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Preface

The 15th Conference on Intelligent Computer Mathematics (CICM 2022) was
held during September 19–23, 2022, in Tbilisi, Georgia. CICM was part of the
Computational Logic Autumn Summit (CLAS 2022), which took place between
September 19–30, 2022, and was hosted by Ivane Javakhishvili Tbilisi State
University.

CICM was initially formed in 2008 as a joint meeting of communities in-
volved in computer algebra systems, theorem provers, and mathematical knowl-
edge management, as well as those involved in a variety of aspects of scientific
document archives. Since then, the conference has been held annually: Birming-
ham (UK, 2008), Grand Bend (Canada, 2009), Paris (France, 2010), Bertinoro
(Italy, 2011), Bremen (Germany, 2012), Bath (UK, 2013), Coimbra (Portugal,
2014), Washington D.C. (USA, 2015), Bia lystok (Poland, 2016), Edinburgh (UK,
2017), Hagenberg (Austria, 2018), Prague (Czech Republic, 2019), Bertinoro
(Italy, 2020, virtual), and Timişoara (Romania, 2021, virtual). CICM 2022 was
organized in hybrid mode.

This informal proceedings contains eight work-in-progress papers presented
at CICM 2022. Besides them, the full conference program consisted of three
invited talks and 24 formal papers, which were published in volume 13467 of
Springer Lecture Notes in Artificial Intelligence series.

The Program Committee of CICM 2022 worked hard to compose a very
interesting and diverse program of the conference. This work was managed using
the EasyChair system, which was very helpful and convenient. We thank Besik
Dundua (conference chair), Mikheil Rukhaia, Ana Idadze, and their colleagues in
Tbilisi for the successful organization of the conference, which was a difficult task
especially because of the challenges posed by the hybrid mode. The Kurt Gödel
Society and Matthias Baaz provided invaluable support in the organization. We
are grateful to Serge Autexier for his publicity work, Mădălina Eraşcu for serving
as the doctoral program chair, and Florian Rabe for serving as the workshop
chair. We also thank the authors of the submitted papers, the PC members and
external reviewers, the workshop organizers, as well as the invited speakers and
the participants of the conference.

August 2022 Kevin Buzzard
Temur Kutsia
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A Parallel Corpus for Natural Language
Machine Translation to Isabelle?

Anthony Bordg, Yiannos Stathopoulos, and Lawrence Paulson

Department of Computer Science and Technology, University of Cambridge,
Cambridge, UK

{apdb3,yas23,lp15}@cam.ac.uk

Abstract. We present the Isabelle Parallel Corpus (IPC), a parallel
corpus of mathematical facts and their proofs expressed in both natu-
ral language and in Isabelle/HOL. Our corpus could be useful in many
tasks related to machine learning in theorem proving, such as autofor-
malisation. We also discuss challenges and requirements associated with
constructing the IPC, identified during a pilot study, that are distinct
from parallel corpora for natural language. At the time of writing, the
IPC contains over 500 facts (definitions, lemmata, theorems), with par-
allel proof scripts included for 18 of those entries. We envisage the IPC
to be a living corpus since the optimal number of parallel proof scripts
for autoformalisation is a major research question.

Keywords: Parallel Corpus · Automating Formalisation · Isabelle.

1 Introduction

Parallel corpora are key resources for machine translation in NLP. A parallel
corpus maps textual scripts in one language (e.g. French) to their equivalents in
another language (e.g. English). The paired scripts in a parallel corpus are data
points used to train language models that learn how to translate text from one
language to the other.

In theorem proving a parallel corpus can be useful in tasks such as autofor-
malisation (an instance of machine translation [6,7]), formal fact retrieval and
mathematical knowledge discovery [8]. Large-scale transformer models, such as
those used by Codex[2], can be trained on our corpus to attack many challenging
tasks in theorem proving and NLP with mathematical text.

We introduce the Isabelle Parallel Corpus (IPC) of natural language and
Isabelle proofs. Natural language proofs in our corpus are expressed using sen-
tences in the natural language of mathematics, with mathematical expressions
transcribed using LATEX. These textual proofs have been extracted from text-
books, International Olympiad of Mathematics solution sheets and other real-
world mathematics resources.
? This work was supported by the ERC Advanced Grant ALEXANDRIA (Project

GA 742178). We thank all the members of the ALEXANDRIA project for their
encouragement as well as Manuel Eberl, Sean Holden and Albert Jiang.



2 A. Bordg et al.

We believe that Isabelle is a suitable ITP target for a parallel corpus of the
proposed nature for two reasons. First, Isabelle’s libraries and the Archive of
Formal Proofs are large and cover a wide range of mathematical topics1. As a
result, there is a plethora of artefacts that can be sourced from these collections
to build a parallel corpus. Second, proofs in Isabelle can be structured like proofs
in mathematical texts.

2 Annotation Requirements and Pilot Experiment

Sentence and token alignments for parallel scripts are pairings that link sen-
tences, tokens or groups of tokens in one language to those in the other language
and are considered to be beneficial to machine translation models [4,3]. However,
the nature of sentence and word alignments for a parallel corpus like the IPC is
unclear.

We conducted a pilot study to determine sentence and word alignment re-
quirements of our corpus and we present one case study to illustrate the intri-
cacies of the task. Table 1 lists the sentences in the proof of Theorem 2.2 in [1].
In the table, individual sentences are numbered 1–13, with phrases and mathe-
matical expressions of interest labelled with Roman numerals and Greek letters,
respectively.

The corresponding Isabelle proof, taken from the HOL-Number Theory li-
brary, is shown in Figure 1. The left column in the figure maps the Isabelle
commands (right column) to the sentences, phrases and mathematical expres-
sions found in the natural language proof (Table 1).

One notices minor discrepancies in notations, otherwise fairly close, card(A
d) (resp. totient, {1 . . . n}) being abbreviated f(d) (resp. ϕ, S) in the textbook.
Moreover, one notes that some commands in the Isabelle proof script do not have
direct counterparts in the textbook source. It is certainly true for commands 3
and 6 which state trivial facts, but also for command 11 which corresponds to a
mere concatenation of the facts previously proved.

In the opposite way, some sentences in the textual proof do not have direct

counterparts in the Isabelle script: sentence 8 is more or less hidden in the
lemma card gcd eq totient which is passed to Isabelle as a rule through the key-
word by in raw 5 of the script; in the same way, the explanation, introduced by

“because”, for the equivalence mentioned in sentence 12 is hidden in the fact

reindex bij witness passed to some tactics in raw 10 of the script; last, sentence

6 states not only that the union of the sets A(d)’s is S, but also that this union
is disjoint, this last fact is not explicitly stated in Isabelle, but is visibly handled
automatically by the tactic auto as can been seen from the use of the lemma
card UN disjoint in raw 8 of the script.

From this example and others studied by the authors, we observed that there
are sentences in the natural language that do not correspond to any statement in

1 As of April 2022, the Archive of Formal Proofs contains 3,396,200 lines of code,
making it one of the largest collections of formal material.
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Fig. 1. Isabelle commands (numbered 1 to 12) mapped onto their matching sentences,
phrases and mathematical expressions in the textual theorem.

Isabelle and vice-versa. Furthermore, authors of textbooks may sometimes evoke
results that have been established earlier but not explicitly stated as labelled
lemmata. Isabelle users may repeat proofs of facts (or variants thereof) when
(a) Isabelle code is not properly factored and (b) when facts are not proven at
the right level of generality.

Our pilot highlighted three challenges in constructing the IPC. The first
challenge is to identify the annotation requirements of the corpus for align-
ing natural language sentences to Isabelle statements. The second challenge
is how should dependencies in parallel textual and Isabelle proofs be incorpo-
rated in the corpus. One solution would be to integrate dependencies in the
corpus and include data about the reference graph between artefacts [8]. The
third challenge is designing a suitable annotation scheme for (a) representing
Isabelle terms and mathematical expressions in textual proofs (using MathML,
for example) and (b) establishing an alignment between them.

3 The Parallel Corpus and its Construction

To construct our corpus, we adopted a multi-phase approach. In the first phase,
we sourced over 500 Isabelle artefacts, including definitions, lemmata, theorems
and proof scripts. For each artefact we record information that includes its state-
ment typeset in LATEX, its page and number as they appear in the source material
as well as a BibTEX citation. The 564 items recorded in phase 1 cover a wide
range of mathematical topics: puzzles from mathematical Olympiads, analytic
number theory, abstract algebra and geometry. The second phase, which is ongo-
ing, involves pairing informal and formal proofs attached to the recorded state-
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Sentence Text

1 If n ≥ 1︸ ︷︷ ︸
I

we have

α︷ ︸︸ ︷∑

d|n
ϕ(d) = n.

2 Let S denote the set {1, 2, . . . , n}.
3 We distribute the integers of S into disjoint sets as

follows.

4 For each divisor d of n, let

A(d) = {k : (k, n) = d, 1 ≤ k ≤ n}.

5 That is, A(d) contains those elements of S which have
the gcd d with n.

6 The sets A(d) form a disjoint collection whose union is
S.

7 Therefore if f(d) denotes the number of integers in A(d)
we have ∑

d|n
f(d) = n. (1)

8 But (k, n) = d if and only if (k/d, n/d) = 1, and 0 <
k ≤ n if and only if 0 < k/d ≤ n/d.

9 Therefore, if we let q = k/d, there is a one-to-one cor-
respondence between the elements in A(d) and those
integers q satisfying 0 < q ≤ n/d, (q, n/d) = 1.

10 The number of such q is ϕ(n/d).

11 Hence f(d) = ϕ(n/d)︸ ︷︷ ︸
β

and (1) becomes

∑

d|n
ϕ(n/d) = n

︸ ︷︷ ︸
γ

.

12 But this is equivalent to the statement
∑

d|n ϕ(d) = n
because when d runs through all divisors of n so does
n/d.

13 This completes the proof.

Table 1. Natural language statement and proof of Theorem 2.2 in [1].

ments. At the time of writing, we have paired Isabelle proofs with corresponding
informal proofs for 18 artefacts.

We developed an annotation tool that allows us to (a) record information
about artefacts in the corpus, (b) collect parallel natural language and Isabelle
proof scripts and (c) implement the annotation scheme for the IPC. Our tool
is built on top of the SErAPIS search engine for Isabelle [5], inheriting the
engine’s user interface for fact search and presentation of results. Annotators
can add data to the corpus by searching for an artefact of interest and clicking
the appropriate button next to each search result, which will prompt a data
input form.
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Figure 2 illustrates how existing annotations are presented with our tool:
phase 1 information is presented as a collapsible information card. The dark
grey buttons next to the artefact name allow annotators to edit or delete phase
1 data. The blue and orange buttons allow annotators to add or edit textual and
Isabelle proofs, respectively (phase 2 data).

Fig. 2. A problem from the 2019 International Mathematical Olympiads.

4 Conclusions and Future Work

The IPC will be made public on GitHub prior to our presentation in the hope
that it will be useful to researchers in machine learning for theorem proving.
We intend to continuously update the corpus (e.g. with sentence and token
alignments in phase 3). This release strategy reflects our vision that the IPC
is a living corpus with well-defined milestone releases to facilitate comparative
analysis of machine learning models. We also intend to make our annotation
tools public to continuously expand the IPC.
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Sophize Mathematics Library

Abhishek Chugh

Sophize Foundation, Bengaluru - 560066, India
abc@sophize.org

Abstract. Sophize is a novel mathematics library and discussion plat-
form with a mission to help our users find and organize mathematical
proofs. We present Sophize’s novel yet familiar knowledge organization
scheme that is used to represent a wide variety of proofs. With this
scheme at its core, we have engineered a platform to logically aggregate
knowledge from multiple sources. The platform curates knowledge from
published research, encyclopaedias such as PlanetMath and Wikipedia,
informal computer programs, and formal systems such as Metamath;
and allows its users to run a federated search over them. To make this
happen, two developments were necessary. First, we came up with the
concept of ‘proof-generating machines’ and developed an open plugin ar-
chitecture that allows proofs from computer programs to be generated as
required. Second, we extended the Markdown language to represent the
connections between mathematical objects found across various sources
of knowledge. In addition, we also utilized this new language to create a
novel communication system built specifically to aid mathematicians in
solving problems collaboratively.

Keywords: Sophize · knowledge organization · proof-generating ma-
chine · belief set · metamath · markdown · argument graph · proof graph
· semantic data

1 Introduction

1.1 The Sophize Platform

Sophize is a novel mathematics library and discussion platform. The author
has developed the platform over the course of the last few years at https:
//sophize.org. Sophize’s primary mission is to help users find existing proofs
of mathematical statements, to discover new proofs, and to utilize this knowl-
edge in their work. We combine knowledge from multiple resources and have
accumulated thousands of definitions, theorems, and proofs from a wide vari-
ety of sources, including some published research, the PlanetMath encyclopedia,
Wikipedia, and the Metamath formal system [4].

1.2 Motivation

In the past couple of decades, the Internet has revolutionized our life by giving
us access to seemingly unlimited information. Information from a wide variety of
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topics ranging from human medicine to rocket science is now just a few keystrokes
away. However, it seems that we are having even more trouble making sense of the
World around us. In fact, dealing with the vast amounts of information thrown
at us seems to be one of the most important problems of our generation. While
we have access to a wide range of opinions on almost every topic imaginable, it
has become increasingly difficult to decide which ones to trust. It seems that the
Internet can find us "proofs" for anything we would like to believe.

Thus, the author’s primary motivation for this project is to create a library
that not just lays out all the information about the World but organizes it in
a way that helps us make better sense of it. A library that helps us access
justifications from a variety of viewpoints and allows us to collaboratively and
objectively evaluate issues in the justifications or the viewpoints they arise from.
Clearly, this is a challenging goal.

We begin our journey with a focus on pure Mathematics, where knowledge
is objectively less complex as compared to other fields. In mathematics, only
logically sound arguments are acceptable as justifications. These arguments de-
velop in different foundational theories; and logical consistency is the primary
criterion of correctness. Thus, as a Mathematics library, Sophize’s goal is to
help our users access mathematical proofs (arguments) from a variety of belief
sets (roughly - foundational theories along with indicators of trust in knowledge
sources) and allow our users to collaboratively and objectively evaluate issues in
the arguments or the belief sets they developed in.

With our current scheme, we can incorporate nearly all mathematics. A nat-
ural extension would be to model observational data and develop criteria to
quantify empirical correspondence in order to have the ability to incorporate
scientific knowledge. But, for now, we are focused on developing a state-of-the-
art library for the Mathematics community.

1.3 Proofs in Sophize

Mathematical proofs are based on a variety of foundations such as ZFC, intu-
itionistic logic, and type theory. The arguments used in any proof are considered
valid or not based on criteria that can vary. Most academic mathematics is
peer-reviewed and published, but some mathematical proofs can be found in
community curated sources such as Wikipedia. Proofs can also be algorithmi-
cally generated, and at the highest level of verification, they are represented and
verified using a formal system.

Sophize combines such an expansive range of proofs into a dense graph of
propositions and logical arguments that aggregates knowledge from several doc-
uments and other data sources. We use this graph and combine it with the set
of foundations and verifications chosen by each user to create proofs tailored to
their needs. This introductory video gives an overview of the platform’s offerings:
https://youtu.be/Wb1JbW9Otek.

This work can also be seen as a step towards formalizing the network of
information that exists in the connections of mathematical objects. The com-
mittee on planning a global library of the mathematical sciences recognized that
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Fig. 1. A proof displayed as a graph (tree) of arguments and propositions on the
Sophize platform.

this network is largely unexplored, and formalizing it has tremendous potential
to accelerate math research [5]. Hence, we required novel techniques to connect
mathematical entities from such a wide range of formal and informal knowledge
sources.

1.4 Contribution

In this paper, we present the novel concepts and features of Sophize Mathematics
Library. First, we expound Sophize’s scheme to build a trust-focused logical
network of mathematical knowledge. In section 3, we describe Sophize’s proof-
generating machines which are computer programs that generate proofs that
integrate with Sophize’s knowledge graphs.

We then present some features of Sophize Markdown, an extension of the
Markdown language that helps present Sophize’s knowledge graphs to its users.
It is convenient enough to be used for casual discussions of mathematical ideas
over the web. It is also powerful enough to embed mathematical entities such as
definitions, theorems, and proofs from various sources, including formal systems.
It thus plays an integral role in the two problems that we have mentioned above.

Section 5 discusses some other challenges and contributions made towards
making Sophize a modern mathematics library. Finally, Section 6 concludes the
paper.
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2 Sophize’s Knowledge Organization Scheme

At its core, Sophize’s approach is to simply keep track of all arguments in favour
or against any proposition. The use of some form of arguments is the common
factor amongst all mathematical (and perhaps most scientific) knowledge. We
use this fact to unify knowledge from multiple sources in a meaningful way as
described below.

We use the set of all known arguments to track knowledge from a variety of
foundational theories. For theoretical knowledge, i.e., the knowledge that doesn’t
involve empirical data, the primary criterion of validity is internal (logical) con-
sistency. Thus, for each foundational theory (‘belief set’ described below), we
also keep track of any contradictions that arise from those foundations.

2.1 Core Concepts

Sophize uses the following concepts to logically organize theoretical knowledge.
The datamodel for these concepts is published in JSON schema [6].

A resource is an abstract concept inherited by all other top-level concepts like
terms, propositions, arguments, and belief sets. Each resource has a URI and
contains fields such as search tags and citations.

A URI consists of two parts: a namespace-like identifier called its dataset-id,
which indicates the data source, and a resource-id that specifies the resource
type and its unique name in the data source. The dataset-id may be omitted if
it can be inferred from the surrounding context.

For example, the Pythagorean theorem (a Proposition) represented in the
Metamath project may have the URI metamath/P_pythagorean and the defini-
tion of cone (aTerm) extracted fromWikipedia may have the URI wiki/T_cone.
When used inside another resource in the same (‘wiki’) dataset, cone’s definition
can be referred to simply as T_cone.

The same URI scheme will be used in this paper to refer to various terms,
propositions, arguments, etc.

A term is a clearly defined entity that can be used to make up a valid proposition.
It can be a mathematical object, operator, symbol, data structure, algorithm, or
even a person. ‘Meaningless’ primitives in formal theories are also categorized
as terms.

A proposition is a grammatically valid statement that can be either true or false.
Axioms, theorems, conjectures, hypotheses, lemmas, corollaries, and converses
are all classified as propositions.

An argument is a set of propositions called premises along with a concluding
proposition that is claimed to follow from the premises. In addition, most argu-
ments include supporting text that explains how the conclusion follows from the
premises.
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A belief set is roughly the set of axiomatic propositions that make up the foun-
dations of a theory. Belief sets will be described in subsection 2.5.

Loosely defined, a proof-generating machine (PGM) is a computer program
that generates proofs for an input proposition on-the-fly. PGMs are described in
detail in section 3.

2.2 Argument Graph

An argument can be seen as a simple graph (see Fig. 2) with two types of nodes
- (a) a single node representing the argument itself and (b) a set of proposition
nodes representing the argument’s conclusion and premises. The edges of this
graph are directed and go from (a) premise nodes to argument node and (b)
argument node to conclusion node. A set of arguments can thus be represented
as a single graph that we call an argument graph.

Fig. 2. An argument represented as a graph (left). A set of arguments forming an
argument graph (right).

2.3 Generating Proof Graphs

A proof graph is a directed acyclic graph and contains complete proofs (includ-
ing all alternate proofs) for all its propositions. A proof graph can be generated
from an argument graph by starting with the axiom nodes and finding all nodes
that can be reached from them (See Fig. 3).

Note that an argument graph combines with different sets of axioms to gen-
erate different proof graphs. The same argument may be utilized in multiple
proof graphs (Fig. 5).
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Fig. 3. Proof graph from argument graph (Fig. 2) using ‘Prop 2’, ‘Prop 3’, Prop 4’ as
axioms.

Fig. 4. Proof of ‘Prop 7’ from proof graph in Fig. 3 uses ‘Arg 4’ and ‘Arg 5’.

2.4 Validity of Arguments

The correctness of proofs obtained by the above process is contingent on the
validity of the arguments in the argument graph. The validity of an argument is,
in principle, independent of other arguments and objectively verifiable. Formally
defined logistic systems indeed have a mechanical procedure to independently
verify the validity of arguments.

However, only a small section of Mathematics is developed using formally ver-
ified arguments. The vast majority of mathematics is verified via peer review,
and some of this knowledge is curated by experts in books, encyclopaedias. The
claim of validity of proofs (arguments) is judged based on various parameters
such as the academic standing of the claimant, the reputation of the peer re-
viewing journal, the history of errors in the book or encyclopaedia containing
them, etc. Clearly, these criteria are subjective and each individual’s criteria for
accepting the validity of an argument can vary to some extent.
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Fig. 5. Proof graph from the same argument graph (Fig. 2) using ‘Prop 1’, ‘Prop 2’,
and Prop 7’ as axioms.

Sophize doesn’t promote or endorse any criteria. Instead, it allows its users
to choose the criteria they believe in. The validity criterion is modelled as a
proposition and is attached to arguments as a premise.

Fig. 6. Validity criteria as an argument premise.

To easily manage validity criteria, the relationships between validity criteria
are also maintained in the argument graph using arguments such as "Published
in journal with SJR score > 0.67" → "Published in Annals of Mathematics"
(validation criterion should be provided for such arguments too). By maintain-
ing such relationships, Sophize allows its users to conveniently choose multiple
sources they consider to be reliable with a single manually chosen criterion.

2.5 Belief Sets

A proposition is true if it is the conclusion of a valid argument and the premises
of the argument are also true. Of course, this means that we need to start with
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some propositions that are assumed to be true without further justification. Tra-
ditionally, these are mathematical axioms and are considered to be self-evidently
true. In mathematical inquiry, theorems are proven/disproven in one or more
theories, each with its own set of axioms. Each theory may have its theoreti-
cal advantages and practical uses and there is no universal basis to choose one
theory over another when trying to assert a proposition’s truth/falsity.

Sophize allows any set of propositions to be considered true without evidence.
Such a set of propositions is called a belief set. Propositions representing argu-
ment validity criteria are also part of belief sets. All propositions that are con-
sidered to be true in a belief set without proof are called its ‘unsupported propo-
sitions’. In addition, a belief set can also contain a number of ‘proof-generating
machines’ (e.g. for managing axiom-schemas) that will be discussed later. For
ease of use, belief sets can also contain other belief sets.

The truth-value of a proposition is only defined within a belief set - there
is no notion of absolute or universal truth on the Sophize platform. Sophize
maintains proof graphs for all its belief sets.

2.6 Tracking Inconsistencies

If a proposition and its negation is proved within a belief set, it is inconsistent.
As noted by the principle of explosion, any proposition can be proved from such
a contradiction, thus making the claim of truth of any proposition practically
worthless.

Thus, it is important to track and report contradictions in a belief set. To do
that Sophize has a semantic notion of negation of a proposition. The premises or
conclusion of an argument can be negations of propositions. When a proposition
and its negation are proven, the system reports such contradictions for every be-
lief set. When generating proof graphs from the argument graph, a contradicting
proposition cannot be used a premise for any argument.

2.7 Potential Advantages

Apart from organizing knowledge focused on trust and aggregating disparate
data sources, logical organization of mathematics can lead to many other advan-
tages. We list some interesting ones below.

This knowledge organization scheme facilitates the re-use of propositions,
and arguments across different theories. For example, to organize knowledge of
different constant-curve geometries, we would create 4 belief sets - one each for
absolute, Euclidean, hyperbolic and elliptic geometries. The latter three belief
sets would comprise the absolute geometry belief set and the appropriate version
of the parallel postulate needed for them. In such a scheme all the arguments
(proofs) added to the argument graph for absolute geometry would automatically
be shared by the other three geometries. The other three geometries need to only
add the arguments that utilize their version of the parallel postulate.

Another use case would be to understand the consequences of important con-
jectures like the Riemann hypothesis by creating two belief sets - one where the
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conjecture is true and one where it is false. The proof graphs would system-
atically store such conjectural knowledge which often gets lost especially when
results from multiple conjectures are involved. Complexity theory is one such
field where this need is quite apparent. Such conjectural knowledge knowledge
can have practical applications too. For example, a lot of our information security
systems utilize the knowledge developed with the conjectures P 6= NP .

Proof graphs are currently organized as trees as seen in Fig 1. Users can keep
exploring the proof till they reach a point where the propositions are already
familiar to them. A future application of proof graphs would be to generate
narrative proofs tailored to the reader’s current understanding. This could be
achieved in a classroom setting where the current level of mathematical under-
standing of students is known or assumed. It may also be possible to infer this
from the user’s activity on the platform.

2.8 Limitations

The scheme described in this section has a semantic notion of negation of a
proposition to track contradictions. Thus it is incapable of organizing knowledge
that depends on more complex calculi such as many-valued logics.

3 Proof-Generating Machines (PGM)

A lot of mathematical knowledge is computed. Most computation machines (e.g.
calculators, algebras) can be seen as performing the following tasks

– Parsing the input into a language that can represent math formulae.
– Finding and outputting an equivalent form of the formula.

Thus, their focus is not on finding the proof but only finding the equivalent
simplified representation of the input formula (Although many computer alge-
bras do show the steps of the computation). With Sophize, the focus instead
is to generate proofs of the input propositions. A proof-generating machine
(PGM) is a computer program that generates a partial proof graph against or
in favour of an argument. PGMs can also have the capability to perform tasks
1 and 2, mentioned above.

PGMs take in some text as input which is parsed by the each PGM as they
wish. Typically the text is treated either as a proposition (e.g. ‘3 + 5 = 8’) or a
formula (eg. ‘5 + 6’) and in the latter case the PGM is responsible for finding an
appropriate proposition (eg. ‘5 + 6 = 11’) for the given input. The PGM then
generates a proof graph for this proposition and returns back to the user.

The Sophize platform itself merely forwards the request to the associated
PGM and performs some checks on the output returned. Any http server that
can process a proof request can be easily plugged in to Sophize platform using
its HTTP address. One server can implement multiple PGMs. An overview of
PGMs generating Metamath proofs is here: https://youtu.be/hJtEIo3ioLM
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3.1 ‘Active’ PGMs

As with other parts of Sophize, the validity of the output of a PGM is not
taken for granted. Each PGM must specify all the propositions (premises) that
it will use in the root nodes of the proof graph it returns. In addition, a PGM
may also delegate parts of proofs to another PGM. These PGMs must also be
specified. Similar to argument validation criterion, each PGM should also have
premise indicating PGM’s correctness criteria (e.g. tested by X, verified by some
committee, another program etc.)

A PGM is considered ‘active’ in a belief set iff:

1. all of its premises are true in the belief set.
2. all the PGMs it delegates-to are active in the belief set.

The output of a PGM is not used in belief sets in which it is not active.

3.2 PGM Response

The response of a request to any PGM has the following components:

– Truth value, i.e., whether the PGM considers the input proposition (provided
or computed) true or false. PGM can also indicate that it doesn’t understand
the input or can’t prove/disprove the proposition.

– Proof graph (or a subset of proof graph) generated by the PGM in favour or
against the input proposition. This component is skipped if only computation
results are requested.

Note that unlike other propositions and arguments on Sophize, these are
not stored on disk. They have a temporary URI specified in a slightly different
format. The leaves of the DAG can have two kinds of arguments:

1. Arguments whose the premises are limited to the premises of the PGM.
2. Special ‘Arguments’ that indicate that the generation of the proof of this

argument’s conclusion must be delegated to another PGM. Seeing such ar-
guments, the Sophize platform requests the remainder of the proof from the
indicated PGMs as needed to allow users to browse the proof uninterrupted.
To paginate large proofs, a PGM may also delegate to itself after generating
some (say 100) arguments.

3.3 Materializing results

Sophize allows saving the fact that a machine has returned a valid proof for
a proposition (not the actual proof itself which can be quite large). Then this
proposition can be used in further proofs without the need to invoke the proof
generation every time. The proof, of course, can be requested by the users when-
ever required.
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4 Sophize Markdown

In the author’s view, it is crucial to maintain the proofs graphs for building
trustable knowledge. However, the presentation of proofs as graphs to users is
perhaps not very convenient. Traditional text-based narration remains indis-
pensable when presenting knowledge to the reader.

We have extended the Markdown language - a lightweight markup language
for creating formatted text using a plain-text editor - for building a rich narration
interface. It allows users to quickly encode and present semantic data, to show
the truth status of propositions available in prose, and to effortlessly access proof
graphs.

With Sophize Markdown, we can easily add LATEX by enclosing it between two
$ signs (or $$ for display math). A detailed specification of Sophize Markdown
is available [1] and many of its features are demonstrated at https://youtu.be/
5UYOpQwcjCk. We highlight relevant features here:

4.1 Embedding Semantic Data

With Sophize Markdown we can easily link resources such as terms, propositions,
and arguments. Links can be added using the pound sign (#) and the resource’s
URI. There are multiple resource link options that can be used for changing the
behaviour and text of the resource link. The following example utilizes some of
the options.

Sample Markdown Code

# Conic section

A conic section is a curve obtained as the intersection of the
#(wiki/T_conical_surface, ’surface’) of a #wiki/T_cone with a
#wiki/T_plane. There are three types of conic sections.

## Ellipse
#oxford/T_ellipse|EXPAND #wiki/P_ellipse_area|EXPAND

## Parabola
...

The above code is rendered as:

Conic Section

A conic section is a curve obtained as the intersection of the surface of a
cone with a plane. There are three types of conic sections.
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Ellipse

An ellipse is a regular oval shape, traced by a point moving in a plane so
that the sum of its distances from two other points is constant. The area
Aellipse enclosed by an ellipse is

Aellipse = πab

where a and b are the lengths of the semi-major and semi-minor axes, re-
spectively.

Parabola

...

In the above example, the ‘EXPAND’ option expanded the definition of the
term, and statement of the proposition in place. Thus we were able to easily re-
use concepts and theorems already extracted from other sources (say, Wikipedia
and the Oxford dictionary in this case). Clicking on the underlined concepts
pops-up a modal dialog with the definition of the term clicked.

4.2 Truth Status

When a belief set is chosen, Sophize markdown adds an icon next to each propo-
sition link. This icon indicates whether the proposition has been proven or dis-
proven (or both) in the currently selected belief set using an appropriate symbol
such as a check-mark or a cross. Clicking on the icon brings up the proof graph
as shown in Fig. 1. If the users switches from one belief set to another, the icon
is updated based on the truth values in the new belief set but other parts of
the article are unchanged. This functionality is demonstrated in the demo in
subsection 1.3. Similarly, an icon is added next to a proof generating machine
which indicates whether the PGM is active or not.

4.3 Formal Language Support

In the case of formal languages, when propositions can be fully parsed, Sophize
can automatically attach links to appropriate resources. This provides a conve-
nient interface, where the user types in the native language, and the final output
automatically allows users to explore all concepts that make up the input state-
ment in depth. Currently, this is demonstrated in the use of Sophize Markdown
with the Metamath language.

5 Building a Modern Mathematics Library

This sections discusses a some practical issues need to be overcome to build a
modern scalable library with reliable information.
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5.1 Semantic Data Extraction

Utilizing the full range of features offered by the Sophize platform requires the
availability of semantic information. However, extracting semantic information
from unstructured or semi-structured literature is a difficult problem. This prob-
lem can be seen as composed of several sub-problems:

– Finding definitions and propositions in prose.
– Associating the appropriate entity with a term used in prose for quick lookup.
– Identifying arguments along with premises and conclusion.
– Identifying duplicate definitions and propositions used in different sources.

Solving these problems would require manual effort (e.g. crowd-sourcing)
combined with automated extraction tools. Recent progress in machine learning
and natural language processing techniques [2] does make this problem seem
tractable.

5.2 Data Management

Sophize divides its data into groups called datasets for copyright and data ac-
cess management. For example, the ‘wiki’ dataset that extracts knowledge from
Wikipedia mathematics glossaries releases its data under ‘CC-BY-SA’ license,
whereas the ‘metamath’ dataset is public (‘CC0’). Our signed-in users are free
to create their own datasets and we allow them to choose who can read, write
or comment in these datasets. Another interesting access control is the restric-
tion of use of resources (especially argument-validity criteria) from an otherwise
open-to-read dataset.

Information can be added to Sophize platform using intuitive web forms.
However, it is infeasible to extract information from large repositories in this
manner. Sophize publishes its data schema (explained in Section 2.1) and helper
libraries in multiple languages. The extracted information is can thus be stored as
text (JSON) files in a repository. Sophize provides dataset owners the ability to
sync knowledge such repositories to the central Sophize database. The datasets
‘wiki’ and ‘planetmath’ use this scheme for keeping the script-generated data
synced with Sophize’s central database.

5.3 Search Interface

Sophize allows its users to run a run a federated search over its resources using
an Elasticsearch server. We even allow users to LATEXto their search queries.
The server runs search a space-insensitive and case-insensitive search over LATEX
formulae by encoding LATEX formulae as lexemes and an Elasticsearch analyzer
processes them appropriately. (See section 6 for sources)
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5.4 Collaboration

The Sophize platform includes an innovative mathematics communication inter-
face designed to help our users discuss mathematics and collaboratively discover
new proofs. The design focuses on making the collaboration more productive and
enjoyable by building the right set of technical tools that aid in effective organiza-
tion and summarization of existing progress. With Sophize Markdown at its core,
Sophize’s collaboration interface[1] (demo: https://youtu.be/d3gaalJ7UQM) is
able to provide key features such as easy linking of existing math content, LATEX
support, and live preview of comment drafts.

6 Conclusion And Future Work

We have presented the Sophize platform, a modern open mathematics library
focused on providing reliable and detailed knowledge to its users. We extract and
aggregate logical arguments from a wide variety of sources including published
research, encyclopedias, formal theorem provers, and formal/informal programs.
While there exist other systems that work with disparate data sources, we are
aware of no other systems that attempt to logically aggregate knowledge across
these data sources. Using this organization scheme we can maintain proofs of re-
sults from different theoretical foundations and tailor them to a user’s knowledge
reliability criterion.

We show how proof-generating machines can be used to instantaneously com-
pute proofs that embed into previously computed graphs. We showcase how
Sophize Markdown allow users to effortlessly browse proof-graphs and lookup
entities in math literature. While there are other ways to represent semantic
knowledge, such as content MathML and OpenMath, their scope is somewhat
limited to specifying the meaning of the mathematical formula. The sTeX sys-
tem [3] is perhaps most similar to Sophize Markdown but it needs creation of
LATEX documents and use of LATEXML systems. This makes its use in real-time
web workflows impractical.

In its current state, Sophize has limited information to share with its users.
Thus, we would first like to develop automated or semi-automated techniques
to extract semantic knowledge from literature and expand the knowledge base
that we share with our community. Using the proof-graphs and the semantic
information collected we would like to make it easier for users to find relevant
content with better search results.

Sources

The source code for several aspects of the Sophize platform (include Sophize
Markdown) is at available at https://github.com/Sophize. The math encoder
and Elasticsearch analyzer mentioned in section 5.3 are available at https://gist.
github.com/abc-sophize.
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Abstract. This paper describes a dataset of lemmas and their structural
templates extracted from Isabelle’s Archive of Formal Proofs1 (AFP). A
template is an expression describing the shape of a given lemma. We
hypothesise that many lemmas and theorems have similar shapes, and
that knowledge of common shapes and their frequencies can be useful for
downstream tasks such as automated conjecturing. Our dataset currently
contains 22767 lemmas of 6567 distinct shapes.

Keywords: Theory exploration · Automated conjecturing · Theorem
proving.

1 Introduction

Theory exploration is a method for automatically inventing interesting conjec-
tures in a given formalised theory. While our previous system QuickSpec [5], can
be very efficient on moderately sized theories, its runtime eventually hits expo-
nential growth. We therefore introduced RoughSpec [2], to handle these cases.
RoughSpec takes templates as an additional input, specifying the shapes of con-
jectures the user is interested in, and thus limiting the search. For example, by
giving the template F X (G Y Z) = G (F X Y) (F X Z), the user can instruct
RoughSpec to search for distributivity properties.

In order to gain a more robust empirical understanding of what kinds of
templates are useful and to provide a dataset for data-driven experiments we
have mined such templates from the Archive of Formal Proofs (AFP). In this
initial version, we have focused on equational lemmas, but this will be extended in
the future. The AFP currently contains 676 entries from 425 authors, containing
almost 200,000 lemmas and more than 3 million lines of code. The entries consist
of proof formalizations from a variety of areas of Computer Science, Logic and
Mathematics and we believe they are a good source of interesting and useful
lemmas, as the lemmas we find there are human-invented as part of proofs that
Isabelle users have seen a reason to formalize.

1 https://www.isa-afp.org/index.html
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2 Dataset

Our dataset contains 22767 equational lemmas captured by 6567 different tem-
plates, and an additional 10454 lemmas whose shapes cannot be fully expressed
using our template language, due to the presence of lambdas and quantifiers.
Covering also these in the template language is an upcoming extension. They
were extracted from 2169 different theory files from 611 AFP entries. Of the
remaining 65 AFP entries and 4279 theory files, 2516 files did not contain equa-
tional lemmas and 1763 files threw errors in the processing. To automate the
lemma extraction, we processed the theories in batch mode, but some theory
files seemed to be incompatible with this style of batch mode processing and
threw errors resulting in no lemmas being extracted from those theory files. We
plan to investigate this further and find a remedy so that lemmas from these
theories can also be added to our dataset.

We chose to start by processing only the equational lemmas from the AFP
because our current theory exploration tools are primarily designed to generate
equational conjectures. However, our intention is to extend both the dataset and
the capabilities of our tools in the future to also cover other shapes of lemmas
and conjectures. The dataset along with the code used to generate it is available
at: https://github.com/solrun/LibraryOfLemmas.

2.1 Data Format

For each extracted lemma we output the lemma name (including the name of
the file it is defined in), a string representation of the lemma statement, and a
template representation of the lemma. The template representation shows the
lemma statement’s term structure with function and variable names abstracted
away but using integer labels to keep track of function symbols and variables
that occur more than once in the lemma statement.

Example For example, for the lemma psi_sqrt defined in the theory Bertrand.thy
in the AFP session Bertrand’s Postulate [1], we output the following data:

("Bertrand.psi_sqrt", "psi (Discrete.sqrt ?n) = psi_even ?n",
template_equation
(template_app (template_hole 2

, template_app (template_hole 1
, template_var 0)),

template_app (template_hole 0, template_var 0)))

We see that the variable ?n is represented by template_var 0 and the the func-
tion symbols psi and Discrete.sqrt by template_hole 0 and template_hole 1
respectively. We replace function symbols by template_holes and variables by
template_vars, which are treated differently by RoughSpec as it builds conjec-
tures. Holes are instantiated by concrete functions given in the input signature,
while vars are treated as variables.



24 S. H. Einarsdóttir et al.

The extracted templates may also contain the keywords template_dunno or
t_empty, which mean that the lemma in question contains term structure not yet
covered by our template language, such as a lambda expression or an existential
quantification.

2.2 Template Frequencies in Dataset

The assumption behind RoughSpec was that certain lemma shapes are common
and can be used to efficiently conjecture many (but not all) lemmas by analogy
to known shapes. Does this dataset support such an assumption about the space
of lemmas in the AFP? In Figure 1 we can see that indeed, a small number
of templates occur very frequently in our dataset while the majority occur very
seldom with 4099 templates occurring only once. The 10 most frequent templates
together describe 3057 lemmas or 13.5% of the lemmas in our set, while more
than 50% of the lemmas can be described using only 266 of the 6567 templates,
as displayed in Figure 2.2. This supports our hypothesis that only a smaller
number of templates is needed to discover many lemmas using template-based
conjecturing.
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Fig. 1. Number of lemmas per template, sorted by frequency.

Table 1 shows the top 10 most frequently occurring templates in our dataset,
where # lemmas represents the number of lemmas matching the template, #
thys is the number of different theory files it occurs in and # sessions is the
number of different AFP sessions it occurs in. Template holes are represented by
a question mark followed by a capitalized name, while variables are represented
by a capitalized name. Among these common templates, we see a lot of similarity:
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Fig. 2. Cumulative percentage of lemmas in the dataset covered by most frequent
templates.

many of the templates in Table 1 resemble each other, differing only in the
number of variables or the order of application. For example (1) (6) and (8),
(3) (5) and (7), and (9) and (10) should be grouped together and described by
common “supertemplates”. This could further reduce the space of templates to
be searched over by RoughSpec, as discussed in Section 3.

Template # lemmas # thys # sessions
1 ?F (?G X Y) = ?H (?F X) (?F Y) 611 261 172
2 ?F X = ?G (?H X) 566 265 169
3 X = ?F (?G X) 340 191 139
4 ?F X = ?F (?G X) 280 149 118
5 X = ?F ?G X 247 136 98
6 ?F (?G X Y) Z = ?H (?F X Z) (?F Y Z) 233 90 70
7 X = ?F X ?G 210 132 103
8 ?F X (?G Y Z) = ?H (?F X Y) (?F X Z) 194 90 74
9 ?F = ?G (?H X) 192 65 56
10 ?F = ?G ?H X 184 110 85

Table 1.

In our previous work [2], we defined a set of 10 default templates capturing
very common properties which we found useful in our case studies. Comparing
these to the most frequent templates as shown above, we see that 4 out of our
10 default templates are also in the 10 most frequently occurring templates in
our dataset as shown in Table 1: homomorphism (1), cancel (4), left-id-elem (5),
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right-id-elem (7). Of the remaining six default templates one did not show up at
all, and the other occur in places 20–388. The second most commonly occurring
template in the dataset, ?F X = ?G (?H X), is in a style we had previously dis-
regarded as being too general to be suited to template-based theory exploration,
but seeing how common this exact form of equivalence template seems to be we
will definitely try out using it in future experiments. The differences between our
collection of default templates and the most common templates in the dataset
show the value of collecting a dataset for empirical evaluation.

3 Discussion: Applications of the Dataset

Learning templates. Our aim is to build a neuro-symbolic system for conjectur-
ing, where given a theory, a machine learning system selects the most promising
templates, and a symbolic system fills in the templates to produce conjectures,
avoiding any conjecture which is trivial, trivially false, or already known. While
neural conjecturing has been attempted [6,4], a current problem is that such sys-
tems often also produce many non-theorems or variants of known conjectures.

Our hypothesis is that a neuro-symbolic approach combines the best of both
worlds: machine learning to learn which parts of the search space to focus on, and
symbolic methods to reason about and evaluate specific conjectures. A similar
idea was explored by Heras et al. [3], in the context of failed proofs, where
templates were extracted from lemmas in proofs of similar statements.

Extending the dataset. We are currently working on expanding this dataset to
also contain non-equational lemmas, such as conditionals, inequalities, and pred-
icates. We also plan to extend the template language to cover e.g. lambda ab-
stractions and quantifiers. With these extensions we should be able to cover all
the lemmas in the AFP. Adding more data concerning for example the topic
of the theory where the lemma in question is defined and used or the function
definitions involved may also prove necessary in order to use this dataset to learn
what templates are useful in various theorem proving contexts.

This dataset was extracted from Isabelle theory files. However, the data for-
mat is not specific to Isabelle and it would be interesting to compare this dataset
to one extracted from a different source language.

Template families and generalization. We will divide the templates in the dataset
into families of similar templates and develop techniques where one template
from such a family can be generalized to describe the other family members. Our
hypothesis is that we can then define a small set of “supertemplates” where using
those templates and their generalizations we can generate a large proportion of
the lemmas we need.

Acknowledgements This work was partially supported by the Wallenberg
Artificial Intelligence, Autonomous Systems and Software Program (WASP),
funded by the Knut and Alice Wallenberg Foundation.
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Abstract. This system entry gives a brief overview of PISE: an appli-
cation for representing, studying, and annotating informal proofs from
the mathematical literature.
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Tool: PISE (v22.8)
Impl. in: JavaScript & Python
License: Apache 2.0
Download:
https://proofscape.org/download

Description. PISE (Proofscape Integrated Study Environment) is an applica-
tion for representing, studying, and annotating informal proofs from the math-
ematical literature. PISE aims to provide the equivalent for mathematics of an
annotated chess game at chess.com, or the detailed and clickable driving direc-
tions available in Google maps.

In systems of this kind, the display before the user has two sides: a graphical
side, where all the steps to be understood are laid out on a type of board or map;
and a textual side, where a discussion guides the user through the steps. The
discussion usually has embedded links or other clickable “widgets” that cause
the graphical side to “advance,” “navigate,” or “light up” so as to show the part
the text is currently talking about. PISE does all this with mathematical proofs.
The two sides are called proof charts (graphical), and annotations (text), and
are authored in the Proofscape argument mapping language [2].

Proofscape argument maps are a semi-formal representation of mathematical
proofs. The different node types help encode standard structures like proof by
contradiction or by cases, while the set of legal inferences is open. This means
it is the translator’s job to interpret the intention of the proof’s author, that a
given step C follow from previous steps P1, . . . , Pn, and encode this by drawing
arrows from the Pi to C. This system is chosen over any formal logic, because
the purpose is to faithfully represent the original form of expression of proofs
from the literature. Conceivably, translating from Proofscape to a formal system
could later allow automatic filling in of missing steps, or checking existing steps.

Proofscape enables users to provide expansions and example explorers. An
expansion is a set of extra steps that can be added to a proof to help fill in
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difficult inferential leaps. Expansions can come in multiple layers, allowing the
community of users to progressively explain more and more, until everything
is clear. Users are free to open the expansions they need, and ignore others.
Meanwhile, an example explorer is a set of annotation widgets allowing users to
rapidly explore numerical examples of the types of mathematical objects in play
at any given step in a proof. The examples are computed using the computer
algebra system SymPy [3].

Applications. The purpose of PISE is to make mathematical literature more
accessible. On the one hand, it can be used to communicate contemporary work.
On the other, improved access to the proofs that make up historic mathematical
literature could facilitate the genetic method of studying and understanding
mathematics through its origins, as first described by Otto Toeplitz [4] and later
echoed by authors like Harold M. Edwards [1].
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Formalising the Krull Topology in Lean
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Abstract. The Galois group of an infinite Galois extension has a natural
topology, called the Krull topology, which has the important property of
being profinite. It is difficult to talk about Galois representations, and
hence the Langlands Program, without first defining the Krull topology.
We explain our formalisation of this topology, and our proof that it is
profinite, in the Lean 3 theorem prover.

Keywords: Formalized mathematics · algebraic number theory · Lean
· mathlib · Galois groups

1 Introduction

The Langlands Program is one of the largest and most ambitious projects in mod-
ern mathematics. The program essentially says that there is a correspondence
between Galois representations and automorphic forms. Galois representations
are required to be continuous, which means that it is difficult to define them,
let alone state the Langlands conjectures, without first defining the appropriate
Krull topology on Galois groups. Recent work in [5] has formalised the adèles of a
global field, paving the way towards the automorphic side of the Langlands phi-
losophy. Meanwhile, we have formalised the Krull topology, laying groundwork
for the Galois-theoretic side.

One interesting feature of our formalisation is that we define the Krull topol-
ogy for all field extensions, without requiring them to be Galois. This is unusually
general, and it inspired us to think about how far the abstraction could go. We
found that category theory provides a natural language to express the idea in
vast generality.

The structure of the paper is as follows. In Section 2, we recap the relevant
mathematics by defining field extensions, Galois groups, and the Krull topology,
as well as explaining what it means for this topology to be profinite. We conclude
Section 2 by explaining informally a proof of profiniteness. Subsequently, in
Section 3, we explain our implementation of this definition and proof, building
on Lean’s mathematics library, mathlib.

Concretely, our contributions are as follows: In mathlib, we created a new
file, field_theory/krull_topology, which currently contains the definition of
the Krull topology and proofs that it is Hausdorff and totally disconnected. An
overview of this file’s contents can be found at: https://leanprover-community.
github.io/mathlib_docs/field_theory/krull_topology.html. At the time of writ-
ing, our proof that the Krull topology is profinite has not yet been merged
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into mathlib, and the most recent version can be found in the Pull Request at
https://github.com/leanprover-community/mathlib/pull/13307.

2 Mathematical Preliminaries

We summarise the key mathematical theory underlying our work, starting with
field extensions, Galois groups, and the Krull topology, which are familiar to
most number theorists. Once we have defined these objects, we move on to
explaining the language of filters, which give a convenient framework for dealing
with topological notions. Finally, we apply these filters to prove that the Krull
topology is profinite.

2.1 Field Theory and Galois Theory

A field extension L/K is a pair of fields K and L, such that K is a subset of
L. For example, the field Q of rational numbers is a subset of the real numbers
R, so R/Q is a field extension. Similarly, C/R is a field extension, where C
denotes the complex numbers. For a field extension L/K, an element α ∈ L is
said to be algebraic over K if it is a root of some polynomial with coefficients
in K. If α ∈ L is algebraic over K, then there is a unique monic polynomial
fα(X) ∈ K[X] of least degree such that fα(α) = 0. This polynomial is called the
minimal polynomial of α over K. A field extension L/K is said to be algebraic
if every element of L is algebraic over K. The extension C/R is algebraic, but
R/Q is not.

Two important properties of some field extensions are normality and separa-
bility. The extension L/K is said to be normal if it is algebraic and the minimal
polynomial of each α ∈ L can be factorised into linear factors over L. The ex-
tension C/R is normal. For an example of an extension that is algebraic but not
normal, consider the field

Q(
3
√

2) = {a+ b21/3 + c22/3 : a, b, c ∈ Q}

as an extension of Q. The minimal polynomial of 3
√

2 is X3 − 2, which cannot
be factorised into linear factors over Q( 3

√
2), since it has roots e±2πi/3 3

√
2, and

these are not in Q( 3
√

2). Meanwhile, an algebraic extension L/K is said to be
separable if the minimal polynomial of each α ∈ L over K splits into distinct
linear factors over an algebraic closure of L. All algebraic extensions of Q are
separable, since each minimal polynomial is coprime to its derivative, meaning
that it cannot have repeated roots in any extension.

The classic example of a non-separable algebraic extension comes from the
field

L =
Fp(T )[X]

(Xp − T )
,

where p is prime, Fp is the field with p elements, and Fp(T ) is the field of rational
functions over Fp. Write p

√
T for the element of L represented by X ∈ Fp(T )[X].
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As the notation suggests, intuitively L is obtained from Fp(T ) by adjoining a
pth root of T . Then L/Fp(T ) is a non-separable algebraic extension, since the
minimal polynomial f p√

T (y) of p
√
T factorises as (y− p

√
T )p over L. The extension

L/K is said to be Galois if it is normal and separable.
If L/K is a field extension, then L naturally has the structure of a vector

space over K. We define the degree of this extension to be the dimension of L
as a K-vector space, and we denote it by [L : K]. The most obvious example
is C/R. Since the complex plane is a 2-dimensional real vector space with basis
{1, i}, the degree is [C : R] = 2. A slightly more involved example is Q( 3

√
2)/Q

from before, which has degree 3, since it has basis {1, 21/3, 22/3} over Q.
If L/K is a field extension, then an intermediate field of L/K is another field

E such thatK ⊆ E ⊆ L. We will also refer to intermediate fields as subextensions
of L/K. In the case where a subextension F of L/K is of finite degree over K,
we will call it a finite subextension.

Definition 1. Let L/K be a field extension. A K-algebra homomorphism L→
L is a function σ : L→ L satisfying the following three axioms:

1. σ(x+ y) = σ(x) + σ(y) for all x, y ∈ L,
2. σ(xy) = σ(x)σ(y) for all x, y ∈ L,
3. σ(x) = x for all x ∈ K.

If moreover σ : L→ L is a bijection, then it is called a K-algebra isomorphism.

Definition 2. Let L/K be any field extension. We define the Galois group
Gal(L/K) of L/K to be the set of K-algebra isomorphisms σ : L→ L, which is
a group under composition.

Remark 1. It is slightly unconventional to define the Galois group of a field ex-
tension that is not a Galois extension. Usually, this object would be denoted
AutK(L). However, in mathlib, both objects are represented by the same nota-
tion, and all of our Lean definitions and results apply to non-Galois extensions.
Since it will not matter to us whether an extension is Galois, we will use the
notation Gal(L/K) for all extensions L/K.

In general, one may define a pair of maps

{subgroups of Gal(L/K)} {intermediate fields of L/K},H 7→LH

Gal(L/E)← [E

where

LH := {x ∈ L : σ(x) = x for all σ ∈ H}.

Note that for an intermediate field E of L/K, the group Gal(L/E) is indeed a
subgroup of Gal(L/K), since an isomorphism of L fixing E certainly also fixed
K.

We call LH the fixed subfield of H, since it consists of the elements of L that
are fixed by H. Similarly, when viewed as a subgroup of Gal(L/K), the group
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Gal(L/E) is called the fixing subgroup of E, since it consists of the elements of
Gal(L/K) fixing E.

One reason to care about Galois groups is the following theorem, which is a
special case of [6], Page 120, Theorem 7.34.

Theorem 1 (Fundamental Theorem of Galois Theory). If L/K is a Ga-
lois extension of finite degree, then the maps H 7→ LH and E 7→ Gal(L/E) are
mutually inverse bijections.

2.2 The Krull Topology

The Fundamental Theorem of Galois Theory breaks down for infinite Galois
extensions. See [3], Examples 3.10 and 3.11 for counterexamples. To salvage the
theorem, we define a topology on Gal(L/K).

Let L/K be a Galois extension, possibly of infinite degree. Recall that a finite
subextension of L/K is an intermediate field F such that F/K is of finite degree.

Definition 3. We define the Krull topology on Gal(L/K) to be the topology
generated by sets of the form

σGal(L/F ) := {σf : f ∈ Gal(L/F )},

where σ ∈ Gal(L/K) and F/K is a finite subextension of L/K.

If cosets σGal(L/F1) and τ Gal(L/F2) have nonempty intersection, then for
every ϕ ∈ σGal(L/F1) ∩ τ Gal(L/F2), we have

ϕ ∈ ϕGal(L/F1F2) ⊆ σGal(L/F1) ∩ τ Gal(L/F2),

where F1F2 is the smallest subfield of L containing F1 and F2, which is also of
finite degree over K. Therefore, the open sets of the Krull topology are precisely
the unions of cosets of the form σGal(L/F ) for finite subextensions F of L/K.

Definition 4. A topological group is a group G, equipped with a topology, such
that the maps

G×G→ G, G→ G

(x, y) 7→ xy, x 7→ x−1

are both continuous.

In the remainder of Section 2, we will state several results whose proofs are
elementary. Since the focus of the paper is on computation, we will omit these
elementary proofs in order to spend more time discussing our implementation.

Lemma 1. Let L/K be a (possibly infinite) Galois extension. The Krull topology
makes Gal(L/K) into a topological group.
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The following theorem salvages the Fundamental Theorem of Galois Theory
for infinite extensions.

Theorem 2 (Krull). The mappings E 7→ Gal(L/E) and H 7→ LH are mutually
inverse bijections between intermediate fields of L/K and closed subgroups of
Gal(L/K).

Proof. This is Part (1) of [1], Theorem I.2.8.

Definition 5. A profinite group is a topological group that is isomorphic to the
limit of an inverse system of finite groups, with their discrete topologies.

As F ranges over finite normal subextensions F/K, the groups Gal(F/K)
form an inverse system of finite topological groups, equipped with their dis-
crete topologies. The restriction maps Gal(L/K) → Gal(F/K) make the group
Gal(L/K) into the limit of this inverse system, in the category of topological
groups.

Therefore, Gal(L/K) is a profinite group. The following theorem gives a
convenient explicit condition for profiniteness.

Theorem 3. A topological group is profinite if and only if its topology is com-
pact, Hausdorff, and totally disconnected.

Proof. This is Theorem 2 of [7].

In mathlib, a space is defined to be profinite if it is compact, Hausdorff, and
totally disconnected, so those are the conditions we proved.

2.3 Filters and Filter Bases

Our proof of profiniteness uses the language of filters, which we now explain.

Definition 6. A filter on a set X is a collection F of subsets of X, satisfying
the following axioms:

1. (Universality) X ∈ F ,
2. (Upward closure) If S ∈ F and S ⊆ T ⊆ X, then T ∈ F ,
3. (Closure under intersection) If S, T ∈ F , then S ∩ T ∈ F .

Definition 7. A filter bundle on a set X is any function

N : X → {filters on X}.

Lemma 2. Let N be a filter bundle on a set X. Define

T = {U ⊆ X : U ∈ N (x) for all x ∈ U}.

Then T is a topology on X.
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The topology from Lemma 2 is called the topology induced by N . We also intro-
duce the concept of a filter basis, which is a reduced set of data that generates
a filter.

Definition 8. A filter basis on a set X is a collection B of subsets of X, satis-
fying the following two axioms:

1. B 6= ∅
2. For all U, V ∈ B, there is some W ∈ B with W ⊆ U ∩ V .

Lemma 3. Let B be a filter basis on a set X. The collection

F = {U ⊆ X : D ⊆ U for some D ∈ B}
is a filter on X.

The filter F from Lemma 3 is called the filter induced by B.

2.4 Group Filter Bases

At this point, we can come up with a strategy for obtaining a topology on a
group from a filter basis. The naïve strategy is as follows:

1. Start with a filter basis B on a group G.
2. For each g ∈ G, write g · B for the collection of cosets {g ·D : D ∈ B}.
3. It is easy to see that each g · B is a filter basis on G, so we may define N (g)

to be the filter induced by g · B.
4. Then N is a well-defined filter bundle on G, so it induces a topology.

Let B be a filter basis on a group G, and define a topology on G as outlined
above. This topology is called the topology induced by B.

Each filter basis on G does induce a topology, but that topology will not in
general make G into a topological group, since multiplication and inversion may
not be continuous. We can remedy this by imposing four additional conditions
on our filter basis, which we do in the following definition.

Definition 9. Let G be a group. A group filter basis on G is a filter basis B on
G such that:

1. 1 ∈ U for all U ∈ B.
2. For all U ∈ B, there is some V ∈ B with V · V ⊆ U .
3. For all U ∈ B, there is some V ∈ B with V ⊆ U−1.
4. For all x ∈ G and U ∈ B, there is some V ∈ B with xV x−1 ⊆ U .
Group filter bases were first defined in [2], Pages 222-223, and the discussion
preceding that definition explains how to define the induced group topology on
G, as we have done here. In mathlib, group filter bases were formalised by
Patrick Massot.

It turns out that these are the conditions we need for the induced topology
on G to make G into a topological group, as we see from the following theorem.
The proof is trickier than most of the surrounding lemmas, but still elementary,
so we omit it.
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Theorem 4. Let B be a group filter basis on a group G. Then the topology
induced by B makes G into a topological group.

Lemma 4. Let L/K be any extension of fields, and define the set

B = {Gal(L/F ) : F/K is a finite subextension of L/K}.

Then B is a group filter basis for Gal(L/K).

For an extension L/K, the group filter basis from Lemma 4 is called the standard
group filter basis on Gal(L/K).

Lemma 5. Let L/K be a Galois extension of fields. The topology induced by
the standard group filter basis on Gal(L/K) is equal to the Krull topology.

2.5 Proof that the Krull Topology is Profinite

We have written Lean proofs that the Krull topology is Hausdorff, totally dis-
connected, and compact. The former two properties are elementary, so we will
not explain their proofs here. Proving compactness is more difficult, and this
subsection is devoted to explaining its proof informally.

Compactness has an equivalent characterisation involving filters. Before we
can state this criterion (which we do in Theorem 5), we need two more definitions.

Definition 10. Let X be a topological space. An ultrafilter on X is a filter F
on X satisfying the following two axioms:

1. ∅ 6∈ F
2. For any filter G on X with ∅ 6∈ G and F ⊆ G, we have G = F .

Definition 11. Given a point x of a topological space X, the neighbourhood
filter of x is the filter

N (x) = {N ⊆ X : there is some open U ⊆ X with x ∈ U ⊆ N}.

The following theorem gives a convenient equivalent condition for a topological
space to be compact.

Theorem 5. Let X be a topological space. The following are equivalent:

1. X is compact.
2. For every ultrafilter F on X, there is some x ∈ X such that N (x) ⊆ F .

Proof. This is Theorem 2.2.5 of [4].

Following Theorem 5, the key idea in our proof of compactness is as follows:
take an arbitrary ultrafilter F on Gal(L/K) and construct an element σ ∈
Gal(L/K) such that N (σ) ⊆ F . For each point x ∈ L and each finite normal
subextension F/K containing x, we will construct a K-algebra homomorphism
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ϕF,x : F → L, satisfying certain properties. We will then glue these “local” K-
algebra homomorphisms together to define a “global” K-algebra isomorphism
σ : L→ L.

So, let F be an ultrafilter on Gal(L/K). Let x ∈ L and let F/K be a fi-
nite subextension containing x. There is a restriction map p : Gal(L/K) →
HomK(F,L), and we obtain a pushforward p∗F of F along p, which consists of
sets whose preimages under p are in F . It is easy to see that the pushforward of
an ultrafilter is an ultrafilter, and also that ultrafilters on finite sets are always
principal1. It follows that p∗F is generated by some element ϕF,x ∈ HomK(F,L).
It turns out that the element ϕF,x(x) ∈ L is independent of the choice of F , so
there is a well-defined element σ(x) ∈ L such that σ(x) = ϕF,x(x) for all finite
subextensions F containing x. This allows us to define a function σ : L→ L.

Now, for any elements x, y ∈ L, setting F = K(x, y) shows that σ(x + y) =
σ(x) + σ(y), and similarly for products. Therefore, σ is a ring homomorphism.
Clearly σ fixes K, so it is a K-algebra homomorphism.

We need to show that σ is actually a K-algebra isomorphism L → L. Field
homomorphisms are always injective, so we only need to show that σ is surjective.
Let y ∈ L and write fy for its minimal polynomial over K. Let y1, y2, . . . , yn be
the roots of fy in L, and let F = K(y1, . . . , yn). Then F/K is a finite extension
and ϕF,y is a K-algebra homomorphism F → F , which means that ϕF,y gives
an isomorphism F → F . In particular, there is some x ∈ F ⊆ L such that
ϕF,y(x) = y, so σ(x) = y. Therefore, σ is surjective.

Now, if U ∈ N (σ), then by definition of the Krull topology, there is some finite
subextension F/K with σ ·Gal(L/F ) ⊆ U . Now, if p : Gal(L/K)→ Gal(L/F ) is
the restriction map, then by definition, the ultrafilter p∗F is generated by σ|F ,
which means that {σ|F } ∈ p∗F . By definition of pushforwards, the set

p−1({σ|F }) = σGal(L/F )

is in F , which means that U is too, by upward closure. Therefore we have
N (σ) ⊆ F , so Theorem 5 tells us that Gal(L/K) is a compact topological space.

3 Implementation in Lean

In this section, we give an overview of our implementation in Lean. We start by
explaining how we defined the Krull topology and then discuss our proof that it
is profinite.

3.1 Type Theory Basics

Instead of set theory, Lean is based on the formalism of dependent type theory.
Roughly speaking, one can think of a type as a collection of things, like a set.
Instead of being called elements, the things inside a type are called terms. Given
1 We have not officially defined this. It just means that the ultrafilter consists of all
sets containing a designated element, called the “generator” of the ultrafilter.
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a type X, we write x : X to say that x is a term of type X. In keeping with the
analogy to sets, we basically write : to mean ∈.

For any pair X, Y of types, there is another type X → Y of functions from X
to Y. These do what we expect them to; they assign a term of Y to each term
of X.

There is a special sort of type called a proposition. A proposition can have
at most one term. If the proposition has a term, we say that it is true, and false
otherwise. If a proposition P is true, then we call the unique term p : P the proof
of P. The fact that propositions have at most one term is called proof irrelevance,
and it is a foundational design choice of Lean.

Moreover, for any propositions P and Q, the type P → Q of functions from P
to Q is also a proposition. If the proposition P → Q is true (i.e. if there exists
a function from P to Q), then we say that P implies Q. Note that this is just
a formalism - it is not obvious that these notions of propositions, truth, and
implication actually align with our conventional understanding of the words. It
turns out though that traditional logic is naturally emergent from the formalism.

For example, suppose that we have propositions P,Q, and R, such that P
implies Q and Q implies R. By definition, the propositions P → Q and Q → R are
true. Let f : P → Q and g : Q → R be the proofs of these propositions. Then,
composing functions, we obtain a term g ◦ f of type P → R. That is, we have
constructed a proof of P → R, which means that P → R is true, so P implies R.
Therefore, we have recovered the intuitive notion of transitivity of implication
from our formal definitions.

3.2 Definition of the Krull Topology

Let L/K be a field extension, not necessarily Galois. In Lean, we define the Krull
topology on Gal(L/K) to be the topology generated by the standard group filter
basis on Gal(L/K). In the mathlib API, the Galois group of L/K is denoted
L 'a[K] L.

Remark 2. Understanding the notation L 'a[K] L sheds light on the way that
mathlib is organised, so we will take a moment to explain it. In mathlib, we
write L → L for the type of functions from L to L. These functions do not see
the additional structure of L as a K-algebra. On the other hand, we write L →
a[K] L for the type of K-algebra homomorphisms from L to L. Mathematicians
typically think of an algebra homomorphism as being “the same thing” as its
underlying function; a homomorphism is just a function satisfying some addi-
tional conditions. In mathlib, however, an algebra homomorphism is a different
object from its underlying function. The algebra homomorphism contains the
underlying function, along with proofs that the function satisfies the required
properties.

Finally then, L 'a[K] L denotes the type of K-algebra equivalences from L
to L. Again, in mathlib, a K-algebra equivalence is different from a bijective
homomorphism. A term of L 'a[K] L consists of the following data:

1. A term to_fun of type L → L,
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2. A term inv_fun of type L → L,
3. Proofs that to_fun and inv_fun are mutual inverses, and also that they satisfy

the properties of K-algebra homomorphisms.

These different data structures give insight into why formalising mathematics is
difficult. When using Lean, we always have to keep track of distinctions between
objects that we intuitively consider to be “the same”, but whose implementations
are fundamentally different objects.

For each intermediate field E of L/K, the subgroup of terms σ of L 'a[K] L
fixing E is called E.fixing_subgroup. Upon encountering this notation for the
first time, one might ask how Lean knows that E.fixing_subgroup is in fact a
subgroup of L 'a[K] L. That is, the subgroup depends on L and K, whereas
its definition mentions only E. The explanation is that E is a term of type
intermediate_field K L, so we can recover K and L by looking at the type of E.

Remark 3. Note that L 'a[K] L and K.fixing_subgroup are different objects in
mathlib; although they both represent the Galois group of L/K, the former has
type Type u for some universe u, while the latter has type set(L 'a[K] L).

In order to define the standard group filter basis, we define finite_exts K L to
be the set of intermediate fields F of L/K such that F/K is finite dimensional:

def finite_exts (K : Type*) [field K] (L : Type*) [field L]
[algebra K L] :
set (intermediate_field K L) :=

{E | finite_dimensional K E}

Subsequently, we define the set fixed_by_finite K L consist of subsets of the
form F.fixing_subgroup, as F ranges over finite_exts K L:

def fixed_by_finite (K L : Type*) [field K] [field L]
[algebra K L]: set (subgroup (L 'a[K] L)) :=

intermediate_field.fixing_subgroup ’’ (finite_exts K L)

Remark 4. The ’’ in the definition of fixed_by_finite denotes the image of a
set under a function. In general, if X and Y are types, f : X → Y is a function,
and S : set X is a set of terms of X, then f ’’ S denotes the image of S under
the function f.

The elements of fixed_by_finite K L are then precisely the elements of the
standard group filter basis. However, as far as Lean is concerned, fixed_by_finite
K L is not a group filter basis, but merely a set of subgroups of L 'a[K] L. In
mathlib, a term of type group_filter_basis K L consists of the following data:

1. A term of type filter_basis K L,
2. Four proofs, showing that the filter basis in question satisfies the additional

axioms of a group filter basis.

In turn, a term of type filter_basis K L consists of:
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1. A term of type set (L 'a[K] L),
2. Two proofs, showing that the set in question satisfies the axioms of a filter

basis.

The underlying set of our filter basis is fixed_by_finite K L, which we package
into the filter basis gal_basis K L. Subsequently, we use gal_basis K L as the
underlying filter basis of the group filter basis gal_group_basis K L. This hier-
archy is somewhat awkward to write out in prose, so we summarise it in the
following diagram:

Set fixed_by_finite K L

Filter basis gal_basis K L

Group filter basis gal_group_basis K L

Remark 5. It is important to keep track of the different types of these terms,
since Lean considers them to be totally different objects. This can be unintuitive
for mathematicians, since we would generally consider the (group) filter basis to
be the same thing as its underlying set.

We can now define the Krull topology, krull_topology K L, on the group
L 'a[K] L by:

instance krull_topology (K L : Type*) [field K] [field L]
[algebra K L] :
topological_space (L 'a[K] L) :=

group_filter_basis.topology (gal_group_basis K L)

Remark 6. We defined krull_topology K L as an instance, which means that the
type class inference system understands it as “the” topology on a Galois group.
This means that we can make topological statements about subsets of L 'a[K]
L, and the elaborator will automatically infer that we are talking about the Krull
topology.

Remark 7. Our definition of the Krull topology is valid for any field extension,
not necessarily normal or separable. This is more general than definitions in the
literature, which made us think about how far the generalisation could go. In
fact, it can be taken much further, as we now explain. Fix a category C, and let L
be an object of C. There is a category subobj(L) of subobjects of L. The objects
of subobj(L) are pairs (E, i), where E ∈ C and i : E ↪→ L is a monomorphism.
The morphisms of subobj(L) are the obvious commutative triangles. Suppose
further that there is a set S of objects of subobj(C), whose members we will call
small objects of C, with the following two axioms:
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1. (The intersection of subobjects contains a subobject). For all (E1, i1), (E2,
i2) ∈ S, there is some (E, i) ∈ S and maps fj : E → Ej such that the
diagram

E1

E L

E2

i1
f1

f2

i

i2

commutes.
2. (Automorphisms preserve subobjects). For all (E, i) ∈ S and all σ ∈ AutC(L),

we also have (E, σ ◦ i) ∈ S.

For each (E, i) ∈ subobj(C), define the fixing subgroup of (E, i) to be F (E, i) ⊆
AutC(L) to be

F (E, i) = {σ ∈ AutC(L) : σ ◦ i = i}.
Then the collection

B = {F (E, i) : E ∈ S}
is a group filter basis for AutC(L), so it gives it the structure of a topological
group. The Krull topology is a special case of this construction, where C is the
category of K-algebras and L is viewed as an object of C. In that case, Axiom
(1) comes from the fact that the intersection of two K-subalgebras of L is a K-
subalgebra of L, and Axiom (2) comes from the fact that σ(E) is a K-subalgebra
of L, for all K-subalgebras E and all K-isomorphisms σ : L → L. We did not
treat this level of generality in Lean, since it seemed quite far-removed from our
objective.

One of the most surprising difficulties we encountered was in proving that
fixed_by_finite K L satisfies Axiom (2) of Definition 9, which is equivalent to
proving that the join of two finite-dimensional field extensions is finite-dimen-
sional. Mathematically, this is very simple; if F/K and E/K are finite extensions
with bases {xi} and {yj} respectively, then the products {xiyj} form a finite
spanning set for the join FE, so FE is finite-dimensional over K. Since this
result is so elementary, we assumed that it must already be in mathlib, so we
asked in the Zulip chat2 about where it might be. It turned out that the result
was not in mathlib, and that proving it in Lean was actually quite difficult.
Thomas Browning generously wrote the proof, and it is now in mathlib under
the name intermediate_field.finite_dimensional_sup.

The difficulty stemmed from the fact that finiteness is hard to formalise,
and there are numerous ways to approach it in Lean. For example, given a type
X, there are types list X, multiset X, and finset X, which all capture slightly
different notions of “a finite collection of terms of X”, depending on whether we
2 Much of Lean’s community uses a dedicated server on the chat and collaborative
software, Zulip.
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care about ordering and multiplicity. There is also a type called fintype X, which
has a term if and only if X contains finitely many elements. On the other hand,
given a term s of type set X, there is a proposition finite s, which says that
the set is finite. Each approach has pros and cons, and choosing the right tool
for the job can be difficult. Moreover, we often have to manage interactions
between multiple notions of finiteness, which requires a clear understanding of
the relationships between them.

3.3 Proof of Profiniteness

The proofs that Gal(L/K) is Hausdorff and totally disconnected are straightfor-
ward, so we will not say much about them. They are formalised in

lemma krull_topology_t2 {K L : Type*} [field K] [field L]
[algebra K L] (h_int : algebra.is_integral K L) :

t2_space (L 'a[K] L) :=

and

lemma krull_topology_totally_disconnected {K L : Type*} [field K]
[field L] [algebra K L] (h_int : algebra.is_integral K L) :

is_totally_disconnected (set.univ : set (L 'a[K] L)) :=

Remark 8. In the lemmas above, h_int is a term of type is_integral K L. There-
fore, the Krull topology is Hausdorff and totally disconnected whenever the ex-
tension L/K is algebraic. Note that normality and separability do not enter the
picture.

Our proof of compactness, which we explained informally in Section 2.5, is
more involved. Given an ultrafilter F on Gal(L/K), a finite normal subextension
F/K, and an element x ∈ F , we defined a K-algebra homomorphism ϕF,x : F →
L. We then glued the various ϕF,x together to obtain a map σ ∈ Gal(L/K) with
N (σ) ⊆ F . In Lean, the homomorphism ϕF,x is defined by

protected noncomputable def ultrafilter.generator_of_pushforward
(h_findim : finite_dimensional K E) (f : ultrafilter (L →a[K] L)) :

E →a[K] L :=
classical.some $ ultrafilter.eq_principal_of_fintype _ $

f.map $ λ σ, σ.comp $ intermediate_field.val _

Remark 9. The definition above is labelled as noncomputable because it uses
Lean’s axiom of choice. In particular,

$ ultrafilter.eq_principal_of_fintype _ $
f.map $ λ σ, σ.comp $ intermediate_field.val _

is a term of type

∃ (x : F →a[K] L), ↑(ultrafilter.map (λ (σ : L 'a[K] L),
σ.to_alg_hom.comp F.val) f) = pure x.
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This means that there exists some K-algebra homomorphism F → L that gener-
ates the ultrafilter p∗F on HomK(F,L). However, the statement is nonconstruc-
tive3, so we have to invoke the axiom of choice to take a specific such algebra
homomorphism, which is our ϕF,x.

Subsequently, we glue the local K-algebra homomorphisms ϕF,x together to
obtain the function σ : L→ L, defined by:

protected noncomputable def
ultrafilter.glued_generators_of_pushforwards_function
(h_int : algebra.is_integral K L) (f : ultrafilter (L →a[K] L))
(x : L) :

L :=

Now that we have defined σ as a function, we need to define it as a K-algebra
homomorphism by

noncomputable def
ultrafilter.glued_generators_of_pushforwards_alg_hom
(f : ultrafilter (L →a[K] L)) (h_int : algebra.is_integral K L) :

L →a[K] L :=

Next, we prove a lemma, saying that the algebra homomorphism is bijective:

lemma ultrafilter.glued_generators_of_pushforwards_alg_hom_bijection
(h_int : algebra.is_integral K L) (f : ultrafilter (L →a[K] L)) :

function.bijective
(ultrafilter.glued_generators_of_pushforwards_alg_hom f h_int) :=

As we saw in Remark 2, mathlib considers a K-algebra equivalence E 'a[K]
L to be different from a bijective algebra homomorphism. It consists of two
different functions E → L and L → E, together with proofs that they are mu-
tual inverses and that they satisfy the axioms of K-algebra homomorphisms.
Thankfully, mathlib contains a definition, alg_equiv.of_bijective, which takes
a bijective algebra homomorphism and constructs an algebra equivalence whose
underlying function equals the underlying function of the algebra homomor-
phism. We include the statement of alg_equiv.of_bijective for completeness:

noncomputable def alg_equiv.of_bijective (f : A1 →a[R] A2)
(hf : function.bijective f) : A1 'a[R] A2 :=

Now we can finally define σ as a term of the Galois group L 'a[K] L, as follows:

noncomputable def ultrafilter.glued_generators_of_pushforwards_alg_equiv
(h_int : algebra.is_integral K L) (f : ultrafilter (L →a[K] L)) :

(L 'a[K] L) :=
alg_equiv.of_bijective

(ultrafilter.glued_generators_of_pushforwards_alg_hom f h_int)
(ultrafilter.glued_generators_of_pushforwards_alg_hom_bijection
h_int f)

3 Meaning that there is no explicit formula for this homomorphism.
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All that remains is to show that this equivalence is actually a limit of the ultra-
filter4, which we do with the following lemma:

lemma ultrafilter_converges_to_glued_equiv
(h_int : algebra.is_integral K L) (f : ultrafilter (L 'a[K] L)) :

(f : filter (L 'a[K] L)) ≤
nhds (ultrafilter.glued_generators_of_pushforwards_alg_equiv h_int
(f.map (λ (σ : L 'a[K] L), σ.to_alg_hom))) :=

At this point, we are pretty much done; our actual proof of compactness is
the lemma:

lemma krull_topology_compact {K L : Type*} [field K] [field L]
[algebra K L] (h_int : algebra.is_integral K L) :

is_compact (set.univ : set (L 'a[K] L)) :=

This is fairly immediate from is_compact_iff_ultrafilter_le_nhds, which is
mathlib’s statement of 5. Finally, we prove profiniteness by

def krull_topology_profinite {K L : Type*} [field K] [field L]
[algebra K L] (h_int : algebra.is_integral K L)
(minpoly K x) :

Profinite :=
{ to_CompHaus := krull_topology_comphaus h_int,

is_totally_disconnected :=
krull_topology_totally_disconnected_space h_int}

4 Conlcusion and Acknowledgements

For any field extension L/K, not necessarily algebraic, normal, or separable, we
defined a canonical topology on the group L 'a[K] L, making it into a topolog-
ical group. This topology generalises the Krull topology, which is typically only
defined for Galois extensions. Moreover, we proved that this topology is profinite
whenever the extension is algebraic (but not necessarily normal or separable).

Immense thanks are due to Kevin Buzzard for his support throughout the
project. He has been very generous with his time and has written many arti-
cles’ worth of exposition to me via Zulip messages. More generally, the mathlib
community has answered any and all questions posed in the Leanprover Zulip
server. For anybody starting out in Lean, my top piece of advice would be to
make use of this community to the fullest. As long as you are demonstrating
effort, no question is too basic!

I would also like to thank Patrick Massot for helping me understand some
of the technical details of filter bases and Thomas Browning for proving the
finite_dimensional_sup lemma, as well as everyone who has commented on my
Pull Requests or replied to my Zulip questions.

4 Which is just the esoteric way of saying that N (σ) ⊆ F .
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Three Case Studies on Realms
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Abstract. Realms are a proposed high-level structuring concept for the-
ory graphs that allows abstracting over isomorphic formalizations of the
same concept. But it is a relatively complex language feature, and it is
difficult to assess if its practical value outweighs the cost of implementing
it. We present a dataset of three case studies in the MMT system in order
to evaluate to what extent realms can be achieved in a more lightweight
way as a design pattern (as opposed to a heavyweight primitive feature)
in existing formal systems. Our formalizations show that this approach
is promising, and we identify a small set of generally useful language
features that enables realm-like formalizations.

1 Introduction and Related Work

Motivation. In 2014, Carette, Farmer, and Kohlhase introduced the concept of
realms [1] as a high-level structuring feature for a formal mathematical language
(FML). The basic idea is to provide an abstraction layer at which multiple
equivalent formalizations of the same mathematical concept can be identified.

For example (taken from [1]), the first-order theory of a group can be de-
fined in terms of a multiplication operation ◦ or a division operation /, and the
resulting two theories can be connected by theory isomorphisms, e.g., mapping
/ 7→ λx, y.x ◦ y−1. From the user perspective it should not matter, which of
these formalizations is chosen: when using a group, both operations should be
available; when creating a group, giving either operation should suffice.

Such non-trivial alternative choices are typical for formalizing mathematical
concepts, and the problem identified in [1] is as pressing today as it was then.
However, while the idea of realms was well-received (best paper award), neither
[1] nor any follow-up work conducted a detailed investigation of how realms
should be implemented in a practical FML. In particular, the relative merit
between the following two options remains unclear:

P add realms as a primitive feature in a new FML,
E realize realms as an emergent feature in an existing FML akin to a design

pattern in software engineering.

[1] appears to favour P. It defines a realm using a tuple of a set B of isomorphic
base theories, one tree of conservative extensions for each base theory, and a
face theory F that provides the outside interface of the realm and is realized by
each base theory. But that is a very complex FML feature to specify, implement,
and use in practice, especially as [1] also advocates for heavyweight realm-level
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operations like translation and union. On the other hand, E would be a much
simpler alternative and might allow reusing existing theory-level operations.

Contribution. We present three case studies that we have conducted to explore
the feasibility of E: the realms of a lattice, a topological space, and the natural
numbers.1 Our formalizations are of moderate size (about 70 MMT modules with
about 1500 lines of formalization) but carefully chosen to reveal the promise and
limitation of E in practice. Our conclusion is that E becomes feasible if existing
FMLs are extended with certain lightweight and independently useful features.

We use the MMT system [5] for our formalizations. But our results apply
correspondingly to any system that supports theories and theory morphisms
(such as Hets [2], PVS [3], or Isabelle [4]) or allows encoding them (such as any
dependent type theory with record types).

2 Case Studies

2.1 A Seemingly Simple Realm: Lattices

Formalization. We start with the theory of lattices, which can be built in two
isomorphic ways: (i) based on Semilattice (with a binary operation ◦) imported
twice using meet : ◦ 7→ u resp. join : ◦ 7→ t, or (ii) based on an order ≤ with
infimum and supremum. Fig. 1 gives a high-level summary of our formalization
as a diagram of theories, where we use hooked arrows for inclusion morphisms
and double arrows for isomorphisms. Seen as a realm, we have two isomorphic
base theories LatticeAlgebra and LatticeOrder . The face arises as their union and
is thus canonically isomorphic to both.

Both theories involved are defined modularly as indicated in Fig. 1, and
that significantly increases the complexity. We immediately notice a hierarchy
of realms: bounded lattices (omitted from Fig. 1) form a larger, and Semilattice
and Infimum a smaller realm. We also notice overlapping realms: Semilattice
and Supremum form a realm as well, but Infimum and Supremum should not
be in the same realm because they represent different concepts.

The isomorphism absorb maps ≤7→ λx, y.x ◦ y = x. By composing it with
meet , we obtain the infimum operation in algebraic lattices. Correspondingly,
we obtain the supremum by composing it with join and OpSup (which maps
≤7→ λx, y.y ≤ x). Here we encountered a subtle problem: LatticeAlgebra now
inherits two separate implementations of Order : via the red morphism through
Infimum and meet , and via the blue morphism through Supremum, OpSup, and
join. It is easy to prove that these two morphisms are equal; but the equality must
be proved. MMT, on the contrary, expects morphism to be equal definitionally
and therefore flags an error; other FMLs are similarly limited.

1 See https://gl.mathhub.info/MMT/LATIN2/-/blob/devel/source/casestudies/
2022-realm-case-studies.md.
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Order

SupremumInfimum

LatticeOrder

Semilattice

MeetSemilattice JoinSemilattice

LatticeAlgebra

OpSupabsorb

meet
join

OrdAlg

Fig. 1. Realm of lattices

Conclusions. The lightweight approach E scaled very well because it did not
require realms as primitive objects. We believe that the rigid and complex realm
structure of approach P would have gotten in the way of an elegant, modular
formalization.

We identified one necessary feature: FMLs like MMT tend to support only
theories and theory morphisms but not non-trivial proofs of equality between
morphisms. This is challenging to implement (because it makes the structure of
the diagram undecidable) but critical for even basic realm support.

2.2 A Complex Hierarchy of Realms: Topological Spaces

Formalization. Further stress-testing the approach, we moved on to topologies,
see Fig. 2. In the middle, we have the realm of Closure consisting of 3 isomorphic
theories. It is extended to the realm of Topology consisting of 6 isomorphic
theories, 3 of which include the ones from Closure. For example, OpenTop uses
the set of open sets as a primitive, whereas ClosureTop uses a closure operator.
Fig. 2 omits the extension to the realm of continuous functions consisting of 6
corresponding isomorphic theories.

To aggregate the isomorphic theories into a single face theory, we use MMT’s
feature of implicit morphisms [6]. For example, the theory Topology (not shown
in Fig. 2) arises by including all 6 base theories and declaring the 6 isomorphisms
between them as implicit. Consequently, users of Topology have seamless access
to the operations of all base theories: the implicitness of the isomorphisms means
that MMT inserts them automatically wherever needed. As for lattices above,
we are limited by the missing feature of proving morphisms equal: concretely,
the //-marked subdiagrams commute definitionally, but the //?-marked ones
require proof.



Three Case Studies on Realms 49

Conclusions. [1] uses a tree of extensions for each base theory. But an extension
with definitions or theorems anyway yields an isomorphic theory. Therefore, we
found no practical need to conceptually distinguish base theories and extensions.
Instead, we found it much more convenient to formalize realms simply as groups
of isomorphic theories.

Like for lattices, proving isomorphisms critically requires proving equalities
of morphisms. Assuming it supports that feature, an FML can realize realms via
approach E if it supports aggregating such an isomorphic group into a single face
theory. We found MMT’s implicit morphisms are one elegant way to do that.

OpenTop ClosedTop

ClosenessTop

ClosureTopInteriorTop

NeighborhoodTop //?

ClosureSystem

Closeness

//

//

//?

ClosureOperator

Fig. 2. Realm of topological spaces

2.3 Realms with Non-Isomorphic Theories: Natural Numbers

Peano Binary

ChurchNaturals VonNeumannNaturals

TypeTheory SetTheory

rea
liz

e realize

Fig. 3. Realm of natural numbers

Formalization. [1] also
proposes realms where
the base theories are
not isomorphic to each
other. It gives natu-
ral numbers as an ex-
ample where the base
theories are Peano ax-
ioms, a formalization
of binary arithmetic, and realizations of natural numbers within some formalism
such as Church numerals within type theory or von Neumann numerals within
set theory. We formalized natural numbers with basic arithmetic operations 4
times as shown in Fig. 3.

Naturally, we only have morphisms from the axiomatic formulations to those
on top of some formalism but not the other way around. Thus, these formulations
are not isomorphic. For Binary arithmetic we chose an axiomatic formalization,
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for which we could give an isomorphism to Peano’s unary arithmetic. Alterna-
tively, we could have realized binary arithmetic on top of some formalism that
provides lists of bits.

Conclusions. We encountered a surprising problem: [1] claims multiple examples
of realms that are not realms according to its own definition, which requires the
base theories to be isomorphic. Examples are the above realm of natural numbers
or the realm of the equivalent definitions of real numbers in set theory. Here an
entirely different FML concept of realm must be introduced.

3 Conclusion and Future Work

Based on our case studies, we suggest splitting the concept of realm into two
concepts. The first one is a special case of the definition in [1], the second one is
not covered by it.

The first kind of realm consists of a group of isomorphic theories. If an FML
system supports aggregating such groups into single units, these realms can be
realized elegantly. Existing FMLs like MMT are close to that already but must
provide stronger support for equality of morphisms.

The second kind of realm consists of an axiomatic theory A (or multiple iso-
morphic ones) with outgoing morphisms mi : A→ Fi into different formalisms.
Critically, these morphisms must be conservative (i.e., A-sentences s must hold in
A iff mi(s) holds in Fi). Conservativity is very difficult to prove even informally
and generally not well-supported by FML systems. But if conservativity can be
ensured, it is easy for FML systems to use the partial inverse of a conservative
morphisms to transport knowledge from F1 to F2 via m−11 ;m2.
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Abstract. Bringing out the potential of interactive theorem provers re-
quires efficient mathematical foundations. The current release of the nat-
ural language proof assistant Naproche has become sufficiently stable
to allow a broader and principled approach towards libraries of basic
mathematical material. We present Naproche’s new ontology of objects,
classes, maps, etc. and two foundational libraries about basic set theory
and number theory. These foundations are then used, e.g., in a formal-
ization of the Cantor–Schröder–Bernstein theorem.

1 Introduction

The Naproche (Natural Proof Checking) proof assistant [12] is being developed
for a high degree of naturalness of accepted proof texts and of its user inter-
action [3,8,10]. It is available as a component of the Isabelle prover platform
[6]. Naproche supports prototypical formalizations of university-level material
in a natural mathematical language and style that is immediately readable by
mathematicians. Naproche comes with a number of chapter-sized example for-
malizations which also comprise the foundational files discussed in this paper.

MostNaproche formalizations thus far are self-contained texts that introduce
their own axiomatic environments and lead up to individual well-known theo-
rems. Ad-hoc axiomatic set-ups allow elegant mathematical “miniatures” with a
minimal number of axioms, but the consistency and compatibility of axiomatic
assumptions pose problems. Moreover, duplicate definitions cause ambiguities
and reproving basic theorems is inefficient.

In this paper we describe steps towards a next level of formalizations with
fixed ontological foundations and libraries of basic material. The current re-
lease of Naproche has a built-in language for classes, objects, and maps within
a Kelley–Morse-like set theory [7,13]. Some Kelley–Morse axioms are fixed in
foundational files whereas further axioms, like the axiom of infinity can be pos-
tulated by a user if needed. The current Naproche release includes two example
libraries on sets and on integers that are then used to formalize more specialized
results.
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2 Intuitive Mathematical Ontologies

The point of departure for natural formal mathematics and natural proof assis-
tants is the language that is actually employed in contemporary mathematical
publications, combining argumentative natural language and symbolic terms. So
far, the language of mathematics has been subject to only a small number of
linguistic investigations [5,1]. Like ordinary language, this language is ambiguous
and incomplete, but mathematicians use it as an efficient means of specialized
communication.

The language of mathematics indicates possible or intended ontologies by its
choice of natural language words and phrases and by their grammatical cate-
gories: e.g.,

– definite nouns denote specific objects or individua of some universe, whether
such a universe is taken for real or a convenient mental construct;

– common nouns denote collections, classes, sets, sorts, or types of (related)
objects;

– these collections can be modified and specified by adjectives or relative sen-
tences.

“Aristotle” is a distinct individuum which belongs to the collection of “humans”;
the common noun “human” can be modified by adjectives like “mortal”. Simi-
larly “zero” denotes a constant which is an element of the “natural numbers”;
natural numbers can, e.g., be “even” or “odd”. Symbolic notation is used for
brevity and exactness: “0” is used for “zero” and “N” for the collection of nat-
ural numbers.

Collections are intuitively expressed as the “collection, class, type, set, ... of
all x such that φ” or by comprehension terms like

{x | φ} or {x : φ}

where φ is a mathematical statement. Often such collections are considered to
be objects themselves. One can, e.g., say that N is (an object that is) infinite.

This brief impression suggests ontologies of mathematical objects and col-
lections of objects, where the distinctions between various categories and their
properties are somewhat fluid, similar to other natural language ontologies.

From a type-theoretic perspective (mathematical) common nouns like “num-
ber” or “rectangle” can be interpreted as types. Since common nouns do not
exactly satisfy the laws of mathematical type theories, one speaks of “soft”
types [18]. The properties of soft types lie between sets and types: there are set-
theoretical properties like inclusions of types (“natural numbers” form a subtype
or subset of all “numbers”). On the other hand natural language quantifications
are usually bounded by types: we say “every integer . . . ” instead of “for ev-
ery n, if n is an integer then . . . ”. A computer-processable natural language for
mathematics should use soft types to denote collections of mathematical objects.
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3 The Naproche System

The Naproche (Natural Proof Checking) proof assistant [12] is available as a
component in the latest release of the Isabelle prover platform [6] for Linux,
macOS, and Windows. We have also built a simple web interface for a quick
start without installation or high system requirements [17]. Naproche supports
prototypical formalizations of university-level material in a natural mathematical
language and a style that is immediately readable by mathematicians.

The Naproche system uses the controlled natural language ForTheL (For-
mula Theory Language) as its input language which is designed to closely ap-
proximate common constructs of the language of mathematics [16]. At the same
time ForTheL is a completely formal language which allows its translation into
formal logics and further processing by automated theorem provers or checkers.
ForTheL has been developed over several decades and is an outgrowth of the
Evidence Algorithm project [11].

ForTheL handles soft types as “notions”, and it provides various methods
for the introduction and processing of notions. Notions can be viewed midway
between sets, classes, and types. Naproche translates notions into first-order
predicates which can be used to form type guards. The language of a ForTheL
text is fixed by signature commands and definitions. A language for the additive
structure of the natural numbers can be introduced by the commands:

[synonym number/numbers]

Signature. A natural number is a notion.

Signature. 0 is a natural number.

Signature. Assume that m,n are natural numbers. m + n is a natural
number.

ForTheL may be embedded into LATEX documents; for the example above
one could enter the following into a .ftl.tex document in Isabelle/jEdit:

\begin{forthel}

[synonym number/numbers]

\begin{signature}

A natural number is a notion.

\end{signature}

\begin{signature}

$0$ is a natural number.

\end{signature}

\begin{signature}

Assume that $m ,n$ are natural numbers.

$m+n$ is a natural number.

\end{signature}

\end{forthel}
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After fixing a bit of vocabulary (“number” and its plural “numbers” can be
used synonymously in the sequel) there are three LATEX signature environments
using the usual combination of natural language and symbols. The first-order
meaning of the commands can be seen by mouse-hovering over the jEdit buffer.
The noun phrase “natural number” corresponds to a newly introduced unary
predicate symbol aNaturalNumber( ). The second command introduces the in-
ternal constant symbol 0 and translates to the (tagged) first-order formula

∀v0. ((HeadTerm :: v0 = 0)→ aNaturalNumber(v0))

which is logically equivalent to aNaturalNumber(0). Finally the introduction of
the addition symbol + is translated to the following first-order formulas:

aNaturalNumber(m) ∧ aNaturalNumber(n)
∀v0. ((HeadTerm :: v0 = m+ n)→ aNaturalNumber(v0))

These formulas also express that addition has the type + : N× N→ N.
Note that the first-order approach to types yields a very flexible dependent

type system where number systems can be cumulative (N ⊆ R ⊆ C), and notions
can depend on parameters (“subsets of N”, “divisors of n”).

4 Sets and Classes in Naproche

As Naproche is directed at common mathematical usage, comprehension terms
in verbal and symbolic form are provided by ForTheL. One can, e.g., define

Definition. N = { x | x is a natural number }.

or, verbally,

Definition. N is the collection of all natural numbers.

Naproche translates these definitions into an internal first-order format which
will eventually be passed to external ATPs. Therefore a treatment of compre-
hension terms in the sense of standard set or class theories is hard-coded into
Naproche. In line with Kelley–Morse class theory with urelement (KMU) [13]
comprehension terms are registered as classes which consist of “small” objects.

Thus Naproche translates our definition to the first-order formula

∀v0. (v0 = N↔ aClass(v0) ∧
∀v1. (v1 ∈ v0 ↔ aObject(v1) ∧ aNaturalNumber(v1))).

In the Naproche implementation of KMU we have objects, elements, sets and
classes – note that Naproche allows to use the terms ‘class’ and ‘collection’
synonymously – satisfying:

– every element of a class is an object;
– a set is a class that is an object.



56 M. Schütz et al.

These notions with some elementary properties are hard-coded into Naproche.
Moreover we provide notions of functions and maps, which in close analogy with
sets and classes behave as follows:

– the application of a map to an object in its domain is an object;
– a function is a map which is an object;
– these notions are kept abstract, but behave like the usual set-theoretic en-

coding of functions and maps as graphs.

4.1 Kelley–Morse-like Foundations in Naproche

Naproche’s built-in vocabulary and mechanisms for classes and maps do not
form a sufficient basis for formalizations. Formalizations in earlier Naproche
versions each defined their own additional axioms as preliminaries: for instance,
one would find multiple and even slightly different definitions of “subset” across
different formalizations.

We have replaced such ad-hoc preliminaries with a common shared file
preliminaries.ftl.tex, which describes a weak fragment of KMU. It expands
on Naproche’s built-in notions with some common axioms (e.g. extensionality)
and defines general notions such as “subclass”. Besides some minor technical
definitions and axioms we require:

Axiom (Class Extensionality). If S is a subclass of T and T is a subclass
of S then S = T .

Axiom (Separation Axiom). Assume that X is a set. Let T be a sub-
class of X. Then T is a set.

Axiom (Functional Extensionality). Assume dom(f) = dom(g) and
for every x ∈ dom(f) f(x) = g(x). Then f = g.

Axiom (Replacement Axiom). Let X be a set. Assume that X is a
subset of the domain of f . Then f [X] is a set.

Here f [X] denotes the image of X under f . Although the axioms of separa-
tion and replacement are potentially powerful axioms, the theory described in
preliminaries.ftl.tex constitutes a relatively weak theory since it includes
neither the axiom of infinity nor the axiom of powersets.

4.2 Applications

The preliminaries file is used in some of the example formalizations that come
with Naproche. The mutilated checkerboard problem is only concerned with
finite sets of checkerboard positions and dominoes [2]. Thus we do not need
the axiom of infinity and the weaker class theory of preliminaries.ftl.tex

suffices.



Setting up Set-Theoretical Foundations in Naproche 57

Our example file numbers.ftl.tex on the number systems N ⊆ Z ⊆ Q ⊆ R
in contrast demands that the various infinite collections of numbers are sets.
This is expressed axiomatically by

Axiom. R is a set.

In standard set theory this could be proved by the axiom of infinity which
says that N is a set, and then one could construct the set R from N by forming
the powerset of N together with other, weaker set construction principles.

5 Foundational Libraries in Naproche

In addition to the preliminaries.ftl.tex file, Naproche also provides two
larger libraries which cover foundational formalizations about basic set theory
and arithmetic. In contrast to previous formalizations as stand-alone documents,
this is a first systematic attempt to design a collection of formalizations which
are primarily intended to be read in other ForTheL texts. The two libraries
are organized as LATEX documents with a book-like chapter structure which are
written in a literary style with comments around the formalized core3. Import-
ing their contents can be done chapter by chapter so that one is not forced to
import the whole library when one is just interested in reusing some specific
definitions or theorems they provide. The libraries are designed towards a high
degree of human readability which aims to be a step towards mathematical texts
being accessible both to computers and to mathematicians unfamiliar with texts
written in synthetic formal languages. Besides being used as a foundation for
more ambitious formalizations in Naproche, the libraries can be regarded as a
presentation of formally verified undergraduate mathematics in the style of, e.g.,
the Stacks Project [15].

5.1 A Foundational Library for Sets

The set theory library4 is a self-contained introduction to a Zermelo–Fraenkel-
like set theory, without the axiom of infinity, embedded into Naproche’s built-in
fragment of KMU. It states the usual ZF axioms, defines common operations
on sets, like unions, intersections and complements, and provides detailed proofs
of their algebraic properties. Moreover, the notion of functions between sets is
introduced together with basic properties like being one-to-one or invertible.
As with sets, common operations on functions are defined, e.g., composition,
restriction, images and preimages. Their algebraic properties are proved in detail
as well. Finally, the notion of equinumerosity is introduced.

The material in the library is presented in a naturally readable format, as
demonstrated for instance by the formulation of the Knaster–Tarski fixed point
theorem:
3 See e.g., the PDF-printout $ISABELLE HOME/contrib/naproche-20212111/exampl

es/set-theory/set-theory.ftl.pdf
4 Located in $ISABELLE HOME/contrib/naproche-20212111/examples/set-theory
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Theorem 11.5 (Knaster-Tarski). Let h be a function from P(x) to
P(x) that preserves subsets. Then h has a fixed point.

In this example, P(x) denotes the powerset of x, where x has been pretyped as
a set earlier in the document.

In contrast to the foundational material in the file preliminaries.ftl.tex

presented above, which puts a rather strong emphasis on the notion of classes
and maps, the primary notions of this library are sets and functions. Classes
and maps only play a rather technical role in the library, for instance by using
them to formulate statements which in ZF could only be formulated as axiom
schemas. The decision to follow a more set-theoretical approach in the sense
of Zermelo–Fraenkel in contrast to a more class-theoretical one according to
Kelley–Morse is motivated by the lower degree of complexity of the ontology in
a setting where just sets and functions play a major role compared to a setting
where in addition to them also classes and maps are involved on an equal footing
and not just as technical helpers.

The first chapter of the library introduces the notion of subsets and states
the axioms of set extensionality, separation, set existence, pairing and union.
Moreover, unions, intersections and complements are defined and some of their
algebraic properties are proved. To state the axiom of separation, which in
ZF would actually be an axiom schema, we make use of Naproche’s built-
in notion of classes together with the built-in axiom schema of class compre-
hension. Just as we postulated separation and replacement in the above file
preliminaries.ftl.tex, we again formulate:

Axiom 1.9 (Separation). Let C be a collection and x be a set. Assume
that every element of C is contained in x. Then C is a set.

(Note that the term collection is just a built-in synonym for class.) Using this
axiom to define a set y which contains all elements of a given set x satisfying
a formula ϕ, we can proceed as follows. First, by class comprehension, we can
define y as the class { u ∈ x | ϕ(u) } and then, by the separation axiom, we can
show that y is actually a set. As an example of this procedure, consider the proof
of the existence of relative complements:

Lemma 1.46. Let x, y be sets. There exists a set z such that z =
{ w | w ∈ x and w /∈ y }.

Proof. Define z = { w | w ∈ x and w /∈ y }. Then every element of z is con-
tained in x. Hence z is a set (by Separation). ut

Here we useNaproche’s built-in mechanism of defining classes via comprehension
terms which serves as an implementation of the mentioned axiom schema of
class comprehension. This way we define a class z which is then shown to be
actually a set by referencing to the separation axiom (for more on this referencing
mechanism see below).
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Whereas Naproche allows to define classes of the form {u | ψ(u)} or {u ∈
x | ψ(u)} (where the latter is just an abbreviation for {u | u ∈ x ∧ ψ(u)}) for
arbitrary formulas ψ, it is currently not possible to directly refer to formulas in
a ForTheL statement as if they were objects because of the first-order nature
of ForTheL. Thus the common ZF-like formulation of the separation axiom as
“Let ψ be a formula. Then for any set x there exists a set y such that y =
{ u ∈ x | ψ(u) }” would not be valid ForTheL.

The following chapters of Part I of the library introduce the powerset axiom
(chapter 2), the axiom of regularity (chapter 3), the symmetric difference and
its algebraic properties (chapter 4), ordered pairs via Kuratowski’s definition
(chapter 5) and finally Cartesian products (chapter 6). In this last chapter the
Cartesian product of two sets x and y is defined as follows:

Definition 6.2. x×y is the set z such that z = { (u, v) | u ∈ x and v ∈ y }.

To ensure that this definition is well-formed, i.e. that a unique such set z actu-
ally exists, it is preceded by the following lemma granting the existence of z –
uniqueness follows immediately from Naproche’s built-in extensionality axiom
for classes.

Lemma 6.1. There exists a set z such that

z = { (u, v) | u ∈ x and v ∈ y } .

Within Naproche’s ontology, we could also use a slightly different way of
defining the Cartesian product. Namely, we could define x × y as the class
{ (u, v) | u ∈ x and v ∈ y } and show afterwards that this class is actually a set.
Whereas this order of first defining an object and proving afterwards that it is
of a certain type is the more common approach in everyday-mathematics, we
decided to do it the other way around (i.e. first proving that an object of a
certain type exists and afterwards defining something to be this object). This
ensures that the assertion that the Cartesian product of two sets is again a set is
already part of the definition which makes the proof search in Naproche a little
bit more efficient.

Part II of the library begins with a chapter on functions (chapter 7). It
states the axiom of replacement, introduces the notions of injectivity, surjectivity,
bijectivity, identity function and constant functions and defines composition and
restriction operations. For instance, the axiom of replacement, like the axiom of
separation in ZF only expressable as an axiom schema, is formulated using the
notion of maps:

Axiom 7.8 (Replacement). Let f be a map and x be a set. There exists
a set y such that y = { f(u) | u ∈ dom(f) and u ∈ x }.

The remaining chapters of Part II deal with images and preimages of func-
tions (chapter 8), invertible functions (chapter 9), the behaviour of the symmetric
difference under images and preimages (chapter 10), subset preserving functions
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and the Knaster–Tarski fixed point theorem (chapter 11) and finally the notion
of equinumerosity (chapter 12).

Similar to Naproche’s mechanism for defining classes in a proof, there is also
a built-in mechanism for defining maps. For instance consider the following proof
of the existence of the preimage of a set z under some function f – note that z
was pretyped as a set earlier in the formalization:

Lemma 8.9. Let f be a function. There exists a set y such that y =
{ u ∈ dom(f) | f(u) ∈ z }.

Proof.
...

Case f(u) /∈ z for some u ∈ dom(f). Take w ∈ dom(f) such that f(w) /∈ z.
Define

g(u) =

{
u : f(u) ∈ z
w : f(u) /∈ z

for u ∈ dom(f).

...

Take y = range(g) \ {w }. Then y = { u ∈ dom(f) | f(u) ∈ z }. End. ut

Here we define a map g on the set dom(f) which Naproche can show on its own
to be a function. The range of this function g is then used to define a set y which
can be expressed by the comprehension term in the assertion of the lemma.

5.2 A Foundational Library for Natural Number Arithmetic

The arithmetic library5 is a self-contained elaboration of Peano Arithmetic with
addition, multiplication, exponentiation and factorial with detailed proofs of
their arithmetic properties. It provides the standard ordering on the natural
numbers and proves various rules about its interplay with the arithmetical op-
erations. Based on this ordering, some variants of induction are provided and
also a (partial) subtraction operation. The library defines divisibility, Euclidean
division and modular arithmetic. Finally, the notion of prime numbers is given
together with proofs of some basic number-theoretic facts.

A typical example of a theorem provided by the library is its formulation of
the Euclidean division theorem:

Proposition 14.1. For all natural numbers n,m such that m is nonzero
there exist natural numbers q, r such that n = (m · q) + r and r < m.

Chapter 1 of the library introduces the notion of natural numbers as a new
sort of objects together with a constant ’0’ and a unary successor operation ’succ’,

5 Located in $ISABELLE HOME/contrib/naproche-20212111/examples/arithmetic
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independent of any other foundational formalizations. In contrast to setting up
Peano Arithmetic on the basis of, e.g., the set theory library presented above,
this stand-alone approach was chosen to avoid potential efficiency drawbacks
concerning the verification in Naproche which a large overhead of formalizations
it would otherwise depend on might cause.

The structure of the natural numbers is characterized by the following three
axioms:

Axiom 1.5 (1st Peano axiom). If succ(n) = succ(m) then n = m.

Axiom 1.6 (2nd Peano axiom). 0 is not the direct successor of any
natural number.

Axiom 1.7 (3rd Peano axiom). Let P be a class. Assume 0 ∈ P and
for all natural numbers n we have n ∈ P =⇒ succ(n) ∈ P . Then every
natural number is an element of P .

(Note that in the first axiom, n and m are pretyped as natural numbers and in
the second one, “the direct successor of . . . ” is just a synonym for “succ(. . . )”.)
As in the set theory library we used Naproche’s built-in notion of classes to
formulate the induction schema of Peano Arithmetic.

The following chapters of Part I of the library provide some operations on the
natural numbers, namely addition (chapter 2), multiplication (chapter 3), expo-
nentiation (chapter 4) and factorial (chapter 5), together with detailed proofs of
their computation laws. These operations are all introduced axiomatically, e.g.:

Signature 4.1. nm is a natural number.

Axiom 4.2 (1st exponentiation axiom). n0 = 1.

Axiom 4.3 (2nd exponentiation axiom). nm+1 = nm · n.

Of course, every time a new operation is introduced this way, the axiom system of
the whole formalization is extended which increases the potential of accidentally
getting some inconsistency the larger this system grows. Thus in the further
development of this library, more robust foundations for Peano Arithmetic will
be evaluated, for instance by merging it into the set theory library, which would
allow to define all such operations on the basis on Dedekind’s recursion theorem.

Part II of the library introduces the standard ordering on the natural numbers
(chapter 6) and presents some facts about the interplay between this ordering
and the addition, multiplication and exponentiation operations (chapters 7, 8, 9,
resp.). Moreover, some equivalent formulations of the induction axiom are given
(chapter 10), followed by a chapter on standard exercises in natural number
arithmetic (chapter 11). Finally, chapter 12 introduces a (partial) subtraction
operation on the natural numbers.

Part III deals with the divisibility of natural numbers. This notion is defined
in chapter 13, together with proofs of its basic algebraic properties. Chapter
14 presents a proof of the possibility of Euclidean division within the natural
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numbers, on the basis of which modular arithmetic is introduced in chapter 15.
Finally, in chapter 16 the notion of prime numbers is introduced together with
some basic facts from number theory.

5.3 Usage in Other Formalizations

The two described libraries are used to serve as a foundation for a formalization
of a proof of the Cantor–Schröder–Bernstein theorem, i.e. the assertion that two
sets are equipollent if they can be embedded into each other, and of Furstenberg’s
proof of the infinitude of primes [4].

The former 6 is based on a version of Knaster’s proof of the Cantor–Schröder–
Bernstein theorem as stated in [14]. It uses Naproche’s readtex instruction to
import some chapter (and its dependencies) of the set theory library:

[readtex set-theory/sections/02 functions/06 equipollency.ftl.

tex]

(To avoid confusion:Naproche provides two instructions for importing files, read
and readtex. The former is used to import files in the .ftl format, whereas
the latter is used for files in the .ftl.tex format.) Since Naproche’s import
functionality is very limited, there is no option for only importing those defini-
tions and theorems we need to state and prove the Cantor–Schröder–Bernstein
theorem. Instead we have to import a full chapter of the set theory library. Hav-
ing imported a chapter of a library, we can use LATEX’s \ref command to cite
any definition, theorem, etc. it provides for the proof of the Cantor–Schröder–
Bernstein theorem. For instance after a certain function h is defined which is
shown to be subset-preserving, the proof states the existence of a fixed point c
of h by referring to theorem 11.5 of the set theory library:

Hence we can take a fixed point c of h (by 11.5).

The LATEX source of this line looks as follows:

Hence we can take a fixed point $c$ of $h$ (by \ref{

SetTheory_02_05_636019 }).

The LATEX command \ref{SetTheory_02_05_636019} creates a clickable link
which points to the theorem with label SetTheory_02_05_636019 (which is the-
orem 11.5) in the PDF file of the set theory library.

6 Further Plans

Our approach to libraries is exploratory and so far limited by Naproche’s rudi-
mentary read instruction. We are working on an import mechanism that makes

6 see $ISABELLE HOME/contrib/naproche-20212111/examples/cantor-schroeder-

bernstein.ftl.tex
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it possible to build up a graph of theories and provides more control over the
visibility of theorems. We are also experimenting with options for natural lan-
guage syntax and the reuse of common LATEX commands (e.g. \cite) for theory
imports.

Presently importing mathematical structures and associated material from
other formalizations is rather inflexible. Although Naproche can deal with struc-
tures (see e.g. [9]), they can only be imported “verbatim”. For example, changing
a group operation from × to ? requires cumbersome notation and incurs a con-
siderable amount of overhead (making proof automation less effective). A logical
next step is a ForTheL/Naproche implementation of mathematical structures
similar to Isabelle’s locales which shall address these issues and significantly
improve reusability of future formalizations.

Since Naproche formalizations omit many details and heavily rely on proof
automation, checking speeds have always been slower than established proof as-
sistants. Running Naproche can be compared to continuously invoking Sledge-
hammer for every explicit and implicit claim in a document. We are working
on more robust local caching and efficient usage of external provers so that
Naproche remains usable on mid-range hardware.

Performance problems have also been exacerbated by basing formalizations
on general libraries and moving towards richer ontologies. While Kelley–Morse
class theory with urelements is a strong and expressive foundation for mathemat-
ics, we have also noticed some trade-offs compared to ZF. Presently first-order
formulas exported to ATPs are burdened with type guards for classes and ele-
ments, making proof search more difficult. In practice this meant that Naproche
proofs had to become more detailed and some previously working proofs had
to be refactored. We also observed that proof obligations stemming from the
class-set-distinction (e.g. having to prove that a certain comprehensions forms a
set) can be a major stumbling block for students working with Naproche.
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Abstract. The OEIS is an important resource for mathematicians. The
database is well-structured and rich in mathematical content but is in-
formal in nature, so interaction with the database is restricted to humans
supported by basic search services.
In this paper, we provide the result of semantifying – i.e. recovering
machine-actionable representations – the OEIS data as an open dataset.
We hope that this dataset will stimulate the development of novel user
interfaces, derived data, connections to other mathematical datasets and
libraries, and advance knowledge management services for the mathe-
matical community.
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1 Introduction

The OEIS (On-line Encyclopedia of Integer Sequences) is a community driven
effort for curating and collecting knowledge about integer sequences. Applica-
tions range from being able to access information about a specific graph problem
while researching the lifetime of multicomponent models in engineering [8], to
treating the search for new sequences as an entertaining puzzle [11]. Interested
parties can submit their own sequences and contribute to existing sequences.
Submissions are manually reviewed and upon acceptance, the new sequence re-
ceives a new unique identifier: an A-number. Behind each A-number, of which
there are over 350000, is an entry, containing mathematical knowledge about
that sequence. This includes, but is not limited to, the name, sequence values,
generating functions, references, scripts and comments. The data is saved inter-
nally as a text file, with each line starting with an identifier, that defines the
lines’ category. A line from the comments section starts with "%C", continues
with the comment and ends in a line break. It is not obvious which lines be-
long to each other, something a human can recognize by context, a machine less
so. Furthermore, the line content is only partially structured, depending on the
category it originates from.

Over the last decade, our research group has invested considerable effort
on extracting machine-actionable representations of the OEIS data. This pa-
per makes the fruit of this labor available to the mathematical community.
The semantized OEIS data can be used to derive new insights into integer
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sequences. For instance, the semantized generating functions (otherwise avail-
able only as strings in the OEIS) led to the automated discovery of ≥ 300000
relations between sequences, most of them previously unknown [9] (and still un-
published in the OEIS). Note that the generation of the relations was the work
of two afternoons with SageMath [10], whereas the semantization effort involved
weeks/months of manual parser optimization. This shows the value of a curated
dataset like the one presented in this paper.

The OEIS dataset is also interesting from another angle: In contrast to other
data, that typically consist of one or two aspects, it contains content from all
five aspects of mathematical knowledge postulated by the tetrapod model in [6].

The tetrapod model proposes that “doing math” involves five aspects (com-
putation: typically programs or program fragments, tabulation: concrete data,
typically sequences, matrixes, time series; inference: deduction, typically proofs;
narration: typically text fragments or document structure fragments (e.g. sec-
tions, chapters, ...); organization: relational data, usually RDF triples jointly
describing a graph).

Organization

Computation

TabulationInference

Narration

Fig. 1. A visual representation of the Tetrapod model.

In the OEIS we have

– computational content in the form of programs that compute the sequences,
– tabulated content in the form of concrete initial prefixes of the sequences,
– inferential content in the form of generating functions,
– narrative content in the form of descriptions, and
– organizational content in the form of curated identifiers, author/publication

references, etc.

The tetrapodal structure makes the curation of the semantified OEIS dataset into
a test case of the tetrapod model and the potential basis of coming tetrapodal
services like the multi-aspect search.
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2 OEIS Semantization and Dataset Format

In [12], a harvesting of the OEIS and semantification pipeline for the OEIS data
is established. This iterates through all entries and extracts machine-actionable
data. Depending on the kind of mathematical data represented in the OEIS, the
pipeline deploys a different harvester/semantics extraction approach. We will
discuss the semantization process and the format of the resulting dataset by the
aspects in the tetrapod model.

The OEIS dataset (THODS) (Tetrapodally Harvested OEIS DataSet) is a zip
file with six subdirectories, five for each of the tetrapodal aspects and a source
folder. When necessary, a subdirectory is further subdivided into folders to avoid
overloading the filesystem with over 350000 files in one folder.

Computational content. The OEIS contains well-structured scripts and programs
that compute values for many of the sequences. In contrast to the other tetrapo-
dal aspects (tabulation, inference, narration and organization), the OEIS rep-
resentation contains an additional prefix in the form of the programming lan-
guage’s name in brackets. Using this syntax, a harvester can differentiate which
lines belong semantically together. The challenge of machine actionability lies
in not knowing how to execute these programs. The first difficulty is that the
version of their language and libraries is not explicitly stated. The second chal-
lenge concerns the intent of use: some scripts print their sequence to the console,
others provide a function, which takes an index and returns the sequence value
at that index. The initial step in [12] was to extract metadata. This includes the
author, the date of the last change and the standard file extension of the script’s
language.

In the OEIS Dataset, computational content is saved as XML-files named
after the sequences A-number, e.g. the path of the Fibonacci numbers (A000045)
is /computation/A000/A000045.xml. A single file holds all code snippets that
can be found in the sequence plus the (extracted) metadata; namely:

– The “author” element, that contains the autor’s name. The name is extracted
by searching for the underscores that encompass an author’s name in the
internal OEIS format.

– “language_tag” holds the OEIS script prefix. It states the programming/scrip-
ting language of the code snippet.

– Inside the “file_ending” element is the filename extension specific to the lan-
guage given in the “language_tag”. It is generated via a manually generated
conversion table.

– The content of the “date” is the date of the last modification. Since the date
is often written in proximity to the author’s name, the harvester starts its
search for it with the name as a starting point.

– Inside the “source_code” XML-element is the code snippet itself. As stated
above, the way how it generates the sequence may vary.
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Tabulated Content. is the simplest aspect in the OEIS. The first n integers of a
sequence are split into three lines there, each with its own prefix flag. We join
them into a single sequence, that is saved as a CSV-file, where each line is in the
format index, element of sequence at index.

Inferential Content. The OEIS contains generating functions, which are defined
as “a formal power series of some given form that generates a sequence” [4]. This
dataset focuses on harvesting two types of generating functions:

1. “direct generating functions” – expressions that return the value of a se-
quence a at index n (possibly in relation to other sequences), e.g. a(n) =
A000688(n) +A060689(n)

2. “ordinary and exponential generating functions” – algebraic expressions g(x)
in terms of a single variable x, such that the coefficients of the Taylor ex-
pansion of g(x) “generate” the sequences.
(a) ordinary generating functions are of the form G{an}(x) =

∑∞
n=0 anx

n

(b) exponential ones are of the form E{an}(x) =
∑∞

n=0 an
xn

n! .

The OEIS contains additional types of generating functions that are not yet
available in this dataset, since we started on the types with the most occur-
rences first. As these are finite representations of the infinite sequences, they
are an important tool for the theoretical analysis and thus a prime target for
semantization. Unfortunately, the OEIS sources represent the expressions in a
syntactically arbitrary form and mixes them with additional information like
author, comments or definitions without separators. To extract the generating
functions themselves our semantifier must (heuristically) parse all entries, that
may contain functions: We use a lexicon of allowed words and grammatical rules
on how to combine them. To enhance the quality of the dataset, parsed func-
tions are validated by importing them into SageMath and comparing function
evaluation results with the integer sequence given by OEIS. We do this in order
to detect errors in the heuristic parsing approach. At the moment 44% (47589
out of 107152) function validations return a perfect sequence match. Validated
functions are exported by creating an expression graph using the abstract syntax
trees library “AST” [1].

In the dataset, the automatic validation is shared as a MongoDB database,
exported in the JSON format (/computation/gf.json). The file contains all
generating functions, that could be heuristically harvested. An entry for a gen-
erating function contains the following name and value pairs:

– $oid: a MongoDB unique ID
– theory: The sequence’s A-number
– validated: An internal flag that signifies that the function could be im-

ported into SageMath (true for all entries in the current dataset)
– type: The type of generating function. Possible types are an_succ (direct

generating functions), gf_succ and egf_succ (ordinary and exponential
generating functions, respectively)

– formula: The original OEIS line without the prefix tag
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– parsed_formula: The function without any additional “ASCII art”
– data: The sequence the function should produce, based on values given by

OEIS
– formula_data: The sequence the function produces
– match_ratio: A float score, that is the result of matching the values of data

and formula_data
– offset: It is not mandatory that a generating function starts creating the

sequence at index 0 – offset is the result of trying to shift sequences to the
left and right and trying to find a match.

Successfully parsed generating functions are furthermore exported to OpenMath
[5] because the standard allows for storage, publication, web visualization and
programmatical usage. Each function from the “gf.json” file is exported to a
separate file. They are named “theory”_“type”_“$oid”.

Organizational Content. The organizational harvester tries to enrich data about
the sequence author and references by accessing the zbMATH author/document
identification APIs using the python libraries mechanize [3] and Beautiful Soup
[2]. If a query returns only one person or article, we link them to the respective
item as a semantic identifier.

Organizational content is stored as RDF-triples where the predicates come
from the FOAF, Dublin Core and ULO (upper library ontology [7]) ontologies
for interoperability. An additional benefit of this format is that triple stores allow
for SPARQL queries, and single parts of a triple are separately addressable via
unique URIs.

The dataset contains references (/organization/oeis_references.rdf),
OEIS authors (/organization/oeis_authors.rdf) and users (/organization
/oeis_users.rdf). “Authors” are the result of trying to parse the OEIS au-
thor field. Note that the OEIS dataset contains impurities, where the heuristic
harvesting approach encountered unexpected content or formatting. “Users”, in
contrast, are extracted via web-crawling from the list of all OEIS users. Author
and user triple stores contain the unique zbMATH identifier, if found. Only
“users.rdf” entries contain the link to their wiki entry. A reference triple consists
of the

– creator, consisting of one or more people,
– The match score expresses the certainty that the query result is the reference

the zbMATH ID refers to.
– A zbMATH ID is a unique identifier for a document.
– The reference field is filled with the reference, as it was found in the OEIS:
– The A-number states which sequence contains this reference.
– And the title is the title of the document.

The file /organization/oeis_a_num_references.csv lists all mentions of
a sequence in all other sequences. It contains three rows:

– aNum: the A-number of the sequence
– atPosition: the OEIS entry the sequence in aNum is mentioned in
– appearsIn: an integer declaring at which position the sequence is referenced
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Narrative Content. includes all descriptive texts, comments, and keywords in
the OEIS. The current partial harvest is saved as a XML-file. Ilt holds the
comments section and name of a sequence and authors and dates of program
contributions to a sequence. Each entry includes a source reference as a source
reference (“srcref”) attribute that contains the start position of the narrational
element inside its OEIS entry.

3 Conclusion, Future Work, and Availability

We have presented a dataset of semanticised OEIS data. This dataset is com-
prehensive as it contains data from all five tetrapod aspects – whereas other
libraries/datasets from mathematical software systems typically only span one
or two: their native aspect and possibly narration.

This papers dataset (THODS) is based on an OEIS snapshot from December
2020. We are currently working with the OEIS community to obtain direct access
to the OEIS data so that we can provide an automated periodic semantization
process. The current and future vsersions of (THODS) are available under the
DOI 10.5281/zenodo.6809687.

The current dataset is limited by the fact, that it does not cover the full OEIS
– we erred on the side of caution and only included the parts where semantization
is verifiable. Ideally it would be a complete, tetrapodal representation of the
OEIS, so that an OEIS entry reconstruction would be possible from its harvested
tetrapodal components. We will work on further semantization, e.g. on (verified)
semantizations of reported relations between formulae, e.g. from the “program”
in the OEIS representation of A000055:

Fig. 2. OEIS program snippet from A000055
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