s− 1

) s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

α2u
` , (4.30)

and

ge,2(t, `) :=
(−1)t−1(1 + 24`)t

(24)t
S2(t, `). (4.31)

Lemma 4.15. Let Se,2

( 1√
n
, `
)

as in (4.21) and ge,2(t, `) as in Definition 4.14. Then

Se,2

( 1√
n
, `
)

=
∞∑
t=1

ge,2(t, `)
( 1√

n

)2t
. (4.32)

Proof. From (4.8), (4.18) and (4.21), we have

Se,2

( 1√
n
, `
)

= O1

( 1√
n
, `
)
O2

( 1√
n
, `
)

=
∞∑
t=1

(
t−1∑
s=0

o1(s, `)o2(t− s− 1, `)

)( 1√
n

)2t
=

∞∑
t=1

ge,2(t, `)
( 1√

n

)2t
(by (4.7) and (4.17)). (4.33)

�
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Definition 4.16. For t ∈ Z≥2 and ` ∈ Z≥0, define

S3(t, `) :=
t∑

s=1

(1/2− s)s+1

(−3/2
t−s

)
s

s∑
u=1

(−1)u(−s)u
(s+ u)!(2u− 1)!

α2u
` , (4.34)

and

go,1(t, `) :=



− 6

π
√

24

(−1)t(1 + 24`)t

(24)t

((−3/2
t

)
+ S3(t, `)

)
, if t ≥ 2

−432 + (1 + 24`)π2

2304
√

6π
, if t = 1

− 6

π
√

24
, if t = 0

. (4.35)

Lemma 4.17. Let So,1

( 1√
n
, `
)

as in (4.22) and go,1(t, `) be as in Definition 4.16. Then

So,1

( 1√
n
, `
)

=
∞∑
t=0

go,1(t, `)
( 1√

n

)2t+1

. (4.36)

Proof. From (4.6), (4.17) and (4.22), it follows that

So,1

( 1√
n
, `
)

= E1

( 1√
n
, `
)
O2

( 1√
n
, `
)

= go,1(0, `)
1√
n

+ go,1(1, `)
1
√
n
3 +

∞∑
t=2

(
o2(t) +

t∑
s=1

e1(s, `)o2(t− s, `)

)( 1√
n

)2t+1

= go,1(0, `)
1√
n

+ go,1(1, `)
1
√
n
3 +

∞∑
t=2

go,1(t, `)
( 1√

n

)2t+1

(by (4.5) and (4.17)).

(4.37)

�

Definition 4.18. For t ∈ Z≥1 and ` ∈ Z≥0, define

S4(t, `) :=
t∑

s=0

(−1)s(1/2− s)s+1

s∑
u=0

(−1)u(−s)u
(s+ u+ 1)!(2u)!

α2u
` , (4.38)

and

go,2(t, `) := −π(1 + 24`)

12
√

6

(1 + 24`)t

(24)t
S4(t, `). (4.39)

Lemma 4.19. Let So,2

( 1√
n
, `
)

be as in (4.23) and go,2(t, `) be as in Definition 4.18. Then

So,2

( 1√
n
, `
)

=
∞∑
t=0

go,2(t, `)
( 1√

n

)2t+1

. (4.40)

Proof. From (4.8), (4.16) and (4.23), it follows that

So,1

( 1√
n
, `
)

= O1

( 1√
n
, `
)
E2

( 1√
n
, `
)

=
∞∑
t=0

(
t∑

s=0

o1(s, `)e2(t− s, `)

)( 1√
n

)2t+1

=
∞∑
t=0

go,2(t, `)
( 1√

n

)2t+1

(by (4.8) and (4.16)). (4.41)
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�

Definition 4.20. For each i ∈ {1, 2}, let ge,i(t, `) and go,i(t, `) be as in Definitions 4.12-4.18.
We define a power series

G(n, `) :=
∞∑
t=0

g(t, `)
( 1√

n

)t
=
∞∑
t=0

g(2t, `)
( 1√

n

)2t
+
∞∑
t=0

g(2t+ 1, `)
( 1√

n

)2t+1

,

where
g(2t, `) := ge,1(t, `) + ge,2(t, `) and g(2t+ 1, `) := go,1(t, `) + go,2(t, `). (4.42)

Lemma 4.21. Let G(n, `) be as in Definition 4.20. Then
√

12 eµ(n−`)

24(n− `)− 1

(
1− 1

µ(n− `)

)
=

1

4n
√

3
eπ
√

2n/3 ·G(n, `). (4.43)

Proof. Applying Lemmas 4.13-4.19 to Lemma 4.9, we have (4.43). �

Remark 4.22. Using Sigma due to Schneider [60] and GeneratingFunctions due to Mallinger
[46], we observe that for all t ≥ 0,

g(2t, `) = ge,1(t, `) + ge,2(t, `) = ω2t,` and g(2t+ 1, `) = go,1(t, `) + go,2(t, `) = ω2t+1,`, (4.44)

where

g(t, `) = ωt,` =
(1 + 24`)t

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24`)k
. (4.45)

Note that for ` = 0, we retrieve ωt as in O’Sullivan’s [51, Proposition 4.4] work. Adapting the
proof methodology in [51, Proposition 4.4] for p(n), can do similarly for p(n − `) and conclude
the identity (4.45) by uniqueness of Taylor expansion of an analytic function (without using the
computer algebra packages mentioned above).

4.2. Estimation of (Si(t, `)). We present the Lemmas 4.24-4.30 which will be needed in the
Subsection 4.3. A brief sketch of proofs of these lemmas are presented in the Section 11.

Definition 4.23. Let Ck(`) be as in Lemma 3.7. Define

CL1 (`) :=
cosh(α`)− 1

4
+ C0(`) +

α2
` cosh(α`) + α` sinh(α`)

8
,

CU1 (`) := C1(`) +
α2
` + 1

4
cosh(α`) +

α`(α
2
` + 12)

24
sinh(α`).

Lemma 4.24. Let S1(t, `) be as in Definition 4.12 and CL1 (`), CU1 (`) as in Definition 4.23. Then
for all t ≥ 1,

− CL1 (`)

t2
<

S1(t, `)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) (cosh(α`)− 1
)

+
1

2t
α` sinh(α`) <

CU1 (`)

t2
. (4.46)

Definition 4.25. Let Ck(`) be as in Lemma 3.7. Define

CL2,1(`) :=
cosh(α`)

4
+

sinh(α`)

4α`
+
α` sinh(α`)

4
+

2C1(`)

α2
`

,

CU2,1(`) := −cosh(α`)

2
+

sinh(α`)

2α`
+

2C2(`)

α2
`

,

csh(`) := cosh(α`) + α` sinh(α`),

C2,2(`) :=
8C3(`)

α2
`

+
(α2

` + 1) cosh(α`)

4
+

(α3
` + 12α`) sinh(α`)

24
,
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CL2 (`) := CU2,1(`) +
csh(`)

2
+

4C2(`)

α2
`

,

CU2 (`) := CL2,1(`)−
csh(`)

2
+ C2,2(`).

Lemma 4.26. Let S2(t, `) be as in Definition 4.14 and CL2 (`), CU2 (`) as in Definition 4.25. Then
for all t ≥ 1,

− CL2 (`)

t
<
S2(t, `)(− 3

2
t

) − (−1)t(− 3
2
t

) cosh(α`) +
sinh(α`)

α`
<
CU2 (`)

t
. (4.47)

Definition 4.27. Let Ck(`) be as in Lemma 3.7. Define

C3,1(`) :=
3α2

` cosh(α`) + 7α` sinh(α`) + 2 cosh(α`)− 2

8
+ C0(`),

C3,2(`) :=
9α3

` sinh(α`) + (α4
` + 24α2

`) cosh(α`) + 18α` sinh(α`)

24
+ 2C2(`) + C1(`),

sch(`) := α2
` cosh(α`) + 2α` sinh(α`),

CL3 (`) := C3,1(`) + C3,2(`)−
sch(`)

2
,

CU3 (`) := 3C1(`) +
sch(`)

2
.

Lemma 4.28. Let S3(t, `) be as in Definition 4.16 and CL3 (`), CU3 (`) as in Definition 4.27. Then
for all t ≥ 2,

− CL3 (`)

t
<
S3(t, `)(− 3

2
t

) +
(−1)t(− 3

2
t

) α` sinh(α`) + 1− cosh(α`) <
CU3 (`)

t
. (4.48)

Definition 4.29. Let Ck(`) be as in Lemma 3.7. Define

C4,1(`) :=
α4
`

72
+

(α2
` + 6) cosh(α`) + 3α` sinh(α`)

16
,

CL4 (`) := C4,1(`)−
cosh(α`)

4
+

2C0(`)

3
,

CU4 (`) :=
(α2

` + 12) cosh(α`) + 3α` sinh(α`) + 12C0(`)

24
.

Lemma 4.30. Let S4(t, `) be as in Definition 4.18 and CL4 (`), CU4 (`) as in Definition 4.29. Then
for t ≥ 1,

− CL4 (`)

t2
<

S4(t, `)

(−1)t
(− 3

2
t

) − (−1)t(− 3
2
t

) sinh(α`)

α`
+

1

2t
cosh(α`) <

CU4 (`)

t2
. (4.49)

4.3. Error bounds.

Lemma 4.31. For all k ∈ Z≥1, ` ∈ Z≥0, and n ≥ `+ 1,

(1 + 24`)k

(24n)k
<

∞∑
t=k

(1 + 24`)t

(24n)t
≤ 24(`+ 1)

23

(1 + 24`)k

(24n)k
. (4.50)

Proof. Equation (4.50) follows from
∞∑
t=k

(1 + 24`)t

(24n)t
=

(1 + 24`)k

(24n)k
24n

24n− 24`− 1
and 1 <

24n

24n− 24`− 1
≤ 24(`+ 1)

23
for all n ≥ `+1.

�
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Lemma 4.32. For all n, k, s ∈ Z≥1, ` ∈ Z≥0, and n ≥ `+ 1,

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
<
∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
<

12(`+ 1)

5(k + 1)s−
1
2

(1 + 24`)t

(24n)k
. (4.51)

Proof. We observe that

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
=
∞∑
t=k

(
2t+2
t+1

)
4t

t+ 1

2ts
(1 + 24`)t

(24n)t
. (4.52)

For all t ≥ 1,

4t

2
√
t
≤
(

2t

t

)
≤ 4t√

πt
.

From (4.52) we obtain

∞∑
t=k

√
t+ 1

ts
(1 + 24`)t

(24n)t
≤

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

1

(24n)t
≤ 4√

π

∞∑
t=k

√
t+ 1

2ts
(1 + 24`)t

(24n)t
. (4.53)

For all k ≥ 1,

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
≥

∞∑
t=k

√
t+ 1

ts
(1 + 24`)t

(24n)t
>

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
(4.54)

and

∞∑
t=k

(−1)t
(− 3

2
t

)
ts

(1 + 24`)t

(24n)t
<

4√
π

∞∑
t=k

1

(t+ 1)s−
1
2

(1 + 24`)t

(24n)t

≤ 4
√
π(k + 1)s−

1
2

∞∑
t=k

(1 + 24`)t

(24n)t

<
4 · 24(`+ 1)

23 ·
√
π

1

(k + 1)s−
1
2

(1 + 24`)k

(24n)k
(by (4.50)).

<
12

5

(`+ 1)

(k + 1)s−
1
2

1

(24n)k
. (4.55)

Equations (4.54) and (4.55) imply (4.51). �

Lemma 4.33. For n ∈ Z≥1, k, ` ∈ Z≥0, and n ≥ 4`+ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t(1 + 24`)t

(24n)t
< 4
√

2

√
k + 1(1 + 24`)k

(24n)k
. (4.56)

Proof. Setting (n, s) 7→
(

24n

24`+ 1
, 2

)
in (3.2), it follows that for all n ≥ 4`+ 1,

0 <
∞∑
t=k

(
−3

2

t

)
(−1)t

(24n)t
< 4
√

2

√
k + 1(1 + 24`)k

(24n)k
.

�
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Definition 4.34. Let CL1 (`) and CU1 (`) be as in Definition 4.23. Then for all k ≥ 1 and ` ≥ 0,
define

L1(k, `) :=

(
cosh(α`)−

6α` sinh(α`)(`+ 1)

5
√
k + 1

− 12(`+ 1)

5(k + 1)3/2
CL1 (`)

)(√
1 + 24`

24n

)2k

and

U1(k, `) :=

(
24(`+ 1) cosh(α`)

23
− α` sinh(α`)

2
√
k + 1

+
12(`+ 1)

5(k + 1)3/2
CU1 (`)

)(√
1 + 24`

24n

)2k

.

Lemma 4.35. Let L1(k, `) and U1(k, `) be as in Definition 4.34. Let ge,1(t, `) be as in Definition
4.12. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L1(k, `)
( 1√

n

)2k
<
∞∑
t=k

ge,1(t, `)
( 1√

n

)2t
< U1(k, `)

( 1√
n

)2k
. (4.57)

Proof. From (4.26) and (4.46), it follows that for t ≥ 1,

cosh(α`)−
(−1)t

(− 3
2
t

)
2t

α` sinh(α`)−
(−1)t

(− 3
2
t

)
t2

CL1 (`) <
( 24

1 + 24`

)t
ge,1(t) = 1 + S1(t, `)

< cosh(α`)−
(−1)t

(− 3
2
t

)
2t

α` sinh(α`) +
(−1)t

(− 3
2
t

)
t2

CU1 (`).

(4.58)

Applying (4.50) and (4.51) with s = 1 and 2, respectively, to (4.58), we obtain (4.57). �

Definition 4.36. Let CL2 (`) and CU2 (`) be as in Definition 4.25. For all k ≥ 1 and ` ≥ 0, define

L2(k, `) :=

(
−24(`+ 1) cosh(α`)

23
− 12(`+ 1)

5
√
k + 1

CU2 (`)

)(√
1 + 24`

24n

)2k

and

U2(k, `) :=

(
− cosh(α`) +

4
√

2 sinh(α`)

α`

√
k + 1 +

12(`+ 1)

5
√
k + 1

CL2 (`)

)(√
1 + 24`

24n

)2k

.

Lemma 4.37. Let L2(k, `) and U2(k, `) be as in Definition 4.36. Let ge,2(t, `) be as in Definition
4.14. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L2(k, `)
( 1√

n

)2k
<
∞∑
t=k

ge,2(t, `)
( 1√

n

)2t
< U2(k, `)

( 1√
n

)2k
. (4.59)

Proof. From (4.31) and (4.47), it follows that for t ≥ 1,

− cosh(α`) + (−1)t
(
−3

2

t

)
sinh(α`)

α`
−

(−1)t
(− 3

2
t

)
t

CU2 (`) <
( 24

1 + 24`

)t
ge,2(t, `) = (−1)t−1S2(t, `)

< − cosh(α`) + (−1)t
(
−3

2

t

)
sinh(α`)

α`
+

(−1)t
(− 3

2
t

)
t

CL2 (`).

(4.60)

Applying (4.50), (4.51) with s = 1 and (4.56) to (4.60), we get (4.59). �
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Definition 4.38. Let CL3 (`) and CU3 (`) be as in Definition 4.27. For all k ≥ 1 and ` ≥ 0, define

L3(k, `) := −

(
−6α` sinh(α`)

π
√

1 + 24`
+

24
√

2 cosh(α`)
√
k + 1

π
√

1 + 24`
+

72(`+ 1)

5π
√

1 + 24`

CU3 (`)√
k + 1

)(√
1 + 24`

24n

)2k+1

and

U3(k, `) :=

(
6 · 24(`+ 1)

23π
√

1 + 24`
α` sinh(α`) +

72(`+ 1)

5π
√

1 + 24`

CL3 (`)√
k + 1

)(√
1 + 24`

24n

)2k+1

.

Lemma 4.39. Let L3(k, `) and U3(k, `) be as in Definition 4.38. Let go,1(t, `) be as in Definition
4.16. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L3(k, `)
( 1√

n

)2k+1

<

∞∑
t=k

go,1(t, `)
( 1√

n

)2t+1

< U3(k, `)
( 1√

n

)2k+1

. (4.61)

Proof. Define c1(t, `) := − 6

π
√

1 + 24`
(−1)t

(− 3
2
t

)
. From (4.35) and (4.48), it follows that for

t ≥ 2,

6α` sinh(α`)

π
√

1 + 24`
− 6 cosh(α`)

π
√

1 + 24`
(−1)t

(
−3

2

t

)
− 6CU3 (`)

π
√

1 + 24`

(−1)t
(− 3

2
t

)
t

<

(√
24

24`+ 1

)2t+1

go,1(t, `) = c1(t, `)

(
1 +

S3(t, `)(− 3
2
t

) )

<
6α` sinh(α`)

π
√

1 + 24`
− 6 cosh(α`)

π
√

1 + 24`
(−1)t

(
−3

2

t

)
+

6CL3 (`)

π
√

1 + 24`

(−1)t
(− 3

2
t

)
t

.

(4.62)

We observe that (4.62) also holds for t ∈ {0, 1}; see (4.35). Now, applying (4.50), (4.51) with
s = 1, and (4.56) to (4.62), we conclude the proof. �

Definition 4.40. Let CL4 (`) and CU4 (`) be as in Definition 4.29. For all k ≥ 1 and ` ≥ 0, define

L4(k, `) := −π
√

1 + 24`

6

(
−cosh(α`)

2
√
k + 1

+
24(`+ 1) sinh(α`)

23α`
+

12(`+ 1)CU4 (`)

5(k + 1)3/2

)(√
1 + 24`

24n

)2k+1

and

U4(k, `) :=
π
√

1 + 24`

6

(
6(`+ 1) cosh(α`)

5
√
k + 1

− sinh(α`)

α`
+

12(`+ 1)CL4 (`)

5(k + 1)3/2

)(√
1 + 24`

24n

)2k+1

.

Lemma 4.41. Let L4(k, `) and U4(k, `) be as in Definition 4.40. Let go,2(t, `) be as in Definition
4.18. Then for all k ∈ Z≥1 and n ≥ 4`+ 1,

L4(k, `)
( 1√

n

)2k+1

<
∞∑
t=k

go,2(t, `)
( 1√

n

)2t+1

< U4(k, `)
( 1√

n

)2k+1

. (4.63)
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Proof. Define c2(t, `) := −π
√

1 + 24`

6
(−1)t

(− 3
2
t

)
. From (4.39) and (4.49), it follows that for

t ≥ 1,

π
√

1 + 24` cosh(α`)

12

(−1)t
(− 3

2
t

)
t

− π
√

1 + 24` sinh(α`)

6α`
− π
√

1 + 24` CU4 (`)

6

(−1)t
(− 3

2
t

)
t2

<

(√
24

24`+ 1

)2t+1

go,2(t, `) = c2(t, `)
S4(t, `)

(−1)t
(− 3

2
t

)
<
π
√

1 + 24` cosh(α`)

12

(−1)t
(− 3

2
t

)
t

− π
√

1 + 24` sinh(α`)

6α`
+
π
√

1 + 24` CL4 (`)

6

(−1)t
(− 3

2
t

)
t2

.

(4.64)

Now, applying (4.50) and (4.51) with s = 1 and 2, respectively, to (4.64), we have (4.63). �

Definition 4.42. For k ≥ 1 and ` ≥ 0, define

n0(k, `) := max
k≥1,`≥0

{
(24`+ 1)2

16
,
(k + 3)(24`+ 1)

24

}
.

Definition 4.43. Let n0(k, `) be as in Definition 4.42. For k ≥ 1 and ` ≥ 0, define

L̂2(k, `) :=
1(

α0

√
24
)k
(

1− 1 + 24`

4
√
n0(k, l)

)
and Û2(k, `) :=

1(
α0

√
24
)k
(

1 +
k(1 + 24`)

3 · n0(k, l)

)
.

Lemma 4.44. Let L̂2(k, `), and Û2(k, `) be as in Definition 4.43. Let n0(k, `) be as in Definition
4.42. Then for all k ∈ Z≥1 and n > n0(k, `),

eπ
√

2n/3

4n
√

3

L̂2(k, `)
√
n
k

<

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)k
<
eπ
√

2n/3

4n
√

3

Û2(k, `)
√
n
k
. (4.65)

Proof. For all k ≥ 1 and ` ≥ 0, define

E(n, k, `) :=

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)k
, U(n, k, `) =

eπ
√

2n/3

4n
√

3

1
√
n
k

and

Q(n, k, `) :=
E(n, k, `)

U(n, k, `)
=
e
π
√

2n
3

(√
1− 1+24`

24n
−1
)

(
α0

√
24
)k (

1− 1 + 24`

24n

)− k+2
2
.

Using (3.3) with (m,n, s) 7→ (1, 24n, 24`+ 1), we obtain for all n ≥ 2`+ 1,

−1 + 24`

12n
<

√
1− 1 + 24`

24n
− 1 =

∞∑
m=1

(
1/2

m

)
(−1)m

(24n)m
< 0,

and consequently for n ≥ n0(k, `),(
1− 1 + 24`

4
√
n0(k, `)

)
< e

−π(1+24`)

6
√
6n < e

π
√

2n
3

(√
1− 1+24`

24n
−1
)
< 1. (4.66)

Therefore

1(
α0

√
24
)k(1− 1 + 24`

24n

)− k+2
2
(

1− 1

4
√
n0(k, `)

)
< Q(n, k, `) <

1(
α0

√
24
)k(1− 1 + 24`

24n

)− k+2
2
.

(4.67)
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We estimate
(

1− 1 + 24`

24n

)− k+2
2

by splitting it into two cases depending on whether k is even or

odd.
For k = 2r with r ∈ Z≥0:(

1− 1 + 24`

24n

)− k+2
2

=
(

1− 1 + 24`

24n

)−(r+1)

= 1 +
∞∑
j=1

(
−(r + 1)

j

)
(−1)j(1 + 24`)j

(24n)j
.

From (3.4) with (m, s, n) 7→ (1, r + 1, 24n
24`+1

), for all n > (r+1)(1+24`)
12

, we get

0 <
∞∑
j=1

(
−(r + 1)

j

)
(−1)j(1 + 24`)j

(24n)j
<

(r + 1)(24`+ 1)

12n
,

which is equivalent to

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

(k + 2)(24`+ 1)

24n
for all n > n0(k, `). (4.68)

For k = 2r + 1 with r ∈ Z≥0:(
1− 1 + 24`

24n

)− k+2
2

=
(

1− 1 + 24`

24n

)− 2r+3
2

= 1 +
∞∑
j=1

(
−2r+3

2

j

)
(−1)j(1 + 24`)j

(24n)j
.

Using (3.2) with (m, s, n) 7→ (1, r + 2,
24n

24`+ 1
), for all n > (r+2)(1+24`)

12
, we get

0 <
∞∑
j=1

(
−2`+3

2

j

)
(−1)j

(24n)j
<

(r + 2)(1 + 24`)

6n

which is equivalent to

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

k(1 + 24`)

3n
for all n > n0(k, `). (4.69)

From (4.68) and (4.69), for all n > n0(k, `) it follows that

1 <
(

1− 1 + 24`

24n

)− k+2
2
< 1 +

k(1 + 24`)

3 · n0(k, `)
. (4.70)

From (4.67) and (4.70), we conclude the proof.
�

5. Inequalities for p(n− `)

Definition 5.1. Let (Li(k, `))1≤i≤4 and (Ui(k, `))1≤i≤4 be as in Definitions 4.34-4.40. Let Û2(k, `)
be as in Definition 4.43. Then for all w ∈ Z≥1 with dw/2e ≥ 1, define

L(w, `) := L1

(⌈w
2

⌉
, `
)

+ L2

(⌈w
2

⌉
, `
)

+ L3

(⌊w
2

⌋
, `
)

+ L4

(⌊w
2

⌋
, `
)
− Û2(w, `)

and

U(w, `) := U1

(⌈w
2

⌉
, `
)

+ U2

(⌈w
2

⌉
, `
)

+ U3

(⌊w
2

⌋
, `
)

+ U4

(⌊w
2

⌋
, `
)

+ Û2(w, `).

Lemma 5.2. Let ĝ(k) be as in Theorem 4.2 and n0(k, `) as in Definition 4.42. Let g(t, `)
be as in (4.45). Let L(w, `) and U(w, `) be as in Definition 5.1. If m ∈ Z≥1 and n >
max

{
1, n0(2m, `), ĝ(2m) + `

}
, then

eπ
√

2n/3

4n
√

3

(
2m−1∑
t=0

g(t, `)
√
n
t +

L(2m, `)
√
n
2m

)
< p(n− `) < eπ

√
2n/3

4n
√

3

(
2m−1∑
t=0

g(t, `)
√
n
t +

U(2m, `)
√
n
2m

)
.
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Proof. Following Definition 4.20 and from Lemma 4.21, we have

∞∑
t=0

g(t, `)
( 1√

n

)t
=

2m−1∑
t=0

g(t, `)
( 1√

n

)t
+

∞∑
t=2m

g(t, `)
( 1√

n

)t
=

2m−1∑
t=0

g(t, `)
( 1√

n

)t
+
∞∑
t=m

g(2t, `)
( 1√

n

)2t
+
∞∑
t=m

g(2t+ 1, `)
( 1√

n

)2t+1

=
2m−1∑
t=0

g(t, `)
( 1√

n

)t
+
∞∑
t=m

(ge,1(t, `) + ge,2(t, `))
( 1√

n

)2t
+
∞∑
t=m

(go,1(t, `) + go,2(t, `))
( 1√

n

)2t+1

.

(5.1)

Using Lemmas 4.35-4.41 by making the substitution k 7→ m, it follows that

L1(m, `) + L2(m, `)√
n
2m +

L3(m, `) + L4(m, `)√
n
2m+1 <

∞∑
t=2m

g(t, `)
( 1√

n

)t
<

U1(m, `) + U2(m, `)√
n
2m +

U3(m, `) + U4(m, `)√
n
2m+1 .

(5.2)

Moreover, by Lemma 4.44 with k = 2m, it follows that

√
12 eµ(n−`)

24(n− `)− 1

1

µ(n− `)2m
<
eπ
√

2n/3

4n
√

3

Û2(2m, `)√
n
2m . (5.3)

Combining (5.2) and (5.3), and applying to Lemma 4.3, we conclude the proof. �

Lemma 5.3. Let ĝ(k) be as in Theorem 4.2 and n0(k, `) as in Definition 4.42. Let g(t, `)
be as in Equation (4.45). Let L(w, `) and U(w, `) be as in Definition 5.1. If m ∈ Z≥0 and
n > max

{
1, n0(2m+ 1, `), ĝ(2m+ 1) + `

}
, then

eπ
√

2n/3

4n
√

3

(
2m∑
t=0

g(t, `)
√
n
t +

L(2m+ 1, `)
√
n
2m+1

)
< p(n− `) < eπ

√
2n/3

4n
√

3

(
2m∑
t=0

g(t, `)
√
n
t +

U(2m+ 1, `)
√
n
2m+1

)
.

Proof. The proof is analogous to the proof of Lemma 5.2. �

Definition 5.4. Let g(t, `) be as in (4.45), L(w, `), U(w, `) as in Definition 5.1. If w ∈ Z≥1
with dw/2e ≥ 1, define

Ln(w, `) :=
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
L(w, `)√

n
w and Un(w, `) :=

w−1∑
t=0

g(t, `)
( 1√

n

)t
+
U(w, `)√

n
w .

Theorem 5.5. Let ĝ(k) be as in Theorem 4.2 and n0(k, `) as in Definition 4.42. Let Ln(w, `)
and Un(w, `) be as in Definition 5.4. If w ∈ Z≥1 with dw/2e ≥ 1 and n > max{ĝ(w)+`, n0(w, `)},
then

eπ
√

2n/3

4n
√

3
Ln(w, `) < p(n− `) < eπ

√
2n/3

4n
√

3
Un(w, `). (5.4)

Proof. Putting Lemmas 5.2 and 5.3 together, we obtain (5.4). �
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6. Proof of Theorems 1.5, 1.7, and 1.9

Proof of Theorem 1.5: To prove the lower bound of (1.16), it is equivalent to show that

p(n− 4)p(n) + 3p(n− 2)2 > 4

(
1 +

π2

16(n− 3)3
− 6

(n− 3)7/2

)
p(n− 3)p(n− 1). (6.1)

Since 1 +
π2

16n3
− 5

n7/2
> 1 +

π2

16(n− 3)3
− 6

(n− 3)7/2
for all n ≥ 5, it is enough to show that

p(n− 4)p(n) + 3p(n− 2)2 > 4

(
1 +

π2

16n3
− 5

n7/2

)
p(n− 3)p(n− 1). (6.2)

Choosing w = 12 and applying Theorem 5.5, for all n ≥ 2329, we have

p(n− 4)p(n) + 3p(n− 2)2 >

(
eπ
√

2n/3

4n
√

3

)2(
Ln(12, 4) · Ln(12, 0) + 3 L2

n(12, 2)

)
, (6.3)

and

p(n− 3)p(n− 1) <

(
eπ
√

2n/3

4n
√

3

)2(
Un(12, 3) · Un(12, 1)

)
. (6.4)

Therefore, it suffices to show that

Ln(12, 4) · Ln(12, 0) + 3 L2
n(12, 2) > 4

(
1 +

π2

16n3
− 5

n7/2

)
Un(12, 3) · Un(12, 1). (6.5)

Using the Reduce1 command within Mathematica, it can be easily checked that for all n ≥ 625,
(6.5) holds.

Similarly, to prove the upper bound of (1.16), it is equivalent to prove that

p(n− 4)p(n) + 3p(n− 2)2 < 4

(
1 +

π2

16(n− 3)3

)
p(n− 3)p(n− 1). (6.6)

Since 1 +
π2

16n3
< 1 +

π2

16(n− 3)3
for all n ≥ 4, it is enough to show that

p(n− 4)p(n) + 3p(n− 2)2 < 4

(
1 +

π2

16n3

)
p(n− 3)p(n− 1). (6.7)

Choosing w = 12 and applying Theorem 5.5, for all n ≥ 2329, we have

p(n− 4)p(n) + 3p(n− 2)2 <

(
eπ
√

2n/3

4n
√

3

)2(
Un(12, 4) · Un(12, 0) + 3 U2

n(12, 2)

)
, (6.8)

and

p(n− 3)p(n− 1) >

(
eπ
√

2n/3

4n
√

3

)2(
Ln(12, 3) · Ln(12, 1)

)
. (6.9)

Therefore, it suffices to show that

Un(12, 4) · Un(12, 0) + 3 U2
n(12, 2) < 4

(
1 +

π2

16n3

)
Ln(12, 3) · Ln(12, 1). (6.10)

1Reduce uses cylindrical algebraic decomposition for polynomials over real domains which is based on Collin’s
algorithm [20]. Cylindrical Algebraic Decomposition (CAD) is an algorithm which proves that a given polynomial
in several variables is positive (non-negative).
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In a similar way as stated before, it can be easily checked that for all n ≥ 784, (6.5) holds. We
conclude the proof of Theorem 1.5 by verifying the inequality (1.16) for all 218 ≤ n ≤ 2328 with
Mathematica. �

Proof of Theorem 1.7: To prove the lower bound of (1.17), it is equivalent to show that

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
1 +

π3

72
√

6(n− 3)9/2
− 8

(n− 3)5

)(
2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n)

)
.

(6.11)

As 1 +
π3

72
√

6n9/2
− 7

n5
> 1 +

π3

72
√

6(n− 3)9/2
− 8

(n− 3)5
for all n ≥ 4, it suffices to show that

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
1 +

π3

72
√

6n9/2
− 7

n5

)(
2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n)

)
.

(6.12)

Choosing w = 15 and applying Theorem 5.5, for all n ≥ 4047, we have

p(n− 2)3 + p(n− 4)p(n− 1)2 + p(n− 3)2p(n) >(
eπ
√

2n/3

4n
√

3

)3(
L3
n(15, 2) + Ln(15, 4) · L2

n(15, 1) + L2
n(15, 3) · Ln(15, 0)

)
,

(6.13)

and

2p(n− 3)p(n− 2)p(n− 1) + p(n− 4)p(n− 2)p(n) <(
eπ
√

2n/3

4n
√

3

)3(
2 · Un(15, 3) · Un(15, 2) · Un(15, 1) + Un(15, 4) · Un(15, 2) · Un(15, 0)

)
.

(6.14)

Similar to the proof of (6.5), it can be easily checked that for all n ≥ 1444,

L3
n(15, 2) + Ln(15, 4) · L2

n(15, 1) + L2
n(15, 3) · Ln(15, 0) >(

1 +
π3

72
√

6n9/2
− 7

n5

)(
2 · Un(15, 3) · Un(15, 2) · Un(15, 1) + Un(15, 4) · Un(15, 2) · Un(15, 0)

)
(6.15)

Analogously, one can prove that for all n ≥ 2916,

U3
n(15, 2) + Un(15, 4) · U2

n(15, 1) + U2
n(15, 3) · Un(15, 0) <(

1 +
π3

72
√

6n9/2

)(
2 · Ln(15, 3) · Ln(15, 2) · Ln(15, 1) + Ln(15, 4) · Ln(15, 2) · Ln(15, 0)

)
,

(6.16)

which is sufficient to prove the upper bound of (1.17). We conclude the proof of Theorem 1.7
by verifying the inequality (1.17) for all 244 ≤ n ≤ 4047 with Mathematica. �

Proof of Theorem 1.9: Corresponding to (1.18), we show(
1 +

π√
24n3/2

)(
p(n− 2)p(n− 1)− p(n− 3)p(n)

)2
>

4
(
p(n− 2)2 − p(n− 3)p(n− 1)

)(
p(n− 1)2 − p(n− 2)p(n)

)
,

(6.17)
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and

4
(
p(n− 2)2 − p(n− 3)p(n− 1)

)(
p(n− 1)2 − p(n− 2)p(n)

)
>(

1 +
π√

24n3/2
− 2

n2

)(
p(n− 2)p(n− 1)− p(n− 3)p(n)

)2
.

(6.18)

Applying Theorem 5.5 with w = 13, and following the similar method worked out in the proof
of Theorem 1.5, we obtain (1.18) for all n ≥ 2842. For 115 ≤ n ≤ 2841, we verified (1.18)
numerically with Mathematica. �

7. Applications

7.1. Higher order Laguerre inequalities. If a polynomial p(x) satisfies

p′(x)2 − p(x) · p′′(x) ≥ 0, (7.1)

then we say that p(x) satisfies Laguerre inequality. Laguerre [41] proved that if p(x) is a poly-
nomial having only roots, then p(x) satisfies (7.1). Later in 1913, Jensen [37] obtained a gener-
alization of (7.1)

Ln(p(x)) :=
1

2

2n∑
k=0

(−1)n+k
(

2n

k

)
p(k)(x)p(2n−k)(x) ≥ 0, (7.2)

where p(k)(x) denotes the kth derivative of p(x). The case n = 1 gives the classical Laguerre
inequality (7.1). For a detailed study on the Laguerre inequalities of order m, we refer to [21,
67]. Considering the discrete version of (7.2), define that a sequence (an)n≥0 satisfies Laguerre
inequalities of order m if

Lm(an) :=
1

2

2m∑
k=0

(−1)m+k

(
2n

k

)
a(n+ k)a(2m− k + n) ≥ 0. (7.3)

Wagner [67] proved that p(n) satisfies (7.3) with m ≥ 1 and for sufficiently large n. Moreover,
he proposed the following conjecture.

Conjecture 7.1. [67] For 1 ≤ m ≤ 10, p(n) satisfies the Laguerre inequality of order m for
n ≥ N(m), where

m 1 2 3 4 5 6 7 8 9 10

N(m) 25 184 531 1102 1923 3014 4391 6070 8063 10382

The case m = 1 was settled by DeSalvo and Pak [23]. Wang and Yang [68, Theorem 2.1]
settled the case m = 2. Recently, Dou and Wang [25, Sections 2 and 3] resolved the cases
3 ≤ m ≤ 9. Dou and Wang [25, page 8] also proved that p(n) satisfies the Laguerre inequality
of order 10 for all n > 218573927203706866261 but in order to conclude for m = 10, they had to
verify the remaining quintillion gap which was impossible to check with computer and therefore,
the case m = 10 remains open.

For 2 ≤ m ≤ 15, let N(m) denotes the actual cut off for n such that (p(n))n≥N(m) satisfies the
Laguerre inequality of order m, w(m) denotes the truncation point as given in Theorem 5.5, and
NB(m) denotes the cut-off from which point on we are able to show (using Theorem 5.5) that
(p(n))n≥NB(m) satisfies Laguerre inequalities of order m. T (m) denotes the time (in seconds)
taken in computation with ‘Reduce’ command in Mathematica.
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Enumeration of cut-off
m N(m) w(m) NB(m) T (m)
2 184 11 1873 0.76
3 531 15 4049 1.53
4 1102 20 8164 4.61
5 1923 23 11436 7.51
6 3014 30 21577 11.46

Enumeration of cut-off
m N(m) w(m) NB(m) T (m)
7 4391 34 29034 25.34
8 6070 39 40138 40.88
9 8063 45 56180 126.91
10 10382 50 71893 177.34
11 13037 55 89803 366.15

Enumeration of cut-off
m N(m) w(m) NB(m) T (m)
12 16038 63 109966 419.18
13 19393 68 132433 659.63
14 23110 72 157254 673.56
15 27199 78 184471 754.29

From the above tables, we have the following theorem.

Theorem 7.2. For 2 ≤ m ≤ 15,

Lm(p(n− 2m)) > 0 for all n ≥ N(m). (7.4)

Remark 7.3. We observe that Theorem 7.2 settles the Conjecture 7.1. Now, in spite of having
Wagner’s proof on positivity of Lm(p(n)) for all but finitely many n, a natural question arises:
what is the growth of Lm(p(n)) as n → ∞? More explicitly, how to get an effective estimate of
N(m) such that for all n > N(m), Lm(p(n)) > 0?

Based on numerical evidences (checked 1 ≤ m ≤ 200), we propose the following conjecture.

Conjecture 7.4. For all m ∈ Z≥1,

(−1)m

2

2m∑
k=0

(−1)k
(

2m

k

) 3m∑
s=0

g(s, 2m− k)g(3m− s, k) =

(
π

2
√

6

)m
(2m− 1)!

(m− 1)!
,

and for all m ∈ Z≥1 and 0 ≤ ν ≤ 3m− 1,

(−1)m

2

2m∑
k=0

(−1)k
(

2m

k

) ν∑
s=0

g(s, 2m− k)g(3m− s, k) = 0.

If the above conjecture is true for m ≥ 1, then by choosing w(m) = 3m+1 in Theorem 5.5, can
derive an effective estimate for N(w(m)) and prove that Lm(p(n− 2m)) > 0 for all n > N(m).
As a consequence, it will follow that as n→∞,

Lm(p(n)) ∼
(

π

2
√

6

)m
(2m− 1)!

(m− 1)!

(
eπ
√

2n/3

4n
√

3

)2

.

7.2. Higher order shifted difference. Let ∆ be the difference operator defined on a sequence
(a(n))n≥0 by ∆(a(n)) := a(n+ 1)− a(n). A r-fold applications of ∆ is denoted by ∆r. Recently,
Gomez, Males, and Rolen [27] generalized the ∆ operator by introducing a shift parameter j,
defined as ∆2

j(a(n)) := a(n) − 2a(n − j) + a(n − 2j), and studied the positivity of ∆2
j(p(n)).

Consequently, they also proved that Nk(m,n) − Nk(m + 1, n) > 0, where the k-rank function
Nk(m,n) which counts the number of partitions of n into at least (k−1) successive Durfee squares
with k-rank equal to m (see [26]). Following Theorem 5.5, we obtain the asymptotic expansion
of ∆r

j(p(n)) :=
∑r

m=0(−1)m
(
m
r

)
p(n −m · j) for any positive integer r, which finally leads to a

completion the work of Odlyzko [52] on ∆rp(n) (setting j = 1) by proving its asymptotic growth.
Works related to the positivity of ∆rp(n) can be found in [30, 33, 2, 39].
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Following the notation from [31], here
{
n
m

}
denotes the Stirling number of second kind which

counts the number of ways to partition a set of n elements into m nonempty subsets. Here we
state three facts about

{
n
m

}
which will be referenced later.

Fact 7.5. [31, Table 264]
{
n
m

}
=
(
n
m

)
= 0,

Fact 7.6. [31, Table 264]
{
n
n

}
=
(
n
n

)
= 1,

Fact 7.7. [31, Table 265, Eq. (6.19)] m!
{
n
m

}
=

m∑
k=0

(
m

k

)
kn(−1)m−k.

Lemma 7.8. Let g(t, `) be as in Equation 4.45. Then for all r ≥ 1,

r∑
m=0

(−1)m
(
r

m

) r+1∑
t=0

g(t,m · j)
√
n
t =

(π · j√
6

)r 1√
n
r−

(π · j√
6

)r−1 j
4

[
π2

36
(1 + 12jr) + (r2 + 3r + 2)

]
1

√
n
r+1 .

(7.5)

Proof. Following (4.45), we have

r∑
m=0

(−1)m
(
r

m

) r+1∑
t=0

g(t,m · j)
√
n
t

=
r∑

m=0

(−1)m
(
r

m

) r+1∑
t=0

(1 + 24m · j
−4
√

6n

)t
·
t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24m · j)k

=
r+1∑
t=0

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
·

r∑
m=0

(−1)m
(
r

m

)
(1 + 24m · j)t−k

=
r+1∑
t=0

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
·
t−k∑
`=0

(
t− k
`

)
(24j)`

r∑
m=0

(−1)m
(
r

m

)
m`

=
r+1∑
t=0

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
·
t−k∑
`=0

(
t− k
`

)
(24j)`(−1)rr!

{
`

r

}
(by Fact 7.7) . (7.6)

From Fact 7.5, we have
{
`
r

}
= 0 for all ` < r and by Fact 7.6,

{
r
r

}
= 1. Therefore, the minimal

choice for (t, k, `) = (r, 0, r) so that the sum on the right hand side of (7.6) to be non-zero. For
t = r + 1, we have two choices; i.e., (k, `) = (1, r) and for k = 0, ` ∈ {r, r + 1}. Therefore, we
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have
r∑

m=0

(−1)m
(
r

m

) r+1∑
t=0

g(t,m · j)
√
n
t (7.7)

=
r+1∑
t=r

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k( 1

−4
√

6n

)t
·
t−k∑
`=0

(
t− k
`

)
(24j)`(−1)rr!

{
`

r

}
=
(π · j√

6

)r 1√
n
r

+

[
1∑

k=0

(
r + 2

k

)
r + 2− k

(r + 2− 2k)!

(π
6

)r+1−2k r+1−k∑
`=r

(24j)`(−1)rr!

{
`

r

}]
1

(−4
√

6n)r+1

=
(π · j√

6

)r 1√
n
r −

(π · j√
6

)r−1 j
4

[
π2

36
(1 + 12jr) + (r2 + 3r + 2)

]
1

√
n
r+1 . (7.8)

�

Definition 7.9. For all r ≥ 1, define

Cr(j) :=
(π · j√

6

)r
,

Cr+1(j) :=
(π · j√

6

)r−1 j
4

[
π2

36
(1 + 12jr) + (r2 + 3r + 2)

]
,

Ũr(j) :=

br/2c∑
m=0

(
r

2m

)
U(r + 2, 2m · j)−

b(r−1)/2c∑
m=0

(
r

2m+ 1

)
L(r + 2, (2m+ 1)j)

and

L̃r(j) :=

br/2c∑
m=0

(
r

2m

)
L(r + 2, 2m · j)−

b(r−1)/2c∑
m=0

(
r

2m+ 1

)
U(r + 2, (2m+ 1)j).

Lemma 7.10. For all n > max
{
ĝ(r + 2) + r · j, n0(r + 2, r · j)

}
, we have

eπ
√

2n/3

4n
√

3

(
M̃r(n, j) +

L̃r(j)√
n
r+2

)
< ∆r

j(p(n)) <
eπ
√

2n/3

4n
√

3

(
M̃r(n, j) +

Ũr(j)√
n
r+2

)
, (7.9)

where

M̃r(n, j) =
Cr(j)√
n
r −

Cr+1(j)√
n
r+1 .

Proof. We split ∆r
j(p(n)) as follows:

∆r
j(p(n)) =

r∑
m=0

(−1)m
(
m

r

)
p(n−m · j)

=

br/2c∑
m=0

(
r

2m

)
p(n− 2m · j)−

b(r−1)/2c∑
m=0

(
r

2m+ 1

)
p(n− (2m+ 1) · j).

(7.10)
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Applying Theorem 5.5 for each of the above two factors, we obtain (7.9). �
Consequently, from Lemma 7.10, we obtain the following result.

Corollary 7.11. For all r, j ∈ Z≥1,

∆r
j(p(n)) ∼

(
π · j√

6n

)r
eπ
√

2n/3

4n
√

3
as n→∞. (7.11)

Corollary 7.12. For j = 1 and r ∈ Z≥1, we have

∆r(p(n)) ∼
(

π√
6n

)r
eπ
√

2n/3

4n
√

3
as n→∞.

More generally, we have the asymptotic expansion of ∆r
j(p(n)) of the following form stated

below.

Theorem 7.13. For all r, j ∈ Z≥1,

∆r
j(p(n)) ∼ eπ

√
2n/3

4n
√

3

(π · j√
6n

)r∑
t≥0

g̃r,j(t)√
n
t as n→∞, (7.12)

where

g̃r,j(t) =
(t+ r + 1)r!

(−4
√

6)t

t∑
k=0

t−k∑
`=0

(
t+ r

`+ r

)(
t− `
k

)
1

(t+ r + 1− 2k)!

(π
6

)t−2k
(24j)`

{
`+ r

r

}
.

Proof. Letting w →∞, from (5.4) it follows that

∆r
j(p(n)) =

r∑
m=0

(−1)m
(
m

r

)
p(n−m · j)

∼
n→∞

(
r∑

m=0

(−1)m
(
r

m

)∑
t≥0

g(t,m · j)
√
n
t

)
eπ
√

2n/3

4n
√

3
.

From Lemma 7.8, for 0 ≤ t ≤ r − 1 we have
r∑

m=0

(−1)m
(
r

m

) r−1∑
t=0

g(t,m · j)
√
n
t = 0, (7.13)

and therefore from (7.13) and (7.13), as n→∞, it follows that

∆r
j(p(n)) ∼

r∑
m=0

(−1)m
(
r

m

)∑
t≥r

g(t,m · j)
√
n
t . (7.14)

Now,∑
t≥r

(t+1)/2∑
k=0

1

(−4
√

6n)t

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k r∑
m=0

(−1)m
(
r

m

)
(1 + 24m · j)t−k

=
∑
t≥r

(t+1)/2∑
k=0

t−k∑
`=0

1

(−4
√

6n)t

(
t+ 1

k

)(
t− k
`

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k
(24j)`

r∑
m=0

(−1)m
(
r

m

)
m`

= (−1)rr!
∑
t≥r

(t+1)/2∑
k=0

t−k∑
`=0

1

(−4
√

6n)t

(
t+ 1

k

)(
t− k
`

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k
(24j)`

{
`

r

}
=: (−1)rr!

∑
t≥r

A(t, r) = (−1)rr!
∑
t≥0

A(t+ r, r)
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=
(4π · j)r

(−4
√

6n)r+t

t∑
k=0

t−k∑
`=0

(
t+ r

`+ r

)(
t− `
k

)
t+ r + 1

(t+ r + 1− 2k)!

(π
6

)t−2k
(24j)`

{
`+ r

r

}
. (7.15)

Applying (7.15) to (7.14), we finally obtain (7.12). �

Corollary 7.14. For j ∈ Z≥1,

∆1
j(p(n)) ∼ eπ

√
2n/3

12
√

2n3/2
πj
∑
t≥0

g̃1,j(t)√
n
t as n→∞, (7.16)

where

g̃1,j(t) =
(t+ 2)

(−4
√

6)t

t∑
k=0

t−k∑
`=0

(
t+ 1

`+ 1

)(
t− `
k

)
1

(t+ 2− 2k)!

(π
6

)t−2k
(24j)`

(
`+ 1

)
.

Remark 7.15. Replacing n 7→ n − k −m + 1 := nk and plugging j = 1 in Corollary 7.14, for
all m > n/2, we have the full asymptotic expansion of Nk(m,n) with respect to the base 1√

nk
t .

But in order to get the asymptotic expansion with respect to the base 1√
n
t , we directly employ

Theorem 5.5 and obtain for m > n/2,

Nk(m,n) ∼
n→∞

eπ
√

2n/3

4n
√

3

∑
t≥0

gk(t)√
n
t , (7.17)

where

gk(t) := g(t, k +m− 1)− g(t, k +m).

For k = 1, 2 we get the asymptotic expansion of M(m,n) and N(m,n) respectively.

Corollary 7.16. For j ∈ Z≥1,

∆2
j(p(n)) ∼ eπ

√
2n/3

24
√

3n2
π2j2

∑
t≥0

g̃2,j(t)√
n
t as n→∞, (7.18)

where

g̃2,j(t) =
(2t+ 6)

(−4
√

6)t

t∑
k=0

t−k∑
`=0

(
t+ 2

`+ 2

)(
t− `
k

)
1

(t+ 3− 2k)!

(π
6

)t−2k
(24j)`

(
2`+1 − 1

)
.

Remark 7.17. By making the substitution n 7→ n − k − m + 1 := nk and plugging j = 1 in
Corollary 7.16, for all m > n/2, we have the full asymptotic expansion of Nk(m,n)−Nk(m+1, n)
with respect to the base 1√

nk
t . But in order to get the asymptotic expansion with respect to the

base 1√
n
t , we directly employ Theorem 5.5 and obtain for m > n/2,

Nk(m,n)−Nk(m+ 1, n) ∼
n→∞

eπ
√

2n/3

4n
√

3

∑
t≥0

g̃k(t)√
n
t , (7.19)

where

g̃k(t) := g(t, k +m− 1)− 2g(t, k +m) + g(t, k +m+ 1).

For k = 1, 2 we get the asymptotic expansion of M(m,n)−M(m+1) and N(m,n)−N(m+1, n)
respectively.
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7.3. Higher order log-concavity. The notion of log-concavity can be further generalized in
the following way. Consider the operator L defined on a sequence A := (an)n≥0 ⊂ R>0 by
L(A) := A1 := (bn)n≥0 with

b0 = a20 and bn = a2n − an−1an+1, for n ≥ 1.

Hence a sequence A is log-concave if and only if L(A) is a non-negative sequence. A sequence is
k-log-concave if j-fold applications of L on A, denoted by Lj(A), is a non-negative sequence for
all 0 ≤ j ≤ k. A sequence is called infinitely log-concave if it is k-log-concave for all k ≥ 1. For
example, Brändén [10] proved that the sequence of binomial coefficients

((
n
k

))
0≤k≤n is infinitely

log-concave for all n ≥ 0 which was conjectured by Boros and Moll [9]. For a more detailed study
on infinite log-concavity of sequences, we refer the reader to [49]. In context of the partition
function, DeSalvo and Pak proved that (p(n))n≥26 is log-concave. Hou and Zhang [36, Page 128],
Jia and Wang [38, Theorem 1.6] proved that (p(n))n≥222 is 2-log-concave.

Theorem 7.18. For r ∈ {1, 2, 3} and n > max
{
ĝ(3 · 2r − 2) + 2r, n0(3 · 2r − r, 2r)

}
=: N(r),

Lr(p(n− r)) =

(
eπ
√

2n/3

4n
√

3

)2r(
π2r−1

√
2
r2+r+1√

3
r2−r+1√

n
3(2r−1)

+O

(
1

√
n
3·2r−2

))
(7.20)

Proof. For r = 1, L(p(n− 1)) = p(n− 1)2 − p(n)p(n− 2). Applying Theorem 5.5 with w = 4,
for all n > N(4) = 151 we have

L(p(n− 1)) =

(
eπ
√

2n/3

4n
√

3

)2( 3∑
t=0

g(t, 1)2 − g(t, 0)g(t, 2)
√
n
t +O

( 1

n2

))

=

(
eπ
√

2n/3

4n
√

3

)2(
π

2
√

6n3/2
+O

( 1

n2

))
.

(7.21)

Define

g2(t, `) := g(t, `)2 − g(t, `− 1)g(t, `+ 1).

Now for r = 2, applying Theorem 5.5 with w = 10, for all n > N(10) = 1473 it follows that

L2(p(n− 2)) =

(
eπ
√

2n/3

4n
√

3

)4( 9∑
t=0

g2(t, 2)2 − g2(t, 3)g2(t, 1)
√
n
t +O

( 1

n5

))

=

(
eπ
√

2n/3

4n
√

3

)4(
π3

24
√

6n9/2
+O

( 1

n5

))
.

(7.22)

Define

g3(t, `) := g2(t, `)
2 − g2(t, `− 1)g2(t, `+ 1).

Finally for r = 3, from Theorem 5.5 with w = 22, for all n > N(22) = 10273 we get

L3(p(n− 3)) =

(
eπ
√

2n/3

4n
√

3

)8( 21∑
t=0

g3(t, 3)2 − g3(t, 4)g3(t, 2)
√
n
t +O

( 1

n11

))

=

(
eπ
√

2n/3

4n
√

3

)8(
π7

1728
√

6n21/2
+O

( 1

n11

))
.

(7.23)

�
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For r ∈ {1, 2}, we obtain the following two inequalities for Lr(p(n − r)) using (5.4). For all
n > 676,(

eπ
√

2n/3

4n
√

3

)2(
π

2
√

6n3/2
− 4

n2

)
< L1(p(n− 1)) <

(
eπ
√

2n/3

4n
√

3

)2(
π

2
√

6n3/2
+

4

n2

)
, (7.24)

and for all n > 5499,(
eπ
√

2n/3

4n
√

3

)4(
π3

24
√

6n9/2
− 10

n5

)
< L2(p(n− 2)) <

(
eπ
√

2n/3

4n
√

3

)4(
π3

24
√

6n9/2
+

10

n5

)
. (7.25)

Equations (7.24) and (7.25) retrieve that (p(n))n≥26 is log-concave and (p(n))n≥222 is 2-log-
concave respectively along with respective asymptotic growths.
Following the proof of Theorem 7.18, it suggests that for all n > N(r),

Lr(p(n− r)) =

(
eπ
√

2n/3

4n
√

3

)2r(3(2r−1)∑
t=0

gr(t, r)
2 − gr(t, r + 1)gr(t, r − 1)

√
n
t +O

(
1

√
n
3·2r−2

))
,

where gr(t, r) = gr−1(t, r)
2 − gr−1(t, r − 1)gr−1(t, r + 1) for all r ≥ 2 and g1(t, r) = g(t, r).

Moreover, following (7.21)-(7.23), it further suggests that

3(2r−1)∑
t=0

gr(t, r)
2 − gr(t, r + 1)gr(t, r − 1)

√
n
t =

Gr
√
n
3(2r−1) ,

where Gr = gr(3(2r − 1), r)2 − gr(3(2r − 1), r + 1)gr(3(2r − 1), r − 1). This finally leads us to
make the following conjecture.

Conjecture 7.19. Let N(r) be as in Theorem 7.18 for r ∈ Z≥1. Then for all n > N(r),

Lrp(n− r) ∼ π2r−1

√
2
r2+r+1√

3
r2−r+1√

n
3(2r−1)

(
eπ
√

2n/3

4n
√

3

)2r

as n→∞. (7.26)

In other words, p(n) is infinitely log-concave.

8. A unified framework to prove inequalities for p(n)

In [5, Section 5], the author provided a unified framework to prove multiplicative inequalities
for p(n) given in the following form: for T ∈ N and (si, ri) ∈ Z2

≥0 for all 1 ≤ i ≤ T ,

T∏
i=1

p(n+ si) ≥
T∏
i=1

p(n+ ri),

using an infinite family of inequalities for log p(n + j) with j ∈ Z≥0, see [5, Theorem 3.9].
But in the literature, we found several examples for inequalities of p(n) which do not fit into the
multiplicative set up, for example the higher order Turán inequalities. In this context, the author
also discussed explicitly in [5, Section 7] the limitation of using [5, Theorem 3.9] to construct
a framework to prove inequalities for p(n) which is not multiplicative type and indicated what
might be a possible way to prove such inequalities in a systematic way. First, we note that
all the inequalities for the partition function stated in previous sections can be written in the
following form: for (cj, dj) ∈ N2, (si,j, ri,j) ∈ Z2

≥0 with 1 ≤ i ≤ T and 1 ≤ j ≤ max{M1,M2},
M1∑
j=1

cj

T∏
i=1

p(n− si,j) ≥
M2∑
j=1

dj

T∏
i=1

p(n− ri,j).
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We call the above inequality is an additive-multiplicative inequality for p(n).
Define

PM1,T (s, n) :=

M1∑
j=1

cj

T∏
i=1

p(n− si,j) and PM2,T (r, n) :=

M2∑
j=1

dj

T∏
i=1

p(n− ri,j).

In this subsection, we will construct a unified framework to determine

(1) sign of (PM1,T (s, n)− PM2,T (r, n)),
(2) and the cut off NM1,M2,T (s, r) such that for all n ≥ NM1,M2,T (s, r),

sign of (PM1,T (s, n)− PM2,T (r, n)) is consistent.

Here we list down the steps so as to determine two facts stated above which finally verify whether
a given additive-multiplicative inequality for p(n) holds or not. To begin with, let us define

DM1,M2,T (s, r, n) := PM1,T (s, n)− PM2,T (r, n).

• (Step 0): Associate

p(n− `) 7→
∞∑
t=0

g(t, `)
√
n
t .

Note that here we excluded the exponential term e
π

√
2n
3

4n
√
3

because both factors PM1,T (s, n)

and PM2,T (s, n) has same number of products T , and therefore, we can extract out(
e
π

√
2n
3

4n
√
3

)T
from DM1,M2,T (s, r, n), which is always positive. So, in order to determine the

sign of DM1,M2,T (s, r, n), it is sufficient to consider the power series
∞∑
t=0

g(t, `)
√
n
t associated

with p(n− `).
• (Step 1): Map

DM1,M2,T (s, r, n) 7→
M1∑
j=1

cj

T∏
i=1

∞∑
t=0

g(t, si,j)√
n
t −

M2∑
j=1

dj

T∏
i=1

∞∑
t=0

g(t, ri,j)√
n
t︸ ︷︷ ︸

=:

∞∑
t=0

Gs,r(t)√
n
t =: Ps,r

( 1√
n

)
.

• (Step 2): Now we can decide the sign of DM1,M2,T (s, r, n) if Ps,r

( 1√
n

)
6= 0. Consequently,

for Ps,r

( 1√
n

)
6= 0, let

ord

(
Ps,r

( 1√
n

))
=: m with m ∈ N.

• (Step 3): So,

sign (DM1,M2,T (s, r, n)) = sign (Gs,r(m)) ,where Gs,r(m) =

[
1√
n
m

](
Ps,r

( 1√
n

))
.

Now, there are two cases: (i) Gs,r(m) > 0 and (ii) Gs,r(m) < 0.
• (Step 4): In order to verify the consistency of sign of DM1,M2,T (s, r, n), choose w = m+1,

where w is the truncation point stated in Theorem 5.5.
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• (Step 5): Consider the case Gs,r(m) > 0. Applying Theorem 5.5 with w 7→ m+ 1, we get

DM1,M2,T (s, r, n) >

M1∑
j=1

cj

T∏
i=1

Ln(m+ 1, si,j)−
M2∑
j=1

dj

T∏
i=1

Un(m+ 1, ri,j) =: p[1]s,r

(
1√
n

)
,

where

p[1]s,r

(
1√
n

)
=

d∑
k=m

As,r(k)
√
n
k

with As,r(m) = Gs,r(m) and d ≤ T · (m+ 1).

• (Step 6): Determine the cutoff NM1,M2,T (s, r), such that for all n ≥ NM1,M2,T (s, r),

p
[1]
s,r

(
1√
n

)
> 0.

• (Step 7): Consider the case Gs,r(m) < 0. Applying Theorem 5.5 with w 7→ m+ 1, we get

DM1,M2,T (s, r, n) <

M1∑
j=1

cj

T∏
i=1

Un(m+ 1, si,j)−
M2∑
j=1

dj

T∏
i=1

Ln(m+ 1, ri,j) =: p[2]s,r

(
1√
n

)
,

where

p[2]s,r

(
1√
n

)
=

d∑
k=m

Bs,r(k)
√
n
k

with Bs,r(m) = Gs,r(m) and d ≤ T · (m+ 1).

In this case, estimate NM1,M2,T (s, r), such that for all n ≥ NM1,M2,T (s, r), p
[2]
s,r

(
1√
n

)
< 0.

Now we will discuss in brief about motivation behind considering the framework given above in
context of works done on inequalities for p(n).

We mainly focus on two type of inequalities for the partition function: the higher order Turán
inequality and determinantal inequalities associated with the Hankel matrix.

(1) Recall that (p(n))n≥95 satisfies the higher order Turán inequality if for all n ≥ 95,

4
(
p(n)2 − p(n− 1)p(n+ 1)

) (
p(n+ 1)2 − p(n)p(n+ 2)

)
− (p(n)p(n+ 1)− p(n− 1)p(n+ 2))2 ≥ 0.

Making the shift n 7→ n − 2, can reformulate the left hand side of the above inequality
into the following form:

D2,3,4(s, r, n) =
2∑
j=1

cj

4∏
i=1

p(n− si,j)−
3∑
j=1

dj

4∏
i=1

p(n− ri,j),

with (M1,M2, T ) = (2, 3, 4), (cj)1≤j≤2,(dj)1≤j≤3, (si,j)1≤i≤4
1≤j≤2

, and (ri,j)1≤i≤4
1≤j≤3

are explicitly

determined. Next, following Step 1, we see that

D2,3,4(s, r, n) 7→
∞∑
t=1

Gs,r(t)√
n
t =: Ps,r

( 1√
n

)
=

π3

12
√

6

1
√
n
9 + . . . .

Hence, ord

(
Ps,r

( 1√
n

))
= 9 and sign of D2,3,4(s, r, n) is positive which proves that

p(n) satisfies the higher order Turán inequality for sufficiently large n. So, in order to
determine a finite cutoff N(w) (so as to verify the remaining cases using any computer
algebra system) such that for n ≥ N(w), the inequality holds for p(n), we need to choose
a w so that we can apply Theorem 5.5 and follows the Steps 4, 5, and 6. According to Step
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4, it is immediate that the minimal choice for w is ord

(
Ps,r

( 1√
n

))
+ 1 = 9 + 1 = 10.

Therefore, we see that the unified framework explains why Chen, Jia, and Wang [17,
Lemma 2.2] started with the following inequality (cf. Lemma 4.1) for p(n):
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)10

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)10

)
to prove the higher order Turán inequality for p(n).

(2) Jia and Wang [38, Theorem 1.5] proved that det (M3(p(n))) > 0 for all n ≥ 222, where
Mk(p(n)) = (p(n− i+ j))1≤i,j≤k with k ∈ Z≥2. This in turn proves that the Hankel

matrix with entries in p(n) and its shifted values is totally positive. Note that for the
case k = 2, det (M2(p(n))) > 0 for all n ≥ 26 due to DeSalvo and Pak [23, Theorem
1.1]. Jia and Wang [38, Conjecture 1.7] conjectured that for any k ≥ 2, there exists N(k)
such that det (Mk(p(n))) > 0 for all n ≥ N(k). Recently, Wang and Yang [69, Theorem
4.1] settled the conjecture of Jia and Wang for the case k = 4 and proved the inequality
with N(4) = 656. Moreover in [69, Section 6], they draw an outline of extending their
iterative construction to prove det (Mk(p(n))) > 0. But what precludes to determine an
effective cutoff N(k) so that the inequality det (Mk(p(n))) > 0 holds is to determine the
truncation point w(k) depending on k ∈ Z≥2 because the key tool they used in proving
these inequalities was
√

12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)w(k)

)
< p(n) <

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)w(k)

)
.

Wang and Yang concludes the paper by saying that for large k, one only needs to find
w(k) in order to follow their set up to settle the conjecture of Jia and Wang.

Following our framework, first make a shift n 7→ n−k and consider the matrix M̂k(p(n)) =
(p(n− k − i+ j))1≤i,j≤k. Using the formula of determinant, we have

det
(
M̂k(p(n))

)
=
∑
σ∈Sk

(
sgn(σ)

k∏
i=1

p(n− k − i+ σ(i))

)
.

Next, associating p(n−k− i+σ(i)) to
∑
t≥0

g(t, k + i− σ(i))
√
n
t , we finally needs to compute

the order of the power series Pk

(
1√
n

)
, where

Pk

(
1√
n

)
=
∞∑
t=0

(∑
σ∈Sk

sgn(σ)
k∏
i=1

g(t, k + i− σ(i))

)
1
√
n
t .

So, the minimal choice for w(k) is ord
(
Pk

(
1√
n

))
+ 1. Still there is a subtle problem to

conclude the proof (following the setup of Wang and Yang) of the conjecture because we
have to ensure that for each k ∈ Z≥2 and for some t ≥ 0,∑

σ∈Sk

sgn(σ)
k∏
i=1

g (ν, k + i− σ(i)) = 0.

For k ∈ {2, 3, 4, 5}, we have (w(k))2≤k≤5 = (4, 10, 19, 31) which seems to suggest that

w(k) = 3k(k−1)
2

+ 1. Therefore to settle the conjecture [38, Conjecture 1.7], it remains to



CHEN’S CONJECTURES ON ON INEQUALITIES FOR p(n) AND spt(n) 35

prove that for k ∈ Z≥2,∑
σ∈Sk

sgn(σ)
k∏
i=1

g

(
3k(k − 1)

2
, k + i− σ(i)

)
6= 0,

and for all 0 ≤ ν < 3k(k−1)
2

,∑
σ∈Sk

sgn(σ)
k∏
i=1

g (ν, k + i− σ(i)) = 0.

We leave this as an open problem.

9. Chen’s conjectures on the Andrews’ spt function

Andrews [4] defined the smallest parts function spt(n) for any integer n ≥ 1 as

spt(n) =
∑
λ`n

mult (s(λ)) ,

where mult (s(λ)) denotes the multiplicity of the smallest part s(λ) in a partition λ of n. For
n = 4, spt(n) = 10. The generating function of spt(n) is given by

∞∑
n=1

spt(n)qn =
∞∑
n=1

qn

(1− qn)2(qn+1; q)∞
,

where (a; q)∞ :=
∏∞

n=0(1 − aqn). Ahlgren and Andersen [1, Theorem 1] obtained a Hardy-
Ramanujan-Rademacher type exact formula for spt(n) as the following conditionally convergent
infinite series

spt(n) =
π

6
(24n− 1)

1
4

∞∑
k=1

Ak(n)

k

(
I1/2 − I3/2

)(π√24n− 1

6k

)
,

where AK(n) is the Kloosterman sum defined after (1.5). To obtain an estimate for the error
term of this conditionally convergent series in spirit of the work done by Lehmer for p(n), Ahlgren
and Andersen used the spectral theory of automorphic forms. Using the algebraic formula (see
[1, Theorem 2]) and traces of singular moduli, Dawsey and Masri [22, Theorem 1.1] gave an
asymptotic formula for spt(n). Recently, González [29, Theorem 1.2] substantially improved the
result of Dawsey and Masri by proving that for n ≥ 1,

spt(n) =

√
3

π
√

24n− 1
eµ(n) + Es(n) with |Es(n)| < 4.1e

µ(n)
2 ,

where µ(n) = π
6

√
24n− 1. Moreover due to González, we have the following estimation of spt(n)

in terms of p(n) which we will use to prove inequalities for spt(n).

Lemma 9.1. [29, Corollary 1.4] Let µ(n) be as stated before. Then for all n ≥ 1,

spt(n) =

√
24n− 1

2π
p(n) +

6
√

3

π2(24n− 1)
eµ(n) + E(n),

where |E(n)| < 4.11e
µ(n)
2 .

Dawsey and Masri [22, Theorem 1.2] settled the conjectures of Chen (see [16, Conjectures
6.7-6.11]) on inequalities for spt(n). But conjectures on postivity of invariants of cubic form and
quartic binary forms with coefficients in spt(n) made by Chen still remains open. Here we list
all the remaining conjectures of Chen.

Let bn := spt(n).
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Conjecture 9.2. [16, Conjectures 6.12 and 6.14]

(1) (bn)n≥108 satisfies the higher order Turán inequality.
(2) Let

vn =
bn+1bn−1

b2n
.

Then for all n ≥ 2,(
1 +

π√
24n3/2

)
(1− vnvn+1)

2 > 4(1− vn)(1− vn+1).

Conjecture 9.3. [16, Eqn. (6.20) and Conjecture 6.15]

(1) For all n ≥ 205,

bn−1bn+3 + 3b2n+1 > 4bnbn+2.

(2) For all n ≥ 260,

4

(
1 +

π2

16n3

)
bnbn+2 > bn−1bn+3 + 3b2n+1.

Conjecture 9.4. [16, Eqn. (6.21) and Conjecture 6.16]

(1) For all n ≥ 241,

b3n+1 + bn−1b
2
n+2 + b2nbn+3 > 2bnbn+1bn+2 + bn−1bn+1bn+3.

(2) For all n ≥ 290,(
1 +

π3

72
√

6n9/2

)
(2bnbn+1bn+2 + bn−1bn+1bn+3) > b3n+1 + bn−1b

2
n+2 + b2nbn+3.

Theorem 9.5. (1) For all n ≥ 74,(
1 +

π√
24n3/2

)
>

b2n
bn−1bn+1

>

(
1 +

π√
24n3/2

− 1

n2

)
. (9.1)

(2) For all n ≥ 143,(
1 +

π√
24n3/2

)
(bnbn+1 − bn−1bn+2)

2 > 4(b2n − bn−1bn+1)(b
2
n+1 − bnbn+2)

>
(

1 +
π√

24n3/2
− 2

n2

)
(bnbn+1 − bn−1bn+2)

2.
(9.2)

(3) For all n ≥ 265,

4

(
1 +

π2

16n3

)
bnbn+2 > bn−1bn+3 + 3b2n+1 > 4

(
1 +

π2

16n3
− 3

n7/2

)
bnbn+2. (9.3)

(4) For all n ≥ 290,(
1 +

π3

72
√

6n9/2

)
(2bnbn+1bn+2 + bn−1bn+1bn+3) > b3n+1 + bn−1b

2
n+2 + b2nbn+3

>
(

1 +
π3

72
√

6n9/2
− 5

n5

)
(2bnbn+1bn+2 + bn−1bn+1bn+3).

(9.4)

Corollary 9.6. Conjectures 9.2-9.4 are true.

Before we move on to the proof of Theorem 9.5, in the following subsection, we shall derive
an infinite family of inequalities for spt(n− `) in Theorem 9.9 using Lemmas 9.1 and 4.3.
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9.1. Inequalities for spt(n). Let ĝ(k) be as in Theorem 4.2 and µ(n) be as in Lemma 4.1. For
k ∈ Z≥1, define

g∗(k) :=
1

24

(
1 +

((
24k + 48

π

)
log(k + 4)

)2
)
,

n(k, `) := max{ĝ(k), g∗(k)}+ `.

(9.5)

Lemma 9.7. For ` ∈ Z≥0, k ∈ Z≥2, and n > n(k, `),
√

3

π

eµ(n−`)√
24(n− `)− 1

(
1− 2

µ(n− `)k

)
< spt(n− `) <

√
3

π

eµ(n−`)√
24(n− `)− 1

(
1 +

2

µ(n− `)k

)
.

Proof. From Lemmas 9.1 and 4.2, we have for n > ĝ(k)

spt(n) <

√
24n− 1

2π
p(n) +

6
√

3

π2(24n− 1)
eµ(n) + 4.11e

µ(n)
2

<

√
24n− 1

2π

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
+

1

µ(n)k

)
+

6
√

3

π2(24n− 1)
eµ(n) + 4.11e

µ(n)
2

=

√
3

π

eµ(n)√
24n− 1

(
1 +

1

µ(n)k
+

4.11 · 12√
3

e−
µ(n)
2
µ(n)

2

)
, (9.6)

and

spt(n) >

√
24n− 1

2π
p(n) +

6
√

3

π2(24n− 1)
eµ(n) − 4.11e

µ(n)
2

>

√
24n− 1

2π

√
12eµ(n)

24n− 1

(
1− 1

µ(n)
− 1

µ(n)k

)
+

6
√

3

π2(24n− 1)
eµ(n) − 4.11e

µ(n)
2

=

√
3

π

eµ(n)√
24n− 1

(
1− 1

µ(n)k
− 4.11 · 12√

3
e−

µ(n)
2
µ(n)

2

)
. (9.7)

Next, we show that for all n > g∗(k),

4.11 · 12√
3

e−
µ(n)
2
µ(n)

2
<

1

µ(n)k
. (9.8)

Since
4.11 · 12√

3
< 28.5, it suffices to prove 28.5 e−

µ(n)
2

µ(n)
2

< 1
µ(n)k

. Setting x = µ(n)
2

, we aim to

show that 28.5 e−xx < 1
2kxk

which is equivalent to prove the following inequality:

x− (k + 1) log x > k log 2 + log 28.5.

Define fk(x) := x− (k + 1) log x and observe that fk(x) is increasing for all x ≥ k + 1. So it is
enough to prove that fk(x0) > k log 2 + log 28.5 with x0 > k+ 1. Choose x0 = (2k+ 4) log(k+ 4)
and observe that for all k ≥ 1, x0 > k + 1. Now, it can be easily derived that for k ≥ 1,

fk(x0) = (2k + 4) log(k + 4)− (k + 1) log ((2k + 4) log(k + 4)) > k + 4 > k log 2 + log 28.5.

Therefore, for all x > x0, we see that fk(x0) > 0, which in turn, concludes the proof of (9.8).
Applying (9.8) to (9.6) and (9.7), we obtain for n > max{ĝ(k), g∗(k)}

√
3

π

eµ(n)√
24n− 1

(
1− 2

µ(n)k

)
< spt(n) <

√
3

π

eµ(n)√
24n− 1

(
1 +

2

µ(n)k

)
. (9.9)

Consequently, applying the shift n 7→ n− ` in (9.9), we conclude the proof. �

Next, we proceed to determine explicitly the coefficient sequence in the Taylor expansion of
√
3
π

eµ(n−`)√
24(n−`)−1

after extracting out the factor eπ
√

2n/3

π
√
8n

.
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Lemma 9.8. For t ∈ Z≥0, define

ω∗(t, `) =
(1 + 24`)t

(−4
√

6)t

t
2∑

k=0

(
t

k

)
1

(t− 2k)!

(π
6

)t−2k 1

(1 + 24`)k
.

Then
√

3

π

eµ(n−`)√
24(n− `)− 1

=
eπ
√

2n/3

π
√

8n
·
∑
t≥0

ω∗(t, `)
√
n
t .

Proof. Applying Lemma 4.6, we have

√
3

π

eµ(n−`)√
24(n− `)− 1

=
eπ
√

2n/3

π
√

8n

(
E1

(
1√
n
, `

)
+O1

(
1√
n
, `

))
E∗2

(
1√
n
, `

)
, (9.10)

where

E∗2

(
1√
n
, `

)
=

(
1− 24`+ 1

24n

)− 1
2

=
∑
t≥0

(−1)t
(
−1

2

t

)(
24`+ 1

24

)t(
1√
n

)2t

=:
∑
t≥0

e∗2(t, `)√
n
2t .

(9.11)
Now,

E1

(
1√
n
, `

)
· E∗2

(
1√
n
, `

)
=

(∑
t≥0

e1(t, `)√
n
2t

)(∑
t≥0

e∗2(t, `)√
n
2t

)
(by (4.6) and (9.11))

=
∑
t≥0

(
t∑

k=0

e1(k, `)e
∗
2(t− k, `)

)
1
√
n
2t

=
∑
t≥0

(
e∗2(t, `) +

t∑
k=1

e1(k, `)e
∗
2(t− k, `)

)
1
√
n
2t =:

∑
t≥0

g∗(2t, `)
√
n
2t ,

with

g∗(2t, `) = (−1)t
(

24`+ 1

24

)t((−1
2

t

)
+

t∑
k=1

(
−1

2

t− k

)(1
2
− k
)
k+1

k

k∑
u=1

(−1)u(−k)u
(k + u)!(2u− 1)!

α2u
`

)
(by (4.5) and (9.11)) .

(9.12)

Similarly, applying (4.8) and (9.11), we get

O1

(
1√
n
, `

)
· E∗2

(
1√
n
, `

)
=
∑
t≥0

(
t∑

k=0

o1(k, `)e
∗
2(t− k, `)

)
1

√
n
2t+1 =:

∑
t≥0

g∗(2t+ 1, `)
√
n
2t+1 ,

and subsequently, by (4.7) and (9.11), it follows that

g∗(2t+ 1, `) = (−1)t+1 π

12
√

6
(24`+ 1)

(
24`+ 1

24

)t
·

t∑
k=0

(
−1

2

t− k

)(
1

2
− k
)
k+1

k∑
u=0

(−1)u(−k)u
(k + u+ 1)!(2u)!

α2u
` .

(9.13)
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Combining (9.12) and (9.13), we rewrite (9.10) as

√
3

π

eµ(n−`)√
24(n− `)− 1

=
eπ
√

2n/3

π
√

8n
·
∑
t≥0

g∗(t, `)
√
n
t . (9.14)

Now, it remains to show that g∗(t, `) = ω∗(t, `) for t ≥ 0. Set γ := γn = π
√

2n
3

and w := wn =

−24`+1
24n

. Then

√
3

π

eµ(n−`)√
24(n− `)− 1

=
eπ
√

2n/3

π
√

8n
· e

γ(
√
1+w−1)

√
1 + w

=:
eπ
√

2n/3

π
√

8n

∑
m≥0

c∗m(γ)wm.

Integrating once
eγ(
√
1+w−1)

√
1 + w

with respect to w, we see that

c∗m(γ) = (m+ 1) coeff [wm+1]

(
2

γ
eγ(
√
1+w−1)

)
= (m+ 1) coeff [wm+1]

(
2

γ

m+1∑
k=0

γk

k!

(√
1 + w − 1

)k)

= (m+ 1)
m+1∑
k=0

(γ
2

)k−1 1

k!
coeff[wm+1−k]

(
2

w

(√
1 + w − 1

))k
= (m+ 1)

m+1∑
k=0

(γ
2

)k−1 1

k!
coeff[wm+1−k]

(
1 + z

2

)−k (
by setting z := z(w) =

√
1 + w

)
= (m+ 1)

m+1∑
k=0

(γ
2

)m−k 1

(m+ 1− k)!
coeff [wm]

(
1 + z

2

)−m−1+k
. (9.15)

From [31, p. 203], we know that for y =
√

1 + x and m ∈ C \ Z≥0,(
1 + y

2

)m
=
∞∑
j=0

m

m− j

(
m− j
m

)
xj

4j
. (9.16)

Applying (9.16) to (9.15), after simplifying, we have

c∗m(γ) =
m∑
k=0

γm−k

2m+k

(−1)k

(m− k)!

(
m+ k

k

)
,

and consequently, it follows that

∑
m≥0

c∗m(γ)wm =
∑
m≥0

m∑
k=0

1

2m+k

(−1)k

(m− k)!

(
m+ k

k

)(
π

√
2n

3

)m−k (
−24`+ 1

24n

)m

=
∑
m≥0

m∑
k=0

1

2m+k

(−1)k

(m− k)!

(
m+ k

k

)(
π

√
2

3

)m−k (
−24`+ 1

24

)m
1

√
n
m+k

=
∑
r≥0

 ∑
k+m=r
k≤m

1

2m+k

(−1)k

(m− k)!

(
m+ k

k

)(
π

√
2

3

)m−k (
−24`+ 1

24

)m 1√
n
r
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=
∑
r≥0

(−24`+ 1

4
√

6

)r r
2∑

k=0

(
r

k

)
1

(r − 2k)!

(π
6

)r−2k 1

(1 + 24`)k

 1√
n
r . (9.17)

Due to uniqueness property of the Taylor expansion of an analytic function, we conclude that
g∗(t, `) = ω∗(t, `) for all t ≥ 0. �

Next, we move on to estimate an error bound for the absolute value of the remainder part

of the series
∑

t≥0
ω∗(t, `)
√
n
t truncated at k − 1 for k ∈ Z≥2 using estimations for the coefficient

sequences (g∗(2t, `))t≥0 and (g∗(2t+ 1, `))t≥0 in the following lemma.
Let n0(k, `) be as in Definition 4.42. For k ∈ Z≥2, define

E[1](k, `) :=

(
2√
π

+
α`ζ

(
3
2

)
√
π

sinh (α`)

)(√
1 + 24`

24

)2d k
2
e

,

E[2](k, `) :=
√

24`+ 1

(
π

6
√

2
+

√
πζ
(
3
2

)
6
√

2
cosh (α`)

)(√
1 + 24`

24

)2d k−1
2
e+1

,

E[3](k, `) :=
1

(α0

√
24)k

(
1 +

k(1 + 24`)

3n0(k, `)

)
E∗(k, `) := E[1](k, `) + E[2](k, `) + 2E[3](k, `). (9.18)

Theorem 9.9. For w ∈ Z≥2, ` ∈ Z≥0, and n > max{n(w, `), n0(w, `)},

eπ
√

2n/3

π
√

8n

(
w−1∑
t=0

ω∗(t, `)
√
n
t −

E∗(w, `)√
n
w

)
< spt(n− `) < eπ

√
2n/3

π
√

8n

(
w−1∑
t=0

ω∗(t, `)
√
n
t +

E∗(w, `)√
n
w

)
.

Proof. Split the series in Lemma 9.8 as∑
t≥0

ω∗(t, `)
√
n
t =

w−1∑
t=0

ω∗(t, `)
√
n
t +

∑
t≥w

ω∗(t, `)
√
n
t =

w−1∑
t=0

ω∗(t, `)
√
n
t +

∑
t≥dw

2
e

ω∗(2t, `)
√
n
2t +

∑
t≥dw−1

2
e

ω∗(2t+ 1, `)
√
n
2t+1

=
w−1∑
t=0

ω∗(t, `)
√
n
t +

∑
t≥dw

2
e

g∗(2t, `)
√
n
2t +

∑
t≥dw−1

2
e

g∗(2t+ 1, `)
√
n
2t+1 .

(9.19)

For all t ≥ 1 and using (9.12), we have

|g∗(2t, `)| ≤
(

1 + 24`

24

)t∣∣∣∣(−1
2

t

)∣∣∣∣+
t∑

k=1

∣∣∣∣( −1
2

t− k

)∣∣∣∣
∣∣∣(12 − k)k+1

∣∣∣
k

k∑
u=1

|(−1)u(−k)u|
(k + u)!(2u− 1)!

α2u
`


=

(
1 + 24`

24

)t(
1

4t

(
2t

t

)
+

t∑
k=1

∣∣∣∣( −1
2

t− k

)∣∣∣∣
(
2k
k

)
2k · 4k

k∑
u=1

∏u−1
j=0 (k − j)∏u−1

j=0 (k + j + 1)

α2u
`

(2u− 1)!

)

≤
(

1 + 24`

24

)t(
1

4t

(
2t

t

)
+

t∑
k=1

(
2k
k

)
2k · 4k

k∑
u=1

α2u
`

(2u− 1)!

)

=

(
1 + 24`

24

)t(
1

4t

(
2t

t

)
+

t∑
k=1

α`
(
2k
k

)
2k · 4k

k−1∑
u=0

α2u+1
`

(2u+ 1)!

)
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≤
(

1 + 24`

24

)t(
1

4t

(
2t

t

)
+ α` sinh (α`)

t∑
k=1

(
2k
k

)
2k · 4k

)

≤
(

1 + 24`

24

)t(
1√
π · t

+
α` sinh (α`)

2
√
π

t∑
k=1

1

k3/2

) (
since

(
2m

m

)
≤ 4m√

πm
for m ≥ 1

)
≤
(

1 + 24`

24

)t(
1√
π

+
α` sinh (α`)

2
√
π

ζ

(
3

2

))
,

and consequently, it follows that∣∣∣∣∣∣
∑
t≥dw

2
e

g∗(2t, `)
√
n
2t

∣∣∣∣∣∣ ≤
∑
t≥dw

2
e

|g∗(2t, `)|
√
n
2t

≤
(

1√
π

+
α` sinh (α`)

2
√
π

ζ

(
3

2

)) ∑
t≥dw

2
e

(√
1 + 24`

24n

)2t

=

(
1√
π

+
α` sinh (α`)

2
√
π

ζ

(
3

2

))(√
1 + 24`

24n

)2dw
2
e∑
t≥0

(√
1 + 24`

24n

)2t

≤
(

1√
π

+
α` sinh (α`)

2
√
π

ζ

(
3

2

))(√
1 + 24`

24

)2dw
2
e

1√
n
w

∑
t≥0

(
1 + 24`

24n

)t

≤
(

1√
π

+
α` sinh (α`)

2
√
π

ζ

(
3

2

))(√
1 + 24`

24

)2dw
2
e

1√
n
w

∑
t≥0

1

2t

(as n > n0(k, `) > 2`+ 1)

=
E[1](w, `)√

n
w . (9.20)

Next, for all t ≥ 0 and applying (9.13), we get

|g∗(2t+ 1, `)| ≤ π

12
√

6
(24`+ 1)

(
1 + 24`

24

)t t∑
k=0

∣∣∣∣( −1
2

t− k

)∣∣∣∣ ∣∣∣∣(1

2
− k
)
k+1

∣∣∣∣ k∑
u=0

|(−1)u(−k)u|α2u
`

(k + u+ 1)!(2u)!

≤ π

12
√

6
(24`+ 1)

(
1 + 24`

24

)t t∑
k=0

∣∣∣∣(1

2
− k
)
k+1

∣∣∣∣ k∑
u=0

|(−1)u(−k)u|α2u
`

(k + u+ 1)!(2u)!

=
π

12
√

6
(24`+ 1)

(
1 + 24`

24

)t(
1

2
+

t∑
k=1

(
2k
k

)
2 · 4k

k∑
u=0

∏u−1
j=0 (k − j)∏u

j=0(k + j + 1)

α2u
`

(2u)!

)

≤ π

24
√

6
(24`+ 1)

(
1 + 24`

24

)t(
1 +

t∑
k=1

1√
πk

k∑
u=0

1

k + u+ 1

α2u
`

(2u)!

)

≤ π

24
√

6
(24`+ 1)

(
1 + 24`

24

)t(
1 +

1√
π

t∑
k=1

1

k3/2

k∑
u=0

α2u
`

(2u)!

)

≤ π

24
√

6
(24`+ 1)

(
1 + 24`

24

)t(
1 +

cosh(α`)√
π

t∑
k=1

1

k3/2

)
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≤ π

24
√

6
(24`+ 1)

(
1 + 24`

24

)t(
1 +

cosh(α`)ζ(3
2
)

√
π

)
,

and therefore,∣∣∣∣∣∣
∑

t≥dw−1
2
e

g∗(2t+ 1, `)
√
n
2t+1

∣∣∣∣∣∣ ≤
∑

t≥dw−1
2
e

|g∗(2t+ 1, `)|
√
n
2t+1

≤ π

24
√

6
(24`+ 1)

(
1 +

cosh(α`)ζ(3
2
)

√
π

) ∑
t≥dw−1

2
e

(
1 + 24`

24

)t
1

√
n
2t+1

=
√

24`+ 1

(
π

12
+

√
π cosh(α`)ζ(3

2
)

12

) ∑
t≥dw−1

2
e

(√
1 + 24`

24n

)2t+1

≤
√

24`+ 1

(
π

12
+

√
π cosh(α`)ζ(3

2
)

12

)(√
1 + 24`

24

)2dw−1
2
e+1

1√
n
w

∑
t≥0

(√
1 + 24`

24n

)2t+1

≤
√

24`+ 1

(
π

12
+

√
π cosh(α`)ζ(3

2
)

12

)(√
1 + 24`

24

)2dw−1
2
e+1

1√
n
w

∑
t≥0

(
1√
2

)2t+1

(as n > n0(k, `) > 2`+ 1)

=
E[2](w, `)√

n
w . (9.21)

Applying (9.20) and (9.21) to Lemma 9.8, we obtain for n > max{ĝ(w), g∗(w), n0(w, `)},

eπ
√

2n/3

π
√

8n

(
w−1∑
t=0

ω∗(t, `)
√
n
t −

E[1](w, `) + E[2](w, `)√
n
w

)
<

√
3

π

eµ(n−`)√
24(n− `)− 1

<
eπ
√

2n/3

π
√

8n

(
w−1∑
t=0

ω∗(t, `)
√
n
t +

E[1](w, `) + E[2](w, `)√
n
w

)
.

(9.22)

Finally, it can be deduce2 that for n > n0(w, `),
√

3

π

eµ(n−`)√
24(n− `)− 1

· 2

µ(n− `)k
<
eπ
√

2n/3

π
√

8n

2E[3](k, `)√
n
w . (9.23)

We finish the proof by applying (9.22) and (9.23) to Lemma 9.7. �

Here we only provide brief sketch of proof of Theorem 9.5 as it is analogous to the proofs
given in Section 6.

Proof of Theorem 9.5: Applying Theorem 9.9 with w = 7, 12, 11, 15, we conclude that (9.1),
(9.2), (9.3), (9.4) holds for n ≥ 1135, 3667, 3018, 6097 respectively. For the remaining cases, we
verified numerically with Mathematica. �

Remark 9.10. Using Theorem 9.9, one can also prove the higher order Laguerre inequalities,
higher order log-concavity (for example, 2-log-concavity), determinantal inequalities, and higher
order shifted differences for spt(n), to name a few. Moreover, adapting the set up devised by
Griffin, Ono, Rolen, and Zagier [32, Theorem 3], one can appropriately choose the sequences

2We omit the detail due to similarity with the proof of Lemma 4.44
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(A(n))n≥0 and (δ(n))n≥0 so as to conclude that for all but finitely many n, the Jensen polynomial

Jd,nspt (x) associated with the sequence (spt(n))n≥0 has all real roots.

10. Concluding Remarks

In this section, we discuss on two aspects of the work done on inequalities for p(n): (1)
regarding the proof methodology adapted for Theorem 5.5 and (2) advantages and disadvantages
of the unified framework presented in Section 8.

(1) First, we show schematically how one can derive a similar family of inequalities for p(n−`)
from [7, Theorem 7.5], and then will discuss about why might not be classified a standard
proof methodology.

From [7, Theorem 7.5], we have for w ∈ N and for n > N(w),

p(n) =
eπ
√

2n
3

4n
√

3

(
w−1∑
t=0

g(t)
√
n
t +O≤Cw

(
1√
n
w

))
,

with N(w) and Cw are explicitly determined. Therefore making the shift n 7→ n− ` with
` ∈ Z≥0, for n > N(w) + `, we immediately get

p(n− `) =
eπ
√

2n−2`
3

4(n− `)
√

3

(
w−1∑
t=0

g(t)

(n− `) t2
+O≤C[1]

w,`

(
1√
n
w

))
.

Now in order to derive analogous result stated in Theorem 5.5, first we need to extract

the factor e
π

√
2n
3

4n
√
3

and it takes the following form:

p(n− `) =
eπ
√

2n
3

4n
√

3

eπ
√

2n−2`
3
−π
√
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3

1− `

n

(
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√
n
t

∞∑
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− t

2

m

)(
− `
n

)m
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(
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n
w

))

=
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√
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3
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√

3

eπ
√
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3
−π
√

2n
3
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n

(
w−1∑
t=0

g(t)
∞∑
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(
− t

2

m

)
(−`)m

(
1√
n

)2m+t

+O≤C[1]
w,`

(
1√
n
w

))
.

After splitting the inner infinite sum as

w−1∑
t=0

g(t)
∞∑
m=0

(
− t

2

m

)
(−`)m

(
1√
n

)2m+t

=
w−1∑
t=0

g(t)

bw−1−t
2 c∑

m=0

(
− t

2

m

)
(−`)m

(
1√
n

)2m+t

+
w−1∑
t=0

g(t)
∞∑

m=bw−1−t
2 c+1

(
− t

2

m

)
(−`)m

(
1√
n

)2m+t

=:
w−1∑
t=0

g[1](t, `)
√
n
t + E[1] (w, `) ,

can compute an error bound for E[1] (w, `) of the following form

E[1] (w, `) = O≤C[2]
w,`

(
1√
n
w

)
.
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Similarly, the coefficients can be obtained explicitly from the Taylor expansion of

e
π

√
2n−2`

3 −π
√

2n
3

1− `
n

and after truncating the series at w − 1, it follows that

eπ
√

2n−2`
3
−π
√

2n
3

1− `

n

=:
∞∑
t=0

g[2](t, `)
√
n
t =
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√
n
t +

∞∑
t=w

g[2](t, `)
√
n
t

=:
w−1∑
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g[2](t, `)
√
n
t + E[2] (w, `) ,

and consequently, estimate the error term as

E[2] (w, `) = O≤C[3]
w,`

(
1√
n
w

)
.

Altogether these estimations lead to the following asymptotic estimate:

p(n− `) =
eπ
√

2n
3

4n
√

3

(
w−1∑
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·
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[1]
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(
1√
n
w

))
.

Writing the product of two polynomials each of degree w − 1 as

w−1∑
t=0

atx
t ·

w−1∑
t=0

btx
t =

w−1∑
t=0

t∑
k=0

akbt−kx
t + xw

w−2∑
t=0
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t,

we have

p(n− `) =
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3
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where g(t, `) be as in (4.45). Finally, one needs to bound the three residual sums in the
above equation so as to obtain a result of the form

p(n− `) =
eπ
√

2n
3

4n
√

3

(
w−1∑
t=0

g(t, `)
√
n
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(
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.
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We abandoned this approach because, our goal was to determine an asymptotic esti-
mate of the coefficients (g(t, `))t≥0 appeared in the asymptotic expansion of p(n − `) in
the following form:

f(t, `)− l(t, `) ≤ g(t, `) ≤ f(t, `) + u(t, `), (10.1)

with limt→∞
g(t,`)
f(t,`)

= 1, limt→∞
l(t,`)
f(t,`)

= 0, and limt→∞
u(t,`)
f(t,`)

= 0. Precise descriptions for

such an estimations are given in Section 4 along with the inequalities of the form (10.1).
In order to derive a similar asymptotic estimation in the present context (the alternative
approach we have discussed in the previous paragraph), we need to derive inequalities
for (g[1](k, `))k≥0, (g[2](k, `))k≥0, and the convolution of these two sequences. Even if we
can derive such an estimate, this alternative approach to prove inequalities related to
the partition function (for instance, log-concavity, higher order Turán inequality etc.)
is somewhat a pretentious one. The reason is that the methodology we have depicted
reflects that in order to prove the inequalities (mentioned above) for a sequence, say
(c(n))n≥0, arising from Fourier expansion of a modular form of negative weight which
admits a Rademacher type exact formula, one first needs to estimate error bounds for
the asymptotic expansion c(n) and then follow this framework to get a similar result
for the shifted version c(n − `). Whereas, what we have shown in this paper is that,
we can estimate error bounds for asymptotic expansion of c(n − `) explicitly in a more
straight forward way. In brevity, we showed that how one can generalize systematically
the framework constructed by Paule, Radu, Schneider, and author in [7] earlier so as to
prove inequalities for p(n), and inevitably it shows that to prove inequalities for p(n), we
need not to follow the result [7, Theorem 7.5], which has already been subsumed in the
present work.

(2) Now, we discuss about advantages and disadvantages of the framework presented in
Section 8.

In Section 8, we have shown that how one can prove inequalities for the partition
function of the form:

M1∑
j=1

cj

T∏
i=1

p(n− si,j) ≥
M2∑
j=1

dj

T∏
i=1

p(n− ri,j),

along with determination of cutoff N(M1,M2, T ) for n. One can construct a similar
structure to prove inequalities (of above type) for a broader class of sequences associated
with modular objects. In the following points, we shall consider sequences (and provide
example of such a sequence) arising from Fourier expansion of modular forms (of certain
types), mock modular forms, and mixed mock modular forms. Here we omit the defi-
nitions of modular/mock modular/mixed mock modular forms, for a detailed exposition
on these class of functions, we refer the reader to [11, 53].
(a) We know that the Fourier coefficients, say (af (n))n≥0, of a modular form f of negative

weight (half-integral or integral) over a subgroup of finite index of the full modular
group admits a convergent series representation (analogous to p(n)) due to work of
Rademacher and Zuckerman [58, 70]. Having such an expression for af (n) (cf. [58,
70, Theorem 1.1]) in hand and after estimating the Kloosterman sums following the
footsteps of Lehmer’s work [43], it remains to estimate the error bound for the Iν(f)-
Bessel function to get an infinite family of inequalities for af (n−`). Now estimations
for the error bound of the asymptotic expansion of I-Bessel function has been done
in [6]. Therefore, one can immediately adapt the framework done in Section 8 to
prove log-concavity, higher order Turán inequality, etc. for af (n). For instance,
can choose af (n) to be the cubic partition function, following the Rademacher type
exact formula due to Mauth [47] and construct a similar framework as demonstrated
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before. In a more general setting, one can adapt our set up to prove inequalities for
sequences arising from Fourier expansion of a certain class of eta-quotients which
admit Rademacher type series expansion (cf. [19, 64]).

(b) In case of mock modular form, one of the most notable example is the coefficient
sequence (αf (n))n≥0 arising from Ramanujan’s third order mock theta function f(q)
(which is mock modular form of weight 1

2
). Using the theory of Maass-Poincaré

series, Bringmann and Ono [13, Theorem 1.1] obtained a Rademacher type condi-
tional convergent series expression for αf (n) which settled a conjecture of Andrews
and Dragonette. Now, in order to get an asymptotic expansion for αf (n) along with
estimations of error bound, first we need to estimate an error bound after truncating
the condinitional convergent series for αf (n) at a point, say N . Following the work
done in [29] for the Andrews’ spt function, it seems that one can derive a similar er-
ror bound for αf (n), which will presumably improve the bound obtained by Gomez
and Zhu [28]. After getting such an asymptotic estimation for αf (n), the rest is
straight forward.

(c) Last, but not the least, consider the function counting partitions without sequences,
denoted by p2(n), whose generating function is a mixed mock modular form of weight
0. For a more detailed study on the function, we refer the reader to [3]. Extend-
ing the Hardy-Ramanujan circle method, Bringmann and Mahlburg [12] obtained a
Rademacher type formula for p2(n). Very recently, Mauth [48] obtained an asymp-
totic estimate for p2(n) to prove that (p2(n))n≥482 is log-concave. One can make use
of [48, Lemma 2.11] to derive an asymptotic expansion for the shifted version; i.e.,
p2(n− `) so as to adapt our set up to prove the class of inequalities discussed before.

Summarizing the points above, it can be fairly state that whenever we have a Rademacher
type exact for a sequence arising from modular or mock modular or mixed mock modular
form, one can adapt our framework and prove certain class of inequalities discussed so
far.

In order to demonstrate the disadvantages of the framework built up in Section 8,
let us prepare the premise by recalling a result due to Griffin, Ono, Rolen, and Zagier
[32, Theorem 5] which states that Jd,np (x) has all real roots for sufficiently large n and

consequently, conjectured the cutoff N(d) ≈ 10d2 log d such that for all n ≥ N(d),
Jd,np (x) has all real roots. Larson and Wagner [42] estimated an upper bound for N(d) ≤
(3d)24d(50d)3d

2
which is of super exponential growth, far away from O(d2 log d). One of

the main reason for deviation in a large scale is that the interpretation of real rootedness
property of a polynomial was done in the realm of algebra; that is, by using the Hermite-
Sylvester criteria, see [42, Section 2]. Now, reformulating the Hermite-Sylvester criteria
in terms of the generic inequalities for the shifted partition function:

M1∑
j=1

cj

T∏
i=1

p(n− si,j) ≥
M2∑
j=1

dj

T∏
i=1

p(n− ri,j),

we see that as the degree d of Jd,np (x) increases, the number of product T also increases
and here the difficulty lies in to get a good approximation for N(d). Without going
into much detail, it would be safe to say that the reason behind it is in the asymptotic
estimation of

∏T
i=1 p(n− si,j) (using Theorem 5.5 for T times), multinomial expressions

turns up in the coefficients of the asymptotic expansion and estimating such coefficients in
general with an asymptotic precision seems to be a difficult task. So, instead adapting the
algebraic set up, it would be nice to develop an analytic one by studying the polynomials
Jd,np (x) and the Hermite polynomial Hd(x).
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11. Appendix

In the proofs of Lemmas 4.24-4.30, we follow the same notations and the proof strategy as in
[7, Subsection 5.2].

Proof of Lemma 4.24: Following Definition 4.12, write S1(t, `) as follows:

S1(t, `) =
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t∑
s=u

(−1)s

s

(1

2
− s
)
s+1

(−s)u
(s+ u)!

=
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t−u∑
s=0

(−1)s+u

s+ u

(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S1(t,u)

. (11.1)

From [7, Eqn. (5.6)], we have

S1(t, u) = (−1)t
(
−3

2

t

)
(−1)u

2u
A1(t, u), (11.2)

where

A1(t, u) =
t(−t)u(−1)u

(1 + 2t)(t+ u)(t)u
−

(
(−1)t+1(− 3

2
t

) +
1

(1 + 2t)
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i

)
.

Now by Lemmas 3.3 and 3.4,

(−1)t(− 3
2
t

) − 1

4t2
− u

t
− u2

2t2
≤ A1(t, u) ≤ (−1)t(− 3

2
t

) +
1

4t2
+ u
( 2

3t2
− 1

t

)
+
u2

2t2
+
u3

3t2
. (11.3)

Equations (11.1) and (11.2), it follows that

S1(t, `) = (−1)t
(
−3

2

t

) t∑
u=1

α2u
` A1(t, u)

(2u)!
. (11.4)

Applying (11.3) to (11.4), we get the following lower bound of S1(t, `),

S1(t, `)

(−1)t
(− 3

2
t

) ≥ ((−1)t(− 3
2
t

) − 1

4t2

)
t∑

u=1

α2u
`

(2u)!
− 1

t

t∑
u=1

uα2u
`

(2u)!
− 1

2t2

t∑
u=1

u2α2u
`

(2u)!

≥

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u
`

(2u)!
− 1−

∞∑
u=t+1

α2u
`

(2u)!

)
− 1

t

∞∑
u=0

uα2u
`

(2u)!
− 1

2t2

∞∑
u=0

u2α2u
`

(2u)!
.

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
∞∑
u=0

α2u
`

(2u)!
− 1− C0(`)

t2

)
− 1

t

∞∑
u=0

uα2u
`

(2u)!
− 1

2t2

∞∑
u=0

u2α2u
`

(2u)!(
by Lemma 3.7 and

(−1)t(− 3
2
t

) >
1

4t2
for all t ≥ 1

)

>

(
(−1)t(− 3

2
t

) − 1

4t2

)(
cosh(α`)− 1

)
− C0(`)

t2
− α` sinh(α`)

2t

− 1

2t2

(α2
`

4
cosh(α`) +

α`
4

sinh(α`)
)

(
by Lemma 3.5 and

(−1)t(− 3
2
t

) − 1

4t2
< 1 for all t ≥ 1

)
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=
(−1)t(− 3

2
t

) (cosh(α`)− 1)− α` sinh(α`)

2t
− CL1 (`)

2t2

(
by Definition 4.23

)
. (11.5)

For the upper bound estimation, we have for all t ≥ 1,

S1(t, `)

(−1)t
(− 3

2
t

)
≤ (−1)t(− 3

2
t

) t∑
u=1

α2u
`

(2u)!
− 1

t

t∑
u=1

uα2u
`

(2u)!
+

1

4t2

t∑
u=1

α2u
`

(2u)!
+

2

3t2

t∑
u=1

uα2u
`

(2u)!
+

1

2t2

t∑
u=1

u2α2u
`

(2u)!
+

1

3t2

t∑
u=1

u3α2u
`

(2u)!

≤ (−1)t(− 3
2
t

) (cosh(α`)− 1)− 1

2t
α` sinh(α`) +

C1(`)

t3
+

1

4t2
cosh(α`) +

1

3t2
α` sinh(α`)

+
1

2t2

(
α2
`

4
cosh(α`) +

α`
4

sinh(α`)

)
+

1

3t2

(
3α2

`

8
cosh(α`) +

α`(α
2
` + 1)

8
sinh(α`)

)
(

by Lemmas 3.5 and 3.7
)

≤ (−1)t(− 3
2
t

) (cosh(α`)− 1)− 1

2t
α` sinh(α`) +

CU1 (`)

t2

(
by Definition 4.23

)
. (11.6)

Combining (11.5) and (11.6), we arrive at (4.46) which concludes the proof. �
Proof of Lemma 4.26: Following Definition 4.14, write S2(t, `) as follows:

S2(t, `) =
t−1∑
u=0

(−1)uα2u
`

(2u)!

t−1∑
s=u

(1

2
− s
)
s+1

(
−3

2

t− s− 1

)
(−s)u

(s+ u+ 1)!

=
t−1∑
u=0

(−1)uα2u
`

(2u)!

t−u−1∑
s=0

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u− 1

)
(−s− u)u

(s+ 2u+ 1)!︸ ︷︷ ︸
=:S2(t,u)

. (11.7)

From [7, Eqn. (5.13)], we have

S2(t, u) =

(
−3

2

t

)
(−1)u+1

(
A2,1(t, u) + A2,2(t, u)

)
, (11.8)

where

A2,1(t, u) =
2t(t− u)(−t)u(−1)u

(1 + 2t)(1 + 2u)(t+ u)(t)u
and

A2,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

.

Combining (11.7) and (11.8), we get

S2(t, `) = −
(
−3

2

t

)(
s2,1(t, `) + s2,2(t, `)

)
, (11.9)

where

s2,1(t, `) =
t−1∑
u=0

α2u
`

(2u)!
A2,1(t, u) and s2,2(t, `) =

t−1∑
u=0

α2u
`

(2u)!
A2,2(t, u). (11.10)

By Lemma 3.3, we have

1

1 + 2u
−
u2 + u+ 1

2

t(1 + 2u)
≤ A2,1(t, u) ≤ t− u

t(1 + 2u)
. (11.11)
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Applying (11.11) into (11.10) we obtain

t−1∑
u=0

α2u
`

(2u+ 1)!
− 1

t

t−1∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u
` ≤ s2,1(t) ≤

t−1∑
u=0

α2u
`

(2u+ 1)!
− 1

t

t−1∑
u=0

uα2u
`

(2u+ 1)!
,

and consequently,

∞∑
u=0

α2u
`

(2u+ 1)!
−
∞∑
u=t

α2u
`

(2u+ 1)!
− 1

t

∞∑
u=0

u2 + u+ 1
2

(2u+ 1)!
α2u
` ≤ s2,1(t, `) ≤

∞∑
u=0

α2u
`

(2u+ 1)!
− 1

t

(
∞∑
u=0

uα2u
`

(2u+ 1)!
−
∞∑
u=t

uα2u
`

(2u+ 1)!

)
.

(11.12)

By Lemma 3.7, it follows that

∞∑
u=t

α2u
`

(2u+ 1)!
≤ 2C1(`)

α2
` t

2
and

∞∑
u=t

uα2u
`

(2u+ 1)!
≤ 2C2(`)

α2
` t

2
. (11.13)

Applying (11.13) into (11.12) and by Lemma 3.5, we obtain

sinh(α`)

α`
−
CL2,1(`)

t
≤ s2,1(t, `) ≤

sinh(α`)

α`
+
CU2,1(`)

t
. (11.14)

Next we apply Lemma 3.4 and get

2u+ 1

2t
− 4u3 + 6u2 + 8u+ 3

12t2
+

(−1)t+1(− 3
2
t

) ≤ A2,2(t, u) ≤ 2u+ 1

2t
+

(−1)t+1(− 3
2
t

) . (11.15)

Plugging (11.15) into (11.10), we obtain

1

2t

∞∑
u=0

(2u+ 1)α2u
`

(2u)!
− 1

2t

∞∑
u=t

(2u+ 1)α2u
`

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u
`

(2u)!
− 1

12t2

∞∑
u=0

p3(u)α2u
`

(2u)!

≤ s2,2(t, `) ≤
1

2t

∞∑
u=0

(2u+ 1)α2u
`

(2u)!
+

(−1)t+1(− 3
2
t

) ∞∑
u=0

α2u
`

(2u)!
− (−1)t+1(− 3

2
t

) ∞∑
u=t

α2u
`

(2u)!
,

(11.16)

where p3(u) = 4u3 + 6u2 + 8u+ 3. By Lemma 3.7 we obtain

∞∑
u=t

α2u
`

(2u)!
≤ 4C2(`)

α2
` t

2
and

∞∑
u=t

(2u+ 1)α2u
`

(2u)!
≤ 8C3(`)

α2
` t

2
. (11.17)

Note that for all t ≥ 1,

(−1)t(− 3
2
t

) =
22t+1

t+ 1

1(
2t+2
t+1

) < 1. (11.18)

Combining (11.17) with (11.18) and applying Lemma 3.7 to (11.16), we obtain

(−1)t+1(− 3
2
t

) cosh(α`) +
csh(α`)

2t
− C2,2(α`)

t2
≤ s2,2(t, `) ≤

(−1)t+1(− 3
2
t

) cosh(α`) +
csh(α`)

2t
+

4C2(`)

α2
` t

2
.

(11.19)
Applying (11.14) and (11.19) to (11.9), we obtain (4.47). �
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Proof of Lemma 4.28: Recalling Definition 4.16, rewrite S3(t, `) as follows:

S3(t, `) =
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t∑
s=u

1

s

(1

2
− s
)
s+1

(
−3

2

t− s

)
(−s)u

(s+ u)!

=
t∑

u=1

(−1)uα2u
`

(2u− 1)!

t−u∑
s=0

1

s+ u

(1

2
− s− u

)
s+u+1

(
−3

2

t− s− u

)
(−s− u)u
(s+ 2u)!︸ ︷︷ ︸

=:S3(t,u)

. (11.20)

From [7, Eqn. (5.34)], we have

S3(t, u) =

(
−3

2

t

)
(−1)u

(
A3,1(t, u) + A3,2(t, u)

)
, (11.21)

where

A3,1(t, u) =
t(1 + 2t− 2u)(−t)u(−1)u

2(1 + 2t)u(t+ u)(t)u
and

A3,2(t, u) =
(−1)t+1(− 3

2
t

) +
1

1 + 2t
+

2t

1 + 2t

u∑
i=1

(−t)i(−1)i

(t+ i)(t)i
.

From (11.20) and (11.21), it follows that

S3(t, `) =

(
−3

2

t

)(
s3,1(t) + s3,2(t)

)
, (11.22)

with

s3,1(t, `) =
t∑

u=1

α2u
`

(2u− 1)!
A3,1(t, u) and s3,2(t, `) =

t∑
u=1

α2u
`

(2u− 1)!
A3,2(t, u). (11.23)

By Lemma 3.3, we have

−
3u2 + 2u+ 1

2

4ut
≤ A3,1(t, u)− 1

2u
≤ 0. (11.24)

Applying (11.24) into (11.23) and by Lemmas 3.7 and 3.5, we obtain

− C3,1(`)

t
≤ s3,1(t, `) + 1− cosh(α`) ≤ 0. (11.25)

Now, by Lemma 3.4, we obtain

− 4u3 + 6u2 + 8u+ 3

12t2
≤ A3,2(t, u) +

(−1)t(− 3
2
t

) − 2u+ 1

2t
≤ 0. (11.26)

Applying (11.26) to (11.23), it follows that

s3,2(t, `) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u
`

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u
`

(2u− 1)!
≤ (−1)t(− 3

2
t

) ∞∑
u=t+1

α2u
`

(2u− 1)!
, (11.27)

and

s3,2(t, `) +
(−1)t(− 3

2
t

) ∞∑
u=1

α2u
`

(2u− 1)!
− 1

2t

∞∑
u=1

(2u+ 1)α2u
`

(2u− 1)!
≥

− 1

12t2

∞∑
u=1

p3(u)α2u
`

(2u− 1)!
− 1

2t

∞∑
u=t+1

(2u+ 1)α2u
`

(2u− 1)!
,

(11.28)
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where p3(u) = 4u3 + 6u2 + 8u+ 3 is as in (11.16). By Lemma 3.7 we obtain

∞∑
u=t+1

α2u
`

(2u− 1)!
≤ 2C1(`)

t2
and

∞∑
u=t+1

(2u+ 1)α2u
`

(2u− 1)!
≤ 4C2(`) + 2C1(`)

t2
. (11.29)

Applying (11.29) and Lemma Lemma 3.5 into (11.27) and (11.28), we have

− C3,2(`)

t2
≤ s3,2(t, `) +

(−1)t(− 3
2
t

) α` sinh(α`)−
1

2t
sch(α`) ≤

3C1(`)

t2
. (11.30)

Applying (11.25) and (11.30) into (11.22) we arrive at (4.48). �
Proof of Lemma 4.30: Following Definition 4.18, write S4(t, `) as follows:

S4(t, `) =
t∑

u=0

(−1)uα2u
`

(2u)!

t∑
s=u

(−1)s
(1

2
− s
)
s+1

(−s)u
(s+ u+ 1)!

=
t∑

u=0

(−1)uα2u
`

(2u)!

t−u∑
s=0

(−1)s+u
(1

2
− s− u

)
s+u+1

(−s− u)u
(s+ 2u+ 1)!︸ ︷︷ ︸

=:S4(t,u)

. (11.31)

From [7, Eqn. (5.53)], we have

S4(t, u) =

(
−3

2

t

)
(−1)u+t

(
A4,1(t, u) + A4,2(t, u)

)
, (11.32)

where

A4,1(t, u) =
t(−t)u(−1)u

2(1 + 2t)(t+ u)(t+ u+ 1)(t)u

and

A4,2(t, u) =
1

1 + 2u

(
(−1)t(− 3

2
t

) − 1

1 + 2t
− 2t

1 + 2t

u∑
i=1

(−1)i(−t)i
(t+ i)(t)i

)
.

From (11.31) and (11.32) it follows that

S4(t, `) = (−1)t
(
−3

2

t

)(
s4,1(t, `) + s4,2(t, `)

)
, (11.33)

where

s4,1(t, `) =
t∑

u=0

α2u
`

(2u)!
A4,1(t, u) and s4,2(t) :=

t∑
u=0

α2u
`

(2u)!
A4,2(t). (11.34)

Lemmas 3.2 and 3.3 imply that

1

4t2

(
1−

u2 + u+ 3
2

t

)
≤ A4,1(t, u) ≤ 1

4t2
. (11.35)

From (11.35) and (11.34), we obtain

1

4t2

∞∑
u=0

α2u
`

(2u)!
− 1

4t2

∞∑
u=t+1

α2u
`

(2u)!
− 1

4t3

∞∑
u=0

(u2 + u+ 3
2
)α2u

`

(2u)!
≤ s4,1(t, `) ≤

1

4t2

∞∑
u=0

α2u
`

(2u)!
. (11.36)

Applying Lemmas 3.7 and 3.5 to (11.36), it follows that

1

4t2
cosh(α`)−

C4,1(`)

t3
≤ s4,1(t, `) ≤

1

4t2
cosh(α`). (11.37)
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Now, by Lemma 3.4, we obtain

0 ≤ A4,2(t, u)− 1

1 + 2u

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤ 1

1 + 2u

p3(u)

12t2
, (11.38)

where p3(u) is as in (11.16). Plugging (11.38) into (11.34), it follows that

−(−1)t(− 3
2
t

) ∞∑
u=t+1

α2u
`

(2u+ 1)!
≤s4,2(t, `)−

∞∑
u=0

α2u
`

(2u+ 1)!

(
(−1)t(− 3

2
t

) − 2u+ 1

2t

)
≤

1

12t2

∞∑
u=0

p3(u)α2u
`

(2u+ 1)!
+

1

2t

∞∑
u=t+1

(2u+ 1)α2u
`

(2u+ 1)!
.

(11.39)

Using Lemma 3.7, we get
∞∑

u=t+1

α2u
`

(2u+ 1)!
≤ C0(`)

t2
and

∞∑
u=t+1

(2u+ 1)α2u
`

(2u+ 1)!
=

∞∑
u=t+1

α2u
`

(2u)!
≤ C0(`)

t2
. (11.40)

Plugging (11.40) to (11.39) and using Lemma 3.5, we finally obtain

− 2C0(`)

3t2
≤ s4,2(t, `)−

(−1)t(− 3
2
t

) sinh(α`)

α`
+

cosh(α`)

2t
≤ (α2 + 6) cosh(α`) + 3α` sinh(α`) + 12C0(`)

24t2
.

(11.41)
We conclude the proof by combining (11.37), (11.41), and (11.33). �

Acknowledgements

The author is extremely grateful to Prof. William Y. C. Chen for his extensive study leading to
the conjectures, discussed in this paper and also for explaining his thoughts and remarks on the
subject in email correspondence [14]. The author would like to express his sincere gratitude to
Prof. Paule his kind initiation of the correspondence with Prof. Chen. The research was funded
by the Austrian Science Fund (FWF): W1214-N15, project DK6.

References

[1] S. Ahlgren and N. Andersen. Algebraic and transcendental formulas for the smallest parts
function. Advances in Mathematics, 289 (2016), pp. 411–437.

[2] G. Almkvist. On the differences of the partition function. Acta Arithmetica, 61 (1992),
pp. 173–181.

[3] G. E. Andrews. Partitions with short sequences and mock theta functions. Proceedings of
the National Academy of Sciences, 102 (2005), pp. 4666–4671.

[4] G. E. Andrews. The number of smallest parts in the partitions of n. Journal für die Reine
und Angewandte Mathematik, 624 (2008), pp. 133–142.

[5] K. Banerjee. A unified framework to prove multiplicative inequalities for the partition
function. Advances in Applied Mathematics, 152 (2024), p. 102590.

[6] K. Banerjee. Inequalities for the modified Bessel function of first kind of non-negative order.
Journal of Mathematical Analysis and Applications, 524 (2023), p. 127082.

[7] K. Banerjee, P. Paule, C. S. Radu, and C.. Schneider. Error bounds for the asymptotic
expansion of the partition function. Rocky Mountain Journal of Mathematics (accepted
for publication), Available at https://projecteuclid.org/journals/rmjm/rocky-

mountain- journal- of- mathematics/DownloadAcceptedPapers/230220- Radu.pdf,
(2023).

[8] K. Banerjee, P. Paule, C. S. Radu, and W. H. Zeng. New inequalities for p(n) and log p(n).
Ramanujan Journal, 61 (2023), pp. 1295–1338.

https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/230220-Radu.pdf
https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/230220-Radu.pdf


REFERENCES 53

[9] G. Boros and V. H. Moll. Irresistible Integrals: Symbolics, Analysis and Experiments in the
Evaluation of Integrals. Cambridge University Press, (2004).
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