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A B S T R A C T

Model checking is a method for verifying that a program satisfies certain desirable prop-
erties formalised using mathematical logic. It is a rigorous method, similar to theorem
proving, but it is generally applied when theorem proving would be too difficult due to
the complexity of the algorithm, such as in concurrent systems. Model checking is used in
the software industry. RISCAL (RISC Algorithm Language) is a language and software sys-
tem that can be used to describe algorithms over a finite domain, specify their behaviour
and then validate the specification. While it mainly focuses on deterministic algorithms, it
has limited support for non-deterministic systems as well.

The thesis extends the support for non-deterministic systems in RISCAL by allowing the
user to specify complex properties about their behaviour in the language of Linear Temporal
Logic (LTL) and then to validate them. The core contribution is a model checker implemen-
ted in Java using the so-called automaton-based explicit state model checking approach.
The software is capable of verifying certain properties that could not be handled by a well-
known model checker used in the industry. While in most cases it has underperformed
its competitors, our implementation is promising, especially when it comes to properties
with certain side conditions, called fairness constraints. The majority of the thesis is be
concerned with the theoretical aspects of the automaton-based model checking approach,
which is followed by a description of the implementation and various benchmarks.
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Z U S A M M E N FA S S U N G

Modellprüfung (Model Checking) ist eine Methode zur Überprüfung, ob ein Programm
bestimmte wünschenswerte Eigenschaften erfüllt, die mit Hilfe der mathematischen Logik
formalisiert sind. Die Methode ist exakt, ähnlich wie das Beweisen von Theoremen, wird
aber im Allgemeinen angewendet, wenn das Beweisen aufgrund der Komplexität des Al-
gorithmus zu schwierig wäre, z.B. bei nebenläufigen Systemen. Modellprüfung wird in der
Softwareindustrie eingesetzt. RISCAL (RISC Algorithm Language) ist eine Sprache und ein
Softwaresystem, das verwendet werden kann Algorithmen über einen endlichen Bereich
zu beschreiben, ihr Verhalten zu spezifizieren und dann die Spezifikation zu validieren.
RISCAL konzentriert sich hauptsächlich auf deterministische Algorithmen, unterstützt in
begrenztem Umfang aber auch nicht-deterministische Systeme.

Diese Arbeit erweitert die Unterstützung für nicht-deterministische Systeme in RISCAL,
indem sie dem Benutzer die Möglichkeit gibt, komplexe Eigenschaften ihres Verhaltens
in der Sprache der linearen Temporalen Logik (LTL) zu spezifizieren und diese dann zu
validieren. Der Kernbeitrag ist ein Modellprüfer, der in Java implementiert ist und den
Automaten-basierten Ansatz der Modellprüfung mit expliziter Darstellung der Zustände
umsetzt. Die Software ist in der Lage, bestimmte Eigenschaften zu verifizieren, die
von einem bekannten, in der Industrie verwendeten Modellprüfprogramm nicht be-
wältigt werden können. Obwohl sie in den meisten Fällen schlechter abschneidet als
ihre Konkurrenten, ist unsere Implementierung vielversprechend, insbesondere wenn
es um Eigenschaften mit bestimmten Nebenbedingungen geht, so genannte Fairness-
Einschränkungen. Der Hauptteil der Arbeit befasst sich mit den theoretischen Aspekten
des Automaten-basierten Modellprüfungsansatzes, gefolgt von einer Beschreibung der Im-
plementierung und verschiedener Benchmarks.
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1
I N T R O D U C T I O N

The goal of software engineering is to create correct programs, that is, turn the specifica-
tion into a software that fulfills it without errors. To achieve this the individual software
engineer has a variety of tools at their disposal, such as the compiler and static analyzers.
Nevertheless these do not ensure adherence to the specification, they can only find com-
mon error patterns. Adherence to the specification is most commonly checked using tests.
While testing offers immense value for the relatively low cost, it is only ever going to verify
a small subset of potential input-output pairs or potential behaviours.

The specification of a program can be formalized using mathematics, making it possible
to reason with the help of axioms and rules of inference, that under certain assumptions
(i.e. in a model environment) the given program satisfies them. These mathematically rig-
orous techniques are called formal methods, and their use was pioneered by Robert Floyd
[Flo67] and Antony Hoare [Hoa69] in their seminal papers.

As opposed to the deterministic programs presented in these papers, modern systems
often involve nondeterminism and concurrency. A nondeterministic program, unlike a
deterministic one, may exhibit different behaviours on different runs given the same input.
A concurrent system is a system that can execute several computations at the same time
which might lead to nondeterminism due to so called race conditions (when the order in
which computations finish matters for the overall state of the system).

While it might still be possible to fully understand such systems and provide a mathem-
atical description of their behaviour through theorem proving, that might be prohibitively
time consuming. An alternative approach would be to model them as finite state machines,
formulate the requirements and then algorithmically verify that these conditions hold for
every possible execution of the system. This is called model checking.

An example for such a concurrent system would be an elevator with the mechanism for
controlling the cabin door and the mechanism for moving the cabin as separate compon-
ents. In this case we might expect the system to satisfy certain safety properties (the cabin
never moves when the doors are open) and liveness properties (whenever the call button on
a given floor was pressed, the cabin will eventually stop there and open the door).

To describe general safety and liveness properties we use variants of temporal logic,
which can reason about a sequence of events, such as the different states a computer
program reaches during its execution. In the thesis we will work with Linear Temporal
Logic (LTL), whose temporal operators such as always, eventually and until make it possible
to describe, for example, if an event occurs infinitely often, or if it always happens before
another event.

6
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RISCAL is a software system developed at the Research Institute for Symbolic Computa-
tion (RISC) of the Johannes Kepler University Linz. Its primary goal is to be a preliminary
step in computer assisted proofs by checking that the verification conditions hold in a
finite domain before attempting the proof in a more general setting.

RISCAL was originally intended for use with deterministic algorithms, but it was later
extended to support non-determinism in the form of so called shared and distributed sys-
tems. These can be used to model concurrent algorithms, such as mutual exclusion or data
transfer protocols.

Using a simple search to discover all states of a non-deterministic system, RISCAL is
able to verify invariants, that is properties which hold in every state of the system. Many
important but simple safety properties, such as mutual exclusion can be expressed using
invariants, but for more complex safety and liveness properties one needs a more general
language, such as LTL.

Some important liveness properties do not hold in all possible executions, only under
certain assumptions, for example that the operating system will eventually schedule all
processes that make up the system. These are called fairness constraints, and while they are
expressible directly in temporal logic, due to their prevalence and importance they should
be handled in a special way for performance reasons and ease-of-use.

The primary goal of this thesis is to extend the RISCAL software system with LTL model
checking capabilities, making it able to verify complex safety and liveness properties, po-
tentially under various fairness constraints. The model checker should be efficient enough
to verify non-trivial concurrent algorithms.

To achieve this goal, we have started by studying the theory of model checking, then
continued by exploring one approach, the so called automaton-based explicit state model
checking in detail. As even this particular approach has a lot of possible variants, we had
to make several choices along the way. Such choices were between the variants of the
automaton creation algorithm, and the different approaches for checking the emptiness of
the language of an automaton. Finally we had to figure out how to efficiently handle many
fairness constraints. This involves an algorithm that was independently discovered by the
author before it was found in existing literature.

After the decision has been made on which particular combination of algorithms
to use, these have been implemented in Java. The RISCAL software, which includes
the LTL model checker since version 4.2.0 (contained in the package riscal.ltl) can
be freely downloaded from https://www.risc.jku.at/research/formal/software/RISCAL/.
The thesis documents the choices made during the implementation. Finally, to verify
whether the model checking extension is adequate, its performance was measured using
a set of real-world and purpose made concurrent algorithms, then compared it to other
widely used model checkers.

It was found that the RISCAL LTL model checker performs very well for liveness prop-
erties involving many fairness constraints, often outperforming the model checker which
served as the main basis of comparison for our implementation. For simpler safety proper-
ties it usually performed worse, but nevertheless it was able to verify non-trivial systems.

https://www.risc.jku.at/research/formal/software/RISCAL/
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With some further improvements, such as concurrency, it could compete with model check-
ers used in the software industry.

The rest of the thesis is structured as follows: Chapter 2 introduces the RISCAL soft-
ware and the Spin and TLC model checkers, which will serve as a basis of comparison
for our implementation. Chapter 3 gives the detailed description of the syntax and se-
mantics of LTL. Chapter 4 introduces the basics of automata theory, first for simple finite
automata then for so-called Büchi automata. Chapter 5 contains a detailed description
of the automaton-based model checking process. Chapter 6 compares this to alternative
model checking approaches, such as symbolic model checking. Then the practical part
starts with Chapter 7, containing a user-oriented demonstration of the model checking
extension. This is followed by a description of the implementation with example code
snippets in Chapter 8. Chapter 9 contains the results of the measurements taken over a
series of benchmarks and their interpretations, and finally the the thesis is closed off in
Chapter 10 by a series of concluding remarks and potential future improvements.

The core results of this thesis were published in [SS22].



2
S TAT E O F T H E A RT

This chapter describes the purpose and current capabilities of the RISCAL software which
will be extended by an LTL model checker. It also describes two established model check-
ers, both used in the software industry, which will later serve as a basis of comparison in
Chapter 9.

2.1 riscal

RISCAL has been developed at the Research Institute for Symbolic Computation (RISC) of
the Johannes Kepler University Linz; it has been described as "a language and associated
software system for describing mathematical algorithms over discrete structures, formally
specifying their behaviour by logical formulas and formulating the mathematical theories
on which these specifications depend." [Sch21] [Sch23]

2.1.1 Support for deterministic algorithms

Formal proofs of the correctness of software usually require human assistance and are very
time consuming. The majority of this time is spent trying to prove statements which do not
hold because the assumptions were either too weak or incorrect. The goal of the RISCAL
language and software system is to be a preliminary step in computer assisted proofs by
checking that the verification conditions hold in a finite domain. To facilitate this RISCAL
provides an extensive collection of built-in operators and data types (e.g. sets and maps).

To demonstrate the workings and capabilities of RISCAL, let us consider the binary
search algorithm described in Program 1. The first line defines two values, N and M, both
natural numbers. These parameters can be set from outside (i.e. from the GUI); in the next
three lines we can see how they are used to specify the types, that is the finite domain, in
which the algorithms in this file will be executed.

This is followed by the definition of the binary search algorithm, in a language very
similar to other modern programming languages. The only surprising element is the use
of non-ASCII symbols ^ and � in the syntax. Indeed, RISCAL supports convenient single-
character forms for many well-known operators, which make long specifications much
more legible.

But an algorithm defined like this is not of much use in RISCAL. Since our goal is to
check if it is correct, first we have to define what correct means. To do this, we need to

9



2.1 riscal 10

1 val N: N ; val M: N ;

3 type elem = N [M] ;
4 type array = Array [N, elem ] ;
5 type i n t = Z [ −1 , N] ;

7 proc bsearch ( a : array , x : elem , from : in t , to : i n t ) : i n t {
8 var r : i n t := −1;
9 var low : i n t := from ; var high : i n t := to ;

10 while r = −1 ^ low � high do {
11 val mid = ( low + high ) / 2 ;
12 i f a [ mid ] = x then
13 r := mid ;
14 e l s e i f a [ mid ] < x then
15 low := mid + 1 ;
16 e l s e
17 high := mid − 1 ;
18 }
19 return r ;
20 }

Program 1: Binary search algorithm in RISCAL

specify the output of the function: the return value is the index of the element x, or �1, if
it is not contained in the array a between positions from and to. To do this, we may write
the following after the procedure declaration:

ensures ( r e s u l t = −1 ^ 8 i : i n t with from � i ^ i � to . a [ i ] 6= x )
_ ( from � r e s u l t ^ r e s u l t � to ^ a [ r e s u l t ] = x ) ;

These formulas are specified using first-order logic, so they may contain both existential
and universal quantifiers. RISCAL is able to evaluate these formulas because all the do-
mains are finite. In the example above, the universally quantified variable i of type int can
only take up values between �1 and N.

Now we can click on the green arrow in the RISCAL GUI to check if the algorithm is
behaving correctly for all the values in our domain. But if we do so, we will find that it is
trying to execute the algorithm for nonsensical values, because there are no requirements
defined on the input parameters. For the binary search algorithm to work, the array must
be sorted, and the inequality 0 � from � to must hold. This can be specified by adding

r e q u i r e s (0 � from ^ from < N ^ 0 � to ^ to < N ^ from � to )
^ (8 i : i n t with from < i ^ i � to . a [ i − 1] � a [ i ] ) ;

between the procedure declaration and the ensures clause. Now running the procedure will
give something like

Execution completed for ALL inputs (44084 ms, 6796 checked, 30068 inadmissible).

If we make a mistake, say change r := mid; to r := x;, then running the algorithm will
provide a counter-example, a set of inputs that satisfy the input requirements, but where
the result does not meet the output requirements:

postcondition is violated by result 1 for application bsearch([1,0,0,0], 1, 0, 0)
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These capabilities make it a very useful tool to heuristically validate the specification, be-
fore a formal proof is attempted.

Loop invariants and loop measures may also be defined and from these RISCAL can
generate verification conditions:

• the invariant holds before entering the loop

• the invariant is preserved after each iteration of the loop

• the measure is always positive

• the measure is decreased after each iteration of the loop

The validity of these implies the correctness of the program and they can also be checked
automatically.

Besides the brute force approach to checking validity, recent versions of the software in-
clude a support for several SMT solvers, which can be used to verify the validity of formu-
las over much larger domains than what is possible with the RISCAL checker alone [Rei20].

2.1.2 Support for non-deterministic systems

RISCAL also supports so called "shared" and "distributed" systems with concurrent (non-
deterministic) behavior. A shared system consists of a single component with multiple
actions, which are executed non-deterministically, while a distributed system consists of
multiple components that communicate with each other using messages.

The shared system presented in Program 2 works by first executing the init action with
a parameter a which fulfills the condition a > N / 2. Then it non-deterministically chooses
one of the actions incx, decx or swap whose guard condition is satisfied.

It is not hard to see that the sum of the variables x and y stays constant. We can annotate
the system with an invariant which specifies this:

. . .
var y : elem = 0 ;

i n v a r i a n t x + y = N;

i n i t ( a : elem ) with a > N / 2 ; {
. . .

Then we can run RISCAL with a given value of N to check if this invariant will really
hold in every state in every possible execution, again by clicking the green arrow in the
RISCAL GUI. Doing so results in the following output for N = 10:

Executing system S1.

11 system states found with search depth 11.

Execution completed (4 ms).

If we make a mistake, for example if we accidentaly write
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1 val N: N ;
2 axiom minN , N � 4 ;

4 type elem = N [N] ;

6 shared system S1
7 {
8 var x : elem = 0 ;
9 var y : elem = 0 ;

11 i n i t ( a : elem ) with a > N / 2 ; {
12 x := a ; y := N − a ;
13 }

15 a c t i o n incx ( ) with x < N; {
16 x := x + 1 ; y := y − 1 ;
17 }

19 a c t i o n decx ( ) with x > y + 1 ; {
20 x := x − 1 ; y := y + 1 ;
21 }

23 a c t i o n swap ( ) with x > y + 1 ; {
24 var tmp : elem := x ; x := y ; y := tmp ;
25 }
26 }

Program 2: Example of a shared system in RISCAL

a c t i o n decx ( ) with x > y + 1 ; {
x := x − 1 ; y := y ;

}

then the output changes and shows us how an execution of the system reaches violating
state:

Executing system S1.

ERROR in execution of system S1: evaluation of

invariant (x+y) = N;

at line 10 in file example.txt:

invariant is violated

The system run leading to this error:

0:[x:6,y:4]->incx()->

1:[x:7,y:3]->incx()->

2:[x:8,y:2]->incx()->

3:[x:9,y:1]->incx()->

4:[x:10,y:0]->decx()->

5:[x:9,y:0]

ERROR encountered in execution (2 ms).

If we suspect that a shorter violating run exists, we can set the value of the Depth variable
in the UI and check only executions up to that length. In our case even setting it to 1 will
result in a violating run:
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Executing system S1.

ERROR in execution of system S1: evaluation of

invariant (x+y) = N;

at line 10 in file gcd.txt:

invariant is violated

The system run leading to this error:

0:[x:6,y:4]->decx()->

1:[x:5,y:4]

ERROR encountered in execution (2 ms).

RISCAL checks the invariants using a simple depth-first search to explore the set of
reachable states. The pseudocode representation in Algorithm 2.1 and also the actual im-
plementation represents the system only by its initial states, and each state consists of the
list of its successors and the values of the system variables. The system is expanded lazily.

Algorithm 2.1 Algorithm for verifying system invariants

1: procedure check_invariant(initialStates, maxDepth)
2: visited ˘
3: for all s 2 initialStates do
4: if invariant doesn’t hold in state s then
5: return false
6: end if
7: if check_invariant(s, visited, 0, maxDepth) is false then
8: return false
9: end if

10: end for
11: end procedure
12:
13: procedure check_invariant(currentStatte, visited, currentDepth, maxDepth)
14: if currentState 2 visited then
15: return true
16: end if
17: visited visited[ fsg
18: if maxDepth is set and maxDepth + 1 > depth then
19: return true
20: end if
21: for all s 2 currentState.successors do
22: if invariant doesn’t hold in state s then
23: return false
24: end if
25: if check_invariant(s, visited, depth + 1, maxDepth) is false then
26: return false
27: end if
28: end for
29: end procedure

The search algorithm is split into two procedures. The first one initializes the set of
visited states to the empty set, iterates through the set of initial states, checks that the
invariant holds for the given state, then starts a new search from this state.
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The second procedure checks if the current state is already visited, otherwise it is added
to the set of visited states. If there is a maximum depth set and it is exceeded at the current
recursion level, then the function returns. Otherwise it iterates through the successors of
the current state, checks if the invariant holds in them, then starts from each a new depth
first search, making sure that the recursion depth is increased.

2.2 the spin model checker

Spin (Simple Promela INterpreter) is a software verification tool focusing on distributed
systems. Its development was started by Gerard J. Holzmann in the 1980s at the Com-
puting Sciences Research Center at Bell Labs and it continues into the present. The first
version was released in 1989, the current version presented in this chapter is 6.5.2 released
on Dec 6, 2019.

Similarly to RISCAL, Spin allows the user to describe a model of the system to be
verified in a domain specific programming language, which is in this case Promela (Process
or Protocol Meta Language). Promela is a modelling language with built-in support for
many constructs used in the development of distributed systems, such as processes, atomic
constructs and message queues.

The details of Promela and the verification capabilities of Spin will be explained through
a concrete example, mutual exclusion. Multiple components accessing the same resource,
such as the same location in memory at the same time can lead to unintended con-
sequences due to race conditions, i.e. when the behaviour of the program depends on
the sequence of uncontrollable events. Mutual exclusion is a property of concurrent sys-
tems which ensures, that at any given time only one component is accessing a shared
resource, or more generally, only one component is in the so called critical section.

Dekker’s algorithm is the first known correct solution for the mutual exclusion problem
[Dij63], Program 3 contains its description in Promela.

The first three lines declare global variables, the first two of them being two element
arrays. A variable’s type may be one of the basic data types bit, bool, byte, short or
int, a user defined data type declared with the typedef keyword, or a named constants
declared using mtype. Promela also has built-in support for message channels.

This is followed by the init process, which is created at the beginning; it is usually used
to set up the system by initializing the variables and starting other process-instances. In
our case it starts two instances of the component process, initialized with the identifiers 0
and 1 respectively.

Process types are declared using the proctype keyword followed by an identifier and the
parameters which are set when a new process of this type is initialized using run. The in-
structions of the processes running simultaneously are executed in a non-deterministically
interleaved manner.

In Promela every statement can be either enabled or blocked. Some statements, such as
skip, declaring or assigning a value to a variable are always enabled. A simple expression
is enabled if and only if it evaluates to a non-zero value (or true, in case of a boolean
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1 bool wants_to_enter [ 2 ] ;
2 bool c r i t i c a l [ 2 ] ;
3 b i t turn ;

5 i n i t
6 {
7 run component ( 0 ) ;
8 run component ( 1 ) ;
9 }

11 proctype component ( b i t id )
12 {
13 b i t other = 1 − id ;

15 do : : t rue −>
16 wants_to_enter [ id ] = true ;

18 do
19 : : wants_to_enter [ other ] −>
20 i f
21 : : turn == other −>
22 wants_to_enter [ id ] = f a l s e ;
23 ( turn == id ) ;
24 wants_to_enter [ id ] = true ;
25 : : e l s e −> skip ;
26 f i ;
27 : : e l s e −> break ;
28 od ;

30 c r i t i c a l [ id ] = true ;
31 // c r i t i c a l s e c t i o n
32 c r i t i c a l [ id ] = f a l s e ;

34 turn = other ;
35 wants_to_enter [ id ] = f a l s e ;
36 od ;
37 }

Program 3: Promela representation of Dekker’s solution to the mutual exclusion problem

expression). Execution may only continue with an enabled statements, so if at a given time
all the running processes are blocked, the system is in a deadlock. This means that the busy
waiting loop, which in C would look like while (turn != id) {} can be implemented in
Promela by turn == id (see line 23, the outer brackets are optional).

The two important control structures in Promela, selection and repetition are quite dif-
ferent from the conditional statements and loops of ordinary programming languages.

i f
: : guard −> statements
. . .
: : guard −> statements
[ : : e l s e −> statements ]
f i

Promela syntax for the selection statement

do
: : guard −> statements
. . .
: : guard −> statements
[ : : e l s e −> statements ]
od

Promela syntax for the repetition statement

In both of these structures, one of the options (introduced by ::), with an enabled guard
condition is selected non-deterministically, and is executed. Selection then proceeds with
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Figure 2.1: Verification tab of ispin

the next instruction, while repetition is executed repeatedly until a break statement is en-
countered. An optional else option can also be present, which may be executed only when
all of the guard conditions are blocked. Both of these structures will block the execution
until one of the guard conditions become enabled, which is why we needed to add the
else options in lines 25 and 27.

For the purposes of verification we can use the ispin graphical interface for Spin. The
Edit/View tab can be used to edit the opened Promela file and to view its automaton repres-
entation. In the Verification tab (Fig. 2.1) we can exhaustively check all states of the system
for a violation of an assert statement or the presence of a deadlock, but we can also se-
lect an inline claim. These properties can be specified in the source code, outside of the
init and proctype blocks, using the syntax ltl [ name ] { formula }. Any solution of
the mutual exclusion problem must satisfy two important properties: first of all, it must
be correct, i.e. only one component may be in the critical section at any given time, and
secondly both components should enter the critical section infinitely often. In Promela
these can be formulated as follows:

l t l mutex { [ ] ! ( c r i t i c a l [ 0 ] && c r i t i c a l [ 1 ] ) }
l t l recurrence { ( [ ] <> c r i t i c a l [ 0 ] ) && ( [ ] <> c r i t i c a l [ 1 ] ) }

If in the Verification tab under Never Claims we select use claim, set mutex as the claim
name and click run, we can successfully verify the safety property of the system, see the
output in Listing 6. But if we try to check the second property, we get an error (acceptance
cycle). We can select the iterative search for short trail option under Search Mode and after
running again switch to the Simulate / Replay tab to examine the violating run. On the trail
it is visible that only one component is being executed, this is because fairness constraints
are not enabled by default in Spin. We can check the enforce weak fairness constraint under
Liveness settings, then run again to verify that it also holds given this constraint.
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pan : l t l formula mutex

( Spin Version 6 . 5 . 2 −− 6 December 2019)
+ P a r t i a l Order Reduction

F u l l s t a t e s p a c e search f o r :
never claim + ( mutex )
a s s e r t i o n v i o l a t i o n s + ( i f within scope of claim )
acceptance c y c l e s + ( f a i r n e s s disabled )
i n v a l i d end s t a t e s − ( disabled by never claim )

Sta te −vec tor 44 byte , depth reached 179 , e r r o r s : 0
180 s t a t e s , s tored
145 s t a t e s , matched
325 t r a n s i t i o n s (= stored+matched )

0 atomic s teps
hash c o n f l i c t s : 0 ( resolved )

S t a t s on memory usage ( in Megabytes ) :
0 . 012 equiva lent memory usage f o r s t a t e s

( s tored * ( S ta te −vec tor + overhead ) )
0 .287 a c t u a l memory usage f o r s t a t e s

128 .000 memory used f o r hash t a b l e ( −w24)
0 .534 memory used f o r DFS s tack ( −m10000 )

128 .730 t o t a l a c t u a l memory usage

pan : elapsed time 0 seconds
No e r r o r s found −− did you v e r i f y a l l c la ims ?

Listing 6: Output of Spin for the verification of the mutex property

2.3 the tlc model checker

TLC is an explicit state model checker for specifications written in the TLA+ language
[Lam02]. It was written by Yuan Yu and extended by Markus Kuppe, and it can efficiently
check both safety and liveness properties. TLC has good support for parallelization, it
achieves an approximately linear speedup for safety properties on modern computers
with multiple cores. It can also be ran on a network of computers.

The specification language TLA+ was developed by Leslie Lamport for "modeling soft-
ware above the code level and hardware above the circuit level" [Lam]. It is based on
mathematical logic and does not resemble traditional programming languages. The TLA+

representation of Dekker’s algorithm, the same example as in the previous section, is given
in Listing 7.

In TLA+ transitions between system states have to be explicitly described as mathemat-
ical formulas. These have to contain their guard condition (including the program counter,
which is implicit in Promela), the new values of the changed variables (the changed values
of the variables are marked with a prime) and also the unchanged variables. To update
one value of an array, we can use the EXCEPT! syntax, for example changing the value of
the program counter array at the index proc to the value "Critical" is done by pc’ = [pc

EXCEPT ![proc] = "Critical"]. To specify that the variable turn is unchanged we could
say either turn’ = turn, or more clearly UNCHANGED <<turn>>.
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1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− MODULE Dekker −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 EXTENDS Naturals , Sequences
3 VARIABLES wants_to_enter , turn , pc , other

5 Processes == ( 0 . . 1 )

7 I n i t ==
8 /\ wants_to_enter = [ proc \in Processes |−> FALSE]
9 /\ turn = 0

10 /\ pc = [ proc \in Processes |−> " I n i t " ]
11 /\ other = [ proc \in Processes |−> 1 − proc ]

13 E n t e r I n t e n t ( proc ) ==
14 /\ pc [ proc ] = " I n i t "
15 /\ wants_to_enter ’ = [ wants_to_enter EXCEPT ! [ proc ] = TRUE]
16 /\ pc ’ = [ pc EXCEPT ! [ proc ] = " Wait " ]
17 /\ UNCHANGED <<turn , other >>

19 Wait ( proc ) ==
20 /\ pc [ proc ] = " Wait " /\ wants_to_enter [ other [ proc ] ] /\ turn = other [ proc ]
21 /\ wants_to_enter ’ = [ wants_to_enter EXCEPT ! [ proc ] = FALSE]
22 /\ pc ’ = [ pc EXCEPT ! [ proc ] = " Wait2 " ]
23 /\ UNCHANGED <<turn , other >>

25 Wait2 ( proc ) ==
26 /\ pc [ proc ] = " Wait2 " /\ turn = proc
27 /\ wants_to_enter ’ = [ wants_to_enter EXCEPT ! [ proc ] = TRUE]
28 /\ pc ’ = [ pc EXCEPT ! [ proc ] = " Wait " ]
29 /\ UNCHANGED <<turn , other >>

31 E n t e r C r i t i c a l ( proc ) ==
32 /\ pc [ proc ] = " Wait " /\ ~wants_to_enter [ other [ proc ] ] /\ turn = proc
33 /\ pc ’ = [ pc EXCEPT ! [ proc ] = " C r i t i c a l " ]
34 /\ UNCHANGED <<wants_to_enter , turn , other >>

36 E x i t C r i t i c a l ( proc ) ==
37 /\ pc [ proc ] = " C r i t i c a l "
38 /\ turn ’ = other [ proc ]
39 /\ wants_to_enter ’ = [ wants_to_enter EXCEPT ! [ proc ] = FALSE]
40 /\ pc ’ = [ pc EXCEPT ! [ proc ] = " I n i t " ]
41 /\ UNCHANGED <<other >>

43 Next ( proc ) == \/ E n t e r I n t e n t ( proc ) \/ Wait ( proc ) \/ Wait2 ( proc )
44 \/ E n t e r C r i t i c a l ( proc ) \/ E x i t C r i t i c a l ( proc )

46 vars == <<wants_to_enter , turn , pc , other >>

48 Dekker == I n i t /\ [ ] [ \ E proc \in Processes : Next ( proc ) ] _vars
49 =============================================================================

Listing 7: TLA+ representation of Dekker’s solution to the mutual exclusion problem
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Figure 2.2: The TLA+ Toolbox

The specification of the entire system has to be described as an LTL formula. In this case
the value of Dekker tells us that the initial values of the variables are given by Init and
afterwards for either one of the two processes one of the actions (listed in Next) has to be
executed.

The same properties as before (mutual exclusion and progress) can be formulated as
follows:

Mutex == [ ] ~ ( \ E proc1 \in Processes , proc2 \in Processes :
proc1 # proc2 /\ pc [ proc1 ] = " C r i t i c a l " /\ pc [ proc2 ] = " C r i t i c a l " )

Recurrence == (\A proc \in Processes : [] < > ( pc [ proc ] = " C r i t i c a l " ) )

While TLC can be used from the command line, just like Spin has ispin, TLC also has a
graphical user interf2ace, namely the TLA+ Toolbox, depicted in Fig. 2.2. For checking the
progress property, we have to add weak fairness constraints to the system. As opposed to
Spin, here fairness constraints are not a checkbox in the graphical interface, they are part
of the model itself. To assume weak fairness on the execution of all actions we have to
change the formula Dekker to

Dekker == I n i t /\ [ ] [ \ E proc \in Processes : Next ( proc ) ] _vars
/\ (\A proc \in Processes :

/\ WF_vars ( E n t e r I n t e n t ( proc ) )
/\ WF_vars ( Wait ( proc ) )
/\ WF_vars ( Wait2 ( proc ) )
/\ WF_vars ( E n t e r C r i t i c a l ( proc ) )
/\ WF_vars ( E x i t C r i t i c a l ( proc ) )

)
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$ t l c Dekker . t l a
TLC2 Version 2 . 1 7 of 02 February 2022 ( rev : 3 c7caa5 )
. . .
Implied −temporal checking −− s a t i s f i a b i l i t y problem has 1 branches .
Computing i n i t i a l s t a t e s . . .
F inished computing i n i t i a l s t a t e s : 1 d i s t i n c t s t a t e generated

at 2023−04−30 2 1 : 2 0 : 2 9 .
Progress ( 1 0 ) a t 2023−04−30 2 1 : 2 0 : 2 9 : 31 s t a t e s generated ,

20 d i s t i n c t s t a t e s found , 0 s t a t e s l e f t on queue .
Checking temporal p r o p e r t i e s f o r the complete s t a t e space

with 20 t o t a l d i s t i n c t s t a t e s a t (2023 −04 −30 2 1 : 2 0 : 2 9 )
Finished checking temporal p r o p e r t i e s in 00 s a t 2023−04−30 2 1 : 2 0 : 2 9
Model checking completed . No e r r o r has been found .

Est imates of the p r o b a b i l i t y t h a t TLC did not check a l l reachable s t a t e s
because two d i s t i n c t s t a t e s had the same f i n g e r p r i n t :
c a l c u l a t e d ( o p t i m i s t i c ) : val = 1 . 2 E−17

31 s t a t e s generated , 20 d i s t i n c t s t a t e s found , 0 s t a t e s l e f t on queue .
The depth of the complete s t a t e graph search i s 1 0 .
The average outdegree of the complete s t a t e graph i s 1

(minimum i s 0 , the maximum 2 and the 95 th p e r c e n t i l e i s 2 ) .
Finished in 00 s a t (2023 −04 −30 2 1 : 2 0 : 2 9 )

Listing 8: Output of TLC for the verification of the Recurrence property

The output of running TLC from the command line for the progress property is dis-
played in Listing 8.

From the output it is clear that TLC follows a probabilistic approach, the equivalent
of the optional "Hash Compact" representation in Spin. This means that TLC will not
store the visited states in their entirety, only their fingerprints. The fingerprint of a state
is a hash of the values of all the variables which determine the given state. Storing only
the fingerprints saves memory, since the full representation usually takes up much more
memory than a single integer. It also avoids the costly comparison of states, as only these
integers have to be compared to each other. However this approach may overlook some
states with a low but non-zero probability.

In our implementation we make sure that no states are missed, but this of course means
it will be inherently slower than TLC.



3
L I N E A R T E M P O R A L L O G I C

In this chapter we introduce the mathematical framework that will be used in the following,
namely Kripke-structures and linear temporal logic, and finally we use these to formalise
the model checking problem.

3.1 kripke-structures

Kripke-structures, proposed by Saul Kripke in 1963 [Kri63] are a variant of transition sys-
tems used to model the behaviour of non-deterministic systems. A Kripke-structure de-
scribes the transitions between the states and also the properties which hold in each state.

Definition 3.1.1. A relation R � X�Y is total if 8x 2 X 9y 2 Y : xRy.

Definition 3.1.2. A Kripke-structure K over a set of atomic propositions P is defined as the
tuple (S, I, T,L) consisting of the following components:

• a set of states S

• a set of initial states I � S, I 6= ˘

• a total transition relation T � S� S

• a labelling function L : S! P(P)

s1

fpg
s2

fp, qg

s3

frg

Figure 3.1: Example of a Kripke structure

21
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For example, the Kripke-structure in Fig. 3.1 has three states S = fs1, s2, s3g with the
initial state being s1. The transition relation is T = f(s1, s2), (s2, s2), (s2, s3), (s3, s1)g and the
labelling function L maps s1 to fpg, s2 to fp, qg and s3 to frg.

The atomic propositions are chosen to be the system properties we care about in this
model, for example cabinStopped or doorOpen, while the labelling function determines in
which states they hold.

In the following we want to study the behaviour of the system as it evolves, and this
is done by examining its runs. When modelled by a Kripke-structure, the equivalent of a
system run is a sequence of states, called a trace.

Definition 3.1.3. A trace p = (s0, s1, ...) of a Kripke-structure K = (S, I, T,L) is a finite or
infinite sequence of states of K, such that 8i : si

T�! si+1:
jpj is the length of p (e.g. jpj = 2 for p = (s0, s1, s2) and jpj = ¥ for infinite traces).
p(i) is the i-th state si of p for i � jpj.
pi = (si, si+1, ...) denotes the suffix of p starting with the i-th state si for i � jpj.

3.2 linear temporal logic

Temporal logic, introduced by Jerzy Łoś and Arthur Prior [TJ19] in the mid-20th century,
is any mathematical formalism used to represent and reason about propositions qualified
in terms of time (e.g. eventually the thesis will be finished).

In general we may have two different views of the future: one in which the sequence
of events is determined right at the beginning, which is described by linear temporal
logic (LTL). In the other, the future is at every point indeterminate and branching, this
is described by computation tree logic (CTL). Neither of these is stronger than the other,
because there exist properties which can be described in only one of them. The logic
combining these two views is called CTL*, a superset of LTL and CTL. For more about
temporal logics and LTL, see [DGL16].

For the purposes of formal verification, LTL was first proposed by Amir Pnueli [Pnu77].
Since LTL is strong enough to describe most interesting properties of system runs and
humans generally have an easier time reasoning about it than about CTL, in the future we
restrict ourselves to linear temporal logic. Now we define the syntax and semantics of a
typical version of LTL.

Definition 3.2.1. The alphabet of LTL consists of a set of atomic propositions P , the stand-
ard logical operators (:, _, ^ etc.), and special temporal operators X (next), F (finally), G
(globally), and U (until). The language of LTL formulas is defined inductively as follows:

• If p is an atomic proposition, then it is an LTL formula

• If g and h are LTL formulas, then :g, g _ h, g ^ h etc. are LTL formulas

• If g and h are LTL formulas, then Xg, Fg, Gg, and g U h are LTL formulas.
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Definition 3.2.2. The semantics of LTL for an infinite trace p of a Kripke-structure
K = (S, I, T,L) is defined as follows:

p j= p iff p 2 L(p(0))

p j= :g iff p 6j= g

p j= g _ h iff p j= g or p j= h

p j= g ^ h iff p j= g and p j= h

p j= Xg iff p1 j= g

p j= Fg iff 9 i 2 N : pi j= g

p j= Gg iff 8 i 2 N : pi j= g

p j= g U h iff 9 i 2 N : pi j= h ^ 8 j 2 N : j < i! p j j= g

Definition 3.2.3. For a Kripke-structure K = (S, I, T,L) and an LTL formula f we have
K j= f if p j= f for all infinite traces p of K such that p(0) 2 I.

Let us examine the Kripke-structure in Fig. 3.1 and describe some of its properties using
LTL:

• Since p 2 L(s1) we have K j= p, but because q 62 L(s1), K 6j= q.

• Because the second state in every trace is s2 and p, q 2 L(s2), K j= Xp and K j= Xq.

• Again by the same reasoning K j= Fq, but since no state has both r and p true, K 6j=
F(r^ p). This last one we could also formulate as K j= :F(r^ p) or as K j= G:(r^ p),
since LTL has a variant of De Morgan’s rule.

• Since (s1, s2, s2, s2, ...) is a valid trace, K 6j= p U r, but K j= (p U r)_ (Gp). This property
can also be written as K j= p W r using the "weak until" operator W.

Now we have all the mathematical groundwork we need to formally describe the prob-
lem we are attempting to solve, called the model checking problem.

Definition 3.2.4. Model checking problem
Given a Kripke-structure K = (S, I, T,L) and an LTL formula f , determine whether K j= f ,
and if not, provide a trace p of K such that p 6j= f .

This is the problem whose solution will be studied in the next chapters.



4
A U T O M ATA T H E O RY

We continue with the basics of automata theory, which will later be needed to describe the
model checking algorithm.

4.1 finite automata

Definition 4.1.1. A finite automaton is defined as the tuple (S, I, S, T, F) consisting of the
following components:

• a finite set of states S

• a set of initial states I � S, I 6= ˘

• an input alphabet S

• a transition relation T � S� S� S

• a set of accepting states F � S

We write s a�! s0 if there is a transition from state s to s0 with the label a, i.e. (s, a, s0) 2 T.
The theory of finite automata is concerned with the labels of traces going from an initial
state to an accepting state. Formally:

Definition 4.1.2. The set of words S� over an alphabet S is the set

S� =
[

n�0

f(a1, a2, ..., an) : a1, a2, ..., an 2 Sg

Definition 4.1.3. A finite automaton A = (S, I, S, T, F) accepts a word w = a1a2...an 2 S�

iff there exist s0, ..., sn 2 S with

s0
a1�! s1

a2�! s2
a3�! ...

an�1��! sn�1
an�! sn

where n � 0, s0 2 I, and sn 2 F.

Definition 4.1.4. The language L (A) of the finite automaton A is the set of words accepted
by A.

On a first glance it might seem that the language is a tool to study the automata, but in
most cases it is the opposite: automata are usually constructed to accept a given language.

24
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Then they can be used to efficiently check if a word is part of that language. One example
would be to construct the automaton that accepts the intersection of two languages.

Definition 4.1.5. The product automaton A = A1 � A2 of two finite automata A1 =

(S1, I1, S1, T1, F1) and A2 = (S2, I2, S2, T2, F2) over the same alphabet S1 = S2 is defined
as the tuple (S, I, S, T, F) consisting of the following components:

• S = S1 � S2

• I = I1 � I2

• S = S1 = S2

• F = F1 � F2

• T((s1, s2), a, (s01, s02)) iff T1(s1, a, s01) and T2(s2, a, s02)

Proposition 4.1.1. Given two finite automata A1 and A2, if A = A1 � A2, then L (A) =

L (A1) \L (A2).

As an example, let S be the Latin alphabet, and let us construct the automaton A1

which accepts all words with prefix ab (L (A1) = fabw : w 2 S�g), the automaton A2

which accepts all words with the suffix ba (L (A2) = fwba : w 2 S�g) and the automaton
A which accepts the intersection of the two languages.

s1 s2 s3
a b �

(a) Finite automaton A1 with the language L (A1) = fabw : w 2 S�g

s01 s02 s03
b a�

(b) Finite automaton A2 with the language L (A2) = fwba : w 2 S�g

s1, s01 s2, s01 s3, s02 s3, s03

s3, s01

a b a

b b

�

(c) Finite automaton A with the language L (A) = fabw : w 2 S�g \ fwba : w 2 S�g, unreachable states are
not shown.

Figure 4.1: Examples of finite automata
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While in the first automaton in Fig. 4.1 for each character in the word we know how to
proceed to check if it is accepted, the second and third automata involve non-deterministic
choices.

Definition 4.1.6. For a finite automaton A = (S, I, S, T, F), a state s 2 S and a character
a 2 S, let s a�! denote the set of successors of s defined as

s a�! = fs0 2 S : T(s, a, s0)g.

Definition 4.1.7. A finite automaton A = (S, I, S, T, F) is complete if jIj > 0 and js a�! j > 0
for all s 2 S and a 2 S.

Definition 4.1.8. A finite automaton A = (S, I, S, T, F) is deterministic if jIj � 1 and
js a�! j � 1 for all s 2 S and a 2 S.

Being non-deterministic or incomplete is not a problem in general, still deterministic
and complete automata have a few desirable properties. It turns out that given a non-
deterministic automaton An, we can construct a deterministic and complete automaton Ad

with the property that L (Ad) = L (An).

Definition 4.1.9. The power-automaton of a finite automaton A = (S, I, S, T, F), denoted by
P(A) consists of the components (S0, I0, S0, T0, S) where:

• S0 = 2S

• I0 = fIg

• S0 = S

• F0 = fF0 � S : F0 \ F 6= ˘g

• T(s, a, s0) iff s0 =
S

s02s s a�!

Proposition 4.1.2. The power-automaton P(A) of a finite automaton A is deterministic,
complete and has the property L (P(A)) = L (A).

Unfortunately the above construction involves an exponential blowup in the number of
states, but we can use the power-automaton as an intermediate step for creating one which
accepts the complement of a language.

Definition 4.1.10. The complement-automaton of a finite automaton A = (S, I, S, T, F), de-
noted by C(A), consists of the components (S, I, S, T, S n F).

Proposition 4.1.3. The complement-automaton C(A) of a deterministic and complete finite
automaton A accepts the complement of the language of A:

L (C(A)) = L (A) = S� nL (A)

Combining these two steps indeed yields the automaton that accepts the complement
of a language defined by a non-deterministic automaton. We might hope that the interme-
diate step is not necessary, but as shown by [MF71] the exponential blowup in the worst
case is unavoidable.
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4.2 büchi automata

Since we attempt to verify infinite system runs, for our purposes the previously described
automata are not exactly the right tool. Nevertheless a basic familiarity with the finite
case is a very useful in understanding the infinite one. Büchi automata were introduced
by Julius Richard Büchi in 1960 for the purposes of studying infinite words [Büc60]. The
thesis will present a slightly modified version, which makes the algorithms a bit easier to
understand.

Definition 4.2.1. A labelled Büchi automaton is defined as the tuple (S, I, S,L, T, F) consist-
ing of the following components:

• a finite set of states S

• a set of initial states I � S, I 6= ˘

• an input alphabet S

• a labelling of the states L : S! 2S

• a transition relation T � S� S

• a set of accepting states F

Notice that as opposed to the regular finite automata, here not the transitions but the
states are labelled with potentially multiple labels. This construction is therefore essentially
the extension of a Kripke structure by an acceptance condition. Just like it was the case for
finite automata, we are again interested in the language accepted by the automaton.

Definition 4.2.2. An accepting execution s of a Büchi automaton A = (S, I, S,L, T, F) is an
infinite sequence of states s = s0s1s2... 2 Sw such that s0 2 I and there exists at least one
state s 2 F which appears infinitely often in s.

The definition above considers only sequences of states, but in the following we will
need acceptance based on the labelling.

Definition 4.2.3. The set of infinite words Sw over an alphabet S is the set

Sw = f(a1, a2, ...) : a1, a2, ... 2 Sg

Definition 4.2.4. A Büchi automaton A = (S, I, S,L, T, F) accepts a word w = a0a1a2... 2
Sw if there exists an accepting execution s = s0s1s2... 2 Sw such that for each i � 0,
ai 2 L(si).

One might be tempted to think that constructing the Büchi automaton which ac-
cepts the intersection of the languages of two Büchi automata can be done like it was
done for finite automata, but unfortunately that is not the case. Consider for example
A1 = (fs1, t1g, fs1g, fag,L1, f(s1, t1), (t1, s1)g, ft1g) with L1(s1) = L1(t1) = fag and
A2 = (fs2, t2g, fs2g, fag,L2, f(s2, t2), (t2, s2)g, fs2g) with L2(s2) = L2(t2) = fag. Then
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clearly the intersection of the languages contains the word aw, but the language of the
naively constructed product automaton is empty, since no run ever goes through the only
accepting state (t1, s2).

Nevertheless it is possible to construct the automaton corresponding to the intersection
of the languages, but for that first we introduce a variant of Büchi automata with a gener-
alized acceptance condition.

Definition 4.2.5. A labelled generalized Büchi automaton (LGBA) consists of the same com-
ponents (S, I, S,L, T,F ) as a simple labelled Büchi automaton, except that the accepting
set is replaced by a set of accepting sets F � 2S, F = fF1, F2, ..., Fng.

Definition 4.2.6. An accepting execution s of an LGBA A = (S, I, S,L, T,F ) is an infinite
sequence of states s = s0s1s2... 2 Sw such that s0 2 I and for each i � 0, si ! si+1, and for
each acceptance set Fj 2 F there exists at least one state sj 2 Fj which appears infinitely
often in s.

Any labelled Büchi automaton can be trivially mapped to an LGBA, by replacing F with
fFg. Note that the set of sets of accepting states may be empty. In this case every execution
is accepting. Using LGBAs we can finally give a simple construction for the automaton
corresponding to the intersection of languages.

Proposition 4.2.1. Given two LGBA Ai = (Si, Ii, S,Li, Ti,Fi), i 2 f1, 2g, there exists an
LGBA A = (S, I, S,L, T,F ) such that L (A) = L (A1) \L (A2) consisting of the follow-
ing components:

• S = S1 � S2

• I = I1 � I2

• L(s1, s2) = L1(s1) \ L2(s2)

• ((s1, s2), (t1, t2)) 2 T iff (s1, t1) 2 T1 and (s2, t2) 2 T2

• F = fF� S2 : F 2 F1g [ fS1 � F : F 2 F2g

Now we just need a way to translate an LGBA back to a regular labelled Büchi auto-
maton. Fortunately there exists a simple construction with size O(jSj � jF j).

Proposition 4.2.2. Given an LGBA A = (S, I, S,L, T,F ) there exists a Büchi automaton
A0 = (S0, I0, S,L0, T0, F0) such that jS0j = jSj � k, where k = jF j and L (A) = L (A0)
consisting of the following components:

1. S0 = S� f1, 2, ..., kg

2. I0 = I � f1g

3. L0((s, i)) = L(s)

4. ((s, i), (t, j)) 2 T0 iff (s, t) 2 T and s 62 Fi ^ i = j or s 2 Fi ^ j � i + 1 (mod k)

5. F0 = F1 � f1g

In the next chapter we will describe a procedure which uses Büchi automata and their
languages to decide the validity of a temporal formula for a given system.
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A U T O M AT O N - B A S E D M O D E L C H E C K I N G

Using the notions defined in the previous chapter we may now describe the automaton-
based model checking procedure:

1. Construct an LGBA A: f which accepts the set of words that satisfy the negation of
the formula f .

2. Given the Kripke-structure K = (S, I, T,L) of the system, construct the LGBA AK =

(S, I, 2P ,L0, T, ˘) with L0(s) = fL(s)g for any s 2 S.

3. Construct the automaton which accepts the intersection of the languages of A: f and
AK.

4. Check if the language of the resulting automaton is non-empty: if so, there is a
counterexample to the property, otherwise the property holds.

In the next sections we describe the algorithms necessary provide a complete implement-
ation of this procedure, the translation and the emptiness checking.

5.1 translation of ltl formulas to büchi automata

This section provides the details of an efficient algorithm solving the following problem:
given an LTL formula f over the set of atomic propositions P , construct an LGBA A such
that for every trace p = s0s1s2... we have that p j= f if and only if there exists a word
w = a0a1a2... accepted by A such that the label of state si is exactly ai. This algorithm was
first described in [Ger+96] and it has proven to be practical in the model checker SPIN.

First given the formula f , we replace the temporal operators F and G using Fp � >U p
and Gp � ?V p, where V is defined as the dual of U: f V g � :(: f U:g). Then we
convert f into negation normal form by pushing the negations to in front of propositions
using De Morgan’s laws. The operator V was introduced to make sure this step can be
done while avoiding an exponential blowup in the size of the formula.

Algorithm 5.1 gives the pseudocode representation of the algorithm. The data structure
for the graph nodes contains the following fields:

Incoming contains the incoming edges as references to the nodes with outgoing edges to
the current node. A special value, init is used to denote initial nodes, it does not
represent a real edge.

29
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New is a set of temporal properties that must hold at in current node and have not been
processed yet.

Old is the set of temporal properties that must hold in the current node and have been
already processed. During the execution of the algorithm, every formula from New
will be processed and moved to Old.

Next is the set of temporal properties that must hold in all states that are immediate
successors of states satisfying the properties in Old.

The nodes whose construction was already finished are stored in the set nodesSet which
is used to optimize the constructed automaton by merging equivalent nodes.

The algorithm starts with a node (lines 1 – 3) with init as its only incoming edge. As
mentioned before, having init among the incoming edges denotes that it is an initial node.
The set new is initialized to the formula for which we want to construct the automaton,
while old and next are initialized to an empty set. nodesSet is also initialized to empty,
since no node has been finalized yet.

The bulk of the algorithm is contained in the expand function (lines 4 – 32), which splits
or transforms graph nodes based on the yet unprocessed constraints. It starts by checking
if the currently processed node has any requirements it still needs to satisfy (line 5). If not,
it means that the construction of the current node was finished. This is the point where
the nodesSet is used to check if an equivalent node with the same old and next already
exists (line 6). If so, the two nodes are merged by taking the union of the incoming set,
and returning nodesSet unchanged (lines 7 – 8). Otherwise the current node is added to
nodesSet and the construction of a new child node is started from the constraints stored
in the next set of the current node (line 10).

In the second part of the function (lines 13 – 30) we take an arbitrary element of the yet
unprocessed constraints and remove it from the set. The node is then processed based on
the shape of the formula.

In the first case (lines 15 – 21) the formula f is an atomic proposition, the negation of
one, or it is one of the literals > or ?. If the formula is ?, or old contains the negation of
the formula (lines 16 – 17) then this node contains a contradiction, so we discard it and
return nodesSet unchanged. Otherwise we simply add the formula to old and continue
expanding the node (lines 18 – 20).

In the second case (lines 22 – 23) the formula has at its root the temporal operator X.
The formula is simply moved to old and the subformula under X is added to next and we
continue the expansion.

In the third case (lines 24 – 25) the formula is a conjunction. The formula is once again
moved to old and the two subformulas of the conjunction are added to new, excepting
the ones which are already processed and are therefore in old. Then we continue the
expansion.

The fourth case (lines 26 – 30) handles the operators _, U and V. In these cases the
current node will be split into two new nodes based on the operator at the root of the
formula.
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Algorithm 5.1 Construction of a tableau for an LTL formula

1: procedure create_graph( f ) . LTL formula f
2: return expand({incoming: init, new: {f}, old: {}, next: {}}, {})
3: end procedure

4: procedure expand(node, nodesSet)
5: if node.new is empty then
6: if there is a graph node n 2 nodesSet

with n.old = node.old and n.next = node.next then
7: n.incoming n.incoming [ node.incoming
8: return nodesSet
9: else

10: return expand({incoming: {node}, new: node.next, old: {}, next: {}},
nodesSet [ {node})

11: end if
12: else
13: let f 2 node.new
14: node.new node.new n f f g
15: if f = pi or f = :pi or f = > or f = ? then
16: if f = ? or : f 2 node.old then
17: return nodesSet
18: else
19: node.old node.old [ {f}
20: return expand(node, nodesSet)
21: end if
22: else if f = X g then
23: return expand({incoming: node.incoming, new: node.new,

old: node.old [ {f}, next: node.next [ {g}}, nodesSet [ {node})
24: else if f = g ^ h then
25: return expand({incoming: node.incoming, new: node.new [ ({g, h}

n node.old), old: node.old [ {f}, next: node.next}, nodesSet [ {node})
26: else if f = g _ h or f = g U h or f = g V h then
27: node1 { incoming: node.incoming, new: node.new [ (new1(f) n node.old),

old: node.old [ {f}, next: node.next [ next1(f) }
28: node2 { incoming: node.incoming, new: node.new [ (new2(f) n node.old),

old: node.old [ {f}, next: node.next }
29: return expand(node2, expand(node1, nodesSet))
30: end if
31: end if
32: end procedure

f = g _ h : the node is split by adding g to the new set of node1 and h to node2. These
correspond to the two ways g _ h can be made to hold.

f = g U h : the node is split by adding g to the new set and g U h to the next set of node1

and h to the new set of node2. These correspond to the fact that g U h is equivalent to
h _ (g ^ X(g U h)).
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f = g V h : the node is split by adding h to the new and g V h to the next of node1, while
adding both g and h to the new set of node2. These correspond to the fact that g V h
is equivalent to h ^ (g _ X(g V h)).

The three sub-cases above are represented in the algorithm succinctly using the functions
new1, next1, and new2 which are defined in the following table:

f new1( f ) next1( f ) new2( f )

g _ h fgg ˘ fhg

g U h fgg fg U hg fhg

g V h fhg fg V hg fg, hg

Listing 9 depicts the behaviour of the algorithm through a concrete example by trans-
forming the property p U q to an automaton. After these steps we end up with the structure
presented in Fig. 5.1.

Process ing i s s t a r t e d with node0 = { incoming : [ i n i t ] , new : [ p U q ] }
node0 i s s p l i t i n t o

node1 = { incoming : [ i n i t ] , new : [ p ] , old : [ p U q ] , next : [ p U q ] }
and node2 = { incoming : [ i n i t ] , new : [ q ] , old : [ p U q ] }

Moving l i t e r a l p in node1 to the s e t old .
Resul t : node1 = { incoming : [ i n i t ] , old : [ p U q , p ] , next : [ p U q ] }

node1 has no more p r o p e r t i e s in the s e t new .
New c h i l d node i s added : node3 = { incoming : [ node1 ] , new : [ p U q ] }

node3 i s s p l i t i n t o
node4 = { incoming : [ node1 ] , new : [ p ] , old : [ p U q ] , next : [ p U q ] }
and node5 = { incoming : [ node1 ] , new : [ q ] , old : [ p U q ] }

Moving l i t e r a l p in node4 to the s e t old .
Resul t : node4 = { incoming : [ node1 ] , old : [ p U q , p ] , next : [ p U q ] }

node4 i s equiva lent to node1 . Merging incoming edges .
Resul t : node1 = { incoming : [ node1 , i n i t ] , old : [ p U q , p ] , next : [ p U q ] }

Moving l i t e r a l q in node5 to the s e t old .
Resul t : node5 = { incoming : [ node1 ] , old : [ p U q , q ] }

node5 has no more p r o p e r t i e s in the s e t new .
New c h i l d node i s added : node6 = { incoming : [ node5 ] }

node6 has no more p r o p e r t i e s in the s e t new .
New c h i l d node i s added : node7 = { incoming : [ node6 ] }

node7 i s equiva lent to node6 . Merging incoming edges .
Resul t : node6 = { incoming : [ node6 , node5 ] }

Moving l i t e r a l q in node2 to the s e t old .
Resul t : node2 = { incoming : [ i n i t ] , old : [ p U q , q ] }

node2 i s equiva lent to node5 . Merging incoming edges .
Resul t : node5 = { incoming : [ node1 , i n i t ] , old : [ p U q , q ] }

Listing 9: Execution trace of the algorithm for the formula p U q
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node1

old : fp U q, pg
next : fp U qg

node5

old : fp U q, qg
next : ˘

node6

old : ˘

next : ˘

Figure 5.1: Resulting structure after execution of the algorithm for p U q

It remains to be shown how the LGBA A f = (S, I, S,L, T,F ) of a formula f results from
the graph created by the algorithm.

• The set of states S is the set of nodes returned by the algorithm.

• The set of initial states I is the set of all the nodes n for which init 2 n.incoming.

• For the transition T we have that (n1, n2) 2 T iff n1 2 n2.incoming.

• The alphabet S is the set of all combinations in which the atomic propositions P may
hold: S = 2P

• The labelling function Lmaps each state n to the set of all sets of atomic propositions,
which are compatible with the literals in n.old.
Formally let pos(n) = fp 2 P : p 2 n.oldg and neg(n) = fp 2 P : :p 2 n.oldg
then L(n) = fl 2 S : pos(n) 2 l ^ neg(n) \ l = ˘g.

• Finally the acceptance set F consists of sets Fi � S for each subformula of f of the
form g U h such that n 2 Fi if g U h /2 n.old or h 2 n.old.

Given the structure returned by the algorithm on Fig. 5.1 and the rules above let us con-
struct the labelled generalized Büchi automaton Ap U q = (S, I, S,L, T,F ) for the formula
p U q over the set of atomic predicates P = fp, q, rg.

• S = fnode1, node5, node6g

• I = fnode1, node5g

• T = f(node1, node1), (node1, node5), (node5, node6), (node6, node6)g

• S = f˘, fpg, fqg, frg, fp, qg, fp, rg, fq, rg, fp, q, rgg

• L(node1) = ffpg, fp, qg, fp, rg, fp, q, rgg
L(node5) = ffqg, fp, qg, fq, rg, fp, q, rgg
L(node6) = S

• F = ffnode5, node6gg

This automaton is depicted in Fig. 5.2.
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fpg,
fp, qg, fp, rg,
fp, q, rg

fqg,
fp, qg, fq, rg,
fp, q, rg

S

Figure 5.2: LGBA corresponding to the formula p U q

5.1.1 Proof of correctness

In this subsection we will show that the automaton generated using this algorithm is
correct, meaning

(i) every word accepted by the automaton Aj is a model of j

(ii) every model of j is accepted by the automaton Aj

The proof follows the one described in [Ger+96], with slight changes in notation and some
added detail. Where a proof is not provided, it is immediate from the structure of the
algorithm.

Given the LGBA A = (S, I, S,L, T,F ) for any s 2 S we will denote by D(s) the value of
q.old, where q is the node corresponding to the state s in the structure generated by the
algorithm.

Lemma 5.1.1. Let s = s0s1s2... 2 Sw be an execution of A, and let g U h 2 D(s0). Then one
of the following conditions holds:

(i) 8i � 0 : fg, g U hg � D(si) ^ h /2 D(si)

(ii) 9j � 0 : h 2 D(sj) ^ 8i with 0 � i < j : fg, g U hg � D(si)

Proof. Notice how no formula is ever removed from old, and when splitting nodes con-
taining the temporal operator U , one child will have g in its old, while the other has both
f U g and f , and it’s descendants again start with f U g in their new. This ensures that the
only two possibilities for any execution are the ones listed above.

Lemma 5.1.2. Let q be a node during the construction which is split into two new nodes
q1 and q2 in lines 26 – 29. Then the following holds:

(
V

q.old^V
q.new^ X(

V
q.next)),

(
V

q1.old^V
q1.new^ X(

V
q1.next)) _ (

V
q2.old^V

q2.new^ X(
V

q2.next))

Proof. Follows from the fact that for any LTL formula f of the form g U h, g V h or g_ h we
have f � (

V
new1( f ) ^ X(

V
next1( f )) _V

new2( f )
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Lemma 5.1.3. Let q be a node during the construction which is updated to q0 in lines 22 –
23 or 24 – 25. Then the following holds:

(
^

q.old^
^

q.new^ X(
^

q.next)), (
^

q0.old^
^

q0.new^ X(
^

q0.next))

We may split the nodes into two categories: rooted nodes, which are either created at
the start or when the construction of a node was finished and the algorithm moves on
to handling the next field (line 10), and non-rooted nodes, which are created from other
nodes by splitting and transforming them (in the outermost else branch, lines 12-31).

Lemma 5.1.4. Let p be a rooted node, let q1, ..., qn be its descendants when the algorithm
terminates and let X be the set of formulas in p.new when it is created. Then the following
holds: ^

X,
_

1�i�n

(
^

qi.old^ X(
^

qi.next))

Proof. Using lemmas 5.1.2 and 5.1.3 by induction on the construction; considering the fact
that when p is created, the fields old and next are empty, whereas when the construction
of a node is finished, the field new is empty.

Lemma 5.1.5. Let q1, ..., qn be as before. If x j= W
1�i�n(

V
qi.old ^ X

V
qi.next) then there

exists i 2 f1, ..., ng such that x j= V
qi.old^ X

V
qi.next such that for each g U h 2 qi.old

with x j= h, h is also in qi.old.

Proof. Every node with g U h in its old will appear with a sibling such that one has g and
the other has h in its old as long as both g and h are satisfiable, which is provided by the
extra condition x j= h.

Lemma 5.1.6. Let q be a node such that x j= V
q.old ^ X(

V
q.next) and let G = fh :

g U h 2 q.old ^ h /2 q.old ^ x1 j= hg. Then it has a successor node q’ such that x1 j=V
q’.old^ X

V
q’.next and G � q’.old.

Proof. From the definition of LTL we have that if x j= V
q.old ^ X(

V
q.next) then x1 j=V

q.next. When the construction of the node q is finished, a successor p is created such
that X = p.new = q.next. Then lemmas 5.1.4 and 5.1.5 guarantee the existence of such a
q’ successor node resulting from the processing of p.

Lemma 5.1.7. For every initial state s 2 I of the automaton A generated from the formula
j, we have that j 2 D(s).

Lemma 5.1.8. Let A be an automaton generated from the formula j. Let qs be the graph
node corresponding to the automaton node s. Then the following holds:

j,
_
s2I

(
^

qs.old^ X(
^

qs.next))

Proof. Using lemma 5.1.2, since for the initial node p we have p.new = fjg = X when it is
created.
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Lemma 5.1.9. Let s = s0s1s2... 2 Sw be an execution of A which accepts the word x. Then
x j= V

D(s0).

Proof. Using structural induction on the formula
V

D(s0). The base case is atomic formulas
p, :p with p 2 P , which follow trivially from the construction of the automaton from
the graph. Here we will only present the induction step for the temporal operator U .
According to lemma 5.1.1 we have two cases for g U h, but due to the acceptance conditions
imposed upon the automaton only case (ii) can happen. Then by the induction hypothesis
we have that x j j= h for some j 2 N and x i j= g for all 0 � i < j. Thus by the definition of
the semantics of LTL, x j= g U h.

Lemma 5.1.10. Let s = s0s1s2... 2 Sw be an execution of the automaton A, constructed for
j that accepts the word x. Then x j= j.

Proof. By lemma 5.1.9 we have that x j= V
D(s0). Since s0 2 I, by lemma 5.1.7 we have that

j 2 D(s0). Thus x j= j.

Lemma 5.1.11. Let x j= j. Then there exists an execution s of the automaton A, construc-
ted for j which accepts x.

Proof. By lemma 5.1.8, there exists an s0 2 I such that x j= V
qs0

.old ^ X
V

qs0
.next. Now

we can construct the execution s by repeated application of lemma 5.1.6. That is, if x i j=V
qsi

.old^X
V

qsi
.next then choose si+1 such that x i+1 j= V

qsi+1
.old^X

V
qsi+1

.next (this
part provides us with an execution).

Furthermore, lemma 5.1.6 also guarantees that we can choose si+1 such that for any
g U h 2 D(si) with x i+1 j= h we have h 2 D(si+1). By lemma 5.1.1 we have that g U h 2
D(si+1), unless h 2 D(si+1). Since x i j= g U h, there must be some minimal j � i such that
x j j= h. Thus we can choose the execution s such that h 2 D(sj) (this part provides us with
an accepting execution).

5.2 non-emptyness problem for büchi automata

It remains to show how to solve the non-emptyness problem for Büchi automata. Since the
automaton only has a finite set of states, if the language of the automaton contains a word,
then it contains a word which is eventually repeating (i.e. it consists of a finite prefix and
of a recurring cycle). Thus instead of all the infinite executions, it enough to consider only
the cycles:

Proposition 5.2.1. The language described by a generalized Büchi automaton A is non-
empty if and only if there exists a cycle C reachable from I such that C \ F 6= ˘ for all
F 2 F .

This can again be reformulated using the strongly connected components of the auto-
maton
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Definition 5.2.1. A strongly connected component (SCC) of a directed graph G = (V, E) is a
subset S � V such that for any pair s, t 2 S we have that s!�S t. An SCC is called trivial if
S = fsg and s 6! s.

Proposition 5.2.2. The language described by a generalized Büchi automaton A is non-
empty if and only if there exists an SCC C reachable from I such that C \ F 6= ˘ for all
F 2 F .

For both of these equivalent definitions there exist a family of algorithms that checks
emptiness based on them. We will present one algorithm for each definition.

5.2.1 Emptiness checking based on cycles

The algorithm used as an example for the cycle based approach, Algorithm 5.2, is taken
from [Cou+92].

Algorithm 5.2 Loop-based non-emptyness check for Büchi automata

1: procedure is_language_empty(initialStates, acceptingStates)
2: S1  Stack(initialStates)
3: S2  Stack()
4: M1  ˘
5: M2  ˘
6: while S1 6= ˘ do
7: x  S1.top()
8: if there is a state y 2 x.next with y /2 M1 then
9: M1  M1 [ fyg

10: S1.push(y)
11: else
12: S1.pop()
13: if x 2 acceptingStates then S2.push(x)
14: while S2 6= ˘ do
15: v S2.top()
16: if x 2 v.next then
17: return false
18: end if
19: if there is a state w 2 v.next with w /2 M2 then
20: M2  M2 [ fwg
21: S2.push(w)
22: else
23: S2.pop()
24: end if
25: end while
26: end if
27: end if
28: end while
29: return true
30: end procedure
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Cycle based emptiness checks usually require the automaton to be transformed into a
simple Büchi automaton using Proposition 4.2.2. This can lead to a large increase in the
number of product automaton states, but according to experiments done by [GS09] and
[CP03] only a small portion of real-world automata have this property. These algorithms
generally use less auxiliary memory, but given that the memory use is dominated by the
representation of the states this isn’t a significant advantage.

The data structure used to represent nodes of the simple Büchi automaton consists
only of the set of its successors. The only additional data we need is the set of initial
and accepting states, which are passed as sets to the is_language_empty function. The
algorithm consists of two interleaved depth-first search procedures and uses two sets to
record the visited states and two stacks to keep track of the current position in the search.

The first depth-first search, starting at line 6 looks for states which are reachable from
the set of initial states. If it reaches an accepting state x with no unvisited successors (lines
11 – 13) it starts another depth first search, this time looking for loops. If during the search
it finds a state v such that x can be reached from v (lines 16 – 17), then it has found a loop
and the procedure returns false, since there is an accepting execution of the automaton.
If there is no such reachable state also reachable from itself, then the language of the
automaton is empty, and the algorithm returns true (line 29).

The violating system run can be easily extracted from the stacks S1 and S2.

5.2.2 Emptiness checking based on strongly connected components

The algorithm used as an example for the SCC based approach, Algorithm 5.3, is taken
from [GS09], according to whom it was the fastest algorithm among the ones they tested.
It is an improvement upon Coevreur’s algorithm [Cou99], which in turn is a variant of
Tarjan’s algorithm [Tar72] specialized for automata.

SCC based emptiness checks don’t require the generalized Büchi automaton to be con-
verted into a simple one, thus it has to process fewer states when there are multiple ac-
cepting sets. These generally require more auxiliary memory than algorithms of the first
kind.

The data structure for generalized Büchi automata remains the same as it was in the
previous algorithm, but in addition the states now contain some extra information in the
dfsnum and current fields, needed for the execution of the algorithm. To represent the
acceptance conditions, we assume that K = f1, ..., ng represents each accepting set by an
integer and the function A : S ! 2K maps each state to the accepting sets in which the
state is contained.

The algorithm operates on two global stacks roots and active which are both initialized
to empty. When invoked as is_language_empty(s, 0) on every initial state s, the algorithm
finds successively larger SCCs by initializing trivial single element SCCs (when pushing
s onto the roots stack) and then by combining existing ones when a connection between
them is found (in the first repeat loop). During this combination, it is checked whether the
current SCC contains a state from each accepting set; if so, a cycle is reported. Otherwise,
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once the current SCC cannot be augmented further (it is maximal), it is removed from the
set of active nodes and from the roots stack (second repeat loop).

Algorithm 5.3 SCC-based non-emptyness check for Büchi automata

1: procedure is_language_empty(s, d)
2: s.dfsnum d
3: s.current true
4: roots.push(s, A(s))
5: active.push(s)
6: for all t 2 s.next do
7: if t.dfsnum = 0 and is_language_empty(t, d + 1) is false then
8: return false
9: else if t.current then

10: B ˘
11: repeat
12: (u, C) roots.pop()
13: B B [ C
14: if B = K then return false
15: end if
16: until u.dfsnum � t.dfsnum
17: end if
18: end for
19: if roots.top() = (s, _) then
20: roots.pop()
21: repeat
22: u active.pop()
23: u.current false
24: until u = s
25: end if
26: return true
27: end procedure

As this is a recursive algorithm, the stack (i.e. the prefix of the counterexample) is not
immediately available. And since it finds a strongly connected component instead of a
cycle, the looping part of the counterexample has to be extracted separately as well. Despite
these drawbacks, this algorithm has one significant advantage, namely it makes model
checking with many fairness constraints possible, which will be described in detail in the
next section.

5.3 model checking under fairness constraints

It was mentioned already in the introduction that certain desirable properties of concurrent
system do not hold in all possible executions, only under certain assumptions, for example
that the operating system will eventually schedule each process in the system. These as-
sumptions are called fairness constraints and in this thesis we consider two of them:

Definition 5.3.1. A system run being weakly fair with regard to a given action means that
if the action is eventually permanently enabled, then it is executed infinitely often.
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Definition 5.3.2. A system run being strongly fair with regard to a given action means that
if the action is infinitely often enabled, then it is executed infinitely often.

An efficient solution for model checking under fairness constraints is given in Al-
gorithm 5.4. It was first described in [LP85], but was discovered independently by the
author. In the following we sketch how one might come up with this idea, and by doing
so we explain how the algorithm works.

Algorithm 5.4 Fairness checking for strongly connected components

1: . A: strongly connected subgraph of the product automaton
2: . weakFairness: set of actions with weak fairness constraints
3: . strongFairness: set of actions with strong fairness constraints
4: procedure is_scc_fair(A, weakFairness, strongFairness)
5: for all action a 2 weakFairness do
6: if for all states s 2 A a is enabled in s and a is not executed in s then
7: return false
8: end if
9: end for

10: A’ A
11: for all action a 2 strongFairness do
12: if for all states s 2 A a is not executed in s then
13: A’ {s 2 A’ : a is not enabled in s}
14: end if
15: end for
16: if A’ = A then return true
17: end if
18: for all Ai 2 decompose_into_sccs(A’) do
19: if is_scc_fair(Ai, weakFairness, strongFairness) then
20: return true
21: end if
22: end for
23: return false
24: end procedure

The definitions of the fairness constraints can be reformulated using LTL:

WeakFairness a � (FG Enabled a) =) (GF Executed a)

StrongFairness a � (GF Enabled a) =) (GF Executed a)

Thus if we want to say that the fairness of some actions implies that an LTL formula g
holds, we could convert the constraints to LTL formulas f1, ..., fn and then apply model
checking to ( f1 ^ ... fn) =) g.

This approach is certainly correct, but it is in almost all cases unfeasible. The translation
algorithm we presented (and in fact all other similar algorithms) produce an automaton
whose size is, in the worst case, exponential in the length of the formula. While a formula
of the form GFp is translated into an automaton with 3 states, with just one weak fairness
constraint added, the automaton consists of 20 states, with 5 weak fairness constraints
5120 states and with 5 strong fairness constraints 11423 states. Note that while 5 fairness
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constraints might seem a lot, in a system with multiple components you often have to apply
fairness to all of them (e.g. one has to specify separately that process1 and process2 both
eventually release the lock they hold).

Fortunately there is a much better solution to this problem. Let g be the formula we
want to check under the weak fairness constraints w f (a1), ..., w f (an) and strong fairness
constraints s f (b1), ..., s f (bn). Thus the full formula-to-be-checked is (w f (a1)^ ...^w f (an)^
s f (b1)^ ...^ s f (bn)) =) g and we are looking for a counter-example, meaning a formula
which satisfies w f (a1) ^ ...^ w f (an) ^ s f (b1) ^ ...^ s f (bn) ^ :g.

We know already that for falsifying an LTL formula it is sufficient to consider only the
infinite traces consisting of a finite prefix and an infinitely repeating (finite) loop. As the
fairness constraints are only concerned with the eventual behaviour of the system, the
prefix can be ignored, and we can concentrate on the cycles in the automaton. So we could
find all counterexamples for g with distinct cycles, then check the cycles one-by-one:

• for a constraint w f (ai) the cycle is a valid counterexample, if either there is a state in
which the action ai is executed, or if there is one in which it is not enabled,

• for a constraint s f (bj) the cycle is a valid counterexample, if either there is a state in
which the action bj is executed, or if it is not enabled in any of the states.

Unfortunately the cycles in the automaton are again too numerous, but this approach
is on the right track. Instead of searching for all the cycles, we start by searching for the
maximal SCCs which could contain a counterexample for g by using, for example, the
algorithm from before. Every cycle is part of some SCC, so we do not lose anything by
doing this. Then we examine if this SCC can produce a fair cycle.

First, for weak fairness constraints w f (ai): if there is a state s in the SCC A in which the
action ai is executed, or if there is one in which it is not enabled we can easily construct a
fair cycle from any cycle in A that satisfies g, because from any state in A we can reach s
and vice versa. If there is no such state, the SCC can be rejected, as it cannot contain a fair
cycle.

Second, for strong fairness constraints s f (bj): if bj is nowhere enabled then all cycles are
fair with respect to bj. If bj is executed at least once, then by the previous logic we can
extend any cycle to be fair. But what if bj is never executed, but there are some states in
which is is enabled? No fair cycle may go through these states, so we can simply remove
them from the SCC. What we get is a (potentially disconnected) sub-graph G in which
we want to find cycles. To do so, we can apply our algorithm recursively. First find the
maximal SCCs of G which contain a counterexample for g, then check them using this
same method. The procedure eventually terminates, since in each execution we make sure
that at least one more action with a strong fairness attached to it is never enabled, and
there is only a finite number of them.



6
A LT E R N AT I V E M O D E L C H E C K I N G A P P R O A C H E S

There exist various approaches to LTL model checking, a detailed overview of the state of
the art is given in [Cla+18]. In this chapter we will describe three further algorithms which
were considered for implementation within this thesis.

6.1 tableau-based explicit state model checking

The tableau-based model checking algorithm is described in chapter 5 of [MP95]; it is im-
plemented in the TLC model checker which is part of the TLA+ software package [Lam02].

The method shares many similarities with the automaton-based approach, since both are
explicit state algorithms, the difference being the way they transform the LTL formula to
a structure they can operate on. As opposed to the property automaton, here we construct
a tableau, i.e. a directed graph in which the edges represent the necessary conditions for a
certain set of formulas to hold. The idea behind tableau construction is the decomposition
of temporal formulas that was already discussed during the automaton construction..

First we define the closure of a formula j, denoted as Fj, as the smallest set of formulas
satisfying the following properties:

• j 2 Fj.

• For every p 2 Fj and every subformula q of p, q 2 Fj

• For every p 2 Fj, :p 2 Fj (to keep the closure finite, ::p is identified with p).

• For every y 2 fGp, Fp, p U qg, if y 2 Fj then Xy 2 Fj.

A subset A of Fj is called an atom of j if it satisfies the following properties:

• For every p 2 Fj, p 2 A iff :p /2 A.

• A formula of the form p ^ q is in A iff both p 2 A and q 2 A.

• A formula of the form Gp is in A iff both p 2 A and XGp 2 A.

• A formula of the form p _ q is in A iff either p 2 A or q 2 A.

• A formula of the form Fp is in A iff either p 2 A or XFp 2 A.

• A formula of the form p U q is in A iff either q 2 A or both p 2 A and X(p U q) 2 A.

42
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A set of formulas S � Fj is called mutually satisfiable if there exists a trace p such that
p j= p for every p 2 S. Atoms are maximal for the mutually satisfiable subsets, meaning
that every mutually satisfiable set is a subset of some atom, though they themselves need
not be mutually satisfiable.

A formula is called basic if it is an atomic proposition p or if it has the form Xy for some
arbitrary formula y. The presence of basic formulas uniquely determines the atom, which
means we have a simple algorithm for generating all atoms: let p1, ..., pb 2 Fj be all the
basic formulas in the closure of j, construct all 2b combinations in the form q1, ..., qb where
qi is either pi or :pi and complete each combination into a full atom using the defining
properties of an atom listed above.

Now given the formula j we may finally construct the tableau Tj, which is a directed
graph, whose nodes are the atoms of j, and atom A is connected to atom B if for every
Xp 2 Fj we have Xp 2 A , p 2 B. This means a connection is a necessary condition
for the situation that all formulas contained in A hold at some position j while all the
formulas in B hold in the immediately next position j + 1.

For a formula j and a trace p, the infinite atom path A0, A1, ... in Tj is said to be induced
by p if, for every closure formula p 2 Fj and j 2 N we have p j j= p iff p 2 Aj. Every
trace induces such an infinite path, furthermore if p j= j then j 2 A0. The converse of
this is not true: not every infinite atom path is induced by some trace.

A formula y 2 Fj is said to promise the formula r if y has one of the forms Fr, p U r,
:G:r or if r is the negation :q and y has the form :Gq. Each of these formulas implies
Fr, which may be interpreted as a promise that r will eventually hold. Such a formula y is
called a promising formula.

An atom A fulfills a formula y that promises r if :y 2 A or r 2 A. A path A0, A1, ...
in the tableau Tj is called fulfilling if for every promising formula y 2 Fj it contains
infinitely many atoms that fulfill y. Every trace induces a fulfilling path and the converse
is also true: every fulfilling path induces a trace. This means we can check if the formula
j is satisfiable by checking if the tableau Tj contains a fulfilling path A0, A1, ... such that
j 2 A0.

Unfortunately this does not immediately yield a decision procedure, since the tableau
may contain infinitely many paths. Similarly to the automaton-based emtyness check, here
we again rely on maximal strongly connected components. An MSCC is fulfilling if it is
not just a single atom not connected to itself and every promising formula y 2 Fj is
fulfilled by some atom A 2 S. It is j-reachable if there exists a finite path B0, B1, ..., Bk such
that j 2 B0 and and Bk 2 S. Claim 5.7 in [MP95] shows that the existence of a j-reachable
MSCS is equivalent to the existence of a fulfilling path A0, A1, ... such that j 2 A0, which
means that it is also equivalent to the satisfiability of the formula.

Using these facts we get a simple decision algorithm: first construct the tableau Fj

then remove all atoms not reachable from j. Now decompose Fj into MSCSs (using the
algorithm decompose from section 3.6 of [MP95]) and check if any of them is fulfilling. If
yes, then j is satisfiable, otherwise it is not.
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To check if a formula is valid for a given Kripke-structure K, we first note that j is
K-valid, if :j is not K-satisfiable. Then we proceed similarly to automaton-based model
checking by constructing the product of the tableau Tj and the Kripke-structure K called
the behaviour-graph B(K,j) in such a way that every state (s, A) in B(K,j) is compatible,
meaning every state formula in A holds in the state s.

Then we can similarly decompose B(K,j) into MSCCs; if we find one which is fulfilling,
then j is satisfiable by a trace of K, otherwise it is not.

The size of the tableau is exponential in the size of the formula, but there are optimiza-
tions which enable us to prune it, reducing the number of nodes (see algorithm prune in
section 5.1 of [MP95]).

6.2 bdd-based symbolic model checking

The BDD-based symbolic model checking approach is described in [McM93] and chapter
8 of [Cla+18]. It is used by the SMV1 model checker for CTL.

A Boolean algebra is an algebraic structure (B;^,_,:, 0, 1) such that ^ and _ are as-
sociative, commutative, and distributive to each other, and obey the axioms of absorp-
tion (a _ (a ^ b) = a, a ^ (a _ b) = a), identity (a _ 0 = a, a ^ 1 = a), and complementa-
tion (a _ :a = 1, a ^ :a = 0). Note that (B;^,_) is a lattice. In particular the structure
(P(S);\,[, {, ˘, S), whose elements are subsets of a given set S, is a Boolean algebra.

Functionals, as defined in l-calculus, are objects denoted by ly. f , where y is a variable
and f is a formula. When a functional t = ly. f is evaluated at p, denoted by t(p), it
yields f with y substituted for p. A functional t is monotonic if p � q implies t(p) � t(q).
Any p such that t(p) = p is called the fixpoint of the functional t. Not all functionals
have fixpoints, and if they do it is not necessarily unique. But monotonic functionals have
the useful property that they always have a least and greatest fixpoint. For ly. f these are
denoted by my. f and ny. f respectively. The study of these fixpoint-operators is called modal
m-calculus [Sti01].

For example ly.(x _ y) is monotonic, since p � q implies x _ p � x _ q, and it has the
fixpoint x _ y, since t(x _ y) = x _ (x _ y) = x _ y.

If we identify an LTL formula f over the Kripke-structure K = (S, I, T,L) as the set
of states fs 2 S : s j= f g then we can give the operators of temporal logic fixpoint-
characterizations. For example Gp is the greatest fixpoint of the functional ly.(p^Xy), i.e.
Gp = ny.(p ^ Xy).

Since there exists an iterative method of computing fixpoints (described in chapter 2.4
of [McM93]), we can use this to construct a model checking algorithm: given a formula f ,
if the set of initial states is fixed by the fixpoint representation of f , then it holds for the
system. Notice the similarity between the fixpoint representations and the decomposition
formulas used when constructing the tableau. In fact, this algorithm and the tableau-based
is essentially the same, and it suffers from the same problem of state-space explosion.

1 http://www.cs.cmu.edu/~modelcheck/smv.html

http://www.cs.cmu.edu/~modelcheck/smv.html
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However whenever the Kripke-structure can be represented with formulas instead of
naively enumerating all the states and transitions between them, for example in the case
of circuits, then this algorithm can be applied more efficiently. This leads to the approach
called symbolic model checking.

For a Kripke-structure K = (S, I, T,L) over the set of atomic predicates A = fa1, ..., ang
we will consider the Boolean algebra of subsets over P(P(A)) and vector functionals
in the form l(v1, ..., vn). f . In this way we can identify any state with a Boolean vector
ftrue, falsegn and then any subset of S with a vector functional l(v1, ..., vn). f where the
formula f is closed, meaning that it maps any such vector to either true or false. Similarly
the transition relation can be represented by a functional l((v1, ..., vn), (v01, ..., v0n)). f with a
closed formula f that evaluates to true iff there is a transition from state a = (a1, ..., an) to
a0 = (a01, ..., a0n).

To characterize the operators of temporal logic using this symbolic representation of
the states, we introduce the Boolean quantification operators. The formula 9(v1, ..., vn). f
evaluates to true if there is an assignment under which l(v1, ..., vn). f is true; similarly
8(v1, ..., vn). f is true if it evaluates to true for all assignments. Formally

9(v1, ..., vn). f =
_

a2ftrue,falsegn

(l(v1, ..., vn). f )(a)

8(v1, ..., vn). f =
^

a2ftrue,falsegn

(l(v1, ..., vn). f )(a)

For example

Gp = nv.(p(v) ^ 8v0.(R(v, v0)! p(v0)))

This means in order to use the iterative algorithm of computing the fixpoints, we need
an efficient way of manipulating Boolean formulas, i.e. applying ^, _, 9, 8 etc. to function-
als. The tool used for this in the SMV model checker are ordered Boolean decision diagrams,
or OBDDs, which are directed acyclic graphs. If two formulas are represented by OBDDs
with n and m nodes respectively, then the time complexity of computing the OBDD rep-
resentation of their conjunction and disjunction is O(mn), and all other operations are
similarly efficient. OBBDs are described in chapter 7 of [Cla+18].

OBBDs can be obtained from the ordered decision tree of the formula, which is a com-
plete binary tree with each level representing a variable and the leaves representing evalu-
ations. From any node going towards the so called 0-child means the variable is assigned
false, whereas going to the 1-child means it is assigned true. This way when we reach the
leaves every variable is assigned a value and the formula can be evaluated. In the following
diagrams the 0-child is represented by dashed, while the 1-child is represented by solid
lines.

The OBDD representation can be obtained in linear time from the ordered decision tree
by applying the following two rules from the bottom up:
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v1

v2 v2

v3 v3 v3 v3

0 0 1 1 0 0 1 0

Figure 6.1: Ordered decision tree of the formula f = (v1 ^ v2 ^ :v3) _ (:v1 ^ v3)

1. if two nodes have the same 0 and 1 children (isomorphic subtrees), then remove one
of the nodes, and direct all incoming edges to the other,

2. if the 0 and 1 children of a node are the same (irrelevant node), then remove the node
and direct all incoming edges to the child.

v1

v2

v3 v3

0 1

Figure 6.2: Ordered binary decision diagram of the formula f = (v1 ^ v2 ^ :v3) _ (:v1 ^ v3)
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6.3 bounded model checking

Bounded model checking as described in [Bie+99] is used in the NuSMV2 model checker
for both CTL and LTL.

The Boolean satisfiability problem, or SAT, asks to determine whether for a given propos-
itional formula there exists an assignment of the propositional variables under which the
formula evaluates to true. SAT plays a critical role in theoretical computer science, it was
the first problem to be proven NP-complete [Coo71], meaning that all problems in the
complexity class NP may be reduced to SAT in polynomial time. Karp’s famous paper
[Kar72] lists 20 such problems, and similarly, bounded model checking is the reduction of
the model checking problem to SAT.

Although there exists no known polynomial time algorithm for SAT, due to its import-
ance much progress was made in creating tools, so called SAT solvers, which are capable
of handling large formulas arising naturally, for example in circuit verification. A detailed
description of the state of the art in Boolean satisfiability can be found in [Bie+21].

Bounded model checking is also a symbolic approach, meaning that it requires the states
and transitions to be encoded using Boolean formulas like in 6.2. It proves the validity of
LTL formulas by attempting to find counterexamples of the negation of the given formula
(K j= f , K 6j= : f ) by progressively considering longer and longer finite prefixes of the
traces.

Bounded model checking gives an interpretation for p j=k f , meaning f holds for the
length k prefix of p. Crucially, even finite prefixes may represent a witness for formulas of
the form Gp, provided they contain a back-loop from the last state to a previous one. One
can then show that p j=k f implies p j= f .

The final step in showing that bounded model checking is not only correct, but also
complete, is to prove that for any f and any Kripke-structure K = (S, I, T,L) if there exists
a trace p such that p j= f , then we must have a k 2 N and a trace p0 such that p0 j=k f .
This means it is always enough to examine traces of finite length. [Bie+99] gives the upper
bound of k � jSj � 2j f j, where j f j is the length of the formula f .

Bounded model checking finds counter-examples of minimal length very quickly com-
pared to other approaches thanks to the optimized SAT solvers and due to considering
traces of increasing length during the search. An advantage over alternative symbolic
model checkers is that bounded model checking uses less memory than BDD based ap-
proaches and it needs no manual ordering of the variables or time consuming dynamic
reordering.

6.4 comparison of model checking approaches

All of the methods discussed in this and the previous chapter have their strengths and
weaknesses; and they all used in practice for the purposes of verifying real software.

2 https://nusmv.fbk.eu/

https://nusmv.fbk.eu/
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While bounded model checking is very efficient for certain applications due to its reli-
ance on optimized SAT solvers, and in theory it is capable of verification if you consider
a sufficiently large bound, in practice this is often unfeasible, thus the approach is mainly
used for falsification, i.e. finding errors ([Bie+21] Chapter 18). This means it is not suitable
for our implementation.

Symbolic model checking was originally proposed in the context of hardware verifica-
tion and it has proven to be successful in this respect, verifying systems with orders of
magnitude more states then explicit state model checking approaches [Bur+90]. More re-
cently it has been used for the purposes of software verification, such as Boolean programs
and push-down systems. Unfortunately, the encoding of the states and transitions of com-
plex systems with many different data types (such as the ones in RISCAL) using only
binary variables, while theoretically possible, is very inefficient.

Using OBDDs with the right variable ordering in some sense understands the the under-
lying circuit of the boolean function, representing it efficiently. But if we were to encode
numeric data, or a more complex data type such as a map using independent binary vari-
ables, we would lose information about how these new variables relate to each other. This
is also a reason why bounded model checking is not applicable in our case.

Explicit state model checking approaches do not have the encoding problem, since they
interpret the system as a directed graph of states, irrespective of the data contained within.
This also means that in the worst case scenario they have to traverse all the states. For
example if we only have two components, each with a 32 bit counter which they increment
in a loop, that is already 232+32 � 1019 system states, so it is not possible to keep all the
states in memory, let alone visit them all. This means that when model checking non-
deterministic systems, the first step is to model only the relevant interactions between
components, while abstracting away the unnecessary information. As an example model
checking is often used for the verification of communication protocols, and in this case the
actual value of the transmitted data is not relevant [Wol86].

With a correctly modelled system explicit state model checking can be used efficiently
for verification, as proven by SPIN and TLA+ both being used extensively in the software
development industry. This is especially true when applying certain optimizations, such
as partial order reduction, which reduces the actual number of states which need to be
visited. Moreover, explicit state model checking can also be used to find counter-examples
of minimal length, or to heuristically verify large systems for which exhaustive verification
is unfeasible.

The choice therefore is between the automaton-based and the tableau-based algorithms.
These two are essentially the same, they even use the same expansion formulas for tem-
poral operators to construct the structure they operate on (e.g. p U q � q _ [p ^ X(p U q)]).

Within the scope of this thesis, the decision was made to implement the automaton-
based approach for the following reasons:

• it has a much simpler and faster algorithm for constructing the Büchi-automaton,
compared to the tableau construction,
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• in most common applications it produces an automaton with fewer states than the
equivalent tableau, without resorting to a secondary pruning step,

• finally, there is more literature covering the details of the automaton-based approach.

In the next chapters we describe the LTL model checking extension based on the
automaton-based explicit-state approach: its usage, implementation, and performance.



7
T H E R I S C A L LT L E X T E N S I O N

In this chapter we present the LTL language as implemented by RISCAL, the user interface
of the software and how the model checker can be used to find and correct bugs in a system.
The actual implementation of the model checker will be discussed in Chapter 8.

7.1 the ltl language

For both shared and distributed systems we can describe their properties using LTL clauses
of the following form:

"ltl" <LTL>

Here the LTL formulas accepted by the system are given by the following grammar in
Backus-Naur form:

<LTL> ::=

<LTL-atom> atomic formulas

| "~" <LTL> negation

| <LTL> "/\" <LTL> conjunction

| <LTL> "\/" <LTL> disjunction

| <LTL> "=>" <LTL> implication

| <LTL> "<=>" <LTL> equivalence

| "if" <LTL> "then" <LTL> "else" <LTL> conditional operator

| "Next" <LTL> next-time

| "Globally" <LTL> always

| "Finally" <LTL> eventually

| <LTL> "Until" <LTL> strong until

| <LTL> "WeakUntil" <LTL> weak until

| "let" <binders> "in" <LTL> local variable bindings (sequential)

| "letpar" <binders> "in" <LTL> local variable bindings (parallel)

| "forall" <quantified-variables> "." <LTL> universal quantification

| "exists" <quantified-variables> "." <LTL> existential quantification

50



7.1 the ltl language 51

Some operators also have equivalent symbolic representations accepted by the system:
: (~), ^ (/\), _ (\/), ) (=>), , (<=>), � and 
 (Next), [] and � (Globally), <> and �
(Finally), 8 (forall), 9 (exists).

The binders are comma-separated lists of the form <identifier> "=" <expression>

where <expression> is an arbitrary expression in the RISCAL syntax. They bind the vari-
ables named by the identifiers to the values of the expression on the right hand side of the
equals sign. The let operator binds each value in turn (i.e. each subsequent binding can
already refer to the previously introduced ones), while letpar binds them simultaneously
(no binding can refer to previously introduced ones).

The quantified variables are comma-separated lists of the form
<identifier> ":" <type> or <identifier> ":" <type> "with" <expression>. They
are equivalent to a conjunction or disjunction of the LTL formula with the identifiers
bound to all possible values which make up the type (or in the second case only the ones
for which the expression following with evaluates to true). Since RISCAL operates over a
finite domain, they are guaranteed to expand to a finite conjunction or disjunction.

The atomic formulas are defined as follows:
<LTL-atom> ::=

"[[." <boolean-expression> ".]]"

state predicate (can alternatively be enclosed within [[ and ]])

| "Enabled" <action>

some instance of the action is enabled

| "Enabled" <action> "(" <xs> ")"

the instance of the action for the given arguments is enabled

| "Executed" <action>

some instance of the action is executed

| "Executed" <action> "(" <xs> ")"

the instance of the action for the given arguments is executed

| "WeakFairness" <action>

equivalent to (<>[] Enabled action) ) ([]<> Executed action)

| "WeakFairness" <action> "(" <xs> ")"

equivalent to (<>[] Enabled action(xs)) ) ([]<> Executed action(xs))

| "StrongFairness" <action>

equivalent to ([]<> Enabled action) ) ([]<> Executed action)

| "StrongFairness" <action> "(" <xs> ")"

equivalent to ([]<> Enabled action(xs)) ) ([]<> Executed action(xs))

The fairness predicates above should be avoided whenever possible, as they expand
into a long formula, thus producing a very large automaton. To take advantage of the
fast fairness checking algorithm the actions themselves need to be annotated with fairness
specifications.
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These are:

• weak or weak_some (equivalent to (<>[] Enabled action) ) ([]<> Executed

action)),

• strong or strong_some (equivalent to ([]<> Enabled action) ) ([]<> Executed

action)),

• weak_all (equivalent to 8exps. (<>[] Enabled action(exps)) ) ([]<> Executed

action(exps))),

• strong_all (equivalent to 8exps. ([]<> Enabled action(exps)) ) ([]<>

Executed action(exps)))

The next section gives examples of the application of fairness specifications.

7.2 the ltl model checking interface

In this section we show how to use the RISCAL model checker to verify and to debug a
non-deterministic system. The example, taken from [Sch21], is a simple mutual exclusion
algorithm.

1 val N: N ;
2 axiom minN , N � 1 ;
3 type Proc = N [N− 1 ] ;

5 shared system S
6 {
7 var c r i t i c a l : Array [N, Bool ] = Array [N, Bool ] ( f a l s e ) ;
8 var next : Z [ −1 , N] = 0 ;

10 a c t i o n a r b i t e r ( ) with 8 j : Proc . : c r i t i c a l [ j ] ;
11 { i f next = N−1 then next := 0 ; e l s e next := next +1; }

13 a c t i o n enter ( i : Proc ) with i = next ^ : c r i t i c a l [ i ] ;
14 { c r i t i c a l [ i ] := t rue ; }

16 a c t i o n e x i t ( i : Proc ) with c r i t i c a l [ i ] ;
17 { c r i t i c a l [ i ] := f a l s e ; }
18 }

Program 10: Simple mutual exclusion algorithm in RISCAL

The model depicted as Program 10 describes a concurrent system with one arbiter and
N worker processes operating on a shared system state consisting of the variables critical
and next. critical is a Boolean array of N elements, the i-th value being true means that the
i-th worker process is currently in the critical section. next denotes the index of the worker
process which may next access the critical section.

The arbiter process repeatedly cycles through the values 0..N � 1 and assigns it to the
variable next (arbiter action). However it must first wait until no worker process is in the
critical section (guard condition introduced using with). The worker processes can enter
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