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MACMAHON’S PARTITION ANALYSIS XIV:

PARTITIONS WITH n COPIES OF n

GEORGE E. ANDREWS AND PETER PAULE

Abstract. We apply the methods of partition analysis to partitions with n copies of n.
This allows us to obtain multivariable generating functions related to classical Rogers-
Ramanujan type identities. Also, partitions with n copies of n are extended to partition
diamonds yielding numerous new results including a natural connection to overpartitions
and a variety of partition congruences.

AMS Mathematics Subject Classification. Primary: 05A17, 11P83, 11F33; secondary:
05A15, 05A19, 11Y99.

Keywords: partitions, overpartitions, partitions with n copies of n, partition analysis, q-
series, modular forms and partition congruences, Radu’s Ramanujan-Kolberg algorithm.

1. Introduction

This paper is devoted to the study of partitions with n copies of n by means of partition
analysis. Our basic objects are subscripted positive integers wherein the subscript does
not exceed the integer. We order these objects lexicographically

11 < 21 < 22 < 31 < 32 < 33 < 41 < 42 < 43 < 44 < . . .

We now define the weighted difference between mi and nj to be

((mi − nj)) := m− n− i− j.

Additionally, we shall sometimes consider partitions with (n + 1) copies of n. Here the
subscript 0 will be allowed, and lexicographic order is maintained; i.e.,

10 < 11 < 20 < 21 < 22 < 30 < 31 < 32 < 33 < . . .

The study of partitions with n copies of n had its origins in Regime III of the hard
hexagon model [3]. It was made explicit in [4] where two theorems were presented linking
partitions with n copies of n to ordinary partitions.

Theorem 1 ([4], p. 41). The number of partitions of N using n copies of n in which the
weighted difference between parts is non-negative equals the number of ordinary partitions
of N into parts 6≡ 0,±6 (mod 14).
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2 GEORGE E. ANDREWS AND PETER PAULE

Theorem 2 ([4], p. 41). The number of partitions of N using n copies of n in which the
weighted difference between parts is positive equals the number of ordinary partitions of N
into parts 6≡ 0,±4 (mod 10).

In [1], A.K. Agarwal proved that the generating function for partitions with n copies of
n and weighted difference between parts ≥ r with r ≥ −2 is given by

(1.1)
∑

n≥0

qn
2+r(n2)

(q; q)n(q; q2)n
,

where
(A; q)m := (1− A)(1− Aq) . . . (1− Aqm−1).

Setting r = 0 in the generating function (1.1), from [17, p. 158, eq. (61)] Agarwal deduced
Theorem 1, and setting r = 1 in (1.1), from equation (46) in [17] he deduced Theorem 2.
In addition, he noted that r = −1 matches equation (88) in [17].

In [7] the theory of separable integer partition classes was applied to deduce all of the
above results results.

The object of this paper is to apply partition analysis to the study of partitions with n
copies of n, and also partitions with (n+ 1) copies of n. Partition analysis easily provides
us with multivariable generating functions which, in turn, reveal theorems not readily
discovered by other methods.

In Section 2, we derive a multivariable version of (1.1) in Theorem 5; moreover,we present
new proofs of Theorems 1 and 2, and draw a connection to one of Ramanujan’s fifth order
mock theta functions.

Section 3 is devoted to partitions with (n+ 1) copies of n. As a corollary of this study,
we prove

Theorem 3. The number of overpartitions of N equals the number of partitions of N with
(n+ 1) copies of n wherein the weighted difference between parts is non-negative.

Remark. Overpartitions (first defined by Corteel and Lovejoy [9]) are ordinary partitions
with the addition of one part of each part size possibly being overlined.

As an example of Theorem 3, take N = 4: The 14 overpartitions of 4 are

4, 4̄, 31, 3̄1, 31̄, 3̄1̄, 22, 2̄2, 211, 2̄11, 21̄1, 2̄1̄1, 1111, 1̄111.

The 14 partitions of 4 into (n+1) copies of n with non-negative weighted difference between
parts are

40, 41, 42, 43, 44, 3010, 3011, 3110, 3111, 3210, 2020, 201010, 211010, 10101010.

In Section 4 we extend the concept of partition diamonds to partitions with n (and
(n+1)) copies of n. Partition diamonds were first studied in [5]. In this setting summands
ai are placed at the vertices of a directed graph with the inequalities between parts as
indicated in Figure 1; an arrow pointing from ai to aj means that ai ≥ aj.
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a1
a3m+1

a2 a5 a8 a3m−1

a3 a6 a9 a3m

a4 a7 a10 a3m−2

. . .

Figure 1. A plane partition diamond of length m.

To extend the n copies of n (or (n+1) copies of n) concept to this setting, we introduce
the following conditions:

(A) The summands at the links (i.e., a1, a4, a7, a10, . . . ) may have a full set of subscripts,
namely 1, 2, . . . , n for n copies of n, or 0, 1, . . . , n for (n+ 1) copies of n.

(B) All other summands may only have the subscript 0.

(C) The “≥” sign means that the weighted difference between parts is ≥ 0.

Here as before we shall obtain multivariable generating functions. We shall also consider
Schmidt-type theorems as we did in [6]. Perhaps the most striking result here is the
following, proven in Section 3:

Theorem 4. The number of partitions of N into parts of three colors equals the number
of partitions with (n+ 1) copies of n wherein the weighted difference between parts is non-
negative and the first, third, fifth, . . . summands add up to N .

The rest of our article is structured as follows. In Section 5, with Theorem 9 we begin
to present congruences for the partition numbers PDN1(N); i.e., the number of partition
diamonds with (n + 1) copies of n where summing the parts at the links gives N . In
Section 6 we describe the algorithmic tool we use to derive further congruences: Radu’s
Ramanujan-Kolberg algorithm [13] and Smoot’s Mathematica package RaduRK [18] which
implements it. In Section 7 we consider diamond partition congruences on arithmetic
subsequences 5n + j, 0 ≤ j ≤ 4. Section 8 presents some more congruences, for instance,
PDN1(7m + 5) ≡ 0 (mod 7) in Corollary 7. Other divisibility properties, mod 25 and
mod 49, are proven in Theorem 17 and Theorem 15. The conclusion is made by the
curious congruences (8.23) and (8.25).

2. Partitions with n copies of n and partition analysis

Theorem 5. The generating function for partitions with n copies of n with m parts in
which the weighted difference between parts ≥ r with r ≥ −2 is given by

(2.1)
x
(m−1)r+(2m−1)
1 x

(m−2)r+(2m−3)
2 . . . x0·r+1

m
∏m

i=1(1− x1x2 . . . xi) · (1− x1)
∏m

i=2(1− x2
1x

2
2 . . . x

2
i−1xi)

,

where the exponent of xi accounts for the ith part of the partition in question.
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Before we begin the proof of Theorem 5, we must recall the basic ideas of partition
analysis [11].

We shall be concerned with the operator Ω≥. It operates on multivariate Laurent series
as follows:

(2.2) Ω
≥

∞
∑

s1=−∞

· · ·
∞
∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsr

r :=
∞
∑

s1=0

· · ·
∞
∑

sr=0

As1,...,sr .

Thus Ω≥ annihilates all terms in which any λi exponent is negative, and it then sets all
λi = 1 in the remaining terms. In the analytic setting, the domain of the As1,...,sr is the
field of rational functions over C in several complex variables and the λi are restricted to
a neighborhood of the circle |λi| = 1. In addition, the As1,...,sr are required to be such that
any of the series involved is absolutely convergent within the domain of the definition of
As1,...,sr .

To prove Theorem 5, we require the following identities from partition analysis, [6, p.
98, eq. (2.2)] and [11, p. 102, §348, 2nd eq.]:

(2.3) Ω
≥

λ−s

(1− Aλ)(1− Bλ−r) . . . (1− Cλ−t)
=

As

(1− A)(1− ArB) . . . (1− AtC)
,

where s, r, . . . , t ∈ ❩≥0, and

(2.4) Ω
≥

1

(1− λx)(1− λy)(1− z
λ
)
=

1− xyz

(1− x)(1− y)(1− xz)(1− yz)
.

Proof of Theorem 5. Partition analysis allows us to embed the various difference conditions
in the exponents of the λ’s. Also we note that the role played by the subscripts of the
n copies of n only appears in the exponents of the λ’s where the requirements for the
weighted differences between parts is effectuated.

Hence, in terms of partition analysis our generating function is given by

Ω
≥

∑

n1,...,nm≥0
1≤ij≤nj,1≤j≤m

xn1
1 xn2

2 . . . xnm

m λn1−n2−i1−i2−r
1 λn2−n3−i2−i3−r

2 . . . λ
nm−1−nm−im−1−im−r
m−1 λnm−1

m

= Ω
≥

∑

i1,...,im≥1
n1,...,nm≥0

xn1+i1
1 xn2+i2

2 . . . xnm+im
m λn1−n2−2i2−r

1 λn2−n3−2i3−r
2 . . . λ

nm−1−nm−2im−r
m−1 λnm+im−1

m

=
x1x2 . . . xm

1− x1

Ω
≥

λ−r−2
1 λ−r−2

2 . . . λ−r−2
m−1 λ

−1
m

(1− x1λ1)(1− x2
λ2

λ1
) . . . (1− xm−1

λm−1

λm−2
)(1− xm

λm

λm−1
)

×
1

(1− x2

λ2
1
)(1− x3

λ2
2
) . . . (1− xm−1

λ2
m−2

)(1− λm
xm

λ2
m−1

)
.

(2.5)

Now if m = 1, the above is merely
x1

1− x1

.
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If m = 2, then

x1x2

1− x1

Ω
≥

λ−r−2
1

(1− x1λ1)(1− x2
λ2

λ1
)(1− x2

λ2

λ2
1
)
=

xr+3
1 x2

(1− x1)(1− x1x2) · (1− x1)(1− x2
1x2)

by (2.3). In general, if we eliminate λ1 from (2.5) by means of (2.3), we obtain

xr+3
1 x2 . . . xm

(1− x1)2(1− x1x2)
Ω
≥

λ−r−2
2 . . . λ−r−2

m−1

(1− x1x2λ2)(1− x3
λ3

λ2
) . . . (1− xm−1

λm−1

λm−2
)(1− xm

λm

λm−1
)

×
1

(1− x3

λ2
2
)(1− x4

λ2
3
) . . . (1− xm−1

λ2
m−2

)(1− λm
xm

λ2
m−1

)
.

Now the above Ω≥ expression is just the original expression with m replaced by m − 1,
each xi → xi+1 for i = 2, . . . ,m − 1, and x1 replaced by x1x2. Thus iteration yields that
all λ’s may be eliminated in exactly the same way yielding (2.1) as desired. �

Corollary 1 ([1]). The generating function for partitions with n copies of n in which the
weighted difference between parts is ≥ r with r ≥ −2 is given by

(2.6)
∑

m≥0

qm
2+r(m2 )

(q; q)m(q; q2)m
.

Proof. Set all xi = q in Theorem 5, and then sum over all m ≥ 0. �

Note: Corollary 1 was originally proved by A.K. Agarwal in [1] using q-difference equa-
tions. A second proof appeared in [7] where the partitions with n copies of n are analyzed
using the method of separable integer partition classes.

Proof of Theorem 1. Take r = 0 in (2.6) and recall [17, p. 158, eq. (61)],

∑

n≥0

qm
2

(q; q)m(q; q2)m
=

∏

n=1
n 6≡0,±6 (mod 14)

1

1− qn
.

�

Proof of Theorem 2. Take r = 1 in (2.6) and recall [17, p. 156, eq. (46)],

∑

n≥0

qm(3m−1)/2

(q; q)m(q; q2)m
=

∏

n=1
n 6≡0,±4 (mod 10)

1

1− qn
.

�
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2.1. On the r = −2 case for n copies of n. The special case r = −2 of Corollary 1
leads to a connection to one of the fifth order mock theta functions of Ramanujan. Namely,
setting r = −2 in (2.6) gives,

∑

n≥0

qn

(q; q)n(q; q2)n
=

1

(q2; q2)∞

∑

n≥0

qn

(q; q)n
(q2n+1; q2)∞

=
1

(q2; q2)∞

∑

n≥0

qn

(q; q)n

∑

m≥0

(−1)mqm
2+2mn

(q2; q2)m
(by [2, eq. (2.2.6)])

=
1

(q2; q2)∞

∑

m≥0

(−1)mqm
2

(q2; q2)m

1

(q2m+1; q)∞
(by [2, eq. (2.2.5)])

=
1

(q2; q2)∞(q; q)∞

∑

m≥0

(−1)mqm
2
(q; q)2m

(q2; q2)m

=
1

(q2; q2)∞(q; q)∞
·
∑

m≥0

(−1)mqm
2

(q; q2)m

=
(−q; q)∞
(q; q)∞

· φ0(−q) (by [2, eq. (1.2.5)]),(2.7)

where φ0 is one of Ramanujan’s fifth order mock theta functions. This leads us to include
the following “Ramanujanesque” theorem.

Theorem 6. The generating function for partitions with n copies of n in which the weighted
difference between parts is ≥ −2 is given by

(2.8)
φ0(−q)

φ(−q)
,

where φ0 is one of Ramanujan’s fifth order mock theta functions,

φ0(q) =
∑

m≥0

qm
2

(−q; q2)m,

and, in Ramanujan’s notation,

φ(q) =
∞
∑

n=−∞

qn
2

.

Proof. In view of (2.7), the proof is completed by noting that

(q; q)∞
(−q; q)∞

=
∞
∑

n=−∞

(−1)nqn
2

,

a fact already known to Gauß [2, eq. (2.2.12)]). �
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For example,

φ0(−q)

φ(−q)
= 1 + q + 3q2 + 6q3 + 11q4 + 19q5 + 32q6 + . . . ;

the 11 relevant partitions of 4 are

44, 43, 42, 41, 33 + 11, 32 + 11, 31 + 11, 21 + 21, 22 + 11 + 11, 21 + 11 + 11, 11 + 11 + 11 + 11.

3. Partitions with (n+ 1) copies of n and partition analysis

The treatment of partitions with (n + 1) copies of n is simpler than that of n copies of
n and leads to some striking results. We restrict our considerations to the simplest case.

Theorem 7. The generating function for partitions with (n+ 1) copies of n in which the
weighted difference between parts is ≥ 0 is given by

(3.1)
1

∏∞
i=1(1− x1x2 . . . xi)

∏∞
i=1(1− x2

1x
2
2 . . . x

2
i−1xi)

,

where the exponent of xi accounts for the ith part of the partition in question.

Proof. We begin with the Ω≥ version of the generating function,

lim
m→∞

Ω
≥

∑

n1,...,nm≥0
0≤ij≤nj,1≤j≤m

xn1
1 xn2

2 . . . xnm

m λn1−n2−i1−i2
1 λn2−n3−i2−i3

2 . . . λ
nm−1−nm−im−1−im
m−1 λnm

m

=
1

1− x1

lim
m→∞

Ω
≥

1

(1− x1λ1)(1− x2
λ2

λ1
) . . . (1− xm−1

λm−1

λm−2
)(1− xm

λm

λm−1
)

×
1

(1− x2

λ2
1
)(1− x3

λ2
2
) . . . (1− xm−1

λ2
m−2

)(1− λm
xm

λ2
m−1

)

= lim
m→∞

1
∏m

i=1(1− x1x2 . . . xi)
∏m

i=1(1− x2
1x

2
2 . . . x

2
i−1xi)

.

We have telescoped the proof because it is exactly the same as the proof of Theorem 5
except there are no numerator entries. �

Proof of Theorem 3. In Theorem 7, set all xi = q. Thus the generating function for parti-
tions with (n+1) copies of n wherein the weighted difference between parts is non-negative
is given by

∞
∏

n=1

1

1− qn

∞
∏

n=1

1

1− q2n−1
=

∞
∏

n=1

1 + qn

1− qn
(by [2, p. 5, eq. (1.2.5)]),

and the last product is the generating function for overpartitions [9, eq. (1.1)]. �



8 GEORGE E. ANDREWS AND PETER PAULE

Proof of Theorem 4. In Theorem 7, set odd subscripted x’s equal to q, and set even sub-
scripted x’s equal to 1. This yields the generating function for the Schmidt-type partitions
described in Theorem 4, and this generating function is

∞
∏

n=1

1

(1− qn)2

∞
∏

n=1

1

1− qn
=

∞
∏

n=1

1

(1− qn)3
,

which is the generating function for partitions using three colors. �

4. Partition diamonds

Partition diamonds were first discussed by us in [5]. The one variable generating function
for partition diamonds (or plane partition diamonds as we called them in[5]) is given by [5,
p. 237, Cor. 2.1],

(4.1)
∞
∏

n=1

1 + q3n+1

1− qn
= 1 + q + 3q2 + 4q3 + 7q4 + 11q5 + . . .

For example, Figure 2 shows the eleven partition diamonds of 5.

5 4

1

4

1

3

2

3

2

3

1

1

2

1

2

2

2

1

2

1

1

1 1

1

1

1

1

1

1

1

1

1

Figure 2. Eleven partition diamonds of 5.

Additionally in [6], we looked at extending Schmidt-type partitions to partition dia-
monds. Here we only added up the summands at the links. We found the generating
function to be [6, p. 102, eq. (4.1)],

(−q; q)∞
(q; q)3∞

= 1 + 4q + 13q2 + 36q3 + 90q4 + . . . ,

where

(A; q)∞ = lim
n→∞

(A; q)n.
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2 2

2

2

2

2

2

2

2

1

2

2

2

1

2

1

1

2

1

2

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 3. Thirteen partitions with link sum 2.

For example, Figure 3 shows the thirteen partitions where the summands at the links
sum up to 2.

We shall restrict ourselves here to considering partition diamonds with (n+1) copies of
n modified as follows. As in the original case, we place summands at the vertices of the
directed graph in Figure 4.

a1
a3k+1

a2 a5 a8 a3k−1

a3 a6 a9 a3k

a4 a7 a10 a3k−2

. . . . . .

Figure 4. A plane partition diamond.

(A) The summands at the links (i.e., a1, a4, a7, a10, . . . ) are allowed to be (n+ 1) copies
of n.
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(B) All other ai (i 6≡ 1 (mod 3)) can only have the subscript 0.

(C) An arrow pointing from ai to aj means that ai ≥ aj; the “≥” sign means that the
weighted difference between parts is ≥ 0.

The following theorem is on partition diamonds of length m as depicted in Figure 1.

Theorem 8. The generating function for partitions with (n+ 1) copies of n on diamonds
of length m as modified in (A), (B), and (C) above is given by

(4.2)

∏m
j=1(1− x2

1x
2
2 . . . x

2
3j−2x3j−1x3j)

∏3m+1
j=1 (1− x1x2 . . . xj)

∏m
j=0

(

1−
x2
1x

2
2...x

2
3j+1

x3j+1

)

∏m
j=1

(

1−
x1x2...x3j

x3j−1

) ,

where the exponent of xi accounts for the ith part of the partition in question.

To prove Theorem 8 it is convenient to introduce another identity from partition analysis.

Lemma 4.1.

Ω
≥

1

(1− z1λ1λ2)
(

1− z2
λ3

λ1

)(

1− z3
λ4

λ2

)(

1− z4
1

λ3λ4

)(

1− z5
1

λ2
3λ

2
4

)

=
1− z21z2z3

(1− z1)(1− z1z2)(1− z1z3)(1− z1z2z3)(1− z1z2z3z4)(1− z21z
2
2z

2
3z5)

.(4.3)

Proof. In the first step we use (2.3) to eliminate λ4 which reduces the left side of (4.3) to

Ω
≥

1

(1− z1λ1λ2)
(

1− z2
λ3

λ1

)(

1− z3
λ2

)(

1− z3z4
λ2λ3

)(

1−
z23z5
λ2
2λ

2
3

) .

Using (2.3) again, we eliminate λ3 and λ2, in this order, to obtain

1

(1− z1z2z3z4)(1− z21z
2
2z

2
3z5)

Ω
≥

1

(1− z1λ1)(1− z1z3λ1)
(

1− z2
λ1

) .

Finally, elimination of λ1 using (2.4) yields the desired result. �
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Proof of Theorem 8. The Ω≥ form of the generating function is the following,

Ω
≥

∑

n1,...,n3m+1≥0

0≤i3j+1≤n3j+1
0≤j≤m

xn1
1 xn2

2 . . . x
n3m+1

3m+1 λ
n1−n2−i1
1 λn1−n3−i1

2 λn2−n4−i4
3 λn3−n4−i4

4

× λn4−n5−i4
5 λn4−n6−i4

6 λn5−n7−i7
7 λn6−n7−i7

8 . . .

× λ
n3m−2−n3m−1−i3m−2

4m−3 λ
n3m−2−n3m−i3m−2

4m−2 λ
n3m−1−n3m+1−i3m+1

4m−1 λ
n3m−n3m+1−i3m+1

4m

=
∑

n1,...,n3m+1≥0

0≤i3j+1,0≤j≤m

xn1+i1
1 xn2

2 xn3
3 xn4+i4

4 . . . x
n3m−1

3m−1 x
n3m
3m x

n3m+1+i3m+1

3m+1

× λn1−n2
1 λn1−n3

2 λn2−n4−2i4
3 λn3−n4−2i4

4 λn4−n5
5 λn4−n6

6 λn5−n7−2i7
7 λn6−n7−2i7

8 . . .

× λ
n3m−2−n3m−1

4m−3 λ
n3m−2−n3m

4m−2 λ
n3m−1−n3m+1−2i3m+1

4m−1 λ
n3m−n3m+1−2i3m+1

4m ,

where we shifted each n3j+1 to n3j+1+i3j+1. Using geometric series summation this reduces
to

S(m) :=
1

1− x1

Ω
≥

1

(1− x1λ1λ2)

1
(

1− x2
λ3

λ1

)(

1− x3
λ4

λ2

)(

1− x4
λ5λ6

λ3λ4

)(

1− x4
1

λ2
3λ

2
4

)

×
1

(

1− x5
λ7

λ5

)(

1− x6
λ8

λ6

)(

1− x7
λ9λ10

λ7λ8

)(

1− x7
1

λ2
7λ

2
8

) . . .

×
1

(

1− x3m−4
λ4m−5

λ4m−7

)(

1− x3m−3
λ4m−4

λ4m−6

)(

1− x3m−2
λ4m−3λ4m−2

λ4m−5λ4m−4

)(

1− x3m−2
1

λ2
4m−5λ

2
4m−4

)

×
1

(

1− x3m−1
λ4m−1

λ4m−3

)(

1− x3m
λ4m

λ4m−2

)(

1− x3m+1
1

λ4m−1λ4m

)(

1− x3m+1
1

λ2
4m−1λ

2
4m

) .

We shall prove Theorem 8 by mathematical induction on m. To this end, we rewrite the
generating function as

S(m) =
1

1− x1

Ω
≥

1

(1− x1λ1λ2)
Tm(x2, x3, x4, x5, x6, x7, . . . , x3m−4, x3m−3, x3m−2)

×
1

(

1− x3m−1
λ4m−1

λ4m−3

)(

1− x3m
λ4m

λ4m−2

)(

1− x3m+1
1

λ4m−1λ4m

)(

1− x3m+1
1

λ2
4m−1λ

2
4m

) .

If m = 1 then T1 = 1, and the generating function is

S(1) =
1

1− x1

Ω
≥

1

(1− x1λ1λ2)

1
(

1− x2
λ3

λ1

)(

1− x3
λ4

λ2

)(

1− x4
1

λ3λ4

)(

1− x4
1

λ2
3λ

2
4

) .

Using Lemma 4.1 with zi = xi for i = 1, . . . , 4 and z5 = x4, this reduces to

S(1) =
1

1− x1

·
1− x2

1x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x1x2x3x4)(1− x2
1x

2
2x

2
3x4)

,
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which is (4.2) when m = 1.

For the induction step, using Lemma 4.1 with z1 = x1, z2 = x2, z3 = x3, z4 = x4λ5λ6,
and z5 = x4, we eliminate λ1, λ2, λ3, and λ4 from S(m) and obtain

S(m) =
1

1− x1

·
1− x2

1x2x3

(1− x1)(1− x1x2)(1− x1x3)(1− x1x2x3)(1− x2
1x

2
2x

2
3x4)

× Ω
≥

1

(1− x1x2x3x4λ5λ6)
Tm−1(x5, x6, x7, . . . , x3m−4, x3m−3, x3m−2)

×
1

(

1− x3m−1
λ4m−1

λ4m−3

)(

1− x3m
λ4m

λ4m−2

)(

1− x3m+1
1

λ4m−1λ4m

)(

1− x3m+1
1

λ2
4m−1λ

2
4m

) .

The Ω≥ expression is (1 − x1x2x3x4)S(m − 1) where in the S(m − 1) one replaces x1

with x1x2x3x4 and xi with xi+3 for i ≥ 2. Substituting the induction hypothesis (i.e., the
accordingly modified expression (4.2)) completes the proof of Theorem 8. �

Corollary 2. The single variable generating function for partitions with (n + 1) copies
of n on diamonds modified as in Theorem 8 with non-negative weighted difference between
parts is

(4.4)
∞
∏

j=1

1 + q3j−1

(1− qj)(1− q6j−5)
= 1 + 2q + 5q2 + 9q3 + 16q4 + 27q5 + . . . .

Remark. Figure 5 shows the 9 partitions of 3 in question. The 16 partitions of 4 in question
are shown in Figure 6.

30 31 32 33 20

10

20

10

21

10

21

10

10

10

10

Figure 5. Nine partitions of 3 according to Corollary 2.

Proof of Corollary 2. The statement is obtained by setting the xi = q in Theorem 8; then
let m → ∞ which gives

∞
∏

j=1

1− q6j−2

(1− qj)(1− q6j−5)(1− q3j−1)
=

∞
∏

j=1

1 + q3j−1

(1− qj)(1− q6j−5)
.
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40 41 42 43 44 30

10

30

10

31

10

31

10

32

10

32

10

20

20

20

20

20

10

10

21

10

10

10

10

10

10

Figure 6. Sixteen partitions of 4 according to Corollary 2.

�

The infinite product in Corollary 2 is not a modular form, and thus we should not expect
interesting arithmetic results for its coefficients. However, if we follow the lead of [6, Sec.
4], we obtain a lovely modular form.

Instead of summing all the summands in each position, we only sum a1 + a4 + a7 + . . . .
We called these modified partition diamonds with (n+1) copies of n summed at the links,
and the number of these that sum to N , we denote by PDN1(N).

Corollary 3.

(4.5)
∑

N≥0

PDN1(N)qN =
(−q; q)2∞
(q; q)3∞

= 1 + 5q + 18q2 + 56q3 + . . . .

Remark. The 18 partitions of 2 in question are shown in Figure 7.

Proof of Corollary 3. For j ≥ 0 set x3j+1 = q and all other xi = 1 in Theorem 8, and let
m → ∞. The result is

∞
∏

j=1

1− q2j

(1− qj)3(1− q2j−1)(1− qj)
=

∞
∏

j=1

(1 + qj)2

(1− qj)3
(by [2, p. 5, eq. (1.2.5)]).

�
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20 21 22

20

20

20

20

20

20

20

20

10

20

20

20

10

20

10

10

20

10

20

10

21

10

21

10

21

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

Figure 7. Eighteen partitions of 2 according to Corollary 3.

5. Congruences for PDN1(N)

There are various congruences for PDN1(N). We begin with one which we prove by a
combination of elementary means and Radu’s Ramanujan-Kolberg algorithm.

Theorem 9. For N ≥ 0,

(5.1) PDN1(25N + 24) ≡ 0 (mod 5).

Proof. First apply the relation (1− x)5 ≡ 1− x5 (mod 5),

(5.2)
∑

N≥0

PDN1(N)qN =
(−q; q)2∞
(q; q)3∞

=
(−q; q)2∞(q; q)2∞

(q; q)5∞
≡

(q2; q2)2∞
(q5; q5)∞

(mod 5).

Then let

(q2; q2)2∞
(q5; q5)∞

=
∑

k=0

a(k)qk.
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Using the package RaduRK, one obtains a computer proof of the fact

(5.3)
∑

N≥0

a(25N + 24)qN = −5
(q2; q2)

2
∞ (q5; q5)

5
∞

(q; q)6∞
.

The details of this RaduRK application are given in Section 6; see, in particular, Lemma 6.1.

Consequently, the coefficients of the powers q25N+24 in (q2;q2)2∞
(q5;q5)∞

are divisible by 5, which

implies

PDN1(25N + 24) ≡ 0 (mod 5).

�

Remark. Using the RaduRK package, one can produce a direct proof of Theorem 9; see
Theorem 10 below. In view of the size of the polynomial p(t) in the witness identity (5.4),
the proof based on human pre-processing in (5.2), combined with the remarkable iden-
tity (5.3), seems much preferable—at least to human standards. On the other hand, we
acknowledge that identity (5.3) has been produced (and proved!) automatically using the
package RaduRK which implements Radu’s Ramanujan-Kolberg algorithm; further details
are given in Section 6. Moreover, we want to stress as a remarkable fact that this huge
polynomial p(t), which arises in Theorem 10, shrinks significantly modulo 5; in this form
it plays a crucial role in the proof of Theorem 17.

Theorem 10. Let PDN1(m) be the number of partitions as in (4.5). Then

f1 ·

∞
∑

m=0

PDN1(25m+ 24)qm = p(t),(5.4)

where

f1 =
1

q44
(q; q)115∞ (q5; q5)50∞

(q2; q2)22∞(q10; q10)140∞

, t =
1

q

(q2; q2)∞(q5; q5)5∞
(q; q)∞(q10; q10)5∞

,

and p(t) = 5tP (t) with

P (t)

= 324596582566527933408608256 + 119503072847543353062939688960t

+ 6896221908409766297320902623232t2 + 153381285076500202769929520283648t3

+ 1829218469308052928695492956651520t4 + 13819125710348893484341056396853248t5

+ 72971357560570615005925022116085760t6 + 287199295372743533530494433069367296t7

+ 881346194614139082004384749478477824t8 + 2180313233410380663445243315659735040t9

+ 4460970772899049133504095105652359168t10 + 7703065340325515530278640499388579840t11

+ 11409629778251399394140025877667250176t12 + 14687763409452739890760651458712961024t13

+ 16608609335697313347689892821671608320t14 + 16638911058122600685121502590204379136t15

+ 14869442236187928574382805868179619840t16 + 11916711798303140098466862359570808832t17

+ 8599098746081219357796950163878576128t18 + 5602894230658053193937556004352819200t19
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+ 3302060814525530783442440164390993920t20 + 1761410314013856371267137936818176000t21

+ 850093690616930899306886917143920640t22 + 370637054941383822203500302706933760t23

+ 145587634974246956645505618359091200t24 + 51311239250489202655134309559566336t25

+ 16133387815338618133480714335682560t26 + 4490741688647323831089503395643392t27

+ 1095409165509054476024367114354688t28 + 231068016263146254880371030097920t29

+ 41433617578738390016198724026368t30 + 6178825282684139755638552002560t31

+ 745810437098929912506246004736t32 + 70567661190251551574232899584t33

+ 5048499353760053471298007040t34 + 262513445062472369716482048t35

+ 9499816320346226257952640t36 + 227617525868329328133536t37

+ 3396173595730773280064t38 + 29073363829111846545t39

+ 126681137724730556t40 + 231131520971565t41 + 121685404272t42 + 7157563t43.

Proof. Choosing N = 10, and m = 25 and j = 24 as the last two entries in the proce-
dure call RK[10,2,{−5, 2},25,24], produces (5.4) as a Ramanujan type relation between
modular functions for Γ0(10). �

6. Radu’s Ramanujan-Kolberg algorithm

In the remaining part of this article we present results which were derived using the
Ramanujan-Kolberg algorithm developed by Cristian-Silviu Radu [13]. For actual com-
putations, we apply the Mathematica package RaduRK by Nicolas Smoot [18] which is
very convenient to use.1 To prepare for its usage, follow the installation instructions given
in [18], and invoke it within a Mathematica session as follows:

In[1]:= << RaduRK‘

math4ti2: Mathematica interface to 4ti2
(http://www.4ti2.de)
© 2017, Ralf Hemmecke <ralf@hemmecke.org>
© 2017, Silviu Radu <sradu@risc.jku.at>

RaduRK: Ramanujan–Kolberg Program Version 3.4
2021 written by Nicolas Smoot
<nicolas.smoot@risc.jku.at>

© Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz

Before running the program, one needs to set the two global key variables q and t:

In[2]:= {SetVar1[q], SetVar2[t]}

1The package is freely available at https://combinatorics.risc.jku.at/software upon password
request via email to the second named author.
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Out[2]= {q, t}

We illustrate the usage of the package by deriving and proving (6.1), a result which we
applied in the proof of Theorem 9; see (5.3).

Lemma 6.1. Let

(q2; q2)2∞
(q5; q5)∞

=
∑

k=0

a(k)qk = 1− 2q2 − q4 + q5 + 2q6 + . . . .

Then

(6.1)
∑

n≥0

a(25n+ 24)qn = −5
(q2; q2)

2
∞ (q5; q5)

5
∞

(q; q)6∞
.

Proof. Using the RaduRK package we derive and prove that

(6.2) f1(q) ·
∞
∑

n=0

a(25n+ 24)qn = p(t),

with

(6.3) f1(q) =
(q; q)4∞ (q5; q5)

5
∞

q2 (q10; q10)10∞
and t =

(q2; q2)∞ (q5; q5)
5
∞

q(q; q)∞ (q10; q10)5∞
,

and where

(6.4) p(t) = −5t2.

The algorithmic proof of (6.2) is done with the procedure call

In[3]:= RK[10, 10, {0, 2,−1, 0}, 25, 24]

After a few seconds, Smoot’s package delivers the proof in the form,

Out[3] =

N : 10
{M, (rδ)δ|M}: {10, (0, 2,−1, 0)}

m: 25
Pm,r(j): {24}

f1(q) :
(q;q)4∞(q5;q5)

5

∞

q2(q10;q10)10∞

t:
(q2;q2)

∞
(q5;q5)

5

∞

q(q;q)∞(q10;q10)5∞

AB: {1}
{pg(t): g ∈AB} {−5t2}
Common Factor: 5

The interpretation of the output is as follows:
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• The assignment {M, (rδ)δ|M} = {10, (0, 2,−1, 0)} comes from the second and third
entry of the procedure call RK[10,10,{0, 2,−1, 0},25,24]; this corresponds to specifying
M = 10 and (rδ)δ|10 = (r1, r2, r5, r10) = (0, 2,−1, 0) such that

∞
∑

n=0

a(n)qn =
∏

δ|M

(qδ; qδ)rδ∞ =
(q2, q2)2∞
(q5, q5)∞

.

• The last two entries in the procedure call RK[10,10,{0, 2,−1, 0},25,24] correspond
to the assignment m = 25 and j = 24, which means that we are interested in the generating
function

∞
∑

n=0

a(mn+ j)qn =
∞
∑

n=0

a(25n+ 24)qn.

In the output expression Pm,r(j) these parameters m and j are used; i.e., here Pm,r(j) =
P25,r(1) with r = (rδ)δ|10 = (0, 2,−1, 0).

• The first entry in the procedure call RK[10,10,{0, 2,−1, 0},25,24] corresponds to
specifying N = 10, which fixes the space of modular functions the program will work with:

M(Γ0(N)) := the algebra of modular functions for Γ0(N).

• The output Pm,r(j) = P25,r(24) = {24}, where r = (0, 2,−1, 0), means that there exists
a q-product

f1(q) =
(q; q)4∞ (q5; q5)

5
∞

q2 (q10; q10)10∞
such that

f1(q)
∏

k∈P25,r(24)

∞
∑

n=0

a(25n+ k)qn = f1(q)
∞
∑

n=0

a(25n+ 24)qn ∈ M(Γ0(N)) with N = 10.

Note. In general, the set Pm,r(j) need not be a singleton. For example, Pm,r(j) = {0, 3} in
the proof of Theorem 11.

• The output

(6.5) t =
(q2; q2)∞ (q5; q5)

5
∞

q(q; q)∞ (q10; q10)5∞
, AB = {1}, and {pg(t) : g ∈ AB} = {−5t2}

presents a solution to the following task: find a modular function t ∈ M(Γ0(N)) and
polynomials pg(t) such that

(6.6) f1(q)
∞
∑

n=0

a(25n+ 24)qn =
∑

g∈AB

pg(t) · g.

In general, the elements of the finite set AB constitute a ❈[t]-module basis of M(Γ0(N)),
resp. of a large subspace of M(Γ0(N)). The elements g of AB are ❈-linear combinations
of modular functions in M(Γ0(N)) which are representable in q-product form such as f1(q)
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and t. In the specific case under consideration, the program delivers (6.5), which means,
p1(t) = p(t) = −5t2 and

f1(q)
∞
∑

n=0

a(25n+ 24)qn = −5t2 · 1.

This completes the proof of (6.2) and also of the equivalent identity (6.1) in the statement
of Lemma 6.1. �

Remark. For the definition of notions such as Γ0(N) or M(Γ0(N)), together with a general
introduction to Radu’s Ramanujan-Kolberg algorithm, see [12]. For the correctness proof
and details of the algorithm, resp. of the implementation, see [13], resp. [18].

In the remaining sections we shall present a variety of congruences related to the number
PDN1(N) of partition diamonds under consideration.

7. Congruences on 5n+ j

In this section we consider partition diamonds on arithmetic subsequences 5n + j, j =
0, . . . , 4.

Theorem 11. Let PDN1(N) be the number of partitions as in (4.5). Then

(7.1) f1(q) ·
∞
∑

n=0

PDN1(5n)qn
∞
∑

n=0

PDN1(5n+ 3)qn = u(t),

where

(7.2) f1(q) =
(q; q)47∞ (q5; q5)

15
∞

q14 (q2; q2)11∞ (q10; q10)45∞
and t =

(q2; q2)∞ (q5; q5)
5
∞

q(q; q)∞ (q10; q10)5∞
,

and

u(t) = 55t14 + 21136t13 + 1168672t12 + 20559296t11 + 149214720t10 + 620602880t9

+ 1838579712t8 + 4113465344t7 + 7084900352t6 + 9194373120t5 + 8703180800t4

+ 5532286976t3 + 1962934272t2 + 268435456t.(7.3)

Proof. For the algorithmic proof of (7.1) we use Smoot’s package. To this end, we choose
m = 5 and j = 0 as the last two entries in the procedure call,

In[4]:= RK[10, 2,{−5, 2}, 5, 0]
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The program produces the Ramanujan-Kolberg type identity (7.1) in the following form:

Out[4] =

N : 10
{M, (rδ)δ|M}: {2, (−5, 2)}

m: 5
Pm,r(j): {0, 3}
f1(q) : 〈 as in (7.2)〉

t: 〈 as in (7.2)〉
AB: {1}

{pg(t): g ∈AB} {u(t) 〈 as in (7.3)〉}
Common Factor: None

�

Remark. Again the relation involves modular functions in M(Γ0(N)) with N = 10. But
now, according to the output Pm,r(j) = {0, 3}, the witness identity involves a product of
generating functions,

f1(q)
∏

k∈Pm,r(j)

∞
∑

n=0

PDN1(5n+ k)qn = f1(q)
∞
∑

n=0

PDN1(5n)qn
∞
∑

n=0

PDN1(5n+ 3)qn = u(t),

with the polynomial u(t) as given in the output Out[9]; i.e., as in (7.3). Identities involving
products in this form were first studied in systematic manner by Kolberg [10]. The entry
“Common Factor” in the last output line refers to a possible common factor of all the
integer coefficients of u(t). Here this common factor is trivial (= 1), which is indicated by
“None.”

Corollary 4.

(7.4)
∞
∑

n=0

PDN1(5n)qn ·
∞
∑

n=0

PDN1(5n+ 3)qn ≡
(q5; q5)5∞
(q; q)11∞

(mod 2).

Proof. Inspection of the coefficients of the polynomial u(t) in (7.3) gives

f1 ·
∞
∑

n=0

PDN1(5n)qn
∞
∑

n=0

PDN1(5n+ 3)qn ≡ t14 (mod 2).

Now

t =
(q2; q2)∞ (q5; q5)

5
∞

q(q; q)∞ (q10; q10)5∞
≡

1

q

(q; q)∞
(q5; q5)5∞

(mod 2),

where for the last relation we applied the identity 1−x2 ≡ (1−x)2 (mod 2) twice. Similarly,

f1 =
(q; q)47∞ (q5; q5)

15
∞

q14 (q2; q2)11∞ (q10; q10)45∞
≡

1

q14
(q; q)25∞
(q5; q5)75∞

(mod 2).

Considering the quotient t14/f1(q) (mod 2) using these reductions, completes the proof. �
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Theorem 12. Let PDN1(N) be the number of partitions as in (4.5). Then

(7.5) f1 ·

∞
∑

n=0

PDN1(5n+ 1)qn
∞
∑

n=0

PDN1(5n+ 2)qn = v(t),

with f1 and t as in (7.2), and where

v(t) = 90t14 + 19731t13 + 1192032t12 + 20350496t11 + 150273920t10 + 617881600t9

+ 1839153152t8 + 4129521664t7 + 7048855552t6 + 9199288320t5 + 8766095360t4

+ 5500829696t3 + 1920991232t2 + 268435456t.(7.6)

Proof. For the algorithmic proof of (7.1) we use Smoot’s package. To this end, we choose
m = 5 and j = 1 as the last two entries in the procedure call,

In[5]:= RK[10, 2,{−5, 2}, 5, 1]

the program produces the Ramanujan-Kolberg type identity (7.5) as follows:

Out[5] =

N : 10
{M, (rδ)δ|M}: {2, (−5, 2)}

m: 5
Pm,r(j): {1, 2}
f1(q) : 〈 as in (7.2)〉

t: 〈 as in (7.2)〉
AB: {1}

{pg(t): g ∈AB} {v(t) 〈 as in (7.6)〉}
Common Factor: None

�

As in the proof of Corollary 4, the following fact is an immediate consequence of inspect-
ing the coefficients of the polynomial v(t) in (7.6).

Corollary 5.

(7.7)
∞
∑

n=0

PDN1(5n+ 1)qn
∞
∑

n=0

PDN1(5n+ 2)qn ≡ q ·
(q5; q5)10∞
(q; q)12∞

(mod 2).

Another consequence of Theorem 11 and Theorem 12 is

Corollary 6.

∞
∑

n=0

PDN1(5n)qn
∞
∑

n=0

PDN1(5n+3)qn ≡

∞
∑

n=0

PDN1(5n+1)qn
∞
∑

n=0

PDN1(5n+2)qn (mod 5).
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Proof. Let f1 and t be as in (7.2). Let u(t) and v(t) be the polynomials as in (7.3) and (7.6),
respectively. Then (7.1) and (7.5) imply,

f1·

(

∞
∑

n=0

PDN1(5n+ 1)qn
∞
∑

n=0

PDN1(5n+ 2)qn −
∞
∑

n=0

PDN1(5n)qn
∞
∑

n=0

PDN1(5n+ 3)qn

)

= v(t)− u(t) = 5(t− 4)8t2(t+ 1)(7t3 − 64t2 − 224t− 128).

Owing to the common factor 5, this proves the statement. �

Remark. We want to remark that in the classical case (i.e., where p(n) are the standard
partition numbers) a similar relation holds up to a sign change,

(7.8)
∞
∑

n=0

p(5n)qn
∞
∑

n=0

p(5n+ 3)qn ≡ −

∞
∑

n=0

p(5n+ 1)qn
∞
∑

n=0

p(5n+ 2)qn (mod 5).

Using the RaduRK package, this identity can proved analogously to Corollary 6. However,
Kolberg in his pioneering work has derived explicitly the counterparts of the identities (7.1)
and (7.5) for this classical case, namely, the Ramanujan-Kolberg relations (4.2) and (4.3)
on page 83 in [10].

We conclude this section with the remark that, in contrast to Ramanujan’s classical
identity [15, eq. (17)],

∞
∑

n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

,

for partition diamonds one only has

Theorem 13. Let PDN1(n) be the number of partitions of n as in (4.5). Then

(7.9)
∞
∑

n=0

PDN1(5n+ 4)qn ≡ 5
(q5; q5)5∞
(q; q)6∞

(mod 2).

Proof. Using the RaduRK package, with the procedure call

In[6]:= RK[10, 2,{−5, 2}, 5, 4]

one obtains

(7.10) f1 ·

∞
∑

n=0

PDN1(5n+ 4)qn = w(t),

with

f1 =
(q; q)23∞ (q5; q5)

10
∞

q7(q2; q2)5∞ (q10; q10)25∞
and t(q) =

(q2; q2)∞ (q5; q5)
5
∞

q(q; q)∞ (q10; q10)5∞
,

and where

w(t) = 149t7 + 3904t6 + 17760t5 + 36480t4 + 66560t3 + 57344t2 + 16384t.
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Now, observing that

t7

f1
=

(q2; q2)
12
∞ (q5; q5)

25
∞

(q; q)30∞ (q10; q10)10∞
≡

(q5; q5)
5
∞

(q; q)6∞
(mod 2),

and taking equation (7.10) mod 2, completes the proof of (7.9). �

8. Some more congruences

8.1. Congruences modulo 7 and 72. First we derive a Ramanujan-type congruence
mod 7.

Theorem 14. Let PDN1(m) be the number of partitions of m as in (4.5). Then

f1 ·
∞
∑

m=0

PDN1(7m+ 5)qm = g1 · p1(t) + g2 · p2(t),(8.1)

where

f1 =
(q; q)33∞ (q7; q7)

14
∞

q15 (q2; q2)9∞ (q14; q14)35∞
, t =

(q2; q2)∞ (q7; q7)
7
∞

q2(q; q)∞ (q14; q14)7∞
,

and

g1 = 1, g2 =
(q2; q2)

8
∞ (q7; q7)

4
∞

q3(q; q)4∞ (q14; q14)8∞
− 4t,

and

p1(t) = 7(6600t7 + 1215859t6 + 16265680t5 + 66910336t4 + 119306240t3 + 79962112t2

+ 3014656t− 1048576),

p2(t) = 7(53t6 + 139888t5 + 3644288t4 + 17618944t3 + 30793728t2 + 17956864t+ 1048576).

Proof. Choosing N = 14, and m = 7 and j = 5 as the last two entries in the procedure call
RK[14,2,{−5, 2},7,5], produces (8.1) as a Ramanujan type relation between modular
functions for the congruence subgroup Γ0(14). �

Owing to the common factor 7, Theorem 14 immediately implies

Corollary 7. For m ≥ 0,

(8.2) PDN1(7m+ 5) ≡ 0 (mod 7).

Continuing in the spirit of Ramanujan, we have

Theorem 15. For m ≥ 0,

(8.3) PDN1(49m+ 47) ≡ 0 (mod 49).
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Proof. The proof is a consequence of the relation

f1 ·

∞
∑

m=0

PDN1(49m+ 47)qm = 49 · (g1 · p1(t) + g2 · p2(t)),(8.4)

where

f1 =
(q; q)229∞ (q7; q7)

112
∞

q125 (q2; q2)58∞ (q14; q14)280∞

, t =
(q2; q2)∞ (q7; q7)

7
∞

q2(q; q)∞ (q14; q14)7∞
,

and

g1 = 1, g2 =
(q2; q2)

8
∞ (q7; q7)

4
∞

q3(q; q)4∞ (q14; q14)8∞
− 4t,

and where p1(t) and p2(t) are polynomials having (big) integer coefficients and being of
degree 62 and degree 61, respectively. Using the package RaduRK, relation (8.4) together
with the explicit forms of f1, t, p1(t), and p2(t) can be derived with the procedure call
RK[14,2,{−5, 2},49,47] in about 420 seconds on a standard laptop. �

Analogously to Corollary 6 one can derive

Theorem 16.
∞
∑

n=0

PDN1(7n)qn ·
∞
∑

n=0

PDN1(7n+ 2)qn ·
∞
∑

n=0

PDN1(7n+ 6)qn

≡ −

∞
∑

n=0

PDN1(7n+ 1)qn ·
∞
∑

n=0

PDN1(7n+ 3)qn ·
∞
∑

n=0

PDN1(7n+ 4)qn (mod 7).

8.2. Further congruences modulo 5 and 52. Before presenting Theorem (17), we pre-
pare with two lemmas and their corollaries.

Lemma 8.1. Let

(8.5) β(q) := (q; q)3∞
(

q2; q2
)10

∞
=

∞
∑

n=0

b(n)qn = 1− 3q − 10q2 + 35q3 + 35q4 − 155q5 + . . . .

Then

f1 ·

∞
∑

m=0

b(5m+ 2)qm
∞
∑

m=0

b(5m+ 4)qm = p(t),(8.6)

where

f1 =
(q2; q2)

7
∞ (q5; q5)

29
∞

q15(q; q)7∞ (q10; q10)55∞
, t =

(q2; q2)∞ (q5; q5)
5
∞

q(q; q)∞ (q10; q10)5∞
,

and

p(t) = −25(t− 4)2t3(t+ 1)4(14t6 − 361t5 − 490t4 − 9695t3 + 13160t2 − 38416t+ 1344).
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Proof. Choosing N = 10, and m = 5 and j = 2 as the last two entries in the procedure
call RK[10,2,{3, 10},5,2], produces (8.6) as a Ramanujan-Kolberg type relation between
modular functions for the congruence subgroup Γ0(10). �

Lemma 8.1 immediately implies

Corollary 8. For m ≥ 0 and b(n) as in (8.5),

(8.7) b(5m+ 2) ≡ 0 (mod 5)

and

(8.8) b(5m+ 4) ≡ 0 (mod 5).

Lemma 8.2. Let

(8.9) γ(q) :=
(q2; q2)

26
∞

(q; q)5∞
=

∞
∑

n=0

c(n)qn = 1 + 5q − 6q2 − 65q3 − 31q4 + 311q5 + · · · .

Then

f1 ·

∞
∑

m=0

c(5m+ 1)qm
∞
∑

m=0

c(5m+ 3)qm = p(t),(8.10)

where

f1 =
(q2; q2)

7
∞ (q5; q5)

45
∞

q25(q; q)7∞ (q10; q10)87∞
, t =

(q2; q2)∞ (q5; q5)
5
∞

q(q; q)∞ (q10; q10)5∞
,

and

p(t) = −25(t− 4)2t2(t+ 1)2(13t19 + 935t18 + 14804t17 − 62690t16 − 1022362t15

− 5356621t14 + 147806760t13 − 880790538t12 + 2763447750t11 − 6875765076t10

+ 13913700244t9 − 19042372685t8 + 24101137912t7 − 26597387330t6

+ 12726296084t5 − 14930081247t4 + 20927255240t3 − 8305700496t2

+ 1323868480t− 47869952).

Proof. Choosing N = 10, and m = 5 and j = 1 as the last two entries in the procedure call
RK[10,2,{−5, 26},5,1], produces (8.10) as a Ramanujan-Kolberg type relation between
modular functions for the congruence subgroup Γ0(10). �

Lemma 8.2 immediately implies

Corollary 9. For m ≥ 0 and c(n) as in (8.9),

(8.11) c(5m+ 1) ≡ 0 (mod 5)

and

(8.12) c(5m+ 3) ≡ 0 (mod 5).
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Theorem 17. Let PDN1(N) be the number of partitions as in (4.5). Then for m ≥ 0,

(8.13) PDN1(125m+ 74) ≡ 0 (mod 25),

and

(8.14) PDN1(125m+ 124) ≡ 0 (mod 25).

Proof. We begin the proof of Theorem 17 by recalling the relation (5.4),

f1 ·

∞
∑

m=0

PDN1(25n+ 24)qn = 5tP (t),(8.15)

where

f1 =
1

q44
(q; q)115∞ (q5; q5)50∞

(q2; q2)22∞(q10; q10)140∞

, t =
1

q

(q2; q2)∞(q5; q5)5∞
(q; q)∞(q10; q10)5∞

,

and with P (t) being the polynomial of degree 43 from Theorem 10. To proceed with this
relation, the first important observation is that

(8.16) P (t) ≡ 3(1 + t)42(2 + t) (mod 5),

which is easily verified with computer algebra. The second decisive fact is an observation
made by Cristian-Silviu Radu:2

(8.17) ϕ := 1 + t =
(q2; q2)

4
∞ (q5; q5)

2
∞

q(q; q)2∞ (q10; q10)4∞
,

which gives,

(8.18)
tP (t)

f1
≡

3t

f1
(ϕ43 + ϕ42) (mod 5).

Now,
t

f1
ϕ43 = (q; q)3∞

(

q2; q2
)10

∞
= β(q)

and
t

f1
ϕ42 = q ·

(q2; q2)
26
∞

(q; q)5∞
= q · γ(q),

where

β(q) =
∞
∑

n=0

b(n)qn and γ(q) =
∞
∑

n=0

c(n)qn

are as in (8.5) and (8.9), respectively. Consequently, the coefficient of q5m+2 in t
f1
(ϕ43 +

ϕ42) = β(q) + q · γ(q) is
b(5m+ 2) + c(5m+ 1),

which owing to (8.7) and (8.11) is divisible by 5. Similarly, the coefficient of q5m+4 in
t
f1
(ϕ43 + ϕ42) = β(q) + q · γ(q) is

b(5m+ 4) + c(5m+ 3),

2Personal communication with Paule, October 3, 2022.
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which owing to (8.8) and (8.12) is divisible by 5. Consequently, if n = 5m + 2 in (8.15)
then

25 | PDN1(25(5m+ 2) + 24) = PDN1(125m+ 74),

and if n = 5m+ 4,

25 | PDN1(25(5m+ 4) + 24) = PDN1(125m+ 124).

This completes the proof of Theorem 17. �

Remark. The crucial identity (8.17) together with a classical proof can be found in Shaun
Cooper’s monograph [8, eq. (10.6)]. We remark that such relations between q-products
(“eta quotients”) can be proven also by algorithmic methods, for example, the one pre-
sented in [14].

We conclude this article by revisiting Corollary 4 and Corollary 5 modulo 5.

Lemma 8.3.

(8.19)
∞
∑

n=0

PDN1(5n)qn ·
∞
∑

n=0

PDN1(5n+ 3)qn ≡ q ·
(q2; q2)

20
∞

(q; q)2∞
(mod 5).

Proof. Recall the relation (7.1),

f1 ·

∞
∑

n=0

PDN1(5n)qn
∞
∑

n=0

PDN1(5n+ 3)qn = u(t),

where f1, t and u(t) are as in (7.2) and (7.3). Using computer algebra, one observes that

u(t) ≡ t(1 + t)12 (mod 5)

= tϕ12,

with ϕ as in (8.17). Now, by repeated application of the identity 1−x5 ≡ (1−x)5 (mod 5),

t =
(q2; q2)∞ (q5; q5)

5
∞

q(q; q)∞ (q10; q10)5∞
≡

1

q

(q; q)24∞
(q2; q2)24∞

(mod 5),

ϕ12 =
1

q12
(q2; q2)

48
∞ (q5; q5)

24
∞

(q; q)24∞ (q10; q10)48∞
≡

1

q12
(q; q)96∞

(q2; q2)192∞

(mod 5),

and

f1 =
(q; q)47∞ (q5; q5)

15
∞

q14 (q2; q2)11∞ (q10; q10)45∞
≡

1

q14
(q; q)122∞

(q2; q2)236∞

(mod 5).

Consequently,

u(t)

f1(q)
≡

tϕ12

f1
(mod 5)

= q ·
(q2; q2)

20
∞

(q; q)2∞
(mod 5),

which proves (8.19). �
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Lemma 8.4. Let

(8.20) δ(q) :=
(q2; q2)

20
∞

(q; q)2∞
=

∞
∑

n=0

d(n)qn = 1 + 2q − 15q2 − 30q3 + 90q4 + 176q5 + . . . .

Then

f1 ·

∞
∑

m=0

d(5m+ 3)qm = w(t),(8.21)

where

f1 =
(q2; q2)

4
∞ (q5; q5)

22
∞

q11(q; q)4∞ (q10; q10)40∞
, t =

(q2; q2)∞ (q5; q5)
5
∞

q(q; q)∞ (q10; q10)5∞
,

and

w(t) = −5t(−256 + 22592t+ 30208t2 + 51757t3 − 38912t4 + 800t5 + 592t6

− 4042t7 + 1282t8 − 62t9 + 6t10).

Proof. Choosing N = 10, and m = 5 and j = 3 as the last two entries in the procedure call
RK[10,2,{−2, 20},5,3], produces (8.6) as a Ramanujan-Kolberg type relation between
modular functions for the congruence subgroup Γ0(10). �

An immediate consequence is

Corollary 10. Let

(q2; q2)
20
∞

(q; q)2∞
=

∞
∑

n=0

d(n)qn.

Then for all m ≥ 0,

(8.22) 5 | d(5m+ 3).

Theorem 18. Let PDN1(N) be the number of partitions as in (4.5). Then for m ≥ 0,

(8.23)
5m+4
∑

j=0

PDN1(25m+ 20− 5j) PDN1(5j + 3) ≡ 0 (mod 5).

Proof. Recall relation (8.19),
∞
∑

n=0

PDN1(5n)qn ·
∞
∑

n=0

PDN1(5n+ 3)qn ≡ q · δ(q) (mod 5),

with δ(q) as in (8.20). By (8.22) the coefficient of q5m+4 in q · δ(q) is divisible by 5. Hence
∑

i,j≥0
i+j=5m+4

PDN1(5i) PDN1(5j + 3)

is divisible by 5 for all m ≥ 0. This implies the statement (8.23). �

As a final observation, the mod 5 version of Corollary 5 is
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Lemma 8.5.

(8.24)
∞
∑

n=0

PDN1(5n+ 1)qn ·
∞
∑

n=0

PDN1(5n+ 2)qn ≡ q ·
(q2; q2)

20
∞

(q; q)2∞
(mod 5).

Proof. Recall the relation (7.5),

f1 ·

∞
∑

n=0

PDN1(5n+ 1)qn
∞
∑

n=0

PDN1(5n+ 2)qn = v(t),

where f1, t and v(t) are as in (7.2) and (7.6). Using computer algebra, one observes that

v(t) ≡ t(1 + t)12 (mod 5)

= tϕ12.

Hence the same argument as used in the proof of Lemma 8.3 also proves Lemma 8.5. �

Remark. The statements of Lemma 8.3 and Lemma 8.5 are refined versions of Corollary 6
which was proved differently. Moreover, Lemma 8.5 immediately implies the following
counterpart of Theorem 18.

Theorem 19. Let PDN1(N) be the number of partitions as in (4.5). Then for m ≥ 0,

(8.25)
5m+4
∑

j=0

PDN1(25m+ 22− 5j) PDN1(5j + 1) ≡ 0 (mod 5).

9. Conclusion

This paper continues our project to find further natural arithmetic/combinatorial ob-
jects generated by modular forms. It will hopefully spur further efforts in this direction.
Applications most often arise from the combinatorial side with subsequent important in-
formation being supplied by the fact that the generating functions are modular forms. The
richness of results found from these few instances considered here and in [6] suggests that
much awaits.

Concerning the congruence relations presented in this paper: As in [6], all these results
were proven with the help of non-trivial computer algebra algorithms. Nevertheless, in
order to obtain more substantial mathematical insight, classical proofs would be desirable.
A different open question concerns the existence of other congruence relations than those
presented here. Another task would be to determine infinite families of congruences similar
to Ramanujan’s classical p(5kn+ dk) ≡ 0 (mod 5k) where 24dk ≡ 1 (mod 5k).

Acknowledgement. Special thanks go to Cristian-Silviu Radu for bringing (8.17) to
the attention of the second named author, who is also grateful for Radu’s encouragement to
modify his initially false proof of Theorem 17. The successful repair inspired, for instance,
the derivation of Theorem 18.
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