
NEW INEQUALITIES FOR p(n) AND log p(n)

KOUSTAV BANERJEE, PETER PAULE, CRISTIAN-SILVIU RADU AND WENHUAN ZENG

Abstract. Let p(n) denote the number of partitions of n. A new infinite family of inequal-

ities for p(n) is presented. This generalizes a result by William Chen et al. From this infinite

family, another infinite family of inequalities for log p(n) is derived. As an application of the

latter family one, for instance, obtains that for n ≥ 120,

p(n)2 >
(

1 +
π√

24n3/2
− 1

n2

)

p(n− 1)p(n+ 1).

1. Introduction

We denote by p(n) the number of partitions of n. The first 50 values of p(n) starting from

n = 0 read as follows,

1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,

627,792,1002,1255,1575,1958,2436,3010,3718,4565,5604,6842,

8349,10143,12310,14883,17977,21637,26015,31185,37338,44583,

53174,63261,75175,89134,105558,124754,147273,173525.

A well-known asymptotic formula for p(n) was found by G.H. Hardy and Srinivasa Ramanujan

[10] in 1918 and independently by James Victor Uspensky in 1920 [19]:

p(n) ∼ 1

4n
√
3
e
π
√

2n
3 . (1.1)

An elementary proof of (1.1) was given by Paul Erdős [8] in 1942. At MICA 2016 (Milestones

in Computer Algebra) held in Waterloo in July 2016, Zhenbing Zeng et al. [18] reported that

using numerical analysis they found a better asymptotic formula1 for p(n) by searching for

constants Ci,j to fit the following formula,

log p(n) = π

√

2

3

√
n− log(n)− 4 log

√
3 +

C0,−1

log n
+

C1,0√
n
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1In the literature, the Hardy-Ramanujan-Rademacher is also called an asymptotic formula/approximation.

However, it is built by an expression of substantially more complicated type. For example, the log concavity

of p(n) follows nontrivially from it, as shown in the work of DeSalvo and Pak [7].
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+
C1,−1√
n log(n)

+
C2,1 log(n)

n
+

C2,0

n
+ . . . . (1.2)

By substituting for n = 210, 211, . . . , 220 into (1.2) they obtained,

C0,−1 = 0, C1,0 = −0.4432 . . . , C1,−1 = 0, C2,1 = 0, C2,0 = −0.0343 . . . .

The OEIS [14] for A000041 shows that a similarly refined asymptotic formula for p(n) was

discovered by Jon E. Schoenfield in 2014,

p(n) ∼ 1

4n
√
3
e
π·( 2n

3
+c0+

c1√
n
+

c2
n
+

c3
n
√

n
+

c4
n2+...)

1
2
, (1.3)

where the coefficients are approximately

c0 = −0.230420 . . . , c1 = −0.017841 . . . , c2 = 0.005132 . . . ,

c3 = −0.001112 . . . , c4 = 0.000957 . . . ,

Later Vaclav Kotesovec according to OEIS [14] for A000041 got the precise value of c0, c1, . . . , c4

as follows:

c0 = − 1

36
− 2

π2
, c1 =

1

6
√
6π

−
√
6

2π3
, c2 =

1

2π4
,

c3 = − 5

16
√
6π3

+
3
√
6

8π5
, c4 =

1

576π2
− 1

24π4
+

93

80π6
.

To the best of our knowledge, the details of the methods of Schoenfield and Kotesovec have

not yet been published.

In this article, using symbolic-numeric computation, we present our method to derive (1.2)

together with a closed form formula for the Ci,j in (1.2). Namely we show that

log p(n) ∼ π

√

2n

3
− log(n)− 4 log

√
3 +

∞∑

u=1

gu√
n
u ,

where the gu are as in Definition 5.1. In particular Ci,j = 0, if j 6= 0, and Ci,0 = gi,

otherwise. This result is obtained as a consequence of an infinite family of inequalities for

log p(n), Theorem 6.6 (main theorem). We also apply our method to conjecture an analogous

formula to (1.2) for a(n), the cubic partitions of n, with a(n) given by

∞∑

n=0

a(n)qn =
∞∏

n=1

1

(1− qn)(1− q2n)
. (1.4)

In the OEIS, this sequence is registered as A002513. The first 50 values of a(n), n ≥ 0, are

1,1,3,4,9,12,23,31,54,73,118,159,246,329,489,651,940,

1242,1751,2298,3177,4142,5630,7293,9776,12584,16659,

21320,27922,35532,46092,58342,75039,94503,120615,

151173,191611,239060,301086,374026,468342,579408.
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This sequence appears in a letter from Richard Guy to Morris Newman [9]. In [5], William

Chen and Bernard Lin proved that the sequence a(n) satisfies several congruence properties.

For example, a(3n + 2) ≡ 0 (mod 3), a(25n + 22) ≡ 0 (mod 5). An asymptotic formula for

a(n) was obtained by Kotesovec [11] in 2015 as follows:

a(n) ∼ eπ
√
n

8n5/4
. (1.5)

In [20] the fourth author investigated the combinatorial properties of the sequence a(n) by

using Maple.

We summarize some of our main results:

Theorem 1.1. For the usual partition function p(n) we have

log p(n) ∼ π

√

2n

3
− log n− log(4

√
3)− 0.44 . . .√

n
, n → ∞. (1.6)

The proof of this theorem will be given in Section 6.

Conjecture 1.2. For the cubic partitions a(n) we have

log a(n) ∼ π
√
n− 5

4
logn− log 8− 0.79 . . .√

n
, n → ∞. (1.7)

Theorem 1.3. For the partition numbers p(n) we have the inequalities

e
π
√

2n
3

4
√
3n

(

1− 1

2
√
n

)

< p(n) <
e
π
√

2n
3

4
√
3n

(

1− 1

3
√
n

)

, n ≥ 1.

The proof of this is given in Section 3.

This paper is organized as follows. In Section 2 we present the methods used in the

mathematical experiments that led us Theorem 1.1 and Conjecture 1.2. In Section 3 we

prove Theorem 1.3 by adapting methods used by Chen et al. to fit our purpose. In Section 4

we generalize an inequality by Chen et al. by extending it to an infinite family of inequalities

for p(n). In Section 5 we introduce preparatory results required to prove Theorem 6.6. In

Section 6 we prove our main result, Theorem 6.6, by using the main result from Section 4,

Theorem 4.4. This gives an infinite family of inequalities for log p(n). Finally in Section

7 we give an application of the results in Section 5 which extends DeSalvo’s and Pak’s log

concavity theorem for p(n). In Section 8 (the Appendix) we give additional information on

the method used to discover the asymptotic formulas. We remark explicitly that to finalize

the proof of Theorem 6.6, we use the Cylindrical Algebraic Decomposition in Mathematica;

the details of this are also put to Section 8.
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2. Mathematical Experiments for Better Asymptotics for a(n) and p(n)

Before proving our theorems, in this section we briefly describe the experimental mathe-

matics which led us to their discovery. Our strategy is as follows. If we have sufficiently many

instances of a given sequence, how can we find an asymptotic formula for this sequence? Take

the cubic partitions a(n) and the partition numbers p(n) as examples.

We have

p(10) = 42, . . . , p(100) = 190569292, . . . , p(1000) = 24061467864032622473692149727991,

a(10) = 118, . . . , a(100) = 16088094127, . . . ,

a(1000) = 302978131076521633719614157876165279276.

A plot of the two curves through the points (n, a(n)), resp. (n, p(n)), for n ∈ {1, . . . , 1000}
is shown in the Fig. 1(a) and 1(b). According to the Hardy-Ramanujan Theorem 1.1 and

the asymptotic formula of Kotesovec (1.5), the curves are increasing with “sub-exponential”

speeds. Thus, we may plot two curves using data points (n, log a(n)) and (n, log p(n)) as in

Fig. 1(c). One observes that the new curves look like parabolas y =
√
x. This is also very

natural in view of,

log p(n) ∼
√

2

3
π ·

√
n− log(n)− log(4

√
3),

log a(n) ∼ π ·
√
n− 5

4
· log(n)− log(8). (2.1)

So if we modify further with (
√
n, log a(n)) and (

√
n, log p(n)) to plot the curves, we get two

almost-straight lines as shown in the Fig. 1(d).

This provides the starting point for finding the improved asymptotic formulas (1.6) for

p(n) and (1.7) for a(n) from their data sets. We restrict our description to the latter

case. Motivated by (2.1), we compute the differences of log(a(n)) with the estimation values

ae(n) :=
eπ

√
n

8n5/4 :

∆(n) := log(ae(n))− log(a(n)) = π
√
n− 5

4
log(n)− log 8− log(a(n)).

Then we can plot curves from the data points (n,∆(n)) in Fig. 2(a) and 2(b), and (n, n·∆(n))

and (n,
√
n · ∆(n)) in Fig. 2(c) and 2(d), in order to confirm the next dominant term

approximately. We can see in Fig. 2(d) that after multiplying ∆(n) by
√
n the curve is

almost constant, confirming that the next term is C√
n
. Also multiplying ∆(n) by n, in

Fig. 2(c) we see that the behaviour is like
√
n as expected. By using least square regression

on the original data set (n, a(n)) for 1 ≤ n ≤ 10000, we aimed at finding the best constant

C that minimizes 2

− log a(n) + α ·
√
n− β · log(n)− log(γ) +

C√
n
,

2The fourth author of this paper told the result to V. Kotesovec in May 2016 and got a reply in January

2017 that the precise value of C could be Pi/16+15/(8*Pi)=0.7931...
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(a) (b)

(c) (d)

Figure 1. In (c) the upper curve is {(n, log a(n))|1 ≤ n ≤ 1000}, and the

lower curve is {(n, log p(n))|1 ≤ n ≤ 1000}. The two curves are like the

parabola y =
√
x. In (d) the two lines are for {(√n, log a(n))|1 ≤ n ≤ 1000}

(upper) and {(√n, log p(n))|1 ≤ n ≤ 1000} (lower).

where we fixed α = π, β = 5/4, γ = 8 according to (1.5). As a result, we obtained that

C ≈ 0.7925.

In the Appendix, Section 8, we explain that the constants α, β, γ can also be found via

regression analysis with Maple instead of getting them from (1.5) directly.

3. Proof of Theorem 1.3

We separate the proof into two lemmas. The first lemma is the upper bound for p(n) and

second lemma is the lower bound. In order to prove these lemmas we will state several facts

which are routine to prove.

Lemma 3.1. For all n ∈ Z≥1,

p(n) <
e
π
√

2n
3

4
√
3n

(

1− 1

3
√
n

)

.
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(a) (b)

(c) (d)

Figure 2. The curve in (a) is for (n,∆(n)) where 1 ≤ n ≤ 10000, (b) is for

(n,∆(n) where 1 ≤ n ≤ 100. The curve in (c) is for n ·∆(n), and (d) is for√
n ·∆(n) where 1 ≤ n ≤ 10000.

Proof. By [2, (2.7)-(2.8)] and with Ak(n) and R(n,N) as defined there, we have,

p(n) =

√
12

24n− 1

N∑

k=1

Ak(n)√
k

[(

1− k

µ(n)

)

e
µ(n)
k +

(

1 +
k

µ(n)

)

e−
µ(n)
k

]

+R(n,N), n ≥ 1, (3.1)

where

µ(n) :=
π

6

√
24n− 1.

We will exploit the case N = 2 together with A1(n) = 1 and A2(n) = (−1)n for any positive

integer n. For N ≥ 1, Lehmer [12, (4.14), p. 294] gave the following error bound:

|R(n,N)| < π2N−2/3

√
3

[

(
N

µ(n)
)3 sinh

µ(n)

N
+

1

6
− (

N

µ(n)
)2
]

, n ≥ 1, (3.2)

and for N = 2 (cf. [2, (2.9)-(2.10)]):

p(n) =

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+ T1(n)

)

, n ≥ 1, (3.3)
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where

T1(n) :=
(−1)n√

2

((

1− 2

µ(n)

)

e−
µ(n)
2 +

(

1 +
2

µ(n)

)

e−
3µ(n)

2

)

+
(

1 +
1

µ(n)

)

e−2µ(n) +
(24n− 1)R(n, 2)√

12eµ(n)
.

(3.4)

We first estimate the absolute value of T1(n); for convenience we denote subexpressions by

a1, b1, c1 and d1:

|T1(n)| ≤
1√
2

(

1− 2

µ(n)

)

e−
µ(n)
2

︸ ︷︷ ︸

=:a1

+
1√
2

(

1 +
2

µ(n)

)

e−
3µ(n)

2

︸ ︷︷ ︸

=:b1

+
(

1 +
1

µ(n)

)

e−2µ(n)

︸ ︷︷ ︸

=:c1

+
∣
∣
∣
(24n− 1)R(n, 2)√

12eµ(n)

∣
∣
∣

︸ ︷︷ ︸

=:d1

.

The following facts are easily verified.

Fact A. For all n ≥ 1, a1 < e−
µ(n)
2 .

Fact B. For all n ≥ 1, b1 < e−
µ(n)
2 .

Fact C. For all n ≥ 1, c1 < e−
µ(n)
2 .

Now,

d1 =
36

π2
√
12

µ(n)2

eµ(n)
|R(n, 2)|

<
µ(n)2e−µ(n)

22/3
+

12 3
√
2e−

µ(n)
2

µ(n)
− 12 3

√
2e−3

µ(n)
2

µ(n)
− 12

3
√
2e−µ(n) (by (3.2))

<
µ(n)2e−µ(n)

22/3
︸ ︷︷ ︸

=:d∗1

+
12 3

√
2e−

µ(n)
2

µ(n)
︸ ︷︷ ︸

=:d∗2

.

Fact D. For all n ≥ 7, d∗1 < e−
µ(n)
2 .

Fact E. For all n ≥ 35, d∗2 < e−
µ(n)
2 .

By Fact D and Fact E, we have

Fact F. d1 = d∗1 + d∗2 < 2e−
µ(n)
2 for all n ≥ 35.

Now, by Fact A, B, C and Fact F we conclude that for all n ≥ 35;

|T1(n)| ≤ a1 + b1 + c1 + d1 < 5e−
µ(n)
2 . (3.5)

By (3.5), we have for all n ≥ 35;

1− 1

µ(n)
− 5e−

µ(n)
2 < 1− 1

µ(n)
+ T1(n) < 1− 1

µ(n)
+ 5e−

µ(n)
2 . (3.6)
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Fact G. For all n ≥ 3, 1− 1
µ(n) − 5e−

µ(n)
2 > 0.

Therefore from (3.3) and Fact G, we have for all n ≥ 35,

p(n) =

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+ T1(n)

)

<

√
12eµ(n)

24n− 1
︸ ︷︷ ︸

=:e1

(

1− 1

µ(n)
+ 5e−

µ(n)
2

)

︸ ︷︷ ︸

=:f1

. (3.7)

Fact H. f1 < 1− 1
3
√
n
for all n ≥ 23.

Fact I. e1 <
1

4n
√
3
e
π
√

2n
3 for all n ≥ 1.

Therefore by Fact H, I and (3.7) we have for all n ≥ 35,

p(n) <
1

4n
√
3
e
π
√

2n
3

(

1− 1

3
√
n

)

.

This completes the proof of the stated upper bound in Lemma 3.1. �

Lemma 3.2. For all n ∈ Z≥1,

1

4n
√
3
e
π
√

2n
3

(

1− 1

2
√
n

)

< p(n). (3.8)

Proof. By [7, Prop 2.4] for all n ≥ 1,

p(n) > T2(n)
(

1− |R(n)|
T2(n)

)

, (3.9)

where

T2(n) :=

√
12

24n− 1

[(

1− 1
π
6

√
24n− 1

)

e
π
6

√
24n−1 +

(−1)n√
2

e
π
12

√
24n−1

]

and R(n) is as in [7, (7)]. The exact expression of R(n) will not be needed here but rather a

bound on |R(n)|; see below.

From the definition of T2(n) one verifies:

Fact J. T2(n) > 0 for all n ∈ Z≥1.

The following bound holds for |R(n)| (see [7, (13)]),

0 <
|R(n)|
T2(n)

< e
− π

10

√

2n
3 , n ≥ 2. (3.10)

Hence by Fact J,

T2(n)
(

1− |R(n)|
T2(n)

)

> T2(n)
(

1− e
− π

10

√

2n
3

)

, n ≥ 2. (3.11)
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Plugging the definition of T2(n) into (3.11) gives for n ≥ 2,

p(n) >

√
12

24n− 1

[(

1− 1
π
6

√
24n− 1

︸ ︷︷ ︸

=:a2

)

e
π
6

√
24n−1 +

(−1)n√
2

e
π
12

√
24n−1

]

(1− e
− π

10

√

2n
3 )

︸ ︷︷ ︸

=:d2

>

√
12

24n
e
π
√

2n
3

[

a2 × e
π
6

√
24n−1−π

6

√
24n

︸ ︷︷ ︸

=:b2

+
(−1)n√

2
e

π
12

√
24n−1−π

6

√
24n

︸ ︷︷ ︸

=:c2

]

× d2

=
1

4
√
3n

e
π
√

2n
3 (a2b2 + c2)d2.

Fact K. a2 > 1− 2
5
√
n
> 0 for all n ≥ 1.

Fact L. b2 > 1− 2
37

√
n
> 0 for all n ≥ 1.

Fact M. c2 > − 1
225

√
n
for all n ≥ 29.

By Fact K, L and M we have,

Fact N. a2b2 + c2 > (1− 2
5
√
n
)(1− 2

37
√
n
)− 1

225
√
n
> 0 for all n ∈ Z≥1.

Fact O. d2 > 1− 1
25

√
n
> 0 for all n ≥ 631.

From Fact N and O we have for all n ≥ 631,

(a2b2 + c2)d2 >
[(

1− 2

5
√
n

)(

1− 2

37
√
n

)

− 1

225
√
n

](

1− 1

25
√
n

)

︸ ︷︷ ︸

=:I(n)

.

Fact P. I(n) > 1− 1
2
√
n
> 0, for all n ≥ 1.

From all the above facts we can conclude that (3.8) holds for all n ≥ 631. Using Math-

ematica we checked that (3.8) also holds for all 1 ≤ n ≤ 630. This concludes the proof of

Lemma 3.2. �

Finally, combining Lemma 3.1 and Lemma 3.2, we have Theorem 1.3.

4. A Generalization of a result by Chen, Jia and Wang

In this section we have again that µ(n) = π
6

√
24n− 1; this should not be confused with

the real variable µ which we will use below. The main goal of this section is to generalize [2,

Lem. 2.2] which says that for n ≥ 1206:
√
12eµ(n)

24n− 1

(

1− 1

µ(n)
− 1

µ(n)10

)

< p(n) <

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+

1

µ(n)10

)

.

Our improvement is Theorem 4.4 where we replace the 10 in this formula by k and the 1206

by a parametrized bound g(k). In order to achieve this, for a fixed k one needs to find an
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explicit constant ν(k) ∈ R such that 1
6e

µ/2 > µk for all µ ∈ R with µ > ν(k). One can show

that

ν̃(k) := min
{

h ∈ R
∣
∣∀µ∈R

(

µ > h ⇒ 1

6
eµ/2 > µk

)}

satisfies 1
6e

ν̃(k)/2 = ν̃(k)k. Theorem 4.4 is crucial for proving our main result, Theorem 6.6,

presented in the next section. In Lemma 4.1 we find such a constant ν(k) for all k ≥ 7. In

Lemma 4.2 we find a lower bound on ν̃(k). In this way, we see that what is delivered by

Lemma 4.1, is best possible in the sense that our ν(k) from Lemma 4.1 and the minimal

possible ν̃(k) satisfies |ν(k)− ν̃(k)| < 3k log log k
log k for all k ≥ 7.

Lemma 4.1. For k ∈ Z≥7 let

ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
,

then
1

6
· eν(k)/2 > ν(k)k, k ≥ 7. (4.1)

Moreover, if µ > ν(k) for some k ≥ 7, then

1

6
· eµ/2 > µk, k ≥ 7. (4.2)

Proof. Let f(µ) := − log 6+µ/2− k log µ. By f ′(µ) = 1/2− k/µ, f is increasing for µ > 2k.

Hence the fact ν(k) > 2k gives f(µ) > f(ν(k)), and (4.2) follows from (4.1) which is equivalent

to f(ν(k)) > 0, k ≥ 7. Setting,

ν̃(k) := −1 +
ν(k)

2k log k
=

log 6

k log k
+

log 2

log k
+

log log k

log k
+

5 log log k

2(log k)2
,

the positivity of f(ν(k)) is shown as follows:

f(ν(k)) = − log 6 + ν(k)/2− k log(2k log k)− k log(1 + ν̃(k))

=
5k log log k

2 log k
− k log(1 + ν̃(k))

> k
(5 log log k

2 log k
− ν̃(k)

)

(by log(1 + x) < x for 0 < x)

=
k

2 log k

(

3 log log k − 2 log 6

k
− 2 log 2− 5 log log k

log k

)

>
k

2 log k

(

3 log log k − 1

5
− 7

5
− 2

)

=
k

2 log k

(

3 log log k − 18

5

)

,

where the last inequality holds for all k ≥ 18, because for such k:

2 log 6

k
<

1

5
,
5 log log k

log k
< 2, and 2 log 2 <

7

5
.

It is also straight-forward to prove log log k > 6/5 for all k ≥ 28. For the the remaining cases

7 ≤ k ≤ 27 the inequality (4.1) is verified by numerical computation, which completes the

proof of Lemma 4.1. �
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Lemma 4.2. For k ∈ Z≥7 let

κ(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
2k log log k

log k
,

then
1

6
eκ(k)/2 < κ(k)k.

Proof. Let f defined as in Lemma 4.1, then the statement is equivalent to proving that

f(κ(k)) = 2 log 6 + 2k log κ(k)− κ(k) < 0.

Setting

κ̃(k) := −1 +
κ(k)

2k log k
=

log(6)

k log k
+

log 2

log k
+

log log k

log k
+

log log k

(log k)2

we observe that

f(κ(k)) =− log 6 + κ(k)/2− k log(2k log k)− k log(1 + κ̃(k))

=
2k log log k

2 log k
− k log(1 + κ̃(k))

<
k log log k

log k
− k(κ̃(k)− κ̃(k)2/2), because of log(1 + x) > x− x2/2 for x ∈ R>0.

This inequality is equivalent to

2
log 6 log k + (log 2)k log k + k log log k

k(log k)2

>
( log 6 log k + (log 2)k log k + k(log log k) log k + k log log k

k(log k)2

)2
,

which is equivalent to the inequality

2 log k
( log 6

k
+ log 2 +

log log k

log k

)

> (log log k)2
( log 6

k log log k
+

log 2

log log k
+ 1 +

1

log k

)2
.

Since

2 log k
( log 6

k
+ log 2 +

log log k

log k

)

> 2 log 2 log k >
5

4
log k, k ≥ 3,

it suffices to show

5

4
log k > (log log k)2

( log 6

k log log k
+

log 2

log log k
+ 1 +

1

log k

)2

⇔5

4

log k

(log log k)2
>

( log 6

k log log k
+

log 2

log log k
+ 1 +

1

log k

)2
.

Now note that log k
(log log k)2

is increasing for k ≥ ⌈ee2⌉ = 1619. For the same choice of k the

right-hand side of “⇔” is decreasing. Evaluating both sides at k = ee
2
gives 5

4
e2

4 > 23
10 for

the left, and
(

1 + 1
e2

+ log 2
2 + log 6

2ee
2

)2
< 22

10 for the right side. This proves the inequality for

k ≥ 1619. For 7 ≤ k ≤ 1618 the result follows by numerical evaluation. �
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Definition 4.3. For k ∈ Z≥2 define

g(k) :=
1

24

( 62

π2
(ν(k)2 + 1)

)

,

where ν(k) is as in Lemma 4.1.

Theorem 4.4. For all k ∈ Z≥2 and n > g(k) such that (n, k) 6= (6, 2) we have

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
− 1

µ(n)k

)

< p(n) <

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+

1

µ(n)k

)

. (4.3)

Proof. From [2, p. 8, (2.9)] we find that

p(n) =

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+ T (n)

)

, n ≥ 1

where T (n) is defined in [2, (2.10)]. And in [2, (2.22)] it is proven that

|T (n)| < 6e−
µ(n)
2 for n > 350. (4.4)

By Lemma 4.1 we have that µ(n)k < 1
6e

µ(n)
2 for k ≥ 7 and µ(n) > ν(k), which is equivalent

to

6e−
µ(n)
2 <

1

µ(n)k
, for µ(n) > ν(k), (4.5)

Since µ(n) = π
6

√
24n− 1, it follows that µ(n) > ν(k) iff n > g(k). Furthermore for k ≥ 7, we

have g(k) > 350, this means that (4.4) is satisfied for n > g(k).

By (4.4) and (4.5) we obtain that |T (n)| < 1
µ(n)k

for n > g(k) which proves that statement

for k ≥ 7. To prove the statement for k ∈ {2, . . . , 6} we use the statement for k = 7 which

says that for all n ≥ ⌈g(7)⌉ = 581 we have

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
− 1

µ(n)7

)

< p(n) <

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+

1

µ(n)7

)

. (4.6)

However

p(n) <

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+

1

µ(n)7

)

<

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+

1

µ(n)k

)

(4.7)

for k ∈ {2, . . . , 6} and n ≥ 581. To prove (4.7) for g(k) < n < 581 it is enough to do a

numerical evaluation of (4.7) for these values of n with the exception n = 6 when k = 2. We

did this using computer algebra. Analogously, we see that for k ∈ {2, . . . , 6} and n ≥ 581 we

have √
12eµ(n)

24n− 1

(

1− 1

µ(n)
− 1

µ(n)k

)

<

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
− 1

µ(n)7

)

< p(n). (4.8)

In the same way we prove (4.8) for g(k) < n < 581.

�
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5. Preparing the proof of the Main Theorem 6.6

In this section we prepare for the proof of our Main Theorem, Theorem 6.6, which is

presented in Section 6. To this end, we need to introduce a variety of lemmas.

Definition 5.1. For y ∈ R, 0 < y2 < 24, we define

G(y) := − log
(

1− y2

24

)

+
π

6y

√
24
(
√

1− y2

24
− 1

)

+ log
(

1− y
π
6

√

24− y2

)

, (5.1)

and its sequence of Taylor coefficients by

G(y) =
∞∑

u=1

guy
u. (5.2)

Definition 5.2. For 0 < y2 < 24 and i ∈ {−1, 1} define

Gi,k(y) := G(y) + log
(

1 +

i
(

y
π
6

√
24−y2

)k

1− y
π
6

√
24−y2

)

.

Lemma 5.3. Let g(k) be as in Definition 4.3. Then for all k ≥ 2 and n > g(k) with

(k, n) 6= (2, 6) we have

− log 4
√
3−logn+π

√

2n

3
+G−1,k(1/

√
n) < log p(n) < − log 4

√
3−logn+π

√

2n

3
+G1,k(1/

√
n).

Proof. Taking log of both sides of (4.3) gives:

logE−1,k(n) < log p(n) < logE1,k(n)

where

Ei,k(n) := log
√
12− log(24n− 1) + µ(n) + log

(

1− 1

µ(n)
+

i

µ(n)k

)

.

Now

Ei,k(n) = log

√
12

24
− log n− log

(

1− 1

24n

)

+ π

√

2n

3
+ µ(n)

− π

6

√
24n+ log

(

1− 1

µ(n)
+

A

µ(n)k

)

=− log 4
√
3− logn+ π

√

2n

3
+Ri,k(n),

(5.3)

where

Ri,k(x) := − log
(

1− 1

24x

)

+ µ(x)− π

6

√
24x+ log

(

1− 1

µ(x)
+

i

µ(x)k

)

.

Finally one verifies that Ri,k(x) = Gi,k(1/
√
x). �

The entity

α :=
π2

36 + π2
(5.4)

will play an important role in this and the next section.
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Lemma 5.4. Let G(y) =
∑∞

u=1 guy
u be the Taylor series expansion of G(y) as in Definition

5.1. Then

g2n =
1

3n23nn
− 1

23n+13nn

(

−1 +
1

αn

)

, n ≥ 1, (5.5)

and for n ≥ 0,

g2n+1 =
√
6
[

(−1)n+1

(
1/2

n+ 1

)
π

23n+33n+2
− 1

23n+13nan(1 + 2n)π

n∑

j=0

αj

(−1
2 + j

j

)]

. (5.6)

Proof. By using

log
(

1− y
π
6

√

24− y2

)

= −
∞∑

k=1

ykk−1π−k6k24−k/2
(

1−
( y√

24

)2)−k/2
,

together with
(

1−
( y√

24

)2)−k/2
=

∞∑

n=0

(−1)n
(−k/2

n

)( y√
24

)2n
,

we obtain

g2n =
1

3n23nn
−

n−1∑

u=0

1

32u−n2n+2uπ2n−2u(2n− 2u)
(−1)u

(
u− n

u

)

, n ≥ 1,

and for n ≥ 0,

g2n+1 =
√
6
[

(−1)n+1

(
1/2

n+ 1

)
π

23n+33n+2

−
n∑

u=0

1

32u−n2n+1+2uπ2n+1−2u(2n+ 1− 2u)
(−1)u

(
u− n− 1/2

u

)]

.

Inputting this into the package Sigma developed by Carsten Schneider [17], we obtain (5.5)

and (5.6). �

We need various additional facts about the Taylor coefficients gu of G(y).

Corollary 5.5.

lim
n→∞

3n23nαnng2n = −1

2

and

lim
n→∞

3n23nαn(1 + 2n)g2n+1 = −
√
6

2π
√
1− α

.

Proof. The first statement is immediate because α > 1. The second statement follows from
1√
1−α

=
∑∞

j=0 α
j
(− 1

2
+j
j

)
, because of

(
j−1/2

j

)
= (−1)j

(− 1
2
j

)
. �

Lemma 5.6. For 0 ≤ a < 1,

a

2
≤

n∑

j=1

aj
(
j − 1/2

j

)

≤ a

2(1− a)
.



NEW INEQUALITIES FOR p(n) AND log p(n) 15

Proof. First we note that
(
j−1/2

j

)
= (−1)j

(− 1
2
j

)
> 0. Hence

n∑

j=1

aj
(
j − 1

2

j

)

=
n∑

j=1

(−a)j
(−1

2

j

)

=
n∑

j=0

(−a)j
(−1

2

j

)

− 1

<
∞∑

j=0

(−a)j
(−1

2

j

)

− 1 =
1√
1− a

− 1 ≤ a

2(1− a)
.

This proves the upper bound. To prove the lower bound note that the first term of the sum

is a
2 and the other terms are all positive. �

Lemma 5.7. Let sn := (−1)n
(
1/2
n+1

)
. For n ≥ 0 we have sn ≥ 0 and sn is a decreasing

sequence, that is sn > sn+1 for all n ≥ 0.

Lemma 5.8. For n ≥ 0 we have

−
√
6

2π23n3nαn(1 + 2n)
(1 +

α

2
) ≥ g2n+1 ≥ −

√
6

2π23n3nαn(1 + 2n)

(π2

72
+ 1 +

α

2(1− α)

)

.

Proof. From Lemma 5.4 and Lemma 5.7 we obtain

−
√
6

2π23n3nαn(1 + 2n)
(1 +

α

2
) ≥ g2n+1.

Again by Lemma 5.4 and Lemma 5.7 we have:

g2n+1 ≥−
√
6

23n3n

( π

72
(−1)0+1

(
1/2

0 + 1

)

+
1 + α

2(1−α)

2παn(1 + 2n)

)

=−
√
6

2π23n3nαn(1 + 2n)

(π2αn(1 + 2n)

72
+ 1 +

a

2(1− α)

)

≥−
√
6

2π23n3nαn(1 + 2n)

(π2α0(1 + 2 · 0)
72

+ 1 +
α

2(1− α)

)

(5.7)

The last line is because αn(1 + 2n) is a decreasing sequence of n for n ≥ 0. �

Lemma 5.9. For n ≥ 1 we have

− 1

3n23n+1nαn
≤ g2n ≤ 1

3n23nnαn

(3α

2
− 1

2

)

.

Proof. By Lemma 5.4 the statement follows from

g2n =
1

3n23nn
− 1

23n+13nn

(

−1 +
1

αn

)

(5.8)

and

g2n =
1

3n23nn
− 1

23n+13nn

(

−1 +
1

αn

)

=
1

3n23nαnn

(3αn

2
− 1

2

)

. (5.9)

�
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Lemma 5.10. Define

µ1 :=

√
6

2π

(π2

72
+ 1 +

α

2(1− α)

)

and µ2 :=

√
6

2π

(

1 +
α

2

)

.

Then for m ≥ 0 and 0 < y ≤ ǫ < 2
√
6α,

− µ2

23m3mαm(1 + 2m)
y2m+1 ≥

∞∑

n=m

g2n+1y
2n+1 ≥ − µ1

23m3mαm(1 + 2m)

1

1− ǫ2

3α·23
y2m+1.

Proof. By Lemma 5.8 we have

∞∑

n=m

g2n+1y
2n+1 ≥ −µ1

∞∑

n=m

1

23n3nαn(1 + 2n)
y2n+1 ≥ −µ1y

2m+1

1 + 2m

∞∑

n=0

1

23(n+m)3n+mαn+m
y2n

=− µ1y
2m+1

23m3mαm(1 + 2m)

1

1− y2

3α·23
≥ − µ1

23m3mαm(1 + 2m)

1

1− ǫ2

3α·23
y2m+1,

(5.10)

and again by Lemma 5.8 we have

∞∑

n=m

y2n+1g2n+1 ≤ −µ2

∞∑

n=m

y2n+1

23n3nαn(1 + 2n)
≤ −µ2

y2m+1

23m3mαm(1 + 2m)
. (5.11)

�

Lemma 5.11. For m ≥ 1 and 0 < y ≤ ǫ < 2
√
6α,

3α− 1

3m23m+1mαm
y2m ≥

∞∑

n=m

g2ny
2n ≥ −y2m

1

3m23m+1mαm

1

1− ǫ2

3·23·α
.

Proof. By Lemma 5.9,

∞∑

n=m

g2ny
2n ≥ −1

2

∞∑

n=m

1

3n23nnαn
y2n ≥ −y2m

1

2

∞∑

n=m

1

3n23nmαn
y2n−2m

=− y2m
1

3m23m+1mαm

1

1− y2

3·23·α
≥ −y2m

1

3m23m+1mαm

1

1− ǫ2

3·23·α
.

(5.12)

Again by Lemma 5.9,

∞∑

n=m

g2ny
2n ≤ 3α− 1

2

∞∑

n=m

1

3n23nnαn
y2n ≤ 3α− 1

2

1

3m23mmαm
y2m. (5.13)

�

Definition 5.12. For 0 < y ≤ ǫ < 1 define

B(y) :=
y

π
6

√

24− y2
and Bǫ,k := ǫ−k B(ǫ)k

1−B(ǫ)
. (5.14)

Lemma 5.13. If 0 < y ≤ ǫ < 1, then

log
(

1 +
B(y)k

1−B(y)

)

≤ Bǫ,k

1− (Bǫ,kǫk)2
yk, k ≥ 1.
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Proof. First note that for 0 < y <
√
24 the function B(y) is increasing and also that

B(y)k

1−B(y) ≤
B(y)k

1−B(ǫ) and B(y) < y
π
6

√
24−ǫ2

. Hence

B(y)k

1−B(ǫ)
<

ǫ−kykB(ǫ)k

1−B(ǫ)
= Bǫ,ky

k.

Consequently,

log
(

1 +
B(y)k

1−B(y)

)

≤ log
(

1 +Bǫ,ky
k
)

= −
∞∑

n=1

(−1)n

n
Bn

ǫ,ky
kn

=−
∞∑

n=1

1

2n
B2n

ǫ,ky
2kn +

∞∑

n=0

1

2n+ 1
B2n+1

ǫ,k yk(2n+1)

≤
∞∑

n=0

1

2n+ 1
B2n+1

ǫ,k yk(2n+1) ≤
∞∑

n=0

B2n+1
ǫ,k yk(2n+1)

=
Bǫ,ky

k

1− (Bǫ,kyk)2
≤ Bǫ,k

1− (Bǫ,kǫk)2
yk.

�

Lemma 5.14. If 0 < y ≤ ǫ < 1, then

log
(

1− B(y)k

1−B(y)

)

≥ − Bǫ,k

1−Bǫ,kǫk
yk, k ≥ 1.

Proof.

log
(

1− B(y)k

1−B(y)

)

≥ log
(

1−Bǫ,ky
k) = −

∞∑

n=1

1

n
Bn

ǫ,ky
kn ≥ −

∞∑

n=1

Bn
ǫ,ky

kn

= − Bǫ,ky
k

1−Bǫ,kyk
≥ − Bǫ,k

1−Bǫ,kǫk
yk.

�

Lemma 5.15. For all k ≥ 2 and 0 < ǫ ≤ 1√
7
we have

6k

5kπk
< Bǫ,k ≤ b0 · 6k

πk(
√

24− 1
7)

k
,

where b0 :=
1

1− 6
√

7π
√

24− 1
7

and again Bǫ,k as in (5.14).

Proof. Define

s :=
√

24− ǫ2, ls :=

√

24− 1

7
, us := 4.9, lǫ := 0, and uǫ :=

1√
7
. (5.15)

For all k ≥ 2 and 0 < ǫ ≤ 1√
7
, we have

ls ≤ s < us and lǫ < ǫ ≤ uǫ.
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The following conventions for the letters “l” and “u” will be useful: la denotes a lower bound

for the quantity a, and ua will denote an upper bound for the quantity a. And again we use

B(y) as defined in Definition 5.12.

Then

0 =
lǫ

π
6us

< B(ǫ) =
ǫ
π
6 s

≤ uǫ
π
6 ls

.

Let us define lB := 0 and uB := uǫ
π
6
ls
. Then

lB < B(ǫ) ≤ uB ⇒ 1− uB ≤ 1−B(ǫ) < 1− lB = 1 ⇒ 1

1− lB
= 1 <

1

1−B(ǫ)
≤ 1

1− uB
,

and 1
(π
6
us)k

< 1
(π
6
s)k

≤ 1
(π
6
ls)k

. Hence

6k

5kπk
<

6k

(4.9)kπk
=

1

(1− lB)(
π
6us)

k
< Bǫ,k ≤ 1

(1− uB)(
π
6 ls)

k

=
1

(1−
1√
7

π
6

√

24− 1
7

)(π
k

6k
(
√

24− 1
7)

k)

=
b0

πk

6k
(
√

24− 1
7)

k
.

�

Definition 5.16. Define

β :=

√

24− 1

7
and for k ≥ 0,

Ck :=
6k

(πβ)k
.

Lemma 5.17. Let 0 < ǫ ≤ 1√
7
and Bǫ,k be as in (5.14). Then for k ≥ 2,

Bǫ,k

1− (Bǫ,kǫk)2
≤ b1Bǫ,k and

Bǫ,k

1−Bǫ,kǫk
≤ b2Bǫ,k,

with

b1 :=
1

1− 1
49b

2
0

(
6
πβ

)4 , b2 :=
1

1− 1
7b0

(
6
πβ

)2 , and b0 :=
1

1− 6√
7π

√

24− 1
7

.

Proof. We obtain, using Lemma 5.15,

Bǫ,k

1−Bǫ,kǫk
≤ Bǫ,k

1− 1
7Bǫ,k

≤ Bǫ,k

1− 1
7

b0·62
π2(β)2

= b2Bǫ,k,

and
Bǫ,k

1− (Bǫ,kǫk)2
≤ Bǫ,k

1− 1
49B

2
ǫ,k

≤ Bǫ,k

1− 1
49b

2
0

(
6
πβ

)4 = b1Bǫ,k.

�

Lemma 5.18. Let Ck be as in Definition 5.16, then

C2m <
1

3m23mαmm
, m ≥ 10, and C2m−1 <

69

25

1

23m3mαm(2m− 1)
, m ≥ 14.
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Proof. We start with the first inequality:

Cm =
( 252

167π2

)m
<

(36 + π2)m

3m23mmπ2m
⇔

( 6048

6012 + 167π2

)m
m < 1.

To prove the inequality in the rewritten form, define ℓ := 6048
6012+167π2 and note that ℓ < 1.

Moreover, for m ≥ 10:

mℓm < 1 ⇔ logm+m log ℓ < 0.

Define f(m) := m log ℓ+ logm. That is, we have to show f(m) < 0 for all m ≥ 10. We first

show that f(m) is decreasing for m ≥ 10. This is equivalent to f ′(m) = log ℓ + 1
m < 0 for

m ≥ 10:

log ℓ+
1

m
< 0 ⇔ 1

m
< log

1

ℓ
⇔ e1/m <

1

ℓ
⇔ ℓe1/m < 1.

Now for m ≥ 10 we have

1

m
≤ 1

10
⇔ e1/m ≤ e1/10 ⇔ ℓe1/m ≤ e1/10ℓ.

By numerics, e1/10ℓ < 1 and f(10) < 0. Since f(m) is decreasing, f(m) ≤ f(10) < 0, and

the first inequality is proven. Now for the second inequality, first note that

C2m−1 =
( 6

πβ

)2m−1
=

( 252

167π2

)m(π

6

√

167

7

)

.

Hence we have to show

( 252

167π2

)m(π

6

√

167

7

)

<
69

25

1

23m3mαm(2m− 1)
,

which is equivalent to

( 6048

6012 + 167π2

)m
(2m− 1) <

414

25π

√

7

167
⇔ (2m− 1)ℓm <

414

25π

√

7

167

⇔ m log ℓ+ log(2m− 1)− log
( 414

25π

√

7

167

)

< 0.

We define g(m) := m log ℓ+log(2m−1)− log
(

414
25π

√
7

167

)

, and for m ≥ 14 we show that g(m)

is decreasing:

g′(m) < 0 ⇔ log ℓ+
2

2m− 1
< 0 ⇔ 2

2m− 1
< log

1

ℓ
⇔ ℓe

2
2m−1 < 1.

Indeed, for m ≥ 14, we have

2

2m− 1
≤ 2

27
⇔ e

2
2m−1 ≤ e

2
27 ⇔ ℓe

2
2m−1 ≤ ℓe

2
27 .

By numerics, ℓe
2
27 < 1 and g(14) < 0, hence g(m) ≤ g(14) < 0. �
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6. Proofs of Theorem 6.6 and Theorem 1.1

After the preparations made in Section 5, in this section we prove our Main Theorem,

Theorem 6.6, which implies Theorem 1.1 as a corollary. Again

α =
π2

36 + π2
.

Definition 6.1. Let Bǫ,k be as in Definition 5.12 and µ1, µ2 as in Lemma 5.10 and ν := 3α−1
2 .

Moreover, let 0 < ǫ ≤ 1√
7
. For m, k ∈ Z≥1 we define

A1,k(2m) :=
Bǫ,k

1− (Bǫ,kǫk)2
ǫk−2m + ν

1

3m23mmαm
,

A−1,k(2m) :=
Bǫ,k

1−Bǫ,kǫk
ǫk−2m +

1

3m23m+1mαm

1

1− ǫ2

3·23α
+

µ1

23m3mαm(1 + 2m)

1

1− ǫ2

3α·23
,

A1,k(2m− 1) :=
Bǫ,k

1− (Bǫ,kǫk)2
ǫk−2m+1 − µ2

23m−33m−1αm−1(2m− 1)
,

A−1,k(2m− 1) :=
Bǫ,k

1−Bǫ,kǫk
ǫk−2m+1 +

1

3m23m+1mαm

1

1− ǫ2

3·23α
,

+
µ1

23m−33m−1αm−1(2m− 1)

1

1− ǫ2

3α·23
.

Lemma 6.2. Let G(y) =
∑∞

n=1 gny
n as in Definition 5.1 and Gi,k(y) as in Definition 5.2

Moreover let 0 < ǫ ≤ 1√
7
. Then for k ≥ 2m ≥ 2:

2m−1∑

n=1

gny
n −A−1,k(2m)y2m ≤ G−1,k(y) and G1,k(y) ≤

2m−1∑

n=1

gny
n +A1,k(2m)y2m,

and for k ≥ 2m− 1 ≥ 1,

2m−2∑

n=1

gny
n −A−1,k(2m− 1)y2m−1 ≤ G−1,k(y) and G1,k(y) ≤

2m−2∑

n=1

gny
n +A1,k(2m− 1)y2m−1.

Proof. For k ≥ 2m ≥ 2, by using the Lemmas 5.10 to 5.13, we obtain

G1,k(y) ≤
2m−1∑

n=1

gny
n +

Bǫ,k

1− (Bǫ,kǫk)2
yk + ν

1

3m23mmαm
y2m − µ2

23m3mαm(1 + 2m)
y2m+1

≤
2m−1∑

n=1

gny
n +

Bǫ,k

1− (Bǫ,kǫk)2
ǫk−2my2m + ν

1

3m23mmαm
y2m

=
2m−1∑

n=1

gny
n +A1,k(2m)y2m.

(6.1)
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By using the Lemmas 5.10 to 5.11 together with Lemma 5.14 we obtain

G−1,k(y) ≥
2m−1∑

n=1

gny
n − Bǫ,k

1−Bǫ,kǫk
yk − 1

3m23m+1mαm

1

1− ǫ2

3·23α
y2m

− µ1

23m3mαm(1 + 2m)

1

1− ǫ2

3α·23
y2m+1

≥
2m−1∑

n=1

gny
n − Bǫ,k

1−Bǫ,kǫk
ǫk−2my2m − 1

3m23m+1mαm

1

1− ǫ2

3·23α
y2m

− µ1

23m3mαm(1 + 2m)

1

1− ǫ2

3α·23
y2m

=
2m−1∑

n=1

gny
n −A−1,k(2m)y2m.

(6.2)

The statement for A−1,k(2m− 1) is proven analogously. �

Lemma 6.3. We have

A1,k(2m) <
1

3m23mmαm
, A−1,k(2m) <

2

3m23mmαm
, m ≥ 10

and

A1,k(2m− 1) <
2

3m23m(2m− 1)αm
, A−1,k(2m− 1) <

7

3m23m(2m− 1)αm
m ≥ 14.

Proof. For m ≥ 10 we have,

A1,k(2m) =
Bǫ,k

1− (Bǫ,kǫk)2
ǫk−2m + ν

1

3m23mαmm
(by Lemma 6.2)

<b1Bǫ,kǫ
k−2m + ν

1

3m23mαmm
(by Lemma 5.17)

<b1b0
6k

(πβ)k
ǫk−2m + ν

1

3m23mαmm
(by Lemma 5.15)

=b0b1Ckǫ
k−2m + ν

1

3m23mαmm
(by using Definition 5.16)

≤b0b1C2m + ν
1

3m23mαmm
(because f(k) := Ckǫ

k−2m is decreasing for all k ≥ 2m)

<b0b1
2

3m23mαmm
+ ν

1

3m23mαmm
(by Lemma 5.18)

=
(

b0b1 + ν
) 1

3m23mαmm
<

1

3m23mαmm
(by evaluating b0b1 + ν numerically).
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A−1,k(2m)

=
Bǫ,k

1−Bǫ,kǫk
ǫk−2m +

1

3m23m+1αmm

1

1− ǫ2

24α

+
µ1

23m3mαm(2m+ 1)

1

1− ǫ2

24α

(by Lemma 6.2)

<b2Bǫ,kǫ
k−2m +

1

2

1

3m23mαmm

1

1− ǫ2

24α

+
µ1

23m3mαm(2m+ 1)

1

1− ǫ2

24α

(by Lemma 5.17)

<b2b0
6k

(πβ)k
ǫk−2m +

1

2

1

3m23mαmm

1

1− ǫ2

24α

+
µ1

23m3mαm(2m+ 1)

1

1− ǫ2

24α

(by Lemma 5.15)

≤b0b2 · C2m +
1

2

1

3m23mαmm

1

1− 1
168α

+
µ1

23m3mαm(2m+ 1)

1

1− 1
168α

<b0b2
1

3m23mαmm
+

1

2

1

3m23mαmm

1

1− 1
168α

+
1

2

µ1

23m3mαmm

1

1− 1
168α

(by Lemma 5.18)

=
(

b0b2 +
1

2

1

1− 1
168α

(1 + µ1)
) 1

3m23mαmm
<

2

3m23mαmm
,

where the last equality is by evaluating b0b2 +
1
2

1
1− 1

168α

(1 + µ1) numerically.

The statements for A1,k(2m− 1) and A−1,k(2m− 1) are proven analogously.

�

Definition 6.4. For n,U ∈ Z≥1 we define

Pn(U) := − log 4
√
3− log n+ π

√

2n

3
+

U∑

u=1

gu(1/
√
n)u.

Lemma 6.5. Let g(k) be as in Definition 4.3 and Pn(U) as in Definition 6.4. If m ≥ 1,

k ≥ 2m and

n >

{

6, if m = 1

g(k), if m ≥ 2.
,

then

−A−1,k(2m)
1

nm
< log p(n)− Pn(2m− 1) < A1,k(2m)

1

nm
; (6.3)

if m ≥ 2, k ≥ 2m− 1, and n > g(k), then

−A−1,k(2m− 1)
1√

nnm−1
< log p(n)− Pn(2m− 2) < A1(2m− 1)

1√
nnm−1

. (6.4)

Proof. We start with the inequality from Lemma 5.3. Next we use Lemma 6.2 to bound

G1,k(y). Finally we set y = 1√
n
and obtain the desired result. �

Theorem 6.6. Let G(y) =
∑∞

n=1 gny
n be as in Definition 5.1. Let g(k) be as in Definition

4.3 and Pn(U) as in Definition 6.4. If m ≥ 1 and n > g(2m), then

Pn(2m− 1)− 2

3m23mαmmnm
< log p(n) < Pn(2m− 1) +

1

3m23mαmmnm
; (6.5)
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if m ≥ 2 and n > g(2m− 1), then

Pn(2m−2)− 7

3m23mαm(2m− 1)nm−1/2
< log p(n) < Pn(2m−2)+

2

3m23mαm(2m− 1)nm−1/2
.

(6.6)

Proof. We start by setting k = 2m in (6.3) of Lemma 6.5, and k = 2m− 1 in (6.4). In this

inequality we bound A1,k(m) resp A−1,k(m) by using Lemma 6.3. This gives (6.6) for all

m ≥ 14 and n > g(2m− 1), and (6.5) for m ≥ 10 and n > g(2m).

In order to prove (6.6) and (6.5) for the remaining values of m, firstly we will prove that

if (6.5) holds for m ≥ 2 and all n ≥ y ≥ 1, then (6.5) holds for m− 1 and all n ≥ y. (6.7)

In particular, if we subtract from the lower bound for m in (6.5) the lower bound for m− 1,

we obtain f(2m,−4)− g(2m− 2,−4), where

f(w, x) :=

w−1∑

u=w−2

gu

( 1√
n

)u
+

x

(24α)⌈
w
2
⌉w

( 1√
n

)w

and

g(w, x) :=
x

(24α)⌈
w
2
⌉w

( 1√
n

)w
.

Similarly, if we subtract from the upper bound for m → m− 1 in (6.5) the upper bound for

m, we obtain g(2m− 2, 2)− f(2m, 2). Hence in order to prove (6.7), it suffices to prove

f(2m,−4) > g(2m− 2,−4) and f(2m, 2) < g(2m− 2, 2). (6.8)

Analogously, in order to prove that if (6.6) holds for all m ≥ 3 and all n ≥ y ≥ 1, then (6.6)

holds for m− 1 and all n ≥ y, it suffices to prove

f(2m− 1,−7) > g(2m− 3,−7) and f(2m− 1, 2) < g(2m− 3, 2). (6.9)

For proving (6.8) and (6.9), we shall prove

f(w, x0(w)) > g(w − 2, x0(w)) with x0(w) :=
{ −4, if w is even

−7, if w is odd
(6.10)

and

f(w, y0) < g(w − 2, y0) with y0 ∈ Z>0. (6.11)

From Lemma 5.8 and Lemma 5.9 we have

ℓw

(24α)⌊
w
2
⌋w

≤ gw ≤ uw

(24α)⌊
w
2
⌋w

(6.12)

with

ℓw :=

{

−µ1, if w is odd

−1, if w is even
and uw :=

{

−µ2, if w is odd

2ν, if w is even
,
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where µ1 and µ2 are as in Lemma 5.10. Consequently,

f(w, x0) =
w−1∑

u=w−2

gu

( 1√
n

)u
+

x0

(24α)⌈
w
2
⌉w

( 1√
n

)w

≥ ℓw−2

(24α)⌊
w−2
2

⌋(w − 2)

( 1√
n

)w−2
+

ℓw−1

(24α)⌊
w−1
2

⌋(w − 1)

( 1√
n

)w−1

+
x0

(24α)⌈
w
2
⌉w

( 1√
n

)w
.

In order to prove (6.10), it is enough to prove

ℓw−2

(24α)⌊
w−2
2

⌋(w − 2)

( 1√
n

)w−2
+

ℓw−1

(24α)⌊
w−1
2

⌋(w − 1)

( 1√
n

)w−1
+

x0

(24α)⌈
w
2
⌉w

( 1√
n

)w

>
x0

(24α)⌈
w−2
2

⌉(w − 2)

( 1√
n

)w−2
.

This inequality is equivalent to

ℓw−2

w − 2
+

ℓw−1

(24α)αw(w − 1)

1√
n
+

x0
(24α)βww

1

n
>

x0
(24α)δw(w − 2)

(6.13)

where

αw = ⌊w − 1

2
⌋ − ⌊w − 2

2
⌋ =

{ 0, if w is even

1, if w is odd
, βw = ⌈w

2
⌉ − ⌊w − 2

2
⌋ =

{ 1, if w is even

2, if w is odd
,

and δw = ⌈w − 2

2
⌉ − ⌊w − 2

2
⌋ =

{ 0, if w is even

1, if w is odd
.

Inequality (6.13) is equivalent to
(

ℓw−2 −
x0

(24α)αw

) 1

w − 2
> − ℓw−1

(24α)δw(w − 1)

1√
n
+

x0
(24α)βww

1

n
,

which is implied by
(

ℓw−2 −
x0

(24α)αw

) 1

w − 2
> −

( ℓw−1

(24α)αw(w − 1)
+

x0
(24α)βww

) 1√
n

(6.14)

since δw = αw, x0 ∈ Z<0 and 1√
n
≥ 1

n for all n ≥ 1. Inequality (6.14) is equivalent to

n ≥
⌈(w − 2)2

(
ℓw−1

(24α)αw (w−1) +
x0

(24α)βww

)2

(

ℓw−2 − x0
(24α)αw

)2

⌉

=: N1(w, x0).

We checked with Mathematica that N1(w, x0(w)) ≤ 1; see the Appendix, Section 8.3.

Similarly to above, for y0 ∈ Z>0 one has,

f(w, y0) =
w−1∑

u=w−2

gu

( 1√
n

)u
+

y0

(24α)⌈
w
2
⌉w

( 1√
n

)w

≤ uw−2

(24α)⌈
w−2
2

⌉(w − 2)

( 1√
n

)w−2
+

uw−1

(24α)⌈
w−1
2

⌉(w − 1)

( 1√
n

)w−1
+

y0

(24α)⌈
w
2
⌉w

( 1√
n

)w
.
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In order to prove (6.11), it is enough to show

uw−2

(24α)⌈
w−2
2

⌉(w − 2)

( 1√
n

)w−2
+

uw−1

(24α)⌈
w−1
2

⌉(w − 1)

( 1√
n

)w−1
+

y0

(24α)⌈
w
2
⌉w

( 1√
n

)w

<
y0

(24α)⌈
w−2
2

⌉(w − 2)

( 1√
n

)w−2
.

This last inequality can be rewritten as the following equivalent inequality,

uw−2

w − 2
+

uw−1

(24α)αw(w − 1)

1√
n
+

y0
(24α)βww

1

n
<

y0
(24α)αw(w − 2)

,

which is implied by:

( y0
(24α)αw

− uw−2

) 1

w − 2
>

( uw−1

(24α)αw(w − 1)
+

y0
(24α)βww

) 1√
n

(6.15)

since y0 ∈ Z>0 and 1√
n
≥ 1

n . Inequality (6.15) is equivalent to

n ≥
⌈(w − 2)2

(
uw−1

(24α)αw (w−1) +
y0

(24α)βww

)2

(
y0

(24α)αw − uw−2

)2

⌉

=: N2(w, y0).

We checked using Mathematica that N2(w, y0) ≤ 1 for all y0 ≥ 1; see the Appendix, Section

8.3.

We have checked with Mathematica that (6.5) holds for m ∈ {2, . . . , 10} and n ∈ N such

that

g(2m− 2) < n ≤ g(2m). (6.16)

Now (6.5) is true for m = 10 and n > g(2m). Next, assume that (6.5) is true for m = N with

2 ≤ N ≤ 10 and n > g(2N). Then, as shown above, (6.5) is true for m = N −1 if n > g(2N).

By (6.16), (6.5) is true for m = N − 1 if g(2N − 2) < n ≤ g(2N). This implies that (6.5) is

true for m = N − 1 and n > g(2N − 2). Hence the result follows inductively. The proof of

(6.6) is done analogously.

�

Finally, we are put into the position to prove Theorem 1.1.

Proof of Theorem 1.1: We apply (6.5) in Theorem 6.6, with m = 1. Then for n ≥ 1, we

have,

− log 4
√
3− log n+ π

√

2n

3
−
√
6
( π

144
+

1

2π

) 1√
n
− 2

24α

1

n

< log p(n) < − log 4
√
3− log n+ π

√

2n

3
−
√
6
( π

144
+

1

2π

) 1√
n
+

1

24α

1

n
.

Noting that
√
6
(

π
144 + 1

2π

)

= 0.44 . . . finishes the proof. �
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7. An Application to Chen-DeSalvo-Pak Log Concavity Result

In 2010 at FPSAC [4], William Chen conjectured that {p(n)}n≥26 is log-concave and for

n ≥ 1,

p(n)2 <
(

1 +
1

n

)

p(n− 1)p(n+ 1). (7.1)

DeSalvo and Pak [7] proved these two conjectures. Moreover, they refined (7.1) by proposing

the following conjecture for n ≥ 45:

p(n)2 <
(

1 +
π√

24n3/2

)

p(n− 1)p(n+ 1). (7.2)

Chen, Wang and Xie [3] gave an affirmative answer to (7.2). In this section, using Theorem

6.6, we continue this research by obtaining the following inequality,

(

1 +
π√

24n3/2
− 1

n2

)

p(n− 1)p(n+ 1) < p(n)2 <
(

1 +
π√

24n3/2

)

p(n− 1)p(n+ 1);

for a more precise statement see Theorem 7.6. Note that the right inequality is just (7.2), but

we give here our proof in order to show that, alternatively, one can obtain this from Theorem

6.6. In order to achieve our goal we also need to prove the Lemmas 7.3 to 7.5 in this section.

These Lemmas deal with estimating the tail of an infinite series involving standard binomials.

Proposition 7.1. For s ∈ Z≥1 and k ∈ N we have

(−2s−1
2

k

)

=
(−1)k

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)

(
2s−2
s−1

)

and
(−s

k

)

= (−1)k
(
s+ k − 1

s− 1

)

.

Proof. By simplifying quotients formed by taking each expression in k + 1 divided by the

original expression in k. �

Lemma 7.2. For k,m ≥ 0 and s ≥ 1,
(
s− 1 +m+ k

s− 1

)

≤
(
s− 1 +m

s− 1

)

sk. (7.3)

Proof. From
(
s− 1 +m+ k

s− 1

)

=
(s− 1 +m+ k)!

(s− 1)!(m+ k)!
=

(
s− 1 +m

s− 1

)
(s+m) · · · (s+m+ k − 1)

(m+ 1) · · · (m+ k)

we have s+m+j
m+j+1 < s for each 0 ≤ j ≤ k − 1; this is because

s+m+ j < s(m+ j + 1) ⇔ m(s− 1) + j(s− 1) > 0.

This proves (7.3). �
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Lemma 7.3. For n, s ∈ Z≥1, m ∈ N, and n > 2s let

bm,n(s) :=
4
√
s√

s+m− 1

(
s+m− 1

s− 1

)
1

nm
,

then

−bm,n(s) <
∞∑

k=m

(−2s−1
2

k

)
1

nk
< bm,n(s) (7.4)

and

0 <
∞∑

k=m

(−2s−1
2

k

)
(−1)k

nk
< bm,n(s). (7.5)

Proof. For s ≥ 1:

∣
∣
∣

∞∑

k=m

(−2s−1
2

k

)
1

nk

∣
∣
∣ =

∣
∣
∣

∞∑

k=m

(−1)k

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)

(
2s−2
s−1

)
1

nk

∣
∣
∣ (by Proposition 7.1)

≤
∞∑

k=m

1

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)

(
2s−2
s−1

)
1

nk

≤
∞∑

k=m

2
√
s− 1

√

π(s+ k − 1)

(
s+ k − 1

s− 1

)
1

nk
(using

4n

2
√
n
≤

(
2n

n

)

≤ 4n√
πn

)

<
2
√
s− 1√

s+m− 1

∞∑

k=m

(
s− 1 + k

s− 1

)
1

nk

(using
1√
π
< 1 and

1√
s+ k − 1

≤ 1√
s+m− 1

for all k ≥ m)

=
2
√
s− 1√

s+m− 1

∞∑

k=0

(
s− 1 +m+ k

s− 1

)
1

nm+k

=
2
√
s− 1√

s+m− 1

1

nm

∞∑

k=0

(
s− 1 +m+ k

s− 1

)
1

nk
.

Now we apply Lemma 7.2 to obtain,

∣
∣
∣

∞∑

k=m

(−2s−1
2

k

)
1

nk

∣
∣
∣ ≤ 2

√
s− 1√

s− 1 +m

1

nm

(
s− 1 +m

s− 1

) ∞∑

k=0

sk

nk

=
2
√
s− 1√

s+m− 1

(
s− 1 +m

s− 1

)
1

nm

n

n− s
< bm,n(s),

where the latter inequality is by n > 2s. This proves (7.4). Moreover, the bound we obtained

also works for
∞∑

k=m

1

4k

(
2s+2k−2
s+k−1

)(
s+k−1
s−1

)

(
2s−2
s−1

)
1

nk
.

Hence applying Proposition 7.1 implies (7.5). �
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Lemma 7.4. For n, s ∈ Z≥1, m ∈ N, and n > 2s let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)

,

then

−βm,n(s) <
∞∑

k=m

(−s

k

)
1

nk
< βm,n(s) (7.6)

and

0 <
∞∑

k=m

(−s

k

)
(−1)k

nk
< βm,n(s). (7.7)

Proof.

∣
∣
∣

∞∑

k=m

(−2s
2

k

)
1

nk

∣
∣
∣ =

∣
∣
∣

∞∑

k=m

(−1)k
(
s+ k − 1

s− 1

)
1

nk

∣
∣
∣ (by Proposition 7.1)

≤
∞∑

k=m

(
s+ k − 1

s− 1

)
1

nk
=

1

nm

∞∑

k=0

(
s+ k − 1 +m

s− 1

)
1

nk

<
1

nm

(
s− 1 +m

s− 1

) ∞∑

k=0

sk

nk
(by Lemma 7.2),

and geometric series summation implies (7.6). Applying Proposition 7.1 implies (7.7). �

Finally, we need another similar lemma which is easy to prove.

Lemma 7.5. For m,n, s ∈ Z≥1 and n > 2s let

cm,n(s) :=
2

m

sm

nm
,

then

−cm,n(s) <
∞∑

k=m

(−1)k+1

k

sk

nk
< cm,n(s) and − cm,n(s) < −

∞∑

k=m

1

k

sk

nk
< 0 (7.8)

and

−cm,n(s)√
m

<
∞∑

k=m

(
1/2

k

)
sk

nk
<

cm,n(s)√
m

and − cm,n(s)√
m

<
∞∑

k=m

(
1/2

k

)
(−1)ksk

nk
< 0. (7.9)

The following theorem was announced in the abstract; its proof is the goal of this section.

To arrive at the intermediate inequality (7.14), we need our main result, Theorem 6.6. For

the remainder of the proof, one spends some time on simplifying (7.14) in order to arrive at

the desired form. In order to do, one needs the Lemmas 7.3 to 7.5 which we have proven

above in this section.

Theorem 7.6. For n ≥ 45,

p(n)2 <
(

1 +
π√

24n3/2

)

p(n− 1)p(n+ 1),

and for n ≥ 120

p(n)2 >
(

1 +
π√

24n3/2
− 1

n2

)

p(n− 1)p(n+ 1).
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Proof. We set m = 3 in the first equation of Theorem 6.6, which gives for all n ≥
⌈

g(6)
⌉

:

Pn(5)−
2

3(24α)3
1

n3

︸ ︷︷ ︸

=:l(n)

< log p(n) < Pn(5) +
1

3(24α)3
1

n3

︸ ︷︷ ︸

=:u(n)

,

where we used the notation from Definition 6.4. This inequality has the form

l(n) < log p(n) < u(n). (7.10)

By substituting n by n+ 1 and multiplying by −1 into (7.10) we obtain

−u(n+ 1) < − log p(n+ 1) < −l(n+ 1), (7.11)

and by substituting n by n− 1 and multiplying by −1 again into (7.10) gives

−u(n− 1) < −p(n− 1) < −l(n− 1). (7.12)

Multiplying (7.10) by 2, and by adding (7.11) and (7.12), results in

2l(n)−u(n−1)−u(n+1) < 2 log p(n)− log p(n−1)− log p(n+1) < 2u(n)− l(n−1)− l(n+1).

(7.13)

We define

A1(n) := log
(

1 +
1

n

)

+ log
(

1− 1

n

)

,

A2(n) := −π

√

2n

3

( ∞∑

k=1

(
1/2

k

)
(−1)k

nk
+

∞∑

k=1

(
1/2

k

)
1

nk

)

and for t ≥ 3:

At(n) := − gt−2

(
√
n)t−2

( ∞∑

k=1

(− t−2
2

k

)
(−1)k

nk
+

∞∑

k=1

(− t−2
2

k

)
1

nk

)

,

where gn is as in Definition 5.1. Then from (7.13), by substituting l(n) and u(n) according

to their definitions, we obtain,

− 7

(24α)3 · 3
1

n3
+

7∑

t=1

At(n) < 2 log p(n)− log p(n− 1)− log p(n+1) <
7∑

t=1

At(n) +
8

(24α)3
1

n3
,

which implies

− 3

(24α)3
1

n3
+

7∑

t=1

At(n) < 2 log p(n)− log p(n− 1)− log p(n+ 1) <
7∑

t=1

At(n) +
3

(24α)3
1

n3
.

(7.14)

Finally, we establish bounds for the At(n). For t = 1,

A1(n) = log(1 +
1

n
) + log(1− 1

n
) = − 1

n2
− 1

2n4
+

∞∑

k=5

(−1)k+1

knk
−

∞∑

k=5

1

knk
.

Taking s = 1 and m = 5 in Lemma 7.5 we have

− 1

n2
− 1

2n4
− 4

5n5
< A1(n) < − 1

n2
− 1

2n4
+

2

5n5
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which implies,

− 1

n2
− 2

n3
< A1(n) < − 1

n2
. (7.15)

For t = 2, note that

A2(n) =− π

√

2n

3

(

− 5

64n4
− 1

4n3
+

∞∑

k=5

(
1/2

k

)
(−1)k

nk
+

∞∑

k=5

(
1/2

k

)
1

nk

)

.

Applying Lemma 7.5, (7.9), with s = 1 and m = 5 gives

−π

√

2n

3

(

− 1

4n2
− 5

64n4
− 4

5
√
5

1

n5

)

< A2(n) < −π

√

2n

3

(

− 1

4n2
− 5

64n4
+

2

5
√
5

1

n5

)

,

which implies,
π√

24n3/2
< A2(n) <

π√
24n3/2

+
2

n5/2
. (7.16)

Next we consider odd indices; i.e., for 1 ≤ t ≤ 3,

A2t+1(n) =− g2t−1

(
√
n)2t−1

(

(
2t−1
2

)

2

n2
+

(
2t−1
2

)

4

12n4
+

∞∑

k=5

(−2t−1
2

k

)
(−1)k

nk
+

∞∑

k=5

(−2t−1
2

k

)
1

nk

)

,

where (a)k := a(a− 1) . . . (a− k + 1). Applying Lemma 7.3 with s = t and m = 5 gives

− g2t−1

(
√
n)2t−1

(

(
2t−1
2

)

2

n2
+

(
2t−1
2

)

4

12n4
− 4

√
t√

t+ 4

(
t+ 4

t− 1

)
1

n5

)

< A2t+1(n)

< − g2t−1

(
√
n)2t−1

(

(
2t−1
2

)

2

n2
+

(
2t−1
2

)

4

12n4
+

8
√
t√

t+ 4

(
t+ 4

t− 1

)
1

n5

)

,

which implies

− 3g1

4n5/2
+

4g1√
5

1

n3
< A3(n) < − 5g1

n5/2
, (7.17)

4
√
6g3
n3

< A5(n) < −29g3

n5/2
, (7.18)

4
√
2√
7

(
7

2

)
g5
n3

< A7(n) < −117g5

n5/2
. (7.19)

Finally, we consider even indices; i.e., for 1 ≤ t ≤ 2,

A2t+2(n) =− g2t
(
√
n)2t

(

(

−2t
2

)

2

n2
+

(

−2t
2

)

4

12n4
+

∞∑

k=5

(−2t
2

k

)
(−1)k

nk
+

∞∑

k=5

(−2t
2

k

)
1

nk

)

.

Applying Lemma 7.4 with s = t and m = 5, we obtain

−
((−t)2

n2
+

(−t)4
12n4

− 2

n5

(
t+ 4

t− 1

)) g2t
(
√
n)2t

< A2t+2(n)

<−
((−t)2

n2
+

(−t)4
12n4

+
4

n5

(
t+ 4

t− 1

)) g2t
(
√
n)2t

.

From this,
2g2
n3

< A4(n) < − 8g2

n5/2
, (7.20)



NEW INEQUALITIES FOR p(n) AND log p(n) 31

12g4
n3

< A6(n) < −40g4

n5/2
. (7.21)

Now, substituting (7.15) to (7.21) into (7.14) gives,

π√
24

1

n3/2
− 1

n2
− 3g1

4

1

n5/2
+
(

−2 +
4g1√
5
+ 2g2 + 4

√
6g3 + 12g4 +

4
√
2√
7

(
7

2

)

g5 −
3

(24α)3

) 1

n3

<2 log p(n)− log p(n− 1)− log p(n+ 1)

<
π√
24

1

n3/2
− 1

n2
+
(

2− 5g1 − 8g2 − 29g3 − 40g4 − 117g5 +
3

(24α)3

) 1

n5/2
.

By using numerical estimations of the coefficient of 1/n5/2 and of the coefficient of 1/n3 in

the lower bound, and of the coefficient of 1/n5/2 in the upper bound above, we are led to

π√
24

1

n3/2
− 1

n2
+

1

4

1

n5/2
− 4

n3
< 2 log p(n)− log p(n− 1)− log p(n+ 1)

<
π√
24

1

n3/2
− 1

n2
+

7

n5/2
.

Next we observe that

− 1

n2
+

7

n5/2
< − π2

48n3
for all n ≥ 50

and

− 1

n2
+

π√
24

1

n3/2
+

1

4

1

n5/2
− 4

n3
> − 1

n2
+

π√
24

1

n3/2
for all n ≥ 257.

Therefore, for n ≥ 257,

π√
24n3/2

− 1

n2
< 2 log p(n)− log p(n− 1)− log p(n+ 1) <

π√
24n3/2

− π2

48n3
. (7.22)

Because of log(1 + x) < x for x > 0, we have

log
(

1 +
π√

24n3/2
− 1

n2

)

<
π√

24n3/2
− 1

n2
, (7.23)

and because of x− x2

2 < log(1 + x) for all x > 0, we have

π√
24n3/2

− π2

48n3
< log

(

1 +
π√

24n3/2

)

. (7.24)

Applying (7.23) and (7.24) to (7.22) gives

log
(

1 +
π√

24n3/2
− 1

n2

)

< 2 log p(n)− log p(n− 1)− log p(n+ 1) < log
(

1 +
π√

24n3/2

)

,

which after exponentiation gives the desired result for n ≥ 257. To extend the proofs of the

statements for n ≥ 45, resp. n ≥ 120, is done by straight forward numerics. �
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8. Appendix

8.1. Methods to discover the results. We will describe very briefly the mathematical

experiments used in this research. We want to point out that without these experiments the

theoretical results of this paper would never have been found. For this reason we feel that

it is important to give at least a brief sketch of what led us to the final formulas and how

we were led to conjecture special cases of related asymptotics. The final asymptotic formulas

can easily be derived from our main result, Theorem 6.6 presented in Section 6.

In Section 3 we proved the following inequality

e
π
√

2n
3

4
√
3n

(

1− 1

2
√
n

)

< p(n) <
e
π
√

2n
3

4
√
3n

(

1− 1

3
√
n

)

(8.1)

which was found by mathematical experiments. Our proof uses methods similar to those used

in [7] and [2]. In our attempt to prove the following formula for the asymptotics of log p(n),

log p(n) ∼ π

√

2n

3
− logn− log(4

√
3)− 0.44 . . .√

n
, (8.2)

we first tried to prove the log-version of (8.1). However, we soon realised that this inequality

is not sharp enough in order to prove (8.2). We noted that the inequality for p(n) in [2,

Lemma 2.2] can be used instead. This formula says that for n ≥ 1206,

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
− 1

µ(n)10

)

< p(n) <

√
12eµ(n)

24n− 1

(

1− 1

µ(n)
+

1

µ(n)10

)

, (8.3)

where µ(n) := π
6

√
24n− 1. We observed that after taking the log of both sides, with some

extra work, (8.2) can be proven. When we saw the asymptotics (1.3), discovered by Schoen-

field and Kotesovec, we naturally wondered whether these asymptotics can also be proven by

taking the log of an appropriate inequality. We observed that (8.3) is enough also to prove

these asymptotics, and we observed that (8.3) can be used to prove an even more refined

asymptotic formula that takes the form

log p(n) ∼ π

√

2

3
n− logn− log 4

√
3 + b1

( 1√
n

)

+ b2

( 1√
n

)2
+ · · ·+ b9

( 1√
n

)9
,
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where

b1 = −π
√
6

2432
−

√
6

2π
≈ −0.44328...,

b2 =
1

3 · 23 − 3

22π2
≈ −0.034324...,

b3 = −π
√
6

2933
−

√
6

253π
−

√
6

22π3
≈ −0.028428...,

b4 =
1

2732
− 1

25π2
− 9

24π4
≈ −0.0080728...,

b5 = − π
√
6

21334
−

√
6

2103π
−

√
6

26π3
− 9

√
6

5 · 8π5
≈ −0.0033007...,

b6 =
1

2934
− 1

283π2
− 3

26π4
− 9

24π6
≈ −0.001174124716...,

b7 = −5π
√
6

21935
− 5

√
6

21433π
− 5

√
6

2113π3
− 3

√
6

27π5
− 33

√
6

247π7
≈ −0.00045651...,

b8 =
1

21434
− 1

21132π2
− 3

210π4
− 322

27π6
− 34

27π8
≈ −0.00017464...,

b9 = −7π
√
6

22336
− 35

√
6

22034π
− 35

√
6

21533π3
− 7

√
6

212π5
− 9

√
6

28π7
− 9

√
6

25π9
≈ −0.000068757...,

...

Of course we wondered whether one can get an even better formula. The only obstacle that

seemed to limit us was the 10 in the formula (8.3) above. This led us to look into the details

of the proof of (8.3), and we observed that the 10 can be replaced by a k. This then led

us to the discovery of the complete asymptotics. That is, we also got b10, b11, . . . , etc. At

this point we still were not fully satisfied. Even though we observed that the formula (8.3)

could be generalised, it was not a proper generalization because we could not say explicitly

for which precise range of n the generalized inequality (4.3) for p(n) holds. We only could

say that there is some sufficiently big constant C(k) such that (4.3) for all n > C(k).

We felt that this is not a proper generalization because (8.3) gives C(10) explicitly, namely

C(10) = 1206. After some work, we realized that we can obtain an explicit expression for

C(k), which is very close to the optimal value, according to mathematical experiments. This

C(k) is our g(k) of Section 4 where we gave a generalization of (8.3).

Because (8.3) could be generalized, we suspected that also (8.1) could be generalized. The

difference between the two inequalities is that (8.1) is in terms of
√
n, while (8.3) is in terms

of µ(n). We again took the log of both sides of the generalized version of (8.3) and aimed not

only at getting a refined asymptotic but rather a new type of inequality. This was achieved in

Section 6. However, even after we found a preliminary version of Theorem 6.6, still something

was missing. We wondered whether we can guarantee that this inequality is optimal in some

sense, and not overestimated. After various experiments, we got control in the form (6.5)

and (6.6), where the error term in the inequality cannot be improved to a smaller integer in
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with(combinat);

rt := proc (n) local rtn, k;

rtn := combinat:-numbpart(n);

for k to (1/2)*n do

rtn := rtn+combinat:-numbpart(k)*combinat:-numbpart(n-2*k)

end do;

rtn

end proc

Figure 3. Procedure for computing the number of cubic partitions of n.

the numerator—the same time keeping the statement unaltered. This is the point where we

stopped.

8.2. Discovery of Kotesovec’s formula (1.5) by regression analysis. We used the

procedure shown in Figure 3 to compute the sequence a(n) defined in (1.4). This procedure

works fine for computing a(n) in the range 1 ≤ n ≤ 215. The computation took 24 hours on

a notebook computer with Intel Core i7 CPU.

To find the approximate relation between log a(n),
√
n and log(n), substitute the values

n = 2k, 2k+1, 2k+2 into the target expression,

log a(n) ∼ α ·
√
n− β · log(n)− log(γ),

to obtain a system with three equations:






log2 a(2
k) = ak log2(e) ·

√
2k − bk · k − ck + εk,

log2 a(2
k+1) = ak log2(e) ·

√
2k+1 − bk · (k + 1)− ck + εk+1,

log2 a(2
k+2) = ak log2(e) ·

√
2k+2 − bk · (k + 2)− ck + εk+2,

and solve it successively for k from 1 to 13. Let (ak, bk, ck) be the solution of the above

equation system under the assumption εk = εk+1 = εk+2 = 0 for all k ∈ {1, . . . , 13}. The

numerical values of the (ak, bk, ck) are presented in Figure 4. In the limit k → ∞,

ak = log2 a(2
k)+log2 a(2

k+2)−2 log2 a(2
k+1)

(3−2
√
2)
√
2k log2(e)

→ α,

bk = log2 a(2
k)+log2 a(2

k+2)−2 log2 a(2
k+1)√

2−1
− {log2 a(2k+1)− log2 a(2

k)} → β,

ck = 2ak log2(e)
√

2k−k bk

a(2k)
→ log2(γ).

The numerical values in Figure 4 clearly support the precise values

α = π, β =
5

4
, γ = 23 = 8.

Note that we have used a sub-sequence a(2k), k = 1, 2, . . . , 15. The regression analysis to

obtain the numerical data for Fig. 1 and Fig. 2 are rather routine, so we will not list any

further details here.
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Figure 4. Numerical values of the (ak, bk, ck).

8.3. Mathematica computations used in the proof of Theorem 6.6. We present

Mathematica computations needed in the proof of Theorem 6.6. Note that in order to

complete the proof of Theorem 6.6 we needed to bound four terms by 1; however, in each

inequality proven with Mathematica as shown below, we checked that each inequality holds

in fact for bounds smaller than 1, namely 1
5 ,

1
3 ,

1
26 and 1

26 . The Mathematica computations

are based on Cylindrical Algebraic Decomposition [6].

In[1]:= a :=
π2

36 + π2

In[2]:= (mu1,mu2, nu) :=
(

√
6

2π

(

π2

72
+ 1 +

a

2(1 − a)

)

,

√
6

2π

(

1 +
a

2

)

, 3
a

2
− 1

2

)

In[3]:= CylindricalDecomposition[{(2w − 2)2

(

−µ1
2w−1

+ −x
(24a)2w

)2

(−1 + x)2
<

1

5
,w ≥ 1, x ≥ 4}, {w, x}]

Out[3]= w ≥ 1 && x ≥ 4

In[4]:= CylindricalDecomposition[{
(( 2w − 3

x − 24 a mu1

)( 1

2w − 2
+

x

24a(2w − 1)

))2
<

1

3
,w ≥ 2, x ≥ 7}, {w, x}]

Out[4]= w ≥ 2 && x ≥ 7

In[5]:= CylindricalDecomposition[{
(

(2w − 2)

(

−mu2
2 w−1

+ y
24a(2w)

)

y − 2nu

)2
<

1

26
,w ≥ 1, y ≥ 1}, {w, y}]

Out[5]= w ≥ 1 && y ≥ 1

In[6]:= CylindricalDecomposition[{
(( 2w − 3

y + 24 a mu2

)( 2 nu

2w − 2
+

y

24a(2w − 1)

))2
<

1

26
,w ≥ 2, y ≥ 1}, {w, y}]

Out[6]= w ≥ 2 && y ≥ 1
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1920.

[20] W.-H. Zeng. Some Properties of Morris Newman Sequence. Thesis for Bachelor Degree in Mathematics.

East China Normal University, Shanghai, China, 2016.

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenberg-

erstr. 69, 4040 Linz, Austria

E-mail address: koustav.banerjee@risc.jku.at

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenberg-

erstr. 69, 4040 Linz, Austria

E-mail address: peter.paule@risc.jku.at



NEW INEQUALITIES FOR p(n) AND log p(n) 37

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenberg-

erstr. 69, 4040 Linz, Austria

E-mail address: silviu.radu@risc.jku.at

Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen,
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