
Submitted by
Joachim Borya

Submitted at
RISC
Research Institute for
Symbolic Computation

Supervisor
A. Univ.-Prof. DI Dr.
Wolfgang Schreiner

May 2023

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Formalisation of
Relational Algebra
and a SQL-like
Language with the
RISCAL Model
Checker

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Technische Mathematik

Zusammenfassung

Das relationale Datenbankmodell beruht auf dem mathematischen Konzept der Relatio-
nenalgebra. Um Daten schnell verfügbar zu machen, ohne eigens Prozeduren für den
Zugriff zu erstellen, die von der internen Repräsentation der Daten abhängig sind, wurden
Abfragesprachen entwickelt. SQL (structured query language) kann als Quasistandard
hierfür gesehen werden. In dieser Arbeit geht es um die Formalisierung und Verifikation
der Relationenalgebra und einem kleinen, aber elementaren Teilmenge von SQL mit Hilfe
des RISCAL Model Checkers, eines Software-Werkzeuges zur formalen Spezifikation und
Verifikation von mathematischen Theorien und Algorithmen.

i

Abstract

The relational database model is based on the mathematical concept of relational algebra.
Query languages have been developed to make data available quickly without creating
dedicated access procedures that depend on the internal representation of the data. SQL
(structured query language) can be seen as a quasi-standard for this. This thesis deals
with the formalization and verification of relational algebra and a small but elementary
subset of SQL with the help of the RISCAL model checker, a software tool for the formal
specification and verification of mathematical theories and algorithms.

ii

Contents

1. Introduction 1
1.1. Background . 1
1.2. Goals and Results . 2

1.2.1. Goals . 2
1.2.2. Achieved Results . 3

1.3. Structure of the Thesis . 3

2. State of the Art 4
2.1. Relational Databases . 4
2.2. Relational Algebra . 6
2.3. Program Verification and Model Checking 10

2.3.1. Formal Verification . 10
2.3.2. RISCAL . 14

2.4. Formal Languages . 16
2.4.1. Abstract Syntax . 16
2.4.2. Denotational Semantics . 18

3. Relational Algebra 19
3.1. Mathematical Model . 19

3.1.1. Domain . 19
3.1.2. Operations . 20

3.2. RISCAL Model . 22
3.2.1. Parameters . 23
3.2.2. Types . 23
3.2.3. Set operations . 24
3.2.4. Cartesian Product . 25
3.2.5. Selection . 28
3.2.6. Projection . 30
3.2.7. Join . 33

3.3. Model Checking Results . 34

4. Query Language 36
4.1. Abstract Syntax . 36
4.2. Denotational Semantics . 37

iii

Contents

4.3. RISCAL Model . 37
4.4. Executions . 47

4.4.1. Atomic Queries . 49
4.4.2. Non-atomic Queries . 52

5. Conclusions and Further Work 55

A. RISCAL Source Code 56

B. Test Architecture 73

iv

1. Introduction

1.1. Background

Relational databases are used in many different ways in software products. According
to their name, they are based on the mathematical concept of the relation, which can be
represented as a table. Each column has a fixed meaning as an attribute with a specific
data type, which in turn describes a component of an object represented by the row (also
tuple) [1]. A real-world example would be a list of students with their contact details,
matriculation numbers, and courses. A database is a collection of such tables.

Different database languages have been devised to define, manipulate, and query data
in the past [2]. Relational algebra (RA) is the theory underlying relational database
languages. It is used for theoretical considerations and is already fully described by a
few operators on relations (functions in the mathematical sense) [3]–[5]. SQL (Structured
Query Language) is a standardized, relational database language that is used, among
other things, to query data. The syntactic construct that makes this possible is the SPJ
expression (Select-Project-Join) [6].

The formal description of such a language consists of its syntax in the sense of correctly
formed expressions and the meaning of these expressions, i.e., their semantics [7]. The
syntax of a language can be represented by EBNF (Extended Backus Naur Form) or a
syntax diagram. Within the framework of denotational semantics, each valid expression is
assigned an element from a previously defined semantic domain via structural induction,
which makes it clear what exactly the interpretation of this expression is [7].

RA can be considered a logical theory, dividing its language into symbols for constants,
functions, and predicates for which certain axioms are supposed to hold [8]. A model
of the theory is an interpretation of those symbols so that every formula becomes a true

1

1. Introduction

statement for all variable assignments. There may be an infinite number of such models
[7]. It is well known that first-order logic is undecidable. However, if one restricts oneself
to domains of finite size, some procedures can decide whether a formula is valid in the
theory [7]. This is the task of so-called model checkers, whose application areas are often
software products and less often mathematical theories [7]. If a finite instance is found
that the theory does not model, a proof for all possible domains becomes superfluous.

The RISC Algorithmic Language (RISCAL) is an example of such a model checker [9],
[10]. It uses a language based on mathematical notation and can be used to specify
mathematical theories and algorithms. In addition, it is possible to automatically compile
RISCAL into the LISP-like language SMT-LIB [11] to delegate proof problems to external
SMT (Satisfiability Modulo Theories) solvers such as Z3 [12]. Recently RISCAL has been
extended via the RISCTP theorem proving interface to include external theorem provers
by which models of arbitrary sizes can be verified [13], [14].

RISCAL has been developed as a tool to simplify the verification of algorithms. The
verification of an algorithm with respect to a formal specification, roughly speaking,
rests on three pillars. While preconditions provide information about the allowed inputs,
postconditions deal with the correctness of the result. Finally, loop invariants provide a
way to verify relationships and value ranges of variables in each iteration of the loop [7].

1.2. Goals and Results

1.2.1. Goals

The thesis aims to formalize the relational algebra and a prototypical query language with
RISCAL. This has the purpose that we can validate the correctness of all operations and
algorithms on finite domains. This will increase the reader’s trust that the definitions do
what they should. We will also demonstrate that the query language is as expressive as a
subset of SQL.

2

1. Introduction

1.2.2. Achieved Results

In the case of RA, we defined a mathematical theory (section 3.1), fed it into RISCAL
(section 3.2), and tested it with the means at its disposal (section 3.3). An attempt is also
made here to formulate suitable and efficient algorithms for carrying out the operations
described and to subject them to validation and benchmarking.

The part for SQL is similar, except that it inherits the underpinning from the RA and is
manifested through the formalization of an abstract syntax (section 4.1) and denotational
semantics (section 4.2) of SQL. The syntax and semantics are then implemented in RISCAL
(section 4.3) in order to carry out sample queries afterward (section 4.4).

1.3. Structure of the Thesis

To begin the thesis, we create an overview of databases and their theory, program verifica-
tion, and the basics of formal languages in Chapter 2. The essential content of the thesis
consists of a part on RA (Chapter 3) and one on SQL (Chapter 4), the second building on
the first.

Near the end, we will summarize the key findings of the thesis (Chapter 5). In succession
to the thesis, we will provide a full version of the source code (Appendix A) and details
about the system architecture on that the test was run (Appendix B).

3

2. State of the Art

This chapter provides an overview of the main topics covered in this thesis, including
the relational model for databases, formal methods for program and system verification,
and the foundations of formal languages in language design. By exploring their history
and fundamental concepts, we can better understand the motivation behind the work
presented in this thesis.

2.1. Relational Databases

History

Nowadays, data are generated in almost every area, and software systems depend on
them to function properly. For database users, which can be programs or people, it is
practical if they do not have to deal with the concrete appearance of the data in memory
because, if these changes, all previously implemented access routines are useless in the
worst case. (Logical) data independence [1] is needed, i.e., instead of parsing the data
using a procedural programming language, in modern database management systems
(DBMS), it is sufficient to specify which data should be queried; this is called the declarative
paradigm [15]. An example of such a query would be something like the following:

Every seat S that is reserved in train Z at time T.

Currently, the best-known language to query data is the Structured Query Language (SQL),
which is based on a two-dimensional, tabular data structure. Before Codd published his
formative work [3] on this topic in 1970, other approaches were already known, e.g., the
hierarchical and the network model [16], all of which had certain shortcomings listed in
the paper by Codd. For research purposes, IBM implemented a DBMS called "System R"

4

2. State of the Art

Seat
Number Train Date Reserved
3 RJ65 25-11-2022 Max
· · · · · · · · · · · ·

Table 2.1.: A typical table

based on Codd’s relational model [15]. The supplied query language SEQUEL can be seen
as the predecessor of SQL. Commercial systems, such as SQL/DS (1981), were developed
by IBM. More details can be found in [17]. In fact, several sublanguages exist [15], such
as

• DQL (Data Query Language),

• DDL (Data Definition Language) and

• DML (Data Manipulation Language).

This thesis exclusively deals with the DQL, i.e., with those aspects of the language that
deal with data retrieval without changing or enhancing them.

Terminology

A relational database consists of a collection of tables. It is possible to refer to the columns
of a table (also called attributes) via names [15]. Sometimes it makes sense to use a column’s
fully qualified name, i.e., its name, along with that of the parent table.

It is assumed that all cell entries in a table are atomic in the sense that they do not
themselves contain data in tabular form. Codd also demands this and calls it the first
normal form of a relation [3]. The term relation is a mathematical term, but it can be
identified with that of a table. A relation is a subset of the Cartesian product of so-called
domains, i.e., sets from which the entries in a specific column may stem. A single table row
is regarded as an element of the associated relation and is called a tuple.

5

2. State of the Art

2.2. Relational Algebra

In addition to other approaches, such as the relational tuple calculus or the domain calculus
[15], relational algebra (RA) is a formal, mathematical foundation for the relational model.
It can be shown that the relational tuple calculus and the domain calculus are as powerful
as RA, i.e., these systems are relationally complete (Codd’s Theorem [4]). Therefore, query
languages use concepts from one of the three approaches as needed. In the case of SQL,
this is RA, but concrete implementations often differ in some respects from the initial
mathematical definitions. One manifestation of this is the inclusion of syntactic sugar,
i.e., language components that are added, although the related concepts can be already
expressed in the existing language, albeit less comfortably. What is much more remarkable
here is that, in some implementations of RA, for example, in SQLite [18], rows can appear
multiple times in a table. However, this is precluded by a fundamental assumption of RA
that all relations are sets. Nonetheless, it is not difficult to find the main components [19]
of RA in its implementations, as illustrated below:

• Set operations: Union, intersection, complement, cartesian product

• Selection: Filtering on rows

• Projection: Filtering on columns

• Renaming: Temporary change of a table or column name

• Join: Linking tables based on attributes

For the subsequent demonstrations of the concepts, we use Chinook [20], a database of a
fictitious media store.

Set operations

The basic set operations are implemented using subqueries and the keywords UNION and
INTERSECT. In relational algebra, it is required that the arity of the relations and also the
domains of the respective columns match [15]. In SQLite, only arity matters. An example
of a union is demonstrated in Listing 2.1, which works analogously for the intersection.

6

2. State of the Art

1 sqlite > SELECT FirstName , LastName FROM employees
2 ...> UNION
3 ...> SELECT FirstName , LastName FROM customers;
4 Aaron|Mitchell
5 Alexandre|Rocha
6 Andrew|Adams
7 Astrid|Gruber
8 Bjørn|Hansen
9 Camille|Bernard

10 Daan|Peeters
11 ...

Listing 2.1: SQL union example

In particular, the result of this query is a list of all full names of both employees and
customers.

Selection

If we want to extract all employees belonging to the IT staff of the store, we can use the
query given in Listing 2.2. The full output is in the form of a table. This query corresponds
exactly to relational algebraic selection.

1 sqlite > SELECT * FROM employees WHERE Title = "IT Staff ";
2 7|King|Robert|IT Staff |6|1970 -05 -29 00:00:00|2004 -01 -02 00:00:00|590

Columbia Boulevard West|Lethbridge|AB|Canada|T1K 5N8|+1 (403)
456 -9986|+1 (403) 456 -8485| robert@chinookcorp.com

3 8| Callahan|Laura|IT Staff |6|1968 -01 -09 00:00:00|2004 -03 -04 00:00:00|923 7
ST NW|Lethbridge|AB|Canada|T1H 1Y8|+1 (403) 467 -3351|+1 (403) 467 -8772|
laura@chinookcorp.com

Listing 2.2: SQL selection example

The result is a list of all employees of the IT staff. The asterisk (*) denotes that we want all
the information about these employees.

7

2. State of the Art

Projection

Somewhat confusingly, the projection in SQL is done with the SELECT keyword (see
Listing 2.3). In the previous example, a projection was already carried out implicitly,
whereby all attributes of the table are used due to the asterisk (∗). At this point, it is now
possible to restrict oneself to specific columns.

1 sqlite > SELECT LastName , FirstName , Address FROM employees;
2 Adams|Andrew |11120 Jasper Ave NW
3 Edwards|Nancy |825 8 Ave SW
4 Peacock|Jane |1111 6 Ave SW
5 Park|Margaret |683 10 Street SW
6 Johnson|Steve |7727B 41 Ave
7 Mitchell|Michael |5827 Bowness Road NW
8 King|Robert |590 Columbia Boulevard West
9 Callahan|Laura |923 7 ST NW

Listing 2.3: SQL projection example

The result is a list of all employees, but we restrict the output to contain only their full
names and their addresses.

8

2. State of the Art

Renaming

Renaming tables and their columns within a query may seem superfluous at first. However,
it becomes crucial when a table is to be joined to itself (see subsequent paragraph Join).
Then the uniqueness of a designation is in danger. How this works can be seen in Listing
2.5.

1 sqlite > SELECT EMP.FirstName AS fn FROM employees AS EMP;
2 Andrew
3 Nancy
4 Jane
5 Margaret
6 Steve
7 Michael
8 Robert
9 Laura

Listing 2.4: SQL renaming example

Technically, the query result in Listing 2.4 would be the same without the AS clauses, but it
demonstrates how renaming is done.

Join

The most common type of joins in SQL is the Equi-Join, which is based on the θ join of
relational algebra, where θ is the applied equality operator, which is usually =, but it can
also be, for instance, ̸=,< or ≤ [21]. All rows from two tables are merged into one by
comparing the values of two attributes; if the comparison succeeds, the concatenation of
the two rows is added to the resulting relation. An example of a join is shown in Listing
2.5:

1 sqlite > SELECT emp1.FirstName , emp1.LastName , emp2.FirstName , emp2.LastName
2 ...> FROM employees AS emp1 INNER JOIN employees AS emp2
3 ...> ON emp1.EmployeeId = emp2.ReportsTo;
4 Andrew|Adams|Nancy|Edwards
5 Nancy|Edwards|Jane|Peacock
6 Nancy|Edwards|Margaret|Park
7 Nancy|Edwards|Steve|Johnson

9

2. State of the Art

8 Andrew|Adams|Michael|Mitchell
9 Michael|Mitchell|Robert|King

10 Michael|Mitchell|Laura|Callahan

Listing 2.5: SQL join example

The result of this join is a table whose rows contain the full name of two employees each,
such that the second employee reports to the first employee.

2.3. Program Verification and Model Checking

This section discusses which formal methods are available for verifying theorems and
programs, and how they differ from each other.

2.3.1. Formal Verification

Our daily lives depend on software that works as expected. This is particularly true in
safety-critical areas such as healthcare, cryptography, and aerospace. To achieve this, it is
necessary to prove mathematically that an algorithm is correct, i.e., that it conforms to a
formal specification, which can be thought of as the proof of a theorem.

Proof-based Verification

Throughout history, there have been several attempts to automate mathematical proofs,
such as the Principia Mathematica (published between 1910 and 1930) by Whitehead and
Russell [22]. Many other formal systems are equivalent to PM. Automated provers can
prove many theorems of interest [23].

One of the advantages of modern automated theorem provers is the expressiveness of
their language and their generality. For example, they typically run on first-order logic
(FOL) variants and support quantification over infinite domains [19].

FOL is an example for a so-called deductive system [23], [24], that consists of

• an alphabet Ω of symbols like constants, predicate symbols, and function symbols,

10

2. State of the Art

• a set A of axioms, i.e., formulas that consist of symbols in Ω, and

• a set of inference rules, that describe how a new formula ψ can be derived from from
an existing one ϕ. If there is such a rule, we write ϕ ⊢ ψ.

The language of a deductive system contains all its axioms and is closed under the applica-
tion of inference rules. A proof of a formula ϕ is a chain of formulas (ϕi)

n
i=0, s.t. ϕ0 ∈ A,

ϕn = ϕ and
ϕ0 ⊢ ϕ1 ⊢ · · · ⊢ ϕn.

If a proof for ϕ exists, we write for short ⊢ ϕ.

A proving deductive system lies on the level of syntax, as it is just a manipulation of
symbols according to rules. The semantics describe the truth value of every formula of the
language through an interpretation I of each symbol [7]. If a formula ϕ is true with respect
to I, we write I |= ϕ. If this is the case independently of the interpretation, we call this
formula valid and write instead |= ϕ.

On the one hand, we want the language of a deductive system to contain only true
formulas (i.e., ⊢ ϕ ⇒|= ϕ). If this is given, we call it sound. On the other hand, every true
formula should be in the language (i.e., |= ϕ ⇒⊢ ϕ). In this case, it is called complete.

FOL has a deductive system that is both sound and complete (i.e., |= ϕ ⇔⊢ ϕ) [23], which
is good, but Turing proved that FOL is undecidable [24]. This means that an effective
procedure does not exist that tells us whether a formula is valid. However, it is still
semi-decidable, i.e., there is a procedure that confirms the validity of a formula, but for
invalid formulas, it loops forever [23]. Consequently, we can hardly tell if a formula is
either true and the procedure takes very long or if it is just false.

A first order theory [7], [24] is based on the deductive system of FOL and gets enhanced by
additional symbols (e.g., constants, functions, predicates) and additional axioms (proper
axioms). From a consistent theory, no contradictory formulas can be derived (i.e., either ⊢ ϕ

or ⊢ ¬ϕ). Gödel proved in his incompleteness theorems that no theory that axiomatizes
arithmetic (e.g., Peano axioms) can be complete and consistent simultaneously.

There is a method, namely the Hoare Calculus [7], to create verification conditions for a
program. These are logical formulas that can be proven automatically and imply the
correctness of the program. They are created based on certain annotations a human writes

11

2. State of the Art

for the program, e.g., pre-conditions (should be given before execution), Post-conditions
(should be given after execution) and loop invariants (conditions that hold in every
iteration of a loop).

Invalid verification conditions are produced if there are errors in

• the specification of the algorithm

• or the annotations.

As told earlier, this leads to Non-Termination (compare semi-decidability). However, it
also can fail because the verification condition is not provable within the calculus.

Failure to generate a proof does not necessarily imply that the goal of the proof is wrong
but that the method used needs to be revised [19].

In program analysis and verification, it is unnecessary to model variables by unbounded
data types since data types in programming languages such as C are bounded [22]. This is
where model checking techniques can be used.

Model Checking

The goal of decidability can be achieved by restricting integer values to a specific size [25].
A model checker provides an effective decision procedure to verify that the program
conforms to the specification. This is a particular case of the verification of a finite transition
system (Kripke structure) where the specification is expressed in Linear Temporal Logic (LTL)
[22].

If the model checker reports an error, it presents a counterexample as a system trace
that violates the specification. The first model checker was introduced by Clarke and
Emerson and attempted to traverse the state space of the system (Explicit-state Model
Checker). Although there are only finitely many states, there may be too many to process
in a reasonable time (state-explosion problem). The main goal is, therefore, to reduce the
search space. Another approach to the problem is Symbolic Model Checking, where the set
of states is represented by a Binary Decision Diagram (BDD), which improves performance
but may also consume a large amount of memory [26].

12

2. State of the Art

The idea of Bounded Model Checking (BMC) is not to verify a theorem but to falsify it, i.e., to
find a counterexample, while restricting itself to program runs of finite length [26]. Such a
problem can be transformed so that it can be solved by an SAT solver or an SMT solver
[22], which we will consider in the next section.

SAT/SMT solving

The Boolean Satisfiability Problem (SAT) [23] can be stated as follows: Given a proposi-
tional formula ψ, is there a replacement of the propositional variables by truth values such
that ψ becomes true? Or, in other words: Is ψ satisfiable? A large variety of problems can
be reduced to SAT; hence, many efficient solvers have been developed [12].

We know that first order logic (FOL) is generally undecidable, unlike propositional logic
[23]. FOL contains quantifiers, predicate symbols, and function symbols, which can have
multiple (non-standard) interpretations. In many cases, this is not necessarily such that we
may fix a specific meaning of the symbols, e.g., < is the linear order of the integers. This
is the idea of SMT (Satisfiability Modulo Theories) [23]. There is a group called SMT-LIB
initiative [27], which is concerned with creating standards for the SMT community, e.g.

• a same-named input/output language with a LISP-like syntax and

• multiple theories like

– QF_LIA, QF_LRA (quantifier-free linear integer/real arithmetic),

– QF_UFBV (quantifier-free formulas over bit vectors with uninterpreted sort
function and symbols) and many more.

Depending on the theory, SMT solvers can use SAT solvers in the backend. Model checkers
can benefit from the capabilities of SMT because finite domains can be encoded as bit
vectors, in the sense of the theory QF_UFBV: For n ∈ N, any natural number m ≤ n can
be represented by a bit vector of length

⌈︂
log(n)
log(2)

⌉︂
; every set S of natural numbers less than

or equal to n, can be represented by a bit vector of length n + 1, where the i-th bit is 1 if
i ∈ S.

13

2. State of the Art

2.3.2. RISCAL

The RISC Algorithm Language (RISCAL) [9] comprises a specification language and a
software system, one of the primary purposes of which is to assist students with proof
and program verification problems [28].

Unlike low-level programming languages such as C, the RISCAL language is based on a
typed variant of first-order logic [29] and is therefore designed to model algorithms at a
high level of abstraction [10], [28]. Thus it supports the following:

• a large variety of data types and

• specialized operations such as quantified formulas as boolean literals and the ability
to choose a value that satisfies a formula non-deterministically.

In RISCAL, the state space of systems or programs and the universe of quantified formulas
are finite [28]. This is because the values of variables are restricted to finite types that
can depend on a parameter set manually by the user so that each formal specification in
RISCAL represents an infinite class of finite models [10], [29].

RISCAL allows annotating an algorithm with formulas such as:

• Pre- and postconditions: What input arguments are allowed, and what is considered a
correct result?

• Loop invariants: What conditions must hold in every loop iteration?

These can be checked by running the program (runtime assertion checking) for all feasible
inputs. If it succeeds, the assertion is validated; otherwise, it is falsified (note that validation
is different from verification since it means proving the conjecture for all (infinitely many)
finite domains [10]).

However, RISCAL also generates verification conditions, i.e., formulas whose validity
implies the correctness of these annotations. RISCAL implements two alternatives to
check the validity of a formula:

• Semantic evaluation: With an executable variant of the denotational semantics of
every RISCAL expression, a formula can be evaluated to determine its truth value.

14

2. State of the Art

Figure 2.1.: The RISCAL User Interface

• SMT-LIB translation: By translating the formula into the decidable theory QF_UFBV,
many different SMT solvers (Boolector, Yices, Z3, CVC4) can be used for checking
the validity.

Figure 2.1 shows the user interface of RISCAL. On the left side, one can see the specification
editor; on the right side are options, controls, and the output window.

The menu with the various conditions generated by RISCAL for verifying an algorithm is
shown in Figure 2.2.

Since 2022 RISCAL also supports (via the RISCTP interface to external theorem provers)
the proof of formulas over domains of arbitrary size. The RISC Theorem Proving Inter-
face (RISCTP) [13] consists of a language, modeled on both RISCAL and SMT-LIB, for
specifying proof problems and an interface to various provers (Z3, CVC5, Vampire). Its
integration into the RISCAL environment enriches its model checking capabilities because
such a proof verifies the validity of a theorem for all finite models [14].

15

2. State of the Art

Figure 2.2.: Tasks for a single operation with pre- and postcondtions

2.4. Formal Languages

The query language presented in Chapter 4 is a formal language. It is, therefore, worth
familiarizing ourselves with the concepts of formal languages, namely the two key com-
ponents:

• Syntax: How does a correct sentence of the language look like?

• Semantics: What is the interpretation of a sentence?

2.4.1. Abstract Syntax

In this section, we define what abstract syntax is and look at a small example. The word
"abstract" refers to the fact that in this approach, rather, the structure of a syntactic phrase
is defined, not its representation in particular (e.g., as a string).

Definition 2.1 An abstract syntax [7] has two components. The first one is the declaration of
one or more syntactial domains

16

2. State of the Art

D ∈ Domain

where the left-hand and right-hand side is uniquely named. D is a variable or more accurately a
non-terminal symbol and denotes an element of Domain. For each declaration, there are one or
more production rules

D ::= T1(N1,1, . . . , N1,n1) | · · · | Tm(Nm,1, . . . , N1,nm)

where ni ≤ 0. The symbols Ti are called terminal symbols, and the variables in the parentheses
are arbitrary non-terminal symbols. Together they form an alternative.

The notation we use is known as the Backus-Naur form [7]. A grammar, in the following
way, can generate every syntactic expression:

1. Start with the non-terminal symbol in the first declaration.

2. Replace a non-terminal symbol using the production rules.

3. If the phrase still contains non-terminal symbols, repeat step 2.

We present a simple example to motivate the previous definition better:

B ∈ Bool
B ::= ⊥() | ⊤() | ∧(B1, B2)

The intuition of this construction is that all phrases represent expressions with ∧ (NAND)
as binary operator corresponding to an evaluation of a boolean-valued function. The
symbols ⊤ and ⊥ denote true (1) and false (0). Below we let the production rules work on
the initial expression B. Note that we can omit parentheses for alternatives consisting of
only a terminal like ⊥().

B → ∧(B1, B2) → ∧(∧(B3, B4), B2) → ∧(∧(⊤, B4), B2) → · · · → ∧(∧(⊤,⊥),⊤)

It should be noted that this formal language only suggests a meaning but still needs
to have it. The expression f := ∧(⊤,∧(⊤,⊥)) can be represented as a so-called AST
(Abstract Syntax Tree) in the following way:

17

2. State of the Art

∧

⊤ ∧

⊤ ⊥

Note that this tree is independent of the concrete syntax of the expression f , i.e., we can
use the infix notation (B1∧B2) instead of ∧(B1, B2). An alternative way to write f is
⊤∧(⊤∧⊥). The outermost brackets do not influence the structure of the AST.

2.4.2. Denotational Semantics

One way of giving meaning to a language is called denotational semantics [7]. The basic idea
is to create a mapping [[·]], that maps every AST of a syntactic domain to a mathematical
object (denotation) of a semantic domain D.

The technique that makes this possible is structural induction. Although it is used to prove
properties for all elements of a syntactic domain, it can also be used to define functions on
a syntactic domain. The image of such a function can be any set, e.g., the same or another
syntactic domain. This is achieved by the definition of the result [[A]] for any alternative
A.

Take the domain Bool from earlier. We choose as the semantic domain D := {0, 1} ⊂ N,
thus [[·]] : Bool → {0, 1}. It is inductively defined by

[[⊥]] := 0, [[⊤]] := 1, [[B1∧B2]] := 1{0}([[B1]] · [[B2]]).

For f := ⊤∧(⊤∧⊥), we get

[[f]] = 1{0}([[⊤]] · [[⊤∧⊥]]) = 1{0}(1{0}([[⊤]] · [[⊥]])) = 1{0}(1{0}(0)) = 1{0}(1) = 0.

Now it is evident that this formal system reproduces the NAND operation.

18

3. Relational Algebra

This chapter presents the formal framework that underlies the rest of the work. We
introduce the domain RelationA and the operations that act on it. Moreover, we discuss
selected theorems that hold in relational algebra.

3.1. Mathematical Model

3.1.1. Domain

First Considerations

In the mathematical model, we will consider, for simplicity, infinite domains. Since we are
talking about tables, it is essential to know what the cells of the tables contain. We will use
a simple collection of domains U := {Ω∗, N} which allows us to represent strings ω ∈ Ω∗

of characters of an alphabet Ω (e.g., ASCII values) and numeric values a ∈ N.

In practice, it is common to name each column j by an attribute Aj and provide a domain
dom(Aj) ∈ U for it [15]. A certain set A = {A1, . . . , An} of attributes is called an attribute
schema or relation schemes [15], [21]. Rows are mostly described as tuples t ∈ dom(A1)×
· · · × dom(An) but they can also be treated as functions t : {A1, . . . , An} → ⋃︁

U with
the restriction t(Ai) ∈ dom(Ai) [21]. In database theory, relations are (finite) subsets of

∏n
i=1 dom(Ai) [15].

19

3. Relational Algebra

Data Types

Definition 3.1 Let n ∈ N and A = {A1, . . . , An} be an attribute schema. Then the set

RowA :=

{︄
t : A →

n⋃︂
i=1

dom(Ai) : t(Ai) ∈ dom(Ai) for all 1 ≤ i ≤ n

}︄

contains all tuples. Furthermore the set

RelationA := {r ⊆ RowA : |r| < ∞}

contains all relations.

The index A in both definitions means that they conform to schema A. In the case that
n = 0, we introduce the convention that A = ∅ and therefore the only tuple in RowA is
t : ∅ → ∅, which we itself denote as ∅. Hence, RelationA = {∅, {∅}}.

3.1.2. Operations

The operations of our model are functions of which each operates on one or more relations
and create a new relation as its result. The simplest ones are the binary set operations
because these are to be understood in the generally known way. We will therefore omit
their definitions but refer the reader to [1].

In this section following, we will define the set operations Cartesian Product and join based
on the following auxiliary function acting on rows.

Definition 3.2 Let A = {A1, . . . , An}, B = {B1, . . . , Bm} be relation schemas. The function
c : RowA × RowB → RowA∪B given by

c(t, u) := (t(A1), . . . , t(An), u(B1), . . . , u(Bm))

is called the concatenation of the rows t and u.

20

3. Relational Algebra

Definition 3.3 Let A = {A1, . . . , An}, B = {B1, . . . , Bm} be attribute schemas. The Cartesian
product C : RelationA × RelationB → RelationA∪B is given by

C(r, s) := {c(t, u) : t ∈ r ∧ u ∈ s}.

Definition 3.4 Let A = {A1, . . . , An}, B = {B1, . . . , Bm} be attribute schemas. The function
▷◁: RelationA × RelationB ×A×B → RelationA∪B given by

▷◁ (r, s, A, B) := {c(t, u) : t ∈ r ∧ u ∈ s ∧ t(A) = u(B)}

is called the (equi-)join of r and s on A and B.

Join and the Cartesian product are connected through the following theorem [21].

Theorem 3.1 Let A,B be attribute schemas, A ∈ A, B ∈ B and r ∈ RelationA, s ∈
RelationA relations. Then

▷◁ (r, s, A, B) ⊆ C(r, s)

holds.

The following operation filters out rows from a relation, namely those with a specific value
at one attribute.

Definition 3.5 Let A = {A1, . . . , An} be an attribute schema. Then the function σ : RelationA×
A×⋃︁

A∈A dom(A) → RelationA given by

σ(r, A, a) := {t ∈ r : t(A) = a}

is called the selection of all rows t in r with value a at attribute A.

Several properties of the selection can be observed. We will look at two examples, namely
the compatibility of the selection with set operations and the commutativity of the com-
posed selections [21].

21

3. Relational Algebra

Theorem 3.2 Let A be an attribute schema, A ∈ A, a ∈ dom(A) and r, s ∈ RelationA be
relations. Then

σ(r γ s, A, a) = σ(r, A, a) γ σ(s, A, a)

holds for every γ ∈ {∪,∩, \}.

Because the intersection is commutative, the last theorem implies that the composition of
selections is commutative [21].

Theorem 3.3 Let A be an attribute schema, A, B ∈ A, a ∈ dom(A), b ∈ dom(B) and r ∈
RelationA be a relation. Then

σ(σ(r, B, b), A, a) = σ(r, A, a) ∩ σ(r, B, b)

holds.

The projection takes a relation as input and creates a new one on a subschema containing
the same information.

Definition 3.6 Let A = {A1, . . . , An} be an attribute schema. The operation π : RelationA ×
P(A) → ⋃︁

A′⊆A RelationA′ defined by

π(r,B) = {t|B : t ∈ r}

is called projection of r on B.

3.2. RISCAL Model

The requirements for a theory to be processed with the computer are that all objects must
be assigned to a predefined data type, and functions should have a formal description.
We will use two methods for this. Implicit descriptions consist of conditions for the inputs
and the result of a function, whereas an explicit or algorithmic description is a procedure
for computing the result.

22

3. Relational Algebra

3.2.1. Parameters

The sets RowA and RelationA can have arbitrary dimensions, i.e., the number of rows and
columns can be any positive integer. In order to make the domains amenable to a model
checker, we need to introduce some bounds. Since a database is a collection of tables, we
also have a bound for the number of tables. Furthermore, a query can be a part of another
query. How many queries can be nested into each other also needs to be bounded. All
these variables are shown in Listing 3.1.

1 val M:N; // maximum cardinality of relations
2 val N:N; // maximum length of rows/tuples
3 val K:N; // maximum number of tables
4 val D:N; // maximum query depth

Listing 3.1: Bounds for the data types

3.2.2. Types

In an earlier section, we assumed that domains of attributes are either of Ω∗ or N. If
we continued with this approach, it would lead to large amounts of time necessary for
model checking. Hence, we simplify this and assume every domain as {0, 1} (line 1 in
the Listing 3.2). Also, a relation can have at most N attributes, and the type Attribute

contains attribute indices from 0 to N − 1 (line 2). We use a similar type Length for the
actual number of attributes, reaching from 0 to N (line 3).

1 type Element = N[1];
2 type Attribute = N[N-1];
3 type Length = N[N];

Listing 3.2: Element and index types

In analogy to RowA, the RISCAL type Row is a map with keys in Attribute and values in
Element (see line 1 of Listing 3.3). The RISCAL type Relation is also based on RowA, but
in addition to a set of rows tup, we store the arity len of the relation (line 2).

Elements of the type Relation must meet certain conditions. Firstly, because M is the
maximum number of rows, the cardinality of the tup component must have M as its upper

23

3. Relational Algebra

bound. For performance reasons, we further introduce the restriction that components of
tuples, which at an attribute greater or equal len, are zero.

1 type Row = Map[Attribute , Element];
2 type Relation = Record[len:Length , tup:Set[Row]]
3 with |value.tup| ≤ M ∧ ∀ t:Row , i:Attribute. t ∈ value.tup ∧ i ≥ value.len

⇒ t[i] = 0;

Listing 3.3: RISCAL implementation of RowA and RelationA

In RISCAL, no dynamically growing collections are built in, but one can be constructed
with recursive types [8]. The meaning of the Listing 3.4 below is as follows: A list is either
empty, i.e., is the constant List!nil or is a composition of the functions List!node.

1 rectype(D) List = nil | node(Attribute , List);

Listing 3.4: List data type

3.2.3. Set operations

For more readability, we have a predicate, shown in Listing 3.5, which denotes pairs of
relations suitable for the set operations subsequently introduced.

1 pred union_compatible(r1:Relation , r2:Relation) ⇔ r1.len=r2.len;

Listing 3.5: Predicate for union compatibility

RISCAL already provides set operations, which we use to define those for relations (see
Listing 3.6). Note that the two input relations need to be union compatible, and in the
case of union, the maximum number of rows could be exceeded. We take care of this by
adding the precondition that the sum of cardinalities of the relations shall have the upper
bound M.

1 fun rUnion(r1:Relation , r2:Relation):Relation
2 requires union_compatible(r1 ,r2) ∧ |r1.tup| + |r2.tup| ≤ M;
3 = ⟨ len: r1.len , tup: r1.tup ∪ r2.tup ⟩ ;
4
5 fun rIntersect(r1:Relation , r2:Relation):Relation

24

3. Relational Algebra

6 requires union_compatible(r1 ,r2);
7 = ⟨ len: r1.len , tup: r1.tup ∩ r2.tup ⟩ ;
8
9 fun rMinus(r1:Relation , r2:Relation):Relation

10 requires union_compatible(r1 ,r2);
11 = ⟨ len: r1.len , tup: r1.tup \ r2.tup ⟩ ;

Listing 3.6: Implementation of the set operations

3.2.4. Cartesian Product

In Listing 3.7, the precondition for the concat function is that the length of the two tuples
in the input does not exceed the maximum arity. Because c is an operation on RowA × RowA,
our implementation also takes two rows, but in addition to that, the arities of these two
tuples, i.e., for indices not exceeding n1 the components of the output are taken from t1.
For indices not exceeding n1+n2, the tuple progresses with the components of t2. The
right side of the output is padded with zeros.

1 pred concat_prec(n1:Length , n2:Length) ⇔
2 n1 + n2 ≤ N;
3
4 pred concat_spec(t:Row , t1:Row , t2:Row , n1:Length , n2:Length) ⇔
5 ∀ i:Attribute. (
6 if i < n1 then t[i] = t1[i]
7 else if i ≥ n1 ∧ i < n1+n2 then t[i] = t2[i-n1]
8 else t[i] = 0
9);

Listing 3.7: Pre- and postconditions for c

The most straightforward "implementation" of this "specification" consists of a choose

expression, that tells RISCAL to return a result that fulfills the postcondition concat_spec

(see Listing 3.8).

1 fun concat1(t1:Row , t2:Row , n1:Length , n2:Length):Row
2 requires concat_prec(n1, n2);
3 = choose t:Row with concat_spec(t,t1 ,t2 ,n1 ,n2);

Listing 3.8: Implicit implementation of c

25

3. Relational Algebra

The procedure for the concatenation has the same signature and precondition, but as its
postcondition, it ensures that it is equivalent to the specification concat_spec. In line 4 of
Listing 3.9, a bit array of size N, with entries only containing zero, is created. The same as
before is now achieved by two loops at the lines 5 and 8.

1 proc concat2(t1:Row , t2:Row , n1:Length , n2:Length):Row
2 requires concat_prec(n1, n2);
3 ensures concat_spec(result ,t1,t2,n1 ,n2); {
4 var t:Row := Array[N,Element](0);
5 for var i:Length :=0; i<n1; i:=i+1 do {
6 t[i] := t1[i];
7 }
8 for var i:Length :=n1; i<n1+n2; i:=i+1 do {
9 t[i] := t2[i-n1];

10 }
11 return t;
12 }

Listing 3.9: Explicit implementation of c

The following function definition (see Listing 3.10) is an alias for the previous one. Also,
those parts of the source code will be omitted. Every procedural implementation has such
an alias without a digit at the end.

1 fun concat(t1:Row , t2:Row , n1:Length , n2:Length):Row
2 requires concat_prec(n1, n2);
3 ensures concat_spec(result ,t1,t2,n1 ,n2);
4 = concat2(t1, t2, n1 , n2);

Listing 3.10: Alias as main implementation

The choose keyword provides a way to express the Cartesian product using quantifiers.
In Listing 3.11, it takes a logical formula as input, specifying the resulting rows’ desired
properties. Essentially, the choose keyword allows us to select rows from the input tables
such that their concatenation satisfies the given formula.

1 pred cartesian_prec(r1:Relation , r2:Relation) ⇔
2 r1.len+r2.len ≤ N ∧ |r1.tup |*|r2.tup| ≤ M;
3
4 pred cartesian_spec(r:Relation , r1:Relation , r2:Relation) ⇔

26

3. Relational Algebra

5 r.len = r1.len+r2.len ∧
6 ∀ t:Row. t∈r.tup ⇔ ∃ t1:Row , t2:Row.
7 t1∈r1.tup ∧ t2∈r2.tup ∧ concat_spec(t,t1 ,t2,r1.len ,r2.len);

Listing 3.11: Pre- and postconditions for C

The first thing one may think of when defining the Cartesian product is to use the built-in
operator × for the Cartesian product of sets. The problem is that we need to merge any
two rows into one instead of just creating pairs. With RISCAL, we can use the implicit set
definition, i.e., {A(e) : e ∈ S} is the set of all e ∈ S with the property A. This approach is
visible in Listing 3.12.

1 fun cartesian2(r1:Relation , r2:Relation):Relation
2 requires cartesian_prec(r1 , r2);
3 ensures cartesian_spec(result ,r1,r2);
4 = ⟨ len: r1.len+r2.len , tup: {concat(t1 ,t2 ,r1.len ,r2.len) | t1∈r1.tup , t2∈r2

.tup} ⟩ ;

Listing 3.12: Explicit implementation of C (version 1)

The algorithm for computing the Cartesian product is straightforward (see Listing 3.13).
In two nested loops, the concatenations of any two rows are collected.

1 proc cartesian3(r1:Relation , r2:Relation):Relation
2 requires cartesian_prec(r1 , r2);
3 ensures cartesian_spec(result ,r1,r2); {
4 var q:Relation := ⟨ len: r1.len+r2.len , tup: choose s:Set[Row] with

|s|=0 ⟩ ;
5
6 for t1 ∈ r1.tup do {
7 for t2 ∈ r2.tup do {
8 q.tup := q.tup ∪ {concat(t1 , t2, r1.len , r2.len)};
9 }

10 }
11
12 return q;
13 }

Listing 3.13: Explicit implementation of C (version 2)

27

3. Relational Algebra

3.2.5. Selection

The selection of rows of a relation r with value e at attribute a is of the same arity as
the outgoing relation. Membership of rows t in the output s can be characterized by the
property that t is in r and has the property t(a) = e. An obvious precondition is to ensure
that the attribute a does not exceed the arity of r (see Listing 3.14).

1 pred select_prec(a:Attribute) ⇔
2 a < r.len;
3
4 pred select_spec(s:Relation , r:Relation , a:Attribute , e:Element) ⇔
5 s.len = r.len ∧ ∀ t:Row. t∈s.tup ⇔ t∈r.tup ∧ t[a] = e;

Listing 3.14: Pre- and postconditions for σ

This can also be written more explicitly with the implicit set definition shown in Listing
3.15.

1 fun select2(r:Relation , a:Attribute , e:Element):Relation
2 requires select_prec(a);
3 ensures select_spec(result ,r,a,e);
4 = ⟨ len: r.len , tup: {t | t∈r.tup with t[a] = e} ⟩ ;

Listing 3.15: Explicit implementation of σ (version 1)

28

3. Relational Algebra

An algorithmic description is also possible. In Listing 3.16, we iterate over all input rows
and collect those with the preferred property in the output.

1 proc select3(r:Relation , a:Attribute , e:Element):Relation
2 requires select_prec(a);
3 ensures select_spec(result ,r,a,e); {
4 var q:Relation := ⟨ len: r.len , tup: choose s:Set[Row] with |s|=0 ⟩ ;
5
6 for t ∈ r.tup do {
7 if t[a] = e then {
8 q.tup = q.tup ∪ {t};
9 }

10 }
11 return q;
12 }

Listing 3.16: Explicit implementation of σ (version 2)

Theorems

In RISCAL, theorems are a certain kind of predicate, which are assumed to be true for all
values of their parameters. All of the assumptions of a mathematical theorem are coded
as preconditions with the requires clause. Note that this condition is a conjunction of
the preconditions of any function used to formulate the proposition of the theorem. The
compatibility property of the operation σ and set operations is implemented in Listing
3.17.

1 theorem select_union_equiv(r1:Relation , r2:Relation , a:Attribute , e:Element
)

2 requires a < r1.len ∧ a < r2.len ∧ union_compatible(r1 ,r2) ∧ |r1.tup| + |r2
.tup| ≤ M; ⇔

3 select2(rUnion(r1 ,r2),a,e) = rUnion(select2(r1, a, e), select2(r2, a, e));
4
5 theorem select_intersect_equiv(r1:Relation , r2:Relation , a:Attribute , e:

Element)
6 requires a < r1.len ∧ a < r2.len ∧ union_compatible(r1 ,r2); ⇔
7 select2(rIntersect(r1 ,r2),a,e) = rIntersect(select2(r1 , a, e), select2(r2 ,

a, e));
8

29

3. Relational Algebra

9 theorem select_minus_equiv(r1:Relation , r2:Relation , a:Attribute , e:Element
)

10 requires a < r1.len ∧ a < r2.len ∧ union_compatible(r1 ,r2); ⇔
11 select2(rMinus(r1 ,r2),a,e) = rMinus(select2(r1, a, e), select2(r2, a, e));

Listing 3.17: Implementation of Theorem 3.1

The theorem below states that for executions of two selects, composition and intersection
are essentially the same (see Listing 3.18).

1 theorem select_intersect_comp(r:Relation , a:Attribute , e:Element , b:
Attribute , f:Element)

2 requires a < r.len ∧ b < r.len; ⇔
3 select2(select2(r, a, e), b, f) = rIntersect(select2(r, a, e), select2(r, b

, f));

Listing 3.18: Implementation of Theorem 3.2

3.2.6. Projection

The input must have a specific format to declare a projection pattern. One can argue that
this array should contain values of type Attribute, but this special format requires an
"invalid index". In other words, the left part of the array contains indices in the range of
the arity of the input relation, and the right side is padded with the invalid index N (see
line 2 of Listing 3.19). Therefore the arity of the output is the number of non-N entries of
columns. For all rows in the input, there must be a row in the output such that the i-th
entry of this tuple equals the columns[i]-th entry of the input.

1 pred project_prec(r:Relation , columns:Array[N,Length]) ⇔
2 ∃ i:Attribute. ∀ j:Attribute. (j>i ⇒ columns[j] = N) ∧
3 (j≤i ⇒ columns[j] < r.len);
4
5 pred project_spec(s:Relation , r:Relation , columns:Array[N,Length]) ⇔
6 s.len = |{i | i:Attribute with columns[i] ̸= N}| ∧
7 ∀ tr:Row. tr∈r.tup ⇒ ∃ ts:Row. ts∈s.tup ∧
8 ∀ i:Attribute. i < s.len ⇒ ts[i]=tr[columns[i]];

Listing 3.19: Pre- and postconditions for π

30

3. Relational Algebra

The first part of the procedure resembles the implicit definition. At line 8 of Listing 3.20, a
loop iterates over all of the tuples in r, and in another loop, the projection of a single row
is created and added to the set of tuples of the output. Note that RISCAL allows us to
use two kinds of for loops: one that functions as an iterator for a set and another one that
iteratively increments an integer variable.

1 proc project2(r:Relation , columns:Array[N,Length]):Relation
2 requires project_prec(r, columns);
3 ensures project_spec(result ,r,columns); {
4
5 var l:Length := |{i | i:Attribute with columns[i] ̸= N}|;
6 var q:Relation := ⟨ len: l, tup: choose s:Set[Row] with |s|=0 ⟩ ;
7
8 for t ∈ r.tup do {
9 var tn:Row := Array[N,Element](0);

10
11 var j:Length := 0;
12 for var i:Length := 0; i<N; i:=i+1 do {
13 if columns[i] ̸= N then {
14 tn[j] := t[columns[i]];
15 j := j+1;
16 }
17 }
18 q.tup := q.tup ∪ {tn};
19 }
20
21 return q;
22 }

Listing 3.20: Explicit implementation of π

For the formalization of a particular theorem and parts of Chapter 4 we will need an
auxiliary function that takes a list of attributes and converts it into an array as it is
necessary for the second argument of project2. For this, we utilize the recursive structure
of the type List. While it is not an empty list, we remove layers and collect the attribute
values in an array.

An important language construct is the keyword match. With it, we can recognize certain
patterns of values of recursive types and map them to values of arbitrary other types. In

31

3. Relational Algebra

this case, we use it to separate the attribute and the list in the interior of a node (see Listing
3.21).

1 proc attributes(att:List):Array[N,Length] {
2 var arr:Array[N,Length] := Array[N,Length](N);
3
4 var l:List := att;
5 var i:Attribute := 0;
6
7 while l ̸= List!nil do {
8 arr[i] := match l with {
9 node(a:Attribute , li:List) -> a;

10 };
11 l := match l with {
12 node(a:Attribute , li:List) -> li;
13 };
14 i := i+1;
15 }
16
17 return arr;
18 }

Listing 3.21: Auxillary converter procedure

Theorems

Because there are no suitable literals or constructors for arrays in RISCAL, we depend on
the recursive list from earlier and the function parseProject. Again the attributes must
be in the range of the arity of the relation. Because we create a Cartesian product, the
precondition must contain a bound for the cardinality of the Cartesian product of r with
itself, which is 2*|r.tup| (see Listing 3.22).

1 theorem project_cartesian_subset(r:Relation , a:Attribute , b:Attribute)
2 requires a < r.len ∧ b < r.len ∧ 2*|r.tup| ≤ M; ⇔
3 project2(r,parseProject(List!node(a, List!node(b, List!nil)))).tup
4 ⊆ cartesian2(project2(r, parseProject(List!node(a, List!nil))),

project2(r, parseProject(List!node(b, List!nil)))).tup;

Listing 3.22: Implementation of Theorem 3.3

32

3. Relational Algebra

3.2.7. Join

The formalization of ▷◁ strongly resembles that of C (see Listing 3.23). If one looks at the
mathematical definition, this is no coincidence since we know that a join of two relations
is a subset of their Cartesian product.

1 pred join_prec(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute) ⇔
2 n1 <r1.len ∧ n2 <r2.len ∧ r1.len+r2.len ≤ N ∧ |r1.tup |*|r2.tup| ≤ M;
3
4 pred join_spec(s:Relation , r1:Relation , r2:Relation , n1:Attribute , n2:

Attribute) ⇔
5 s.len = r1.len+r2.len ∧ ∀ t:Row. t∈s.tup ⇔ ∃ t1:Row , t2:Row.
6 (t1∈r1.tup ∧ t2∈r2.tup ∧ concat_spec(t,t1,t2,r1.len ,r2.len) ∧ t1[n1] =

t2[n2]);

Listing 3.23: Pre- and postconditions for ▷◁

In the approach with the implicit set definition, we can spot the same similarity as in the
last definition. In Listing 3.24, the addition, in this case, is the with clause.

1 fun join2(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute):Relation
2 requires join_prec(r1, r2 , n1, n2);
3 ensures join_spec(result ,r1,r2,n1,n2);
4 = ⟨ len: r1.len+r2.len , tup: {concat(t1 ,t2 ,r1.len ,r2.len) | t1∈r1.tup , t2∈r2

.tup with t1[n1] = t2[n2]} ⟩ ;

Listing 3.24: Explicit implementation of ▷◁ (version 1)

The algorithmic description of ▷◁ adds a conditional part to that of C that is shown in
Listing 3.25.

1 proc join3(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute):Relation
2 requires join_prec(r1, r2 , n1, n2);
3 ensures join_spec(result ,r1,r2,n1,n2); {
4 var q:Relation := ⟨ len: r1.len+r2.len , tup: choose s:Set[Row] with |s

|=0 ⟩ ;
5
6 for t1 ∈ r1.tup do {
7 for t2 ∈ r2.tup do {
8 if t1[n1] = t2[n2] then {

33

3. Relational Algebra

9 q.tup := q.tup ∪ {concat(t1 , t2, r1.len , r2.len)};
10 }
11 }
12 }
13
14 return q;
15 }

Listing 3.25: Explicit implementation of ▷◁ (version 2)

3.3. Model Checking Results

In the following Tables 3.1 and 3.2, we give the times required (in milliseconds) required
by each SMT solver (Yices, Z3, Boolector, CVC4) to check the postconditions of operations
or theorems follow. The parameters for the benchmark were M = 2 and N = 2. The
system architecture on what the benchmark was run can be found in Appendix A.

Yices Z3 Boolector CVC4 MC TP (Z3)
rUnion 97 115 36 72 52 5473

rIntersect 49 23 40 59 41 5341

rMinus 37 22 8 39 45 5180

concat 12 67 1119 269 247 364

cartesian 54 1490 36095 26230 467 395

select 52 64 1210 661 92 323

project 43 122 27419 2965 97 560

join 88 3448 191882 68600 86 386

Table 3.1.: Benchmark Operations (ms)

34

3. Relational Algebra

Yices Z3 Boolector CVC4 MC TP (Z3)
select_union_equiv 7 53 30 107 112 289

select_intersect_equiv 31 54 9 85 187 285

select_minus_equiv 53 22 35 108 182 251

select_intersect_comp 30 38 38 98 67 294

join_cartesian_subset 67 4285 167761 107472 83 4109

Table 3.2.: Benchmark Theorems (ms)

For comparison, the respective times of RISCAL’s model checker based on semantic
evaluation (MC, parallel execution with 4 threads) and of the RISCTP theorem proving
interface using Z3 as an external theorem prover (TP (Z3)) are also given. Yices behaves
most reliably because the check terminates for all theorems here. RISCTP is also doing
very well in time, especially with the set operations. However, the fastest results for
checking theorems come from Z3.

35

4. Query Language

In this chapter, we provide the abstract syntax and denotational semantics of a query
language similar to SQL. This language strongly resembles the language of relational
algebra, and we will find a way to express its counterpart in real standardized SQL. All of
this will be implemented in RISCAL.

4.1. Abstract Syntax

Most importantly, we need a syntactical description for each relational algebra operation.
Therefore, the syntactical domain Query has an alternative for each operation. RISCAL
does not support a variable argument list, but projection requires one. Using the domain
List, we can avoid this problem.

Definition 4.1 The language SQLmin consists of all expressions in the syntactical domain Query.
The natural variables T and A identify tables and attributes, whereas E denotes 0 or 1.

L ∈ List
Q ∈ Query
L ::= () | (A,L)
Q ::= from(T)

| on(A1,A2,Q1,Q2)

| where(A,E,Q)

| select(L,Q)

| add(Q1,Q2)

| inters(Q1,Q2)

| minus(Q1,Q2)

| cart(Q1,Q2)

36

4. Query Language

The structure of the syntax already gives a hint as to its meaning. In the following section,
we will connect add(Q1, Q2), which is a binary function symbol in the language, to the set
operation ∪ (and similar for the other functions of the language).

4.2. Denotational Semantics

The method of denotational semantics requires that we establish a semantic domain. In
our case, this is the domain of all relations Relation (see Definition 3.1) on arbitrary
attribute schemas. Additionally, we define a collection of "base relations" in the form of a
map db from table identifiers i to concrete relations on the attribute schema Ai.

Definition 4.2 Let db : TableId → ⋃︁n
i=1 RelationAi be a database. We define the denotational

semantics [[·]]db : Query → Relation of SQLmin by structural induction in the following way:

[[from(T)]]db := db(T)

[[on(A1, A2, Q1, Q2)]]db := ▷◁ ([[Q1]]db, [[Q2]]db, A1, A2)

[[where(A, E, Q)]]db := σ([[Q]]db, A, E)

[[select(L, Q)]]db := π([[Q]]db, L)

[[add(Q1, Q2)]]db := [[Q1]]db ∪ [[Q2]]db

[[inters(Q1, Q2)]]db := [[Q1]]db ∩ [[Q2]]db

[[minus(Q1, Q2)]]db := [[Q1]]db\[[Q2]]db

[[cart(Q1, Q2)]]db := C([[Q1]]db, [[Q2]]db)

For the operations ▷◁, σ, π and C see Definitions 3.3 to 3.6.

4.3. RISCAL Model

Like earlier, for the auxiliary type List, we use the recursive types of RISCAL. Listing 4.1
starts with an alternative denoting a minimal query, i.e., with the query from, by which

37

4. Query Language

a database table can be retrieved. Mainly, the listing represents an implementation of
Definition 4.1.

1 rectype(D) Query = from(TableId)
2 | on(Attribute , Attribute , Query , Query)
3 | where(Attribute , Element , Query)
4 | select(List , Query)
5 | add(Query , Query)
6 | inters(Query , Query)
7 | minus(Query , Query)
8 | cart(Query , Query);

Listing 4.1: Recursive datatype Query

Listing 4.2 implements Definition 4.2, which can be entered with only minor adjustments
due to the RISCAL keyword match. It should be noted that db is a parameter of the query

function.

1 proc query(db:Database , q:Query):Relation {
2 var r:Relation := match q with {
3 from(tid:TableId) -> db[tid];
4 on(n1:Attribute , n2:Attribute , q1:Query , q2:Query) -> join(query(db

, q1), query(db, q2), n1, n2);
5 where(a:Attribute , e:Element , q:Query) -> select(query(db , q), a, e

);
6 select(a:List , q:Query) -> project(query(db, q), attributes(a));
7 add(q1:Query , q2:Query) -> rUnion(query(db, q1), query(db , q2));
8 inters(q1:Query , q2:Query) -> rIntersect(query(db , q1), query(db ,

q2));
9 minus(q1:Query , q2:Query) -> rMinus(query(db , q1), query(db , q2));

10 cart(q1:Query , q2:Query) -> cartesian(query(db , q1), query(db, q2))
;

11 };
12 return r;
13 }

Listing 4.2: Procedure query

38

4. Query Language

In the following, we describe how an expression in "Mini-SQL" can be translated into
regular SQL. A SQL query is always executed in the same order, which means we can sort
the clauses in the following way:

FROM
4

≻ ON
3
≻ WHERE

2
≻ SELECT

1
,

where C1 ≻ C2 means that clause C1 is evaluated before clause C2. If the corresponding
operations of the "Mini-SQL" are composed in this order, they are equivalent to a single
SQL query without subqueries. We can list every possibility because:

• The leaves of any AST must contain FROM clauses, and

• Under the assumption that the tree nodes of an AST contain clauses of strictly
ascending priority, there are a maximum of 4 layers.

This gives us eight "atomic" SQL expressions listed below.

1 2 3
4
4

2 3
4
4

1 3
4
4

SELECT <attributes >
FROM <table >
JOIN <table >
ON <attribute > = <attribute >
WHERE <attribute > = <value >;

SELECT *
FROM <table >
JOIN <table >
ON <attribute > = <attribute >
WHERE <attribute > = <value >;

SELECT <attributes >
FROM <table >
JOIN <table >
ON <attribute >

= <attribute >;

1 2 4
3

4
4

2 4

SELECT <attributes >
FROM <table >
WHERE <attribute > = <value >;

SELECT *
FROM <table >
JOIN <table >
ON <attribute > = <attribute >;

SELECT *
FROM <table >
WHERE <attribute >
= <value >;

1 4 4

SELECT <attributes >
FROM <table >;

SELECT *
FROM <table >;

39

4. Query Language

Of course, more queries can be carried out by the "Mini-SQL", but with a little effort, they
can also be translated. Take, for example, the query:

1 Query!select(l, Query!on(6, 3, Query!where(3, 0, Query!on(2, 2, Query!from
(0), Query!from (1))), Query!from (2)));

Listing 4.3: Example query in RISCAL

If we write the AST of this query while ignoring all arguments that are not of the type
Query, we get the following picture.

SELECT
1

ON
3

WHERE
2

ON
3

FROM
4

FROM
4

FROM
4

The edge between the first ON node and the WHERE node is a case where the priority of
the operations is not strictly ascending. This indicates that everything above this edge
is the outer query, and everything below this edge is the inner query. In particular, the
corresponding SQL query is given by the listing below. The subquery is made visible
through indentation.

1 SELECT 1, 2
2 FROM (
3 SELECT *
4 FROM 0
5 JOIN 1
6 ON 2 = 2
7 WHERE 3 = 0
8)
9 JOIN 2

10 ON 6 = 3;

Listing 4.4: Example query in SQL

More generally, consider an AST of a "Mini-SQL" expression, s.t. there exists an edge
(C1, C2) with C1 ⪰ C2, i.e., the node nearer to the root has higher or equal priority than

40

4. Query Language

the other node. If C1 is either equal to SELECT or WHERE, then the subquery will be placed
after the FROM keyword of the SQL query. Note that this is just a keyword and has nothing
to do with the RISCAL function from. If C1 is equal to ON, then it depends on the position
C2. If C2 is the first child of C1, then the subquery is placed after the FROM keyword, else
after the JOIN keyword.

1 proc query_to_sql(q0:Query):() {
2 match q0 with {
3 add(q1_1:Query , q1_2:Query) -> {
4 translate_add(q1_1 , q1_2);
5 }
6 inters(q1_1:Query , q1_2:Query) -> {
7 translate_inters(q1_1 , q1_2);
8 }
9 minus(q1_1:Query , q1_2:Query) -> {

10 print "Not implemented ";
11 }
12 cart(q1_1:Query , q1_2:Query) -> {
13 translate_cart(q1_1 , q1_2);
14 }
15 select(l:List , q1:Query) -> {
16 translate_select(l, q1);
17 }
18 where(a:Attribute , e:Element , q1:Query) -> {
19 print "SELECT *";
20 translate_where(a, e, q1);
21 }
22 on(n1:Attribute , n2:Attribute , q1_1:Query , q1_2:Query) -> {
23 print "SELECT *";
24 translate_on(n1 , n2 , q1_1 , q1_2);
25 }
26 from(tid:TableId) -> {
27 print "SELECT *";
28 translate_from(tid);
29 }
30 }
31 }

Listing 4.5: Implementation of query_to_sql

41

4. Query Language

Listing 4.5 describes the procedure for printing an equivalent SQL statement for a given
query. The expression q0 is matched based on the root of its AST. If the root is not
SELECT, there is no projection, and the statement will start with SELECT * to select all
attributes of the relation. The procedures starting with translate hide recursive calls to
query_to_sql.

1 proc translate_add(q0_1:Query , q0_2:Query):() {
2 print "(";
3 query_to_sql(q0_1);
4 print ") UNION ";
5 print "(";
6 query_to_sql(q0_2);
7 print ")";
8 }
9

10 proc translate_inters(q0_1:Query , q0_2:Query):() {
11 print "(";
12 query_to_sql(q0_1);
13 print ") INTERSECT ";
14 print "(";
15 query_to_sql(q0_2);
16 print ")";
17 }

Listing 4.6: Implementation of translation procedures for the set operations

The two set operations, union and intersection, are binary. The left-hand side and right-
hand side queries are translated and concatenated with one of the SQL keywords UNION
or INTERSECT, as shown in Listing 4.6.

1 proc translate_select(l:List , q0:Query):() {
2 var att:List := l;
3 print "SELECT ";
4 while att ̸= List!nil do {
5 var a:Attribute := match att with {
6 node(a:Attribute , li:List) -> a;
7 };
8 att := match att with {
9 node(a:Attribute , li:List) -> li;

10 };
11 if att ̸= List!nil then {

42

4. Query Language

12 print "{1}, ", a;
13 } else {
14 print a;
15 }
16 }
17 match q0 with {
18 where(a:Attribute , e:Element , q1:Query) -> {
19 translate_where(a, e, q1);
20 }
21 on(n1:Attribute , n2:Attribute , q1_1:Query , q1_2:Query) -> {
22 translate_on(n1 , n2 , q1_1 , q1_2);
23 }
24 from(tid:TableId) -> {
25 translate_from(tid);
26 }
27 _ -> {
28 translate_blank(q0);
29 }
30 }
31 }

Listing 4.7: Implementation of translate_select

Listing 4.7 presents a procedure that takes a list of attributes and a query and prints the
SQL equivalent of the query on the given attributes. The procedure first loops over all
attributes by deconstructing every list node into the contained attribute and the inner list
(see lines 5 and 8) and prints them separated by commas.

The query q0 is matched according to its root. If its priority is higher than the priority of
SELECT, then the output is enhanced (the query remains atomic). A subquery is produced
if the root is of the same priority, i.e., the one of SELECT. The subquery occurs after the
SQL keyword FROM, as shown in Listing 4.8. The process of producing subqueries follows
the same paradigm across all translation procedures.

1 proc translate_blank(q0:Query):() {
2 print "FROM (";
3 query_to_sql(q0);
4 print ")";
5 }

Listing 4.8: Implementation of translate_blank

43

4. Query Language

Listing 4.9 shows the procedure translate_from, which is similar to translate_blank

in that it also prints a FROM clause. However, while translate_blank creates a subquery,
translate_from prints the reference to the specified table.

1 proc translate_from(tid:TableId):() {
2 print "FROM {1}", tid;
3 }

Listing 4.9: Implementation of translate_from

The procedure translate_where (Listing 4.10) takes an attribute and an element of the
domain, and a query and adds a WHERE clause at the end. Once again, the root node of the
AST of q0 is considered. The two clauses with higher priority are ON and FROM, handled
on lines 3 and 6, respectively. If neither of these clauses is present, a subquery is produced
in line 9.

1 proc translate_where(a:Attribute , e:Element , q0:Query):() {
2 match q0 with {
3 on(n1:Attribute , n2:Attribute , q1_1:Query , q1_2:Query) -> {
4 translate_on(n1 , n2 , q1_1 , q1_2);
5 }
6 from(tid:TableId) -> {
7 translate_from(tid);
8 }
9 _ -> {

10 translate_blank(q0);
11 }
12 }
13 print "WHERE {1} = {2}", a, e;
14 }

Listing 4.10: Implementation of translate_where

Listing 4.11 presents the procedure translatecart, corresponding to a binary operation.
This procedure first checks if the root nodes of the input query ASTs are FROM (using
pattern matching in lines 2 and 6). If so, it extracts the identifiers of the tables. Otherwise,
it returns a tuple with false as the first component and a placeholder identifier 0 as the
second component.

44

4. Query Language

Since there is no projection, the first line printed is SELECT * (line 10). In line 11, a nested
If-Then-Else statement is used to construct the FROM clause based on the structure of the
input queries. Depending on whether the queries produce subqueries or table identifiers
after the FROM clause, none, one, or two subqueries are printed.

1 proc translate_cart(q0_1:Query , q0_2:Query):() {
2 var q1_term:Tuple[Bool , TableId] := match q0_1 with {
3 from(tid:TableId) -> ⟨ true , tid ⟩ ;
4 _ -> ⟨ false , 0 ⟩ ;
5 };
6 var q2_term:Tuple[Bool , TableId] := match q0_2 with {
7 from(tid:TableId) -> ⟨ true , tid ⟩ ;
8 _ -> ⟨ false , 0 ⟩ ;
9 };

10 print "SELECT *";
11 if q1_term .1 then {
12 if q2_term .1 then {
13 print "FROM {1}, {2}", q1_term.2, q2_term .2;
14 } else {
15 print "FROM {1}, (", q1_term .2;
16 query_to_sql(q0_2);
17 print ")";
18 }
19 } else {
20 if q2_term .1 then {
21 print "FROM (";
22 query_to_sql(q0_1);
23 print "), {1}", q2_term .2;
24 } else {
25 print "FROM (";
26 query_to_sql(q0_1);
27 print "), (";
28 query_to_sql(q0_2);
29 print ")";
30 }
31 }
32 }

Listing 4.11: Implementation of translate_cart

45

4. Query Language

Listing 4.12 presents the procedure translate_on, which is similar to translate_cart

(Listing 4.11), but with a different output format. Instead of producing a comma-separated
list of subqueries or table identifiers, translate_on produces two separate clauses for the
left-hand and right-hand side queries. The FROM clause contains only the left-hand side
query, and the JOIN clause introduces the right-hand side query. At line 36, the procedure
prints the ON clause that specifies the join condition.

1 proc translate_on(n1:Attribute , n2:Attribute , q0_1:Query , q0_2:Query):() {
2 var q1_term:Tuple[Bool , TableId] := match q0_1 with {
3 from(tid:TableId) -> ⟨ true , tid ⟩ ;
4 _ -> ⟨ false , 0 ⟩ ;
5 };
6 var q2_term:Tuple[Bool , TableId] := match q0_2 with {
7 from(tid:TableId) -> ⟨ true , tid ⟩ ;
8 _ -> ⟨ false , 0 ⟩ ;
9 };

10
11 if q1_term .1 then {
12 if q2_term .1 then {
13 print "FROM {1}", q1_term .2;
14 print "JOIN {1}", q2_term .2;
15 } else {
16 print "FROM {1}", q1_term .2;
17 print "JOIN (";
18 query_to_sql(q0_2);
19 print ")";
20 }
21 } else {
22 if q2_term .1 then {
23 print "FROM (";
24 query_to_sql(q0_1);
25 print ")";
26 print "JOIN {1}", q2_term .2;
27 } else {
28 print "FROM (";
29 query_to_sql(q0_1);
30 print ")";
31 print "JOIN (";
32 query_to_sql(q0_2);
33 print ")";
34 }

46

4. Query Language

35 }
36 print "ON {1} = {2}", n1, n2;
37 }

Listing 4.12: Implementation of translate_on

4.4. Executions

In order to verify the correctness of the work presented in this chapter, we will use a
simple database as a basis for our test cases. The general structure of the database can be
seen in Table 4.1.

0 1
0 1 0 1
0 0 0 1
0 1 1 0

1 1

Table 4.1.: Sample database

47

4. Query Language

The sample database can be created in Sqlite using the DDL script shown in Listing 4.13.

1 BEGIN TRANSACTION;
2 CREATE TABLE IF NOT EXISTS "0" (
3 "0" INTEGER ,
4 "1" INTEGER
5);
6 CREATE TABLE IF NOT EXISTS "1" (
7 "0" INTEGER ,
8 "1" INTEGER
9);

10 INSERT INTO "0" ("0" ,"1") VALUES (0,0);
11 INSERT INTO "0" ("0" ,"1") VALUES (0,1);
12 INSERT INTO "1" ("0" ,"1") VALUES (0,1);
13 INSERT INTO "1" ("0" ,"1") VALUES (1,0);
14 INSERT INTO "1" ("0" ,"1") VALUES (1,1);
15 COMMIT;

Listing 4.13: DDL script for sample database

We also create a RISCAL procedure that returns the database as an array of relations
(Listing 4.14).

1 proc sample_database ():Array[K, Relation] {
2 var dum:Map[Attribute ,Element] := Map[Attribute ,Element](0);
3
4 var emp:Relation := ⟨ len: 0, tup: choose s:Set[Row] with |s|=0 ⟩ ;
5 var r1:Relation := ⟨ len: 2, tup: choose s:Set[Row] with |s|=0 ⟩ ;
6 var r2:Relation := ⟨ len: 2, tup: choose s:Set[Row] with |s|=0 ⟩ ;
7
8 r1.tup := r1.tup ∪ {dum};
9 dum [1] := 1;

10 r1.tup := r1.tup ∪ {dum};
11 r2.tup := r2.tup ∪ {dum};
12 dum [0] := 1;
13 r2.tup := r2.tup ∪ {dum};
14 dum [1] := 0;
15 r2.tup := r2.tup ∪ {dum};
16
17 var db:Array[K, Relation] := Array[K, Relation](emp) with [0]=r1 with

[1]=r2;
18

48

4. Query Language

19 return db;
20 }

Listing 4.14: RISCAL procedure for sample database

Each test case in RISCAL is associated with a query q. The following steps are followed
for each test case:

1. Execute the query q using the query procedure in RISCAL.

2. Translate q to SQL and make necessary adaptations for the Sqlite system.

3. Execute the query in Sqlite.

The test case is considered successful if the output of RISCAL and Sqlite matches.

4.4.1. Atomic Queries

Test Cases

The first query (see Listing 4.15) has every possible clause of an atomic query.

1 var q1:Query := Query!select(List!node(2, List!node(0, List!nil)), Query!
where(1, 0, Query!on(0, 1, Query!from (0), Query!from (1))));

Listing 4.15: Syntactic query in RISCAL

Executing query_to_sql(q1) in RISCAL produces the output shown in Listing 4.16.

1 SELECT
2 2,
3 0
4 FROM 0
5 JOIN 1
6 ON 0 = 1
7 WHERE 1 = 0

Listing 4.16: Translation into SQL

To make the output compatible with SQLite, some changes need to be made:

49

4. Query Language

• Tables and column names must be enclosed in quotes.

• The table’s name containing the column must be written before the column name,
separated by a dot.

• Since SELECT ≻ JOIN, the projection on attribute with index 2 refers to the first
attribute of the right-hand table of the join. Therefore, the index must be replaced
with "1"."0", where 1 is the second table and 0 is its first attribute.

Listing 4.17 shows the query executed in SQLite and its result.

1 sqlite > SELECT "1"."0" , "0"."0"
2 ...> FROM "0"
3 ...> JOIN "1"
4 ...> ON "0"."0" = "1"."1"
5 ...> WHERE "0"."1" = 0;
6 1|0

Listing 4.17: Execution in SQLite

When we execute query(db, q1) in RISCAL, the system outputs [2, {[1, 0, 0, 0]}] as the
result. This matches the output obtained from SQLite. Other test cases can be found in
Appendix A. Their resulting outputs can be found in the table below.

50

4. Query Language

Query RISCAL SQLite

Query!select(l,
Query!where(1, 1,
Query!from (0)))

Query result:
[2,{[1 ,0 ,0,0]}]
SELECT
1,
0
FROM 0
WHERE 1 = 1
;

sqlite > SELECT "0"."1" , "0"."0"
...> FROM "0"
...> WHERE "0"."1" = 1;

1|0

Query!select(
List!node(1,
List!node(2,
List!nil)),
Query!on(0, 1,
Query!from (0),
Query!from (1)));

Query result:
[2,{[0,1,0,0],[1,1,0,0]}]
SELECT
1,
2
FROM 0
JOIN 1
ON 0 = 1
;

sqlite > SELECT "0"."1" , "1"."0"
...> FROM "0"
...> JOIN "1"
...> ON "0"."0" = "1"."1";

0|1
1|1

Query!select(l,
Query!from (1));

Query result:
[2,{[1,0,0,0],[1,1,0,0],
[0,1,0,0]}]
SELECT
1,
0
FROM 1
;

sqlite > SELECT "1"."1" , "1"."0"
...> FROM "1";

1|0
0|1
1|1

Query!where(1, 0,
Query!on(0, 1,
Query!from (0),
Query!from (1)));

Query result:
[4,{[0 ,0 ,1,0]}]
SELECT *
FROM 0
JOIN 1
ON 0 = 1
WHERE 1 = 0
;

sqlite > SELECT *
...> FROM "0"
...> JOIN "1"
...> ON "0"."0" = "1"."1"
...> WHERE "0"."1" = "0"."0";

0|0|1|0

51

4. Query Language

Query RISCAL SQLite

Query!where(1, 0,
Query!from (0));

Query result:
[2,{[0 ,0 ,0,0]}]
SELECT *
FROM 0
WHERE 1 = 0
;

sqlite > SELECT *
...> FROM "0"
...> WHERE "0"."1" = "0"."0";

0|0

Query!on(0, 1,
Query!from (0),
Query!from (1));

Query result:
[4,{[0,0,1,0],[0,1,1,0]}]
SELECT *
FROM 0
JOIN 1
ON 0 = 1
;

sqlite > SELECT *
...> FROM "0"
...> JOIN "1"
...> ON "0"."0" = "1"."1";

0|0|1|0
0|1|1|0

Query!from (0);

Query result:
[2,{[0,0,0,0],[0,1,0,0]}]
SELECT *
FROM 0
;

sqlite > SELECT *
...> FROM "0";

0|0
0|1

4.4.2. Non-atomic Queries

We have already tested the translation and execution of atomic queries and are now
proceeding with non-atomic queries. As an example, consider the query shown in Listing
4.18.

1 var qq:Query := Query!where(2, 0, Query!on(0, 1, Query!from (0), Query!
select(List!node(1, List!node(2, List!nil)), Query!on(0, 0, Query!
from (0), Query!from (1)))));

Listing 4.18: Syntactic query in RISCAL

When we translate it using the RISCAL procedure, we obtain the query shown in Listing
4.19.

1 SELECT *
2 FROM 0
3 JOIN (

52

4. Query Language

4 SELECT
5 1,
6 2
7 FROM 0
8 JOIN 1
9 ON 0 = 0

10)
11 ON 0 = 1
12 WHERE 2 = 0
13 ;

Listing 4.19: Translation into SQL

In the previous section, we saw how to adapt an atomic query to meet the requirements of
Sqlite. The same approach can be applied to subqueries. However, for the outer query,
we need to consider additional aspects. Firstly, every subquery must be given a name for
reference. In this case, we name it _1. Secondly, we need to rename every attribute in the
enclosing query following the order of clauses. The resulting query is shown in Listing
4.20.

1 sqlite > SELECT *
2 ...> FROM "0"
3 ...> JOIN (
4 ...> SELECT "0"."1" , "1"."0"
5 ...> FROM "0"
6 ...> JOIN "1"
7 ...> ON "0"."0" = "1"."0"
8 ...>) AS "_1"
9 ...> ON "0"."0" = "_1"."1"

10 ...> WHERE "_1 "."0" = 0;
11 0|0|0|0
12 0|1|0|0

Listing 4.20: Execution in SQLite

Executing this query in RISCAL produces [4, {[0, 0, 0, 0], [0, 1, 0, 0]}] as output, which
matches the result obtained from SQLite earlier. Again, other test cases can be found in
the table below, and their implementation is given in Appendix A.

53

4. Query Language

Query RISCAL SQLite

Query!on(1, 0,
Query!select(
List!node(1,
List!node(0,
List!nil)),
Query!from (1)),
Query!select(
List!node(0,
List!nil),
Query!from (0)));

Query result:
[3,{[1 ,0 ,0,0]}]
SELECT *
FROM (
SELECT
1,
0
FROM 1
)
JOIN (
SELECT
0
FROM 0
)
ON 1 = 0
;

sqlite > SELECT *
...> FROM (
...> SELECT "1"."1" AS "0", "1"."0" AS "1"
...> FROM "1"
...>) AS "_1"
...> JOIN (
...> SELECT "0"."0" AS "0"
...> FROM "0"
...>) AS "_0"
...> ON "_1 "."1" = "_0 "."0";
1|0|0
1|0|0

Query!where(1, 0,
Query!select(
List!node(1,
List!node(0,
List!nil)),
Query!from (1)));

Query result:
[2,{[1 ,0 ,0,0]}]
SELECT *
FROM (
SELECT
1,
0
FROM 1
)
WHERE 1 = 0
;

sqlite > SELECT *
...> FROM (
...> SELECT "1"."1" AS "0", "1"."0" AS "1"
...> FROM "1"
...>) AS "_1"
...> WHERE "_1 "."1" = 0;

1|0

54

5. Conclusions and Further Work

In summary, we looked at the foundations of relational databases, namely relational
algebra, and created a formalization accessible to model checkers, i.e., for validating
the specification. This is very helpful because we could rely on correctly implemented
operations to develop a query language similar to SQL.

This simple language had the advantage that it could be easily translated into standard
SQL, allowing it to be tested not only in the RISCAL environment but also in SQLite,
a well-known relational database. Nevertheless, this language qualifies as a tool to
understand relational algebra as it should work without the peculiarities of a concrete
SQL dialect. One could proceed by implementing this language in a general-purpose
programming language. Its expressiveness is probably worse than that of real-world SQL
implementations, but it can be assumed that its foundation conforms to a mathematically
exact specification. This may be useful in the future.

We used all the different methods RISCAL offers us for model checking, with its semantic
evaluation, SMT-LIB translation, and its latest addition - theorem proving via RISCTP.
We mentioned that RISCTP works on top of external theorem provers, although a new
backend with an internal solver compatible with first-order logic is planned. It would also
have been interesting to see how well such a tool could handle the formal specification in
this thesis, especially given the benchmark result.

A final remark concerns the generation of the specification itself. This task cannot yet be
automated, but tools such as RISCAL, which acts as a sandbox for testing, can simplify
this manual process and make it fun for mathematicians and programmers due to its ease
of use.

55

A. RISCAL Source Code

1 val M:N; // maximum cardinality of relations
2 val N:N; // maximum length of rows/tuples
3 val K:N; // maximum number of tables
4 val D:N; // maximum query depth
5 val L:N; // maximum list length
6
7 type Element = N[1];
8 type Attribute = N[N-1];
9 type Length = N[N];

10 type TableId = N[K];
11 type Row = Map[Attribute , Element];
12 type Relation = Record[len:Length , tup:Set[Row]]
13 with |value.tup| ≤ M ∧ ∀ t:Row , i:Attribute. t ∈ value.tup ∧ i ≥ value.len

⇒ t[i] = 0;
14 type Database = Array[K, Relation];
15
16 //
17
18 pred union_compatible(r1:Relation , r2:Relation) ⇔ r1.len=r2.len;
19
20 fun rUnion(r1:Relation , r2:Relation):Relation
21 requires union_compatible(r1 ,r2) ∧ |r1.tup| + |r2.tup| ≤ M;
22 = ⟨ len: r1.len , tup: r1.tup ∪ r2.tup ⟩ ;
23
24 fun rIntersect(r1:Relation , r2:Relation):Relation
25 requires union_compatible(r1 ,r2);
26 = ⟨ len: r1.len , tup: r1.tup ∩ r2.tup ⟩ ;
27
28 fun rMinus(r1:Relation , r2:Relation):Relation
29 requires union_compatible(r1 ,r2);
30 = ⟨ len: r1.len , tup: r1.tup \ r2.tup ⟩ ;
31
32 //

56

A. RISCAL Source Code

33
34 pred concat_prec(n1:Length , n2:Length) ⇔
35 n1 + n2 ≤ N;
36
37 pred concat_spec(t:Row , t1:Row , t2:Row , n1:Length , n2:Length) ⇔
38 ∀ i:Attribute. (
39 if i < n1 then t[i] = t1[i]
40 else if i ≥ n1 ∧ i < n1+n2 then t[i] = t2[i-n1]
41 else t[i] = 0
42);
43
44 fun concat1(t1:Row , t2:Row , n1:Length , n2:Length):Row
45 requires concat_prec(n1, n2);
46 = choose t:Row with concat_spec(t,t1 ,t2 ,n1 ,n2);
47
48 proc concat2(t1:Row , t2:Row , n1:Length , n2:Length):Row
49 requires concat_prec(n1, n2);
50 ensures concat_spec(result ,t1,t2,n1 ,n2); {
51 var t:Row := Array[N,Element](0);
52 for var i:Length :=0; i<n1; i:=i+1 do {
53 t[i] := t1[i];
54 }
55 for var i:Length :=n1; i<n1+n2; i:=i+1 do {
56 t[i] := t2[i-n1];
57 }
58 return t;
59 }
60
61 fun concat(t1:Row , t2:Row , n1:Length , n2:Length):Row
62 requires concat_prec(n1, n2);
63 ensures concat_spec(result ,t1,t2,n1 ,n2);
64 = concat2(t1, t2, n1 , n2);
65
66 //
67
68 pred cartesian_prec(r1:Relation , r2:Relation) ⇔
69 r1.len+r2.len ≤ N ∧ |r1.tup |*|r2.tup| ≤ M;
70
71 pred cartesian_spec(r:Relation , r1:Relation , r2:Relation) ⇔
72 r.len = r1.len+r2.len ∧
73 ∀ t:Row. t∈r.tup ⇔ ∃ t1:Row , t2:Row.
74 t1∈r1.tup ∧ t2∈r2.tup ∧ concat_spec(t,t1 ,t2,r1.len ,r2.len);

57

A. RISCAL Source Code

75
76 fun cartesian1(r1:Relation , r2:Relation):Relation
77 requires cartesian_prec(r1 , r2);
78 = choose r:Relation with cartesian_spec(r,r1,r2);
79
80 fun cartesian2(r1:Relation , r2:Relation):Relation
81 requires cartesian_prec(r1 , r2);
82 ensures cartesian_spec(result ,r1,r2);
83 = ⟨ len: r1.len+r2.len , tup: {concat(t1 ,t2 ,r1.len ,r2.len) | t1∈r1.tup , t2∈r2

.tup} ⟩ ;
84
85 proc cartesian3(r1:Relation , r2:Relation):Relation
86 requires cartesian_prec(r1 , r2);
87 ensures cartesian_spec(result ,r1,r2); {
88 var q:Relation := ⟨ len: r1.len+r2.len , tup: choose s:Set[Row] with |s|=0 ⟩

;
89
90 for t1 ∈ r1.tup do {
91 for t2 ∈ r2.tup do {
92 q.tup := q.tup ∪ {concat(t1, t2, r1.len , r2.len)};
93 }
94 }
95
96 return q;
97 }
98
99 fun cartesian(r1:Relation , r2:Relation):Relation

100 requires cartesian_prec(r1 , r2);
101 ensures cartesian_spec(result ,r1,r2);
102 = cartesian3(r1, r2);
103
104 //
105
106 pred select_prec(r:Relation , a:Attribute) ⇔
107 a < r.len;
108
109 pred select_spec(s:Relation , r:Relation , a:Attribute , e:Element) ⇔
110 s.len = r.len ∧ ∀ t:Row. t∈s.tup ⇔ t∈r.tup ∧ t[a] = e;
111
112 fun select1(r:Relation , a:Attribute , e:Element):Relation
113 requires select_prec(r,a);
114 = choose s:Relation with select_spec(s,r,a,e);

58

A. RISCAL Source Code

115
116 fun select2(r:Relation , a:Attribute , e:Element):Relation
117 requires select_prec(r,a);
118 ensures select_spec(result ,r,a,e);
119 = ⟨ len: r.len , tup: {t | t∈r.tup with t[a] = e} ⟩ ;
120
121 proc select3(r:Relation , a:Attribute , e:Element):Relation
122 requires select_prec(r,a);
123 ensures select_spec(result ,r,a,e); {
124 var q:Relation := ⟨ len: r.len , tup: choose s:Set[Row] with |s|=0 ⟩ ;
125
126 for t ∈ r.tup do {
127 if t[a] = e then {
128 q.tup = q.tup ∪ {t};
129 }
130 }
131 return q;
132 }
133
134 fun select(r:Relation , a:Attribute , e:Element):Relation
135 requires select_prec(r,a);
136 ensures select_spec(result ,r,a,e);
137 = select3(r, a, e);
138
139 //
140
141 theorem select_union_equiv(r1:Relation , r2:Relation , a:Attribute , e:Element

)
142 requires a < r1.len ∧ a < r2.len ∧ union_compatible(r1 ,r2) ∧ |r1.tup| + |r2

.tup| ≤ M; ⇔
143 select2(rUnion(r1 ,r2),a,e) = rUnion(select2(r1, a, e), select2(r2, a, e));
144
145 theorem select_intersect_equiv(r1:Relation , r2:Relation , a:Attribute , e:

Element)
146 requires a < r1.len ∧ a < r2.len ∧ union_compatible(r1 ,r2); ⇔
147 select2(rIntersect(r1 ,r2),a,e) = rIntersect(select2(r1 , a, e), select2(r2 ,

a, e));
148
149 theorem select_minus_equiv(r1:Relation , r2:Relation , a:Attribute , e:Element

)
150 requires a < r1.len ∧ a < r2.len ∧ union_compatible(r1 ,r2); ⇔
151 select2(rMinus(r1 ,r2),a,e) = rMinus(select2(r1, a, e), select2(r2, a, e));

59

A. RISCAL Source Code

152
153 theorem select_intersect_comp(r:Relation , a:Attribute , e:Element , b:

Attribute , f:Element)
154 requires a < r.len ∧ b < r.len; ⇔
155 select2(select2(r, a, e), b, f) = rIntersect(select2(r, a, e), select2(r, b

, f));
156
157 //
158
159 pred project_prec(r:Relation , columns:Array[N,Length]) ⇔
160 ∃ i:Attribute. ∀ j:Attribute. (j>i ⇒ columns[j] = N) ∧
161 (j≤i ⇒ columns[j] < r.len);
162
163 pred project_spec(s:Relation , r:Relation , columns:Array[N,Length]) ⇔
164 s.len = |{i | i:Attribute with columns[i] ̸= N}| ∧
165 ∀ tr:Row. tr∈r.tup ⇒ ∃ ts:Row. ts∈s.tup ∧
166 ∀ i:Attribute. i < s.len ⇒ ts[i]=tr[columns[i]];
167
168 fun project1(r:Relation , columns:Array[N,Length]):Relation
169 requires project_prec(r, columns);
170 = choose s:Relation with project_spec(s,r,columns);
171
172 proc project2(r:Relation , columns:Array[N,Length]):Relation
173 requires project_prec(r, columns);
174 ensures project_spec(result ,r,columns); {
175
176 var l:Length := |{i | i:Attribute with columns[i] ̸= N}|;
177 var q:Relation := ⟨ len: l, tup: choose s:Set[Row] with |s|=0 ⟩ ;
178
179 for t ∈ r.tup do {
180 var tn:Row := Array[N,Element](0);
181
182 var j:Length := 0;
183 for var i:Length := 0; i<N; i:=i+1 do {
184 if columns[i] ̸= N then {
185 tn[j] := t[columns[i]];
186 j := j+1;
187 }
188 }
189 q.tup := q.tup ∪ {tn};
190 }
191

60

A. RISCAL Source Code

192 return q;
193 }
194
195 fun project(r:Relation , columns:Array[N,Length]):Relation
196 requires project_prec(r, columns);
197 ensures project_spec(result ,r,columns);
198 = project2(r, columns);
199
200 //
201
202 pred join_prec(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute) ⇔
203 n1 <r1.len ∧ n2 <r2.len ∧ r1.len+r2.len ≤ N ∧ |r1.tup |*|r2.tup| ≤ M;
204
205 pred join_spec(s:Relation , r1:Relation , r2:Relation , n1:Attribute , n2:

Attribute) ⇔
206 s.len = r1.len+r2.len ∧ ∀ t:Row. t∈s.tup ⇔ ∃ t1:Row , t2:Row.
207 (t1∈r1.tup ∧ t2∈r2.tup ∧ concat_spec(t,t1,t2,r1.len ,r2.len) ∧ t1[n1] = t2

[n2]);
208
209 fun join1(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute):Relation
210 requires join_prec(r1, r2 , n1 , n2);
211 = choose s:Relation with join_spec(s,r1 ,r2 ,n1,n2);
212
213 fun join2(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute):Relation
214 requires join_prec(r1, r2 , n1 , n2);
215 ensures join_spec(result ,r1,r2,n1,n2);
216 = ⟨ len: r1.len+r2.len , tup: {concat(t1 ,t2 ,r1.len ,r2.len) | t1∈r1.tup , t2∈r2

.tup with t1[n1] = t2[n2]} ⟩ ;
217
218 proc join3(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute):Relation
219 requires join_prec(r1, r2 , n1 , n2);
220 ensures join_spec(result ,r1,r2,n1,n2); {
221 var q:Relation := ⟨ len: r1.len+r2.len , tup: choose s:Set[Row] with |s|=0 ⟩

;
222
223 for t1 ∈ r1.tup do {
224 for t2 ∈ r2.tup do {
225 if t1[n1] = t2[n2] then {
226 q.tup := q.tup ∪ {concat(t1, t2, r1.len , r2.len)};
227 }
228 }
229 }

61

A. RISCAL Source Code

230
231 return q;
232 }
233
234 fun join(r1:Relation , r2:Relation , n1:Attribute , n2:Attribute):Relation
235 requires join_prec(r1, r2 , n1 , n2);
236 ensures join_spec(result ,r1,r2,n1,n2);
237 = join3(r1, r2, n1 , n2);
238
239 //
240
241 theorem join_cartesian_subset(r1:Relation , r2:Relation , n1:Attribute , n2:

Attribute)
242 requires n1 <r1.len ∧ n2 <r2.len ∧ r1.len+r2.len ≤ N ∧ |r1.tup |*|r2.tup| ≤ M;

⇔
243 join3(r1 , r2, n1, n2).tup ⊆ cartesian3(r1, r2).tup;
244
245 //
246
247 rectype(L) List = nil | node(Attribute , List);
248 rectype(D) Query = from(TableId)
249 | on(Attribute , Attribute , Query , Query)
250 | where(Attribute , Element , Query)
251 | select(List , Query)
252 | add(Query , Query)
253 | inters(Query , Query)
254 | minus(Query , Query)
255 | cart(Query , Query);
256
257
258 proc attributes(att:List):Array[N,Length] {
259 var arr:Array[N,Length] := Array[N,Length](N);
260
261 var l:List := att;
262 var i:Attribute := 0;
263
264 while l ̸= List!nil do {
265 arr[i] := match l with {
266 node(a:Attribute , li:List) -> a;
267 };
268 l := match l with {
269 node(a:Attribute , li:List) -> li;

62

A. RISCAL Source Code

270 };
271 i := i+1;
272 }
273
274 return arr;
275 }
276
277 proc query(db:Database , q:Query):Relation {
278 var r:Relation := match q with {
279 from(tid:TableId) -> db[tid];
280 on(n1:Attribute , n2:Attribute , q1:Query , q2:Query) -> join(query(db , q1

), query(db, q2), n1 , n2);
281 where(a:Attribute , e:Element , q:Query) -> select(query(db , q), a, e);
282 select(a:List , q:Query) -> project(query(db, q), attributes(a));
283 add(q1:Query , q2:Query) -> rUnion(query(db, q1), query(db, q2));
284 inters(q1:Query , q2:Query) -> rIntersect(query(db , q1), query(db, q2));
285 minus(q1:Query , q2:Query) -> rMinus(query(db , q1), query(db , q2));
286 cart(q1:Query , q2:Query) -> cartesian(query(db, q1), query(db, q2));
287 };
288 return r;
289 }
290
291 //
292
293 proc test():Relation {
294 var dum:Map[Attribute ,Element] := Map[Attribute ,Element](0);
295
296 var emp:Relation := ⟨ len: 0, tup: choose s:Set[Row] with |s|=0 ⟩ ;
297 var r1:Relation := ⟨ len: 3, tup: choose s:Set[Row] with |s|=0 ⟩ ;
298 var r2:Relation := ⟨ len: 2, tup: choose s:Set[Row] with |s|=0 ⟩ ;
299
300 r1.tup := r1.tup ∪ {dum};
301 r2.tup := r2.tup ∪ {dum};
302 dum [1] := 1;
303 r1.tup := r1.tup ∪ {dum};
304 r2.tup := r2.tup ∪ {dum};
305 dum [0] := 1;
306 r1.tup := r1.tup ∪ {dum};
307 dum [1] := 0;
308 r2.tup := r2.tup ∪ {dum};
309 dum [1] := 1;
310 dum [2] := 1;

63

A. RISCAL Source Code

311 r1.tup := r1.tup ∪ {dum};
312
313 var columns:List := List!node(0, List!node(2, List!nil));
314
315 var db:Array[K, Relation] := Array[K, Relation](emp) with [0]=r1 with

[1]=r2;
316
317 return query(db , Query!on(0,0,
318 Query!select(columns ,
319 Query!where(1,1,
320 Query!from (0)
321)
322),
323 Query!from (1)
324)
325);
326 }
327
328 proc result ():Relation {
329 var dum:Map[Attribute ,Element] := Map[Attribute ,Element](0);
330 var r:Relation := ⟨ len: 4, tup: choose s:Set[Row] with |s|=0 ⟩ ;
331
332 r.tup := r.tup ∪ {dum};
333
334 dum [3] := 1;
335 r.tup := r.tup ∪ {dum};
336
337 dum [3] := 0;
338 dum [0] := 1;
339 dum [2] := 1;
340 r.tup := r.tup ∪ {dum};
341
342 dum [1] := 1;
343 r.tup := r.tup ∪ {dum};
344
345 return r;
346 }
347
348 theorem correct_result () ⇔ test() = result ();
349
350 proc query_to_sql(q0:Query):()
351 proc translate_on(n1:Attribute , n2:Attribute , q0_1:Query , q0_2:Query):()

64

A. RISCAL Source Code

352 proc translate_cart(q0_1:Query , q0_2:Query):()
353 proc translate_where(a:Attribute , e:Element , q0:Query):()
354 proc translate_from(tid:TableId):()
355 proc translate_blank(q0:Query):()
356 proc translate_select(l:List , q0:Query):()
357
358 proc translate_add(q0_1:Query , q0_2:Query):() {
359 print "(";
360 query_to_sql(q0_1);
361 print ") UNION ";
362 print "(";
363 query_to_sql(q0_2);
364 print ")";
365 }
366
367 proc translate_inters(q0_1:Query , q0_2:Query):() {
368 print "(";
369 query_to_sql(q0_1);
370 print ") INTERSECT ";
371 print "(";
372 query_to_sql(q0_2);
373 print ")";
374 }
375
376 proc translate_select(l:List , q0:Query):() {
377 var att:List := l;
378 print "SELECT ";
379 while att ̸= List!nil do {
380 var a:Attribute := match att with {
381 node(a:Attribute , li:List) -> a;
382 };
383 att := match att with {
384 node(a:Attribute , li:List) -> li;
385 };
386 if att ̸= List!nil then {
387 print "{1}, ", a;
388 } else {
389 print a;
390 }
391 }
392 match q0 with {
393 where(a:Attribute , e:Element , q1:Query) -> {

65

A. RISCAL Source Code

394 translate_where(a, e, q1);
395 }
396 on(n1:Attribute , n2:Attribute , q1_1:Query , q1_2:Query) -> {
397 translate_on(n1 , n2 , q1_1 , q1_2);
398 }
399 from(tid:TableId) -> {
400 translate_from(tid);
401 }
402 _ -> {
403 translate_blank(q0);
404 }
405 }
406 }
407
408 proc translate_blank(q0:Query):() {
409 print "FROM (";
410 query_to_sql(q0);
411 print ")";
412 }
413
414 proc translate_from(tid:TableId):() {
415 print "FROM {1}", tid;
416 }
417
418 proc translate_where(a:Attribute , e:Element , q0:Query):() {
419 match q0 with {
420 on(n1:Attribute , n2:Attribute , q1_1:Query , q1_2:Query) -> {
421 translate_on(n1 , n2 , q1_1 , q1_2);
422 }
423 from(tid:TableId) -> {
424 translate_from(tid);
425 }
426 _ -> {
427 translate_blank(q0);
428 }
429 }
430 print "WHERE {1} = {2}", a, e;
431 }
432
433 proc translate_cart(q0_1:Query , q0_2:Query):() {
434 var q1_term:Tuple[Bool , TableId] := match q0_1 with {
435 from(tid:TableId) -> ⟨ true , tid ⟩ ;

66

A. RISCAL Source Code

436 _ -> ⟨ false , 0 ⟩ ;
437 };
438 var q2_term:Tuple[Bool , TableId] := match q0_2 with {
439 from(tid:TableId) -> ⟨ true , tid ⟩ ;
440 _ -> ⟨ false , 0 ⟩ ;
441 };
442 print "SELECT *";
443 if q1_term .1 then {
444 if q2_term .1 then {
445 print "FROM {1}, {2}", q1_term.2, q2_term .2;
446 } else {
447 print "FROM {1}, (", q1_term .2;
448 query_to_sql(q0_2);
449 print ")";
450 }
451 } else {
452 if q2_term .1 then {
453 print "FROM (";
454 query_to_sql(q0_1);
455 print "), {1}", q2_term .2;
456 } else {
457 print "FROM (";
458 query_to_sql(q0_1);
459 print "), (";
460 query_to_sql(q0_2);
461 print ")";
462 }
463 }
464 }
465
466
467 proc translate_on(n1:Attribute , n2:Attribute , q0_1:Query , q0_2:Query):() {
468 var q1_term:Tuple[Bool , TableId] := match q0_1 with {
469 from(tid:TableId) -> ⟨ true , tid ⟩ ;
470 _ -> ⟨ false , 0 ⟩ ;
471 };
472 var q2_term:Tuple[Bool , TableId] := match q0_2 with {
473 from(tid:TableId) -> ⟨ true , tid ⟩ ;
474 _ -> ⟨ false , 0 ⟩ ;
475 };
476
477 if q1_term .1 then {

67

A. RISCAL Source Code

478 if q2_term .1 then {
479 print "FROM {1}", q1_term .2;
480 print "JOIN {1}", q2_term .2;
481 } else {
482 print "FROM {1}", q1_term .2;
483 print "JOIN (";
484 query_to_sql(q0_2);
485 print ")";
486 }
487 } else {
488 if q2_term .1 then {
489 print "FROM (";
490 query_to_sql(q0_1);
491 print ")";
492 print "JOIN {1}", q2_term .2;
493 } else {
494 print "FROM (";
495 query_to_sql(q0_1);
496 print ")";
497 print "JOIN (";
498 query_to_sql(q0_2);
499 print ")";
500 }
501 }
502 print "ON {1} = {2}", n1, n2;
503 }
504
505 proc query_to_sql(q0:Query):() {
506 match q0 with {
507 add(q1_1:Query , q1_2:Query) -> {
508 translate_add(q1_1 , q1_2);
509 }
510 inters(q1_1:Query , q1_2:Query) -> {
511 translate_inters(q1_1 , q1_2);
512 }
513 minus(q1_1:Query , q1_2:Query) -> {
514 print "Not implemented ";
515 }
516 cart(q1_1:Query , q1_2:Query) -> {
517 translate_cart(q1_1 , q1_2);
518 }
519 select(l:List , q1:Query) -> {

68

A. RISCAL Source Code

520 translate_select(l, q1);
521 }
522 where(a:Attribute , e:Element , q1:Query) -> {
523 print "SELECT *";
524 translate_where(a, e, q1);
525 }
526 on(n1:Attribute , n2:Attribute , q1_1:Query , q1_2:Query) -> {
527 print "SELECT *";
528 translate_on(n1 , n2 , q1_1 , q1_2);
529 }
530 from(tid:TableId) -> {
531 print "SELECT *";
532 translate_from(tid);
533 }
534 }
535 }
536
537 proc sample_database ():Array[K, Relation] {
538 var dum:Map[Attribute ,Element] := Map[Attribute ,Element](0);
539
540 var emp:Relation := ⟨ len: 0, tup: choose s:Set[Row] with |s|=0 ⟩ ;
541 var r1:Relation := ⟨ len: 2, tup: choose s:Set[Row] with |s|=0 ⟩ ;
542 var r2:Relation := ⟨ len: 2, tup: choose s:Set[Row] with |s|=0 ⟩ ;
543
544 r1.tup := r1.tup ∪ {dum};
545 dum [1] := 1;
546 r1.tup := r1.tup ∪ {dum};
547 r2.tup := r2.tup ∪ {dum};
548 dum [0] := 1;
549 r2.tup := r2.tup ∪ {dum};
550 dum [1] := 0;
551 r2.tup := r2.tup ∪ {dum};
552
553 var db:Array[K, Relation] := Array[K, Relation](emp) with [0]=r1 with

[1]=r2;
554
555 return db;
556
557 }
558
559 proc query_to_sql_atomic_test ():() {
560

69

A. RISCAL Source Code

561 var db:Array[K, Relation] := sample_database ();
562
563 var q1:Query := Query!select(List!node(2, List!node(0, List!nil)), Query!

where(1, 0, Query!on(0, 1, Query!from (0), Query!from (1))));
564 var q2:Query := Query!select(List!node(1, List!node(0, List!nil)), Query!

where(1, 1, Query!from (0)));
565 var q3:Query := Query!select(List!node(1, List!node(2, List!nil)), Query!

on(0, 1, Query!from (0), Query!from (1)));
566 var q4:Query := Query!select(List!node(1, List!node(0, List!nil)), Query!

from (1));
567 var q5:Query := Query!where(1, 0, Query!on(0, 1, Query!from (0), Query!

from (1)));
568 var q6:Query := Query!where(1, 0, Query!from (0));
569 var q7:Query := Query!on(0, 1, Query!from (0), Query!from (1));
570 var q8:Query := Query!from (0);
571
572 print "Query result :";
573 print query(db, q1);
574 query_to_sql(q1);
575 print ";";
576 print "";
577
578 print "Query result :";
579 print query(db, q2);
580 query_to_sql(q2);
581 print ";";
582 print "";
583
584 print "Query result :";
585 print query(db, q3);
586 query_to_sql(q3);
587 print ";";
588 print "";
589
590 print "Query result :";
591 print query(db, q4);
592 query_to_sql(q4);
593 print ";";
594 print "";
595
596 print "Query result :";
597 print query(db, q5);

70

A. RISCAL Source Code

598 query_to_sql(q5);
599 print ";";
600 print "";
601
602 print "Query result :";
603 print query(db, q6);
604 query_to_sql(q6);
605 print ";";
606 print "";
607
608 print "Query result :";
609 print query(db, q7);
610 query_to_sql(q7);
611 print ";";
612 print "";
613
614 print "Query result :";
615 print query(db, q8);
616 query_to_sql(q8);
617 print ";";
618 print "";
619
620 }
621
622 proc query_to_sql_nonatomic_test ():() {
623
624 var db:Array[K, Relation] := sample_database ();
625
626 var qq1:Query := Query!select(List!node(0, List!nil), Query!select(List!

node(1, List!node(0, List!nil)), Query!from (1)));
627 var qq2:Query := Query!where(1, 0, Query!select(List!node(1, List!node(0,

List!nil)), Query!from (1)));
628 var qq3:Query := Query!on(1, 0, Query!select(List!node(1, List!node(0,

List!nil)), Query!from (1)), Query!select(List!node(0, List!nil),
Query!from (0)));

629 var qq4:Query := Query!on(1, 0, Query!where(1, 0, Query!from (0)), Query!
select(List!node(0, List!nil), Query!from (0)));

630 var qq5:Query := Query!on(0, 1, Query!where(1, 0, Query!from (0)), Query!
where(0, 0, Query!from (0)));

631 var qq6:Query := Query!where(0, 0, Query!where(1, 1, Query!from (0)));
632
633 print "Query result :";

71

A. RISCAL Source Code

634 print query(db, qq1);
635 query_to_sql(qq1);
636 print ";";
637 print "";
638
639 print "Query result :";
640 print query(db, qq2);
641 query_to_sql(qq2);
642 print ";";
643 print "";
644
645 print "Query result :";
646 print query(db, qq3);
647 query_to_sql(qq3);
648 print ";";
649 print "";
650
651 print "Query result :";
652 print query(db, qq4);
653 query_to_sql(qq4);
654 print ";";
655 print "";
656
657 print "Query result :";
658 print query(db, qq5);
659 query_to_sql(qq5);
660 print ";";
661 print "";
662
663 print "Query result :";
664 print query(db, qq6);
665 query_to_sql(qq6);
666 print ";";
667 print "";
668
669 }

Listing A.1: Complete RISCAL source code

72

B. Test Architecture

• Host system

– OS: Windows 10 Version 22H2

– CPU: Intel(R) Core(TM) i3-7100 CPU @ 3.90GHz (2 cores)

– RAM: 16000 MB

• Virtual Machine

– OS: Debian GNU/Linux 11 (bullseye)

– RAM: 11370 MB

• Java: openjdk 11.0.18 2023-01-17

• RISCAL: Version 4.2.2 (September 16, 2022)

73

Bibliography

[1] Gábor Bodnár. Information Systems Lecture Notes. Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria. 2005. URL: https:
//www3.risc.jku.at/education/courses/ws2011/is/ln.pdf.

[2] Andreas Meier and Michael Kaufmann. SQL- & NoSQL-Datenbanken. 8., überarb.
u. erw. Aufl. 2016. eXamen.press. Berlin, Heidelberg: Springer Vieweg, 2016. ISBN:
978-3-662-47664-2. DOI: 10.1007/978-3-662-47664-2.

[3] E. Codd. “A Relational Model of Data for Large Shared Data Banks”. In: Commun.
ACM 13 (Jan. 1970), pp. 377–387. DOI: 10.1007/978-3-642-48354-7_4.

[4] E. Codd. “Relational completeness of database sublanguages”. In: ACM Transactions
on Database Systems - TODS (Jan. 1971), pp. 6–14. URL: http://www.inf.unibz.it/
~franconi/teaching/2006/kbdb/Codd72a.pdf.

[5] E. Codd. “Derivability, Redundancy and Consistency of Relations Stored in Large
Data Banks”. In: SIGMOD Record 38 (June 2009), pp. 17–36. DOI: 10.1145/1558334.
1558336.

[6] Select-Project-Join Expressions. URL: https://mlwiki.org/index.php/Select-
Project-Join_Expressions.

[7] Wolfgang Schreiner. Thinking Programs: Logical Modeling and Reasoning about Lan-
guages, Data, Computations, and Executions. Springer, 2021. DOI: 10.1007/978-3-030-
80507-4.

[8] Wolfgang Schreiner. Concrete Abstractions: Formalizing and Analyzing Discrete Theories
and Algorithms with the RISCAL Model Checker. Springer, 2023. ISBN: 978-3-031-24933-
4. DOI: 10.1007/978-3-031-24934-1.

[9] RISCAL. 2022. URL: https://www3.risc.jku.at/research/formal/software/
RISCAL/.

74

https://www3.risc.jku.at/education/courses/ws2011/is/ln.pdf
https://www3.risc.jku.at/education/courses/ws2011/is/ln.pdf
https://doi.org/10.1007/978-3-662-47664-2
https://doi.org/10.1007/978-3-642-48354-7_4
http://www.inf.unibz.it/~franconi/teaching/2006/kbdb/Codd72a.pdf
http://www.inf.unibz.it/~franconi/teaching/2006/kbdb/Codd72a.pdf
https://doi.org/10.1145/1558334.1558336
https://doi.org/10.1145/1558334.1558336
https://mlwiki.org/index.php/Select-Project-Join_Expressions
https://mlwiki.org/index.php/Select-Project-Join_Expressions
https://doi.org/10.1007/978-3-030-80507-4
https://doi.org/10.1007/978-3-030-80507-4
https://doi.org/10.1007/978-3-031-24934-1
https://www3.risc.jku.at/research/formal/software/RISCAL/
https://www3.risc.jku.at/research/formal/software/RISCAL/

Bibliography

[10] Wolfgang Schreiner (with contributions of Franz-Xaver Reichl and Ágoston Sütő).
The RISC Algorithm Language (RISCAL), Tutorial and Reference Manual. Tech. rep.
Research Institute for Symbolic Computation (RISC), Johannes Kepler University,
Linz, Austria, Mar. 2023. URL: https://www3.risc.jku.at/research/formal/
software/RISCAL/manual/main.pdf.

[11] Clark Barret, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.6.
Tech. rep. Department of Computer Science, The University of Iowa, 2017. URL:
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-

12.pdf.

[12] Franz-Xaver Reichl. “The Integration of SMT Solvers into the RISCAL Model
Checker”. MA thesis. Research Institute for Symbolic Computation (RISC), Johannes
Kepler University, Linz, Austria, 2020. URL: https://epub.jku.at/obvulihs/
content/titleinfo/5118206.

[13] RISCTP. 2022. URL: https://www3.risc.jku.at/research/formal/software/
RISCTP/.

[14] Wolfgang Schreiner. The RISCTP Theorem Proving Interface Tutorial and Reference Man-
ual. Tech. rep. 22-07. Research Institute for Symbolic Computation (RISC), Johannes
Kepler University, Linz, Austria, 2023. DOI: 10.35011/risc.22-07.

[15] Alfons Kemper and André Eickler. Datenbanksysteme: Eine Einführung. 10th ed. De
Gruyter Studium. De Gruyter Oldenbourg, 2015. ISBN: 978-3-11-044375-2.

[16] M.J. Hernandez. Database Design for Mere Mortals: A Hands-on Guide to Relational
Database Design. For Mere Mortals Series. Addison-Wesley, 2003. ISBN: 9780201752847.

[17] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, et al. “A History
and Evaluation of System R”. In: Commun. ACM 24.10 (Oct. 1981), pp. 632–646. ISSN:
0001-0782. DOI: 10.1145/358769.358784.

[18] SQLite. URL: https://sqlite.org/index.html.

[19] Wolfgang Schreiner and Franz-Xaver Reichl. “Mathematical Model Checking Based
on Semantics and SMT”. In: Transactions on Internet Research 16(2) (2021), pp. 4–13.
URL: http://ipsitransactions.org/journals/papers/tir/2020jul/p2.pdf.

[20] Chinook Database. URL: https://github.com/lerocha/chinook-database.

[21] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

75

https://www3.risc.jku.at/research/formal/software/RISCAL/manual/main.pdf
https://www3.risc.jku.at/research/formal/software/RISCAL/manual/main.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://epub.jku.at/obvulihs/content/titleinfo/5118206
https://epub.jku.at/obvulihs/content/titleinfo/5118206
https://www3.risc.jku.at/research/formal/software/RISCTP/
https://www3.risc.jku.at/research/formal/software/RISCTP/
https://doi.org/10.35011/risc.22-07
https://doi.org/10.1145/358769.358784
https://sqlite.org/index.html
http://ipsitransactions.org/journals/papers/tir/2020jul/p2.pdf
https://github.com/lerocha/chinook-database

Bibliography

[22] Armin Biere, Marijn Heule, H. Maaren, et al. Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. Jan. 2009. ISBN: 1586039296,
9781586039295.

[23] José Bacelar Almeida, Maria João Frade, Jorge Sousa Pinto, et al. Rigorous Software
Development - An Introduction to Program Verification. Undergraduate Topics in Com-
puter Science. Springer, 2011. ISBN: 978-0-85729-018-2. DOI: 10.1007/978-0-85729-
018-2.

[24] Dirk Hoffmann. Grenzen der Mathematik. Jan. 2018. ISBN: 978-3-662-56616-9. DOI:
10.1007/978-3-662-56617-6.

[25] E.M. Clarke, T.A. Henzinger, H. Veith, et al. Handbook of Model Checking. Springer,
May 2018. DOI: 10.1007/978-3-319-10575-8.

[26] Armin Biere, Alessandro Cimatti, Edmund Clarke, et al. “Bounded Model Check-
ing”. In: Advances in Computers 58 (Dec. 2003), pp. 117–148. DOI: 10.1016/S0065-
2458(03)58003-2.

[27] SMT-LIB The Satisfiability Modulo Theories Library. URL: https://smtlib.cs.uiowa.
edu/.

[28] Wolfgang Schreiner. “Validating Mathematical Theorems and Algorithms with
RISCAL”. In: Intelligent Computer Mathematics. Ed. by Florian Rabe, William M.
Farmer, Grant O. Passmore, et al. Cham: Springer International Publishing, 2018,
pp. 248–254. ISBN: 978-3-319-96812-4. DOI: 10.1007/978-3-319-96812-4_21.

[29] Wolfgang Schreiner and Franz-Xaver Reichl. “Semantic evaluation versus SMT
solving in the RISCAL model checker”. In: RISC Report Series, 21-11. June 2021. DOI:
10.35011/risc.21-11.

76

https://doi.org/10.1007/978-0-85729-018-2
https://doi.org/10.1007/978-0-85729-018-2
https://doi.org/10.1007/978-3-662-56617-6
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://smtlib.cs.uiowa.edu/
https://smtlib.cs.uiowa.edu/
https://doi.org/10.1007/978-3-319-96812-4_21
https://doi.org/10.35011/risc.21-11

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Bachelorarbeit selbstständig und
ohne fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht
benutzt bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich
gemacht habe. Die vorliegende Bachelorarbeit ist mit dem elektronisch übermittelten
Textdokument identisch.

Linz, May 4, 2023 Joachim Borya

77

	1 Introduction
	1.1 Background
	1.2 Goals and Results
	1.2.1 Goals
	1.2.2 Achieved Results

	1.3 Structure of the Thesis

	2 State of the Art
	2.1 Relational Databases
	2.2 Relational Algebra
	2.3 Program Verification and Model Checking
	2.3.1 Formal Verification
	2.3.2 RISCAL

	2.4 Formal Languages
	2.4.1 Abstract Syntax
	2.4.2 Denotational Semantics

	3 Relational Algebra
	3.1 Mathematical Model
	3.1.1 Domain
	3.1.2 Operations

	3.2 RISCAL Model
	3.2.1 Parameters
	3.2.2 Types
	3.2.3 Set operations
	3.2.4 Cartesian Product
	3.2.5 Selection
	3.2.6 Projection
	3.2.7 Join

	3.3 Model Checking Results

	4 Query Language
	4.1 Abstract Syntax
	4.2 Denotational Semantics
	4.3 RISCAL Model
	4.4 Executions
	4.4.1 Atomic Queries
	4.4.2 Non-atomic Queries

	5 Conclusions and Further Work
	A RISCAL Source Code
	B Test Architecture

