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Abstract

This report documents the RISCTP theorem proving interface. RISCTP consists of a

language for specifying proof problems and of an associated software for solving these

problems. The RISCTP language is a typed variant of first-order logic whose level of

abstraction is between that of higher level formal specification languages (such as the

language of the RISCAL model checker) and lower level theorem proving languages (such as

the language SMT-LIB supported by various satisfiability modulo theories solvers such as Z3).

Thus the RISCTP language can serve as an intermediate layer that simplifies the connection

of specification and verification systems to theorem provers; in fact, it was developed to

equip the RISCAL model checker with theorem proving capabilities. The RISCTP software

is implemented in Java with an API that enables the implementation of such connections;

however, RISCTP also provides a text-based frontend that allows its use as a theorem prover

on its own. RISCTP already implements a backend that translates a proving problem into

SMT-LIB and solves it by the "black box" application of Z3; in the future, RISCTP shall also

provide built-in proving capabilities with greater transparency.

This document will be continuously revised; its most recent version can be found at the following

URL: https://www.risc.jku.at/research/formal/software/RISCTP
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1 Introduction

RISCTP is a theorem proving interface that consists of a language for specifying proof problems

and a software for solving these problems. The goal of this interface is to simplify the extension

of formal specification and verification systems with theorem proving capabilities, either by

connections to external provers or by implementations of internal ones. The concrete motivation

for the development of RISCTP has been to supplement the model checking capabilities of the

RISCAL software [7, 5, 9, 6, 8, 10], which is able to verify theorems and algorithms in specific

finite instances of an infinite class of models, by theorem proving capabilities that allow the

verification with respect to the whole model class. For this, we envision the use of an external

SMT (satisfiability modulo theories) solver such as Z3 [3, 4] as well the development of an

internal first-order logic prover that interacts with an SMT solver.

Since most SMT solvers support the language of the SMT-LIB standard [2, 1], it is natural

to consider the SMT-LIB language itself as a suitable interface language. Indeed the RISCTP

language is modeled after SMT-LIB in that it supports the following concepts:

• A typed variant of first-order logic (extended with various convenience features).

• Algebraic data types (whose values can be processed by “match” expressions).

• Functional arrays with extensionality (as provided by the SMT-LIB theory “ArraysEx”).

• Integer arithmetic (as provided by the SMT-LIB theory “Ints”).

However, RISCTP also provides concepts that are not available in SMT-LIB but are extremely

helpful in translations from higher level specification languages:

• Overloading of function names (subsequently resolved by renaming to unique names).

• Subtypes constrained by formulas (subsequently translated to explicit predicate applications).

• Tuples with a generic tuple type constructor (internally translated to algebraic types).

• Choose expressions (subsequently translated to axiomatized functions).

Last but not least, the RISCTP language has a concrete syntax (modeled after the syntax of the

RISCAL language) that resembles traditional mathematical/logical syntax and allows to specify

proof problems in a much more convenient way than in the Lisp-like SMT-LIB language with its

fully parenthesized prefix notation. Indeed the RISCTP software provides a parser that translates

proof problems from concrete syntax into abstract syntax trees for further processing.

The core of this software is a Java library with an API for the construction of proof problems

and an implementation of two backends:

• An SMT backend that, via translation to SMT-LIB, solves proofs problems by applying Z3.

• A first-order logic backend which translates proof problems into classical first-order logic.
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The first-order backend is, however, currently just a stub that still requires integration with or

implementation of a corresponding prover.

The RISCTP software is freely available as open source under the GNU General Public License,

Version 3 at the following URL:

https://www.risc.jku.at/research/formal/software/RISCTP

Here one can also find the most recent version of this document (which will be continuously

revised).

The rest of this paper is structured as follows: Section 2 describes the language of RISCTP by

a concrete example that is also used in Section 3 to illustrate the use of the RISCTP software.

Section 4 outlines our plans for the further use and development of RISCTP. Appendix A describes

the installation of the software and its various execution options. Appendix B gives the concrete

grammar for the RISCTP language. Appendix C lists the RISCTP examples used in this document.

2 Proof Problems

In RISCTP, a “proof problem” (short “problem”) is a sequence of declarations written as Unicode

text. An example of such a problem is given below:

// problem file "arrays.txt"

const N:Nat; axiom posN ⇔ N > 0;

type Index = Nat with value < N;

type Value; type Elem = Tuple[Int,Value]; type Array = Map[Index,Elem];

fun key(e:Elem):Int = e.1;

pred sorted(a:Array,from:Index,to:Index) ⇔

∀i:Index,j:Index. from ≤ i ∧ i < j ∧ j ≤ to ⇒ key(a[i]) ≤ key(a[j]);

theorem T ⇔

∀a:Array,from:Index,to:Index,x:Int.

from ≤ to ∧ sorted(a,from,to) ⇒

// let i = (from+to)/2 in

let i = choose i:Index with from ≤ i ∧ i ≤ to in

key(a[i]) < x ⇒ ¬∃j:Index. from ≤ j ∧ j < i ∧ key(a[j]) = x;

In the following, we will use above example to explain the main features of RISCTP.

2.1 Parsing and Precedence Rules

In a proof problem, expressions (terms and formulas) are parsed according to the usual precedence

rules, e.g., arithmetic expressions like � + � · � , are interpreted as in � + (� · �). However, there

is no universally established convention for precedence rules for all the kinds of expressions

supported by RISCTP. These precedence rules are established by the ANTLR4 grammar of the

RISCTP language presented in Subsection B.2: within a rule of the grammar, options that appear

earlier have higher precedence. If we are in doubt how RISCTP parses expressions, we may

invoke RISCTP with option -p (see Subsection A.2):

4

https://www.risc.jku.at/research/formal/software/RISCTP


> RISCTP -p arrays.txt

RISC Theorem Proving Interface 1.0 (June 8, 2022)

https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)

This is free software distributed under the terms of the GNU GPL.

Execute "RISCTP -h" to see the available command line options.

-----------------------------------------------------------------

Reading file /usr2/schreine/papers/RISCTP2022/problems/arrays.txt...

=== after parsing:

const N:Nat;

axiom posN ⇔ N > 0;

type Index = Nat with value < N;

type Value;

type Elem = Tuple[Int,Value];

type Array = Map[Index,Elem];

fun key(e:Elem):Int = e.1;

pred sorted(a:Array,from:Index,to:Index) ⇔

∀i:Index,j:Index. ((((from ≤ i) ∧ (i < j)) ∧ (j ≤ to)) ⇒

(key(a[i]) ≤ key(a[j])));

theorem T ⇔

∀a:Array,from:Index,to:Index,x:Int.

(((from ≤ to) ∧ sorted(a,from,to)) ⇒

(let i = choose i:Index.

((from ≤ i) ∧ (i ≤ to)) in ((key(a[i]) < x) ⇒

(¬(∃j:Index. (((from ≤ j) ∧ (j < i)) ∧ (key(a[j]) = x)))))));

===

=== no proof method selected

FAILURE termination.

As we can see, the software prints the problem file after parsing, with parentheses printed around

subexpressions; this makes the syntactic interpretation of nested expressions unambiguous.

2.2 Declarations

Declarations introduce the following kinds of entities.

Types The type declaration

type Value;

introduces a (not further specified) type Value. The type definition

type Elem = Tuple[Int,Value];

introduces a type “Elem” which is defined by the type term Tuple[Int,Value]; this

type is constructed from the builtin type Int (the integer numbers) and the type Value by

application of the builtin type constructor Tuple; it contains all binary tuples whose first
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component has type Int and whose second component has type Value. A new type may

be also derived from another type by adding a subtype constraint, such as in the declaration

type Index = Nat with value < N;

which introduces the type Index as a type of all values from type Nat (the builtin-type of

all natural numbers, i.e., non-negative integers) that are smaller than a previously declared

constant N. In fact, also Nat is considered as a a subtype of Int with the constraint that a

value of this type must be greater equal zero. More details on the RISCTP type system will

be given in Subsection 2.4.

Constants The constant declaration

const N:Nat;

introduces a new constant N of type Nat without specifying its value. The subsequent

constant definition (not in above example)

const M:Nat = N+1;

defines a new constant M of type Nat whose value equals N+1. In fact, constants are just

special cases of functions without arguments (see below).

Functions The function declaration (not in above example)

fun f(x:Int,y:Int):Int;

introduces a binary function f on type Int without specifying its result value for given

arguments. The function definition

fun key(e:Elem):Int = e.1

defines a unary function key from argument type Elem to result type Int and specifies that

its result, for given argument tuple e, is the first tuple component e.1.

Predicates The predicate declaration (not in above example)

pred p(x:Int,y:Int);

introduces a binary predicate “p” on “Int” without specifying its truth value for given

arguments. The predicate definition

pred sorted(a:Array,from:Index,to:Index) ⇔

∀i:Index,j:Index. from ≤ i ∧ i < j ∧ j ≤ to ⇒ key(a[i]) ≤ key(a[j]);

introduces a predicate sorted and specifies its truth value for given arguments a, from,

and to by a formula that states that the elements of array a are sorted within the index

range with endpoints from and to in ascending order of the element keys.

In RISCTP, formulas are expressions of the builtin type Bool of Boolean values; unlike in

classical first-order logic, there is no a priori syntactic difference between formulas and

terms (in fact, since predicates are just functions with result type Bool, above declaration

could have also written as a function definition).

Axioms The definition
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axiom posN ⇔ N > 0;

introduces a named axiom posN which constrains by the formula N > 0 the interpretation

of the previously introduced constant N of type Nat such that it must denote a positive

natural number.

Theorems The definition

theorem T ⇔

∀a:Array,from:Index,to:Index,x:Int.

from ≤ to ∧ sorted(a,from,to) ⇒

// let i = (from+to)/2 in

let i = choose i:Index with from ≤ i ∧ i ≤ to in

key(a[i]) < x ⇒ ¬∃j:Index. from ≤ j ∧ j < i ∧ key(a[j]) = x;

introduces a named theorem T which states that for every array a that is sorted within the

non-empty index range wth endpoints from and to, at an arbitrarily chosen index i in that

range, if the key of the element at that index is less than an arbitrary integer x, then x can

also not occur as an element key at any index in the sorted range smaller than i.

Before we describe the types and expressions of RISCTP in more detail, we will briefly discuss

how entities in RISCTP can be named.

2.3 Names and Overloading

In RISCTP, the names of all declared entities (including locally declared entities such as function

parameters and quantified variables) can be plain identifiers (such as from) which start with letters

and can also contain digits and the underscore character (_); however they can be also quoted

identifiers of the form ’...’ where . . . can be almost any non-empty sequence of characters;

see Subsection B.1. For instance, we may introduce a function ’+1’ by a definition

fun ’+1’(x:Int):Int = x+1;

and later invoke it on argument a+b as follows:

’+1’(a+b)

In fact, the expression a+b is just a shortcut for the application

’+’(a,b)

of a function ’+’.

Globally declared entities fall into one of three categories: types, functions (including constants

and predicates), and formulas (axioms and theorems). Entities in different categories may share

the same name, but entities in the same category must have different names (with some exception

on function names given below). Thus two types must not have the same name and a theorem and

an axiom must not have the same name (both are formulas), but a type and a function may be

named alike.
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The category of “functions” also includes constants and predicates, because constants are

considered as functions without arguments and predicates are considered as functions with result

type Bool. Two functions may have the same name provided that they differ in the number

or types of their formal parameters; in this case, the “overloading” of the function name with

multiple functions is allowed, because we can distinguish them in all their applications from the

number and types of their actual arguments. However, here we consider two types �1 and �2 only

as different, if one is not derived from the other by a sequence of type definitions �1 = . . . = ��
(even if these definitions contain subtype constraints); e.g., the type Int of integer numbers

and its subtype Nat of non-negative integers are considered as the same type when it comes to

overloading function names.

2.4 Types

All types provide the binary predicates = and ~= (also denoted by the Unicode character “≠”)

denoting the “equality” and “inequality” of values of these types. In detail, we have the following

types and type constructions:

Declared Types A type T introduced by a declaration

type T;

denotes a new type that is different from any other type. Apart from the comparison

predicates available on all types, there do not exist any predefined operations on this type.

Defined types A type T introduced by a definition

type T = ...;

does not denote a new type but just another name for the given type .... Thus all operations

available on type ... can be also applied to values of type T.

Subtypes A type T introduced by a definition

type T = ... with ...value...;

introduces a subtype of type .... This subtype consists of every value of the original type

that satisfies the formula ...value... (whose only free variable must be value). Thus

all operations of type ... can be also applied to values of type T.

The defined subtype must not be empty, i.e., there must exist a value that satisfies the

stated formula. When type-checking the declaration, thus a corresponding type checking

condition is generated that has to be proved subsequently; see Section 3 for more details.

Booleans Bool is the type of the Boolean (truth) values true (also denoted by the Unicode

character “⊤”) and false (also denoted by the Unicode character “⊥”). Subsection 2.5

describes various operations on this type that allow to build logical “formulas”.

Integers Int is the type of integer numbers whose non-negative values are denoted by decimal

literals such as 0, 1, or 2. The type provides the usual functions +, - (unary and binary), *

(also denoted by the Unicode character “·”), / (truncated quotient) and % (remainder) and
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predicates <, <= (also denoted by the Unicode character “≤”), >, and >= (also denoted by

the Unicode character “≥”).

The value of an expression e1/e2 or e1%e2 is undefined if the value of e2 is 0. When type

checking these expressions, corresponding type-checking conditions are generated as proof

obligations; see Section 3 for more details.

Nat is a subtype of Int that contains the integer numbers with non-negative values only; it

is predefined by a declaration

type Nat = Int with value ≥ 0;

Maps Map[K,V] is the type of maps (unary functions) from arguments of type K (the “keys”)

to results of type V (the “values”). The expression m[k] denotes the value to which key k

is mapped by map m. The expression map[K,V](v) denotes a map of type Map[K,V]

that maps every key to value v. The expression m with [k] = v denotes the map that is

identical to map m except that key k is mapped to value v.

A map of type Map[Nat,E] can be considered as an array of elements of type E; since

every natural number is mapped to an element, the array has infinite length. However, a

type Map[I,E] with a finite subtype I of Nat contains only arrays of finite length.

A map of type Map[E,Bool] can be considered as a set of elements of type E: an element

is mapped to true if and only if it is in the set.

Tuples Tuple[T1,...,T�] is the type of tuples with � components of types T1, . . . , T�.

The expressions t.1, . . . , t.� denote the � components of tuple t. The expression

<<c1,...,c�>> (or 〈c1,...,c�〉 with Unicode characters “〈” and “〉” as delimiters)

denotes the tuple with � components c1, . . . , c�. The expression t with .i = c denotes

the tuple that is identical to tuple t except that component i has value c.

Every tuple type is internally translated to a corresponding algebraic datatype (see below),

e.g., the type Tuple[Int,Bool] is translated to the type

datatype ’Tuple[Int,Bool]’ = ’〈〉’(’.1’:Int,’.2’:Bool);

with constructor ’〈〉’ and selectors ’.1’ and ’.2’.

Algebraic Datatypes A declaration

datatype T = c1(s11:T11,...) | ... | cn(sn1:Tn1,...);

introduces a new type T whose values are constructed by application of one of the �

constructors c1, . . . , cn. These constructors must all have different names; they denote

functions as if they would have been introduced as follows:

fun c1(s11:T11,...):T;

...

fun cn(sn1:Tn1,...):T;

Thus there must not exist any previously declared function that has the same name and the

same number and types of arguments as one of these constructors. If a constructor c has no

arguments, the parentheses in its declaration are dropped: thus the constructor denotes a

constant as if declared as follows:
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const c:T;

The declared type T is an algebraic datatype: it consists of exactly those values that can be

constructed from applications of its constructors and two of its values are only identical if

they have been constructed by application of the same constructor to the same argument.

The type Tmay appear as the type of a constructor parameter; thus we may from a constructor

constant generate arbitrary many values of the type. For instance, the declaration

datatype IntList = empty | cons(head:Int,tail:IntList);

describes the type of all values that are constructed by an expression of form

cons(i1, cons(i2, ..., cons(in, empty)))

with integer expressions i1, i2, . . . , in; this expression can be identified with an integer

sequence [�1, �2 . . . , ��] where �1, �2, . . . , �� are the values of the integer expressions. Thus

IntList can be considered as the type of all finite lists of integers where empty denotes

the empty integer list and cons denotes the function that constructs a new integer list by

adding an integer to the front of a previously constructed list.

Each constructor c is equipped with a corresponding tester ’is::c’, a predicate that, when

applied to a value of type T, returns true if and only if that value was constructed by applica-

tion of the corresponding constructor. For instance, if a value l of above type IntList was

constructed as cons(2, cons(1, empty)), then the expression ’is::cons’(l) denotes

true while ’is::empty’(l) denotes false.

Furthermore, the constructor parameters �� � become selectors, i.e., functions as if they

would have been introduced by the following declarations:

fun s11(x:T):T11;

...

fun sn1(x:T):Tn1;

...

Thus the selectors of all constructors of the type must have different names. Every selector

returns, when applied to a value constructed with the constructor in which it was declared,

the corresponding constructor argument. For instance, for above value l of type IntList,

the expression head(l) denotes 2 and tail(l) denotes cons(1, empty). However, the

expressions head(empty) and tail(empty) denote unknown values, because head and

tail are not selectors of constructor empty.

If e is an expression of type T, then a “match expression”

match e with

| c1(x11:T11,...) -> e1

| c2(x21:T21,...) -> e2

...

| _ -> e0

returns the value of expression e1 if e was constructed by application of constructor

c1, the value of e2 if e was constructed by application of c2, . . . , and the value of

e0, otherwise. Here the expression e1 may refer to the variables x11, . . . declared in
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the constructor pattern c1(...), e2 may refer to the variables x21, . . . declared in the

constructor pattern c2(...), and so on; these variables are bound to the values of the

corresponding selector applications. The order of the constructor patterns need not match

the order of the constructor declarations and not all constructors need to appear as patterns.

However, if the expression contains a pattern for every constructor, the default branch with

the expression e0 may be omitted.

For instance, the function

fun sum(l:IntList):Int;

axiom sumax ⇔ ∀l:IntList.

sum(l) =

match l with

| empty -> 0

| cons(h:Int,t:IntList) -> h+sum(t);

uses in axiom sumax a match expression to state that, for every value l of type IntList,

the function application sum(l) returns the sum of all values of l; this axiom effectively

gives a “recursive” definition of function sum.

The value of a match expression can be also determined by the application of selectors and

testers. For instance, above axiom sumax could be also defined as follows:

fun sum(l:IntList):Int;

axiom sumax ⇔ ∀l:IntList.

sum(l) =

if ’is::empty(l)’

then 0

else let h = head(l), t = tail(l) in h+sum(t);

The expressions if ... then ... else ... and let ... in ... used in this example

will be further explained in Subsection 2.5.

A single datatype declaration may also define multiple datatypes in a “mutually recursive”

way in the form

datatype T1 = ... and ... and Tn = ...;

Here we introduce � types T1, . . . Tn where every constructor of every type may have

arguments of every other type.

Finally, a datatype may be also constrained to a subtype of a algebraic type by a declaration

of form

datatype T = ... where ...value... ;

where � contains only values admitted by the formula ...value.... This formula may

refer to a function with the following declaration:

fun height(x:T):Nat;

When applied to a value of type � , this function returns a natural number which may express

a measure for the complexity of the construction of the value. However, this function
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is only declared; to give it a specific meaning, the problem specification must provide

corresponding axioms.

Type Checking When type checking the correct application of functions and predicates, we

only consider the “root type” of an expression, ignoring type definitions and subtype declarations.

For instance, for the declarations

type Number = Int;

type NonZero = Number with value ≠ 0;

the root type of a value of type NonZero is Int; this value can be thus passed to any integer

function. Likewise, an argument of type Int can be passed to a function that has a parameter of

type NonZero; however, in this case the type checker generates a type checking condition as a

proof obligation, see Subsection 3.1 for more details.

2.5 Expressions

In Subsection 2.4, we have described the operations (functions and predicates) that are available

on the various types. These operations can be referenced in function applications and atomic

formulas which are the fundamental expressions of the language. In this subsection, we will

describe how from these expressions larger expressions can be constructed.

Unlike classical first-order logic (and in line with most modern specification and theorem

proving languages) RISCTP language does not have separate syntactic categories of “terms” and

“formulas” but only a single category of “expressions” where “formulas” are just expressions of

type Bool. In the following, we describe those constructions that allow to build more complex

formulas from simpler ones.

Propositional Formulas From formulas �, �1, �2, we can construct the following formulas:

Negation ~� or ¬� (“not �”)

Conjunction �1 /\ �2 or �1 ∧ �2 (“�1 and �2”)

Disjunction �1 \/ �2 or �1 ∨ �2 (“�1 or �2”)

Implication �1 => �2 or �1 ⇒ �2 (“if �1 then �2”)

Equivalence �1 <=> �2 or �1 ⇔ �2 (“if �1 then �2 and vice versa”)

The semantics of these logical connectives is that of classical propositional logic.

Quantified Formulas From a name �, type � , and formula �, we can construct these formulas:

Universal Quantification forall �:�.� or ∀�:�.� (“for all � of type � , �)”

Existential Quantification exists �:�.� or ∃�:�.� (“for some � of type � , �)”

The semantics of these quantifiers is that of first-order logic extended to a typed framework.

Conditional Expressions For every formula � and expressions �1 and �2 of the same type � ,

the expression
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if F then E1 else E2

is an expression of type � . It denotes the value of �1, if � is true, and that of �2 otherwise.

Binder Expressions For all variables �1, . . . , ��, expressions �1, . . . , ��, and an expression �

of type � , the expression

let x1 = E1, ..., xn = En in E

is an expression of type � . It denotes the value of � when evaluated in a context in which

the variables �1, . . . , �� are bound to the values of �1, . . . , ��, respectively. These bindings

take place simultaneously (not in sequence). For instance, in a context where � has value 0,

the expression

let x=x+1, y=x in ...

the expression ... is evaluated in a context where � has value 1 and � has value 0 (not 1).

Choose Expressions For every name �, type � , and formula �, the expression

choose x:T with F

denotes any value � of type � that makes formula � true (which may have � as a free

variable). If such a value does not exist, the value of the expression is an unknown

value of type � . When type checking a choose expression, the type checker generates a

corresponding type checking condition as a proof obligation; see Subsection 3.1 for more

details.

3 Proofs

When RISCTP is invoked on a proof problem, it first parses the specification to derive an internal

representation and then processes the specification in multiple phases, starting with type-checking

the specification.

3.1 Type-Checking Theorems

When type-checking a specification, the software may generate auxiliary “type-checking theorems”

whose validity has to be subsequently proved in order to ensure that the specification is well-formed:

Subtypes Every type must have at least one value, which is ensured by the pre-defined types and

type constructors. However, when the user defines a subtype, this subtype might be empty

because the specified subtype constraint is unsatisfiable. Therefore the system generates a

theorem that claims that there exists some value that satisfies the constraint.

Function Definitions When a function (constant, term) is defined, it has to be ensured that the

defining expression denotes a value of the result type of the function. If the result type

involves a subtype, the system generates a theorem that claims that for all possible argument

values, the result value of the function satisfies the subtype constraint.
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Function Applications If the type of some function parameter involve a subtype, the argument

value provided in a function application for that parameter must satisfy the subtype constraint.

Therefore, for every such function application, the system generates a theorem that claims

that (considering the context in which this application occurs) this is indeed the case.

Choose Expressions The value of a choose expression is undefined, if no value satisfies the

choice formula. Therefore, for every choose expression the system generates a theorem that

claims that (considering the context in which the expression occurs) for all possible values

of the free variables of the choosee expression there exists a value that satisfies the formula.

If RISCTP is invoked with the option -ptc it prints the proof problem after type-checking,

including all generated type theorems:

> RISCTP -ptc arrays.txt

...

=== after type-checking:

...

pred ’Nat::type’(value:Int) ⇔ value ≥ 0;

theorem ’typecheck(Nat)§0’ ⇔ ∃value:Int. ’Nat::type’(value);

...

pred ’Index::type’(value:Int) ⇔ ’Nat::type’(value) ∧ (value < N);

theorem ’typecheck(Index)§2’ ⇔ ∃value:Int. ’Index::type’(value);

...

theorem ’typecheck(T)§7’ ⇔

∀a:Array,from:Index,to:Index,x:Int.

(((from ≤ to) ∧ sorted(a,from,to)) ⇒

(∃i:Index. ((from ≤ i) ∧ (i ≤ to))));

...

===

=== no proof method selected

FAILURE termination.

In above example, we therefore have two type-checking theorems arising from the subtypes Nat

and Index and one theorem arising from the choose expression in theorem T.

3.2 Further Processing

After type-checking, the specification is further processed in multiple stages:

Overloading Overloaded functions and predicates are given unique names.

Subtypes Subtypes are replaced by their defining types, but predicate parameters and quantified

variables are explicitly constrained by applications of the subtype predicates.

Choose Expressions Every occurrence of a choose expression is replaced by the application of a

newly generated “choice function” whose result is not defined but constrained by an axiom

generated from the choice formula.
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Specification Pruning The specification is pruned such that only those items remain that are

relevant for proving the stated theorems. Here two major assumptions are made:

• The problem specification has a model, thus the axioms are not contradictory. This

assumption allows to remove axioms that only constrain entities that are not (directly

or indirectly) referenced in the theorems to be proved.

• If a function (constant, predicate) is explicitly defined, no axiom that occurs after the

definition constrains the interpretation of the function further than the definition alone

does. This assumption allows to remove axioms that refer only to defined functions

and entities that are irrelevant for proving the stated theorems.

Above steps are those needed for invoking the proof method smt (satisfiability modulo theories)

that will be described in Subsection 3.3; this method is based on the SMT-LIB language using the

theories “ArraysEX” (functional arrays with equality) and “Ints” (integer numbers).

For the proof method fol (first-order logic) described in Subsection 3.4, however, more is

required. First, as a preparation for this method, the type-checker has already generated all the

declarations, definitions, and axioms that explicitly characterize the theories of maps, tuples, and

algebraic datatypes. While thus the proof method needs not have any more builtin knowledge of

these theories, we still assume builtin knowledge of the theories of equality and integer arithmetic;

for the entities of these theories, only declarations are generated without further definition or

axiomatization. All these additional declarations are also printed when RISCTP is invoked with

the option -ptc (see Subsection A.2):

> RISCTP -ptc arrays.txt

...

=== after type-checking:

...

type Int;

const ’Int§undef’:Int;

pred ’=’(x:Int,y:Int);

pred ’≠’(x:Int,y:Int) ⇔ ¬(x = y);

pred ’<’(x1:Int,x2:Int);

pred ’≤’(x1:Int,x2:Int);

...

const 0:Int;

...

type ’NonZero§’ = Int with value ≠ 0;

...

fun ’+’(x1:Int,x2:Int):Int;

fun ’-’(x1:Int,x2:Int):Int;

fun ’-’(x:Int):Int;

fun ’·’(x1:Int,x2:Int):Int;

fun ’/’(x1:Int,x2:’NonZero§’):Int;

fun ’%’(x1:Int,x2:’NonZero§’):Int;
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...

===

=== no proof method selected

FAILURE termination.

Second, we transform the language of RISCTP into the language of classical first-order logic by

performing the following steps:

Variables In an expression, any occurrence of a name without parameters may denote a variable

or a constant. Initially, the parser parses all such names as constants. Now, however,

names that are introduced as parameters or bound by quantifiers or binder expressions are

transformed from constants to variables.

Datatypes and Match Expressions Datatype declarations are replaced by declared types for

which constructors, selectors, and testers are explicitly introduced and axiomatized;

furthermore, match expressions are replaced by expressions that apply testers and selectors.

Binder Expressions Binder expressions are removed by explicitly substituting occurrences of

the bound variables by their defining terms (appropriately renaming other bound variables

whenever necessary).

Function Definitions Function definitions are replaced by function declarations and axioms that

describe the values of the functions by universally quantified equalities. After this step, the

only occurrences of expressions are in theorems and axioms.

Terms and Formulas Expressions are decomposed into terms and formulas such that the only

occurrences of terms are as arguments of functions and predicates; this also entails the

translation of conditional expressions to formulas.

The result is therefore a proof problem in the language of classical first-order logic with equality

and integer arithmetic.

3.3 Proving with SMT

The RISCTP implementation of the proof method smt (satisfiability modulo theories) is based on

the SMT-LIB standard [2]. Specifically it requires an SMT solver that understands the language

of SMT-LIB version 2.6 [1] (which includes features such as quantifiers and algebraic datatypes)

and that supports the theories “ArraysEX” (functional arrays with equality) and “Ints” (integer

numbers). One such solver is the Z3 Theorem Prover developed at Microsoft Research by Nikolaj

Bjørner and Leonardo de Moura [3, 4]. Currently RISCTP uses Z3 version 4.8.17.

Invoking RISCTP with option -method smt gives the following output:

> RISCTP -method smt arrays.txt

RISC Theorem Proving Interface 1.0 (June 8, 2022)

https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)
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This is free software distributed under the terms of the GNU GPL.

Execute "RISCTP -h" to see the available command line options.

-----------------------------------------------------------------

Reading file /usr2/schreine/papers/RISCTP2022/problems/arrays.txt...

=== SMT solving

SMT solver: Z3 version 4.8.17 - 64 bit

Proving theorem ’typecheck(Nat)§0’...

SUCCESS: theorem was proved (26 ms).

Proving theorem ’typecheck(Index)§2’...

SUCCESS: theorem was proved (2 ms).

Proving theorem ’typecheck(T)§7’...

SUCCESS: theorem was proved (6 ms).

Proving theorem T...

SUCCESS: theorem was proved (5 ms).

===

SUCCESS termination.

Thus Z3 could prove al type-checking theorems and the user-provided theorem. If additionally,

the option -psmt is provided, also the SMT-LIB translation itself is displayed:

> RISCTP -method smt -psmt arrays.txt

...

=== SMT-LIB translation

(set-logic ALL)

(define-sort Nat () Int)

(define-fun |Nat::type| ( (value Int) ) Bool (>= value 0))

(push 1)

(assert (not(exists ((value Int)) (|Nat::type| value))))

(check-sat)

(pop 1)

(declare-const N Int)

(assert (> N 0))

(define-sort Index () Int)

(define-fun |Index::type| ( (value Int) ) Bool (and (|Nat::type| value) (< value N)))

(push 1)

(assert (not(exists ((value Int)) (|Index::type| value))))

(check-sat)

(pop 1)

(declare-sort Value 0)

(declare-datatype |Tuple[Int,Value]| ( (|〈〉| (|.::1| Int) (|.::2| Value)) ))

(declare-const |Tuple[Int,Value]§undef| |Tuple[Int,Value]|)

(define-sort Elem () |Tuple[Int,Value]|)

(define-fun |Map[Index,Elem]::type| ( (value (Array Int |Tuple[Int,Value]|)) ) Bool

(forall ((x Int)) (=> (not (|Index::type| x))

(= (select value x) |Tuple[Int,Value]§undef|))))

(define-sort |§Array§| () (Array Int |Tuple[Int,Value]|))

(define-fun |Array::type| ( (value (Array Int |Tuple[Int,Value]|)) ) Bool (|Map[Index,Elem]::type| value))

(define-fun key ( (e |Tuple[Int,Value]|) ) Int (|.::1| e))

(define-fun sorted ( (a (Array Int |Tuple[Int,Value]|)) (from Int) (to Int) ) Bool

(forall ((i Int)) (=> (|Index::type| i)

(forall ((j Int)) (=> (|Index::type| j) (=> (and (and (<= from i) (< i j)) (<= j to))

(<= (key (select a i)) (key (select a j)))))))))

(push 1)

(assert (not(forall ((a (Array Int |Tuple[Int,Value]|))) (=> (|Array::type| a)

(forall ((from Int)) (=> (|Index::type| from)
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(forall ((to Int)) (=> (|Index::type| to)

(forall ((x Int)) (=> (and (<= from to) (sorted a from to))

(exists ((i Int)) (and (|Index::type| i) (and (<= from i) (<= i to))))))))))))))

(check-sat)

(pop 1)

(declare-fun |choose§86| ( Int Int ) Int)

(assert (forall ((from Int)) (forall ((to Int))

(let ( (i (|choose§86| from to)) )(and (|Index::type| i) (and (<= from i) (<= i to)))))))

(push 1)

(assert (not(forall ((a (Array Int |Tuple[Int,Value]|))) (=> (|Array::type| a)

(forall ((from Int)) (=> (|Index::type| from)

(forall ((to Int)) (=> (|Index::type| to)

(forall ((x Int)) (=> (and (<= from to) (sorted a from to))

(let ( (i (|choose§86| from to)) )

(=> (< (key (select a i)) x)

(not (exists ((j Int)) (and (|Index::type| j)

(and (and (<= from j) (< j i)) (= (key (select a j)) x)))))))))))))))))

(check-sat)

(pop 1)

(exit)

===

...

SUCCESS termination.

While Z3 is generally very powerful and can solve many interesting proof problems, it also has

its limitations: currently, for example, it is not able to prove the existence of maps even if their

values values are explicitly specified.

3.4 Proving in First-Order Logic

The proof method fol (first-order logic) requires a prover that understands the language of classical

first-order logic with equality and integer arithmetic. Currently, the method is only a stub; it only

generates a proof problem in this language without attempting to prove it.

When invoking the software with options -method fol and -pat (print axioms and theorems),

we get the following output that shows the core of the generated proof problem:

> RISCTP -method fol -pat arrays.txt

RISC Theorem Proving Interface 1.0 (June 8, 2022)

https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)

This is free software distributed under the terms of the GNU GPL.

Execute "RISCTP -h" to see the available command line options.

-----------------------------------------------------------------

Reading file /usr2/schreine/papers/RISCTP2022/problems/arrays.txt...

=== axioms and theorems:

axiom ’def§24’ ⇔ ∀value:Int. (’Nat::type’(value) ⇔ (value ≥ 0));

theorem ’typecheck(Nat)§0’ ⇔ ∃value:Int. ’Nat::type’(value);

axiom posN ⇔ N > 0;

axiom ’def§40’ ⇔ ∀value:Int. (’Index::type’(value) ⇔ (’Nat::type’(value) ∧ (value < N)));

theorem ’typecheck(Index)§2’ ⇔ ∃value:Int. ’Index::type’(value);

axiom ’inject§45’ ⇔ ∀’.::1§1’:Int,’.::1§2’:Int,’.::2§1’:Value,’.::2§2’:Value.

(’=§2’(〈’.::1§1’,’.::2§1’〉,〈’.::1§2’,’.::2§2’〉) ⇒

(’=§0’(’.::1§1’,’.::1§2’) ∧ ’=§1’(’.::2§1’,’.::2§2’)));

axiom ’select§47’ ⇔ ∀’.::1’:Int,’.::2’:Value. ’=§0’(〈’.::1’,’.::2’〉.1,’.::1’);

axiom ’select§49’ ⇔ ∀’.::1’:Int,’.::2’:Value. ’=§1’(〈’.::1’,’.::2’〉.2,’.::2’);

axiom ’datatype§51’ ⇔ ∀’§x’:Tuple[Int,Value].

(∃’.::1’:Int,’.::2’:Value. ’=§2’(’§x’,〈’.::1’,’.::2’〉));

axiom ’ext§60’ ⇔ ∀m1:Map[Int,Tuple[Int,Value]],m2:Map[Int,Tuple[Int,Value]].
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((∀k:Int. ’=§2’(m1[k],m2[k])) ⇒ ’=§3’(m1,m2));

axiom ’def§86’ ⇔ ∀value:Map[Int,Tuple[Int,Value]].

(’Map[Index,Elem]::type’(value) ⇔ (∀x:Int. ((¬’Index::type’(x)) ⇒

’=§2’(value[x],’Tuple[Int,Value]§undef’))));

axiom ’ext§68’ ⇔ ∀m1:Map[Index,Elem]. (’Map[Index,Elem]::type’(m1) ⇒

(∀m2:Map[Index,Elem]. (’Map[Index,Elem]::type’(m2) ⇒

((∀k:Index. (’Index::type’(k) ⇒ ’=§2’(’[]§1’(m1,k),’[]§1’(m2,k)))) ⇒ ’=§3’(m1,m2)))));

axiom ’def§101’ ⇔ ∀value:Map[Int,Tuple[Int,Value]].

(’Array::type’(value) ⇔ ’Map[Index,Elem]::type’(value));

axiom ’def§103’ ⇔ ∀e:Elem. ’=§0’(key(e),e.1);

axiom ’def§105’ ⇔ ∀a:Array,from:Index,to:Index. (sorted(a,from,to) ⇔

(∀i:Index. (’Index::type’(i) ⇒ (∀j:Index. (’Index::type’(j) ⇒

((((from ≤ i) ∧ (i < j)) ∧ (j ≤ to)) ⇒ (key(a[i]) ≤ key(a[j]))))))));

theorem ’typecheck(T)§7’ ⇔ ∀a:Array. (’Array::type’(a) ⇒

(∀from:Index. (’Index::type’(from) ⇒ (∀to:Index. (’Index::type’(to) ⇒

(∀x:Int. (((from ≤ to) ∧ sorted(a,from,to)) ⇒

(∃i:Index. (’Index::type’(i) ∧ ((from ≤ i) ∧ (i ≤ to)))))))))));

axiom ’choose§87’ ⇔ ∀from:Index,to:Index. (’Index::type’(’choose§86’(from,to)) ∧

((from ≤ ’choose§86’(from,to)) ∧ (’choose§86’(from,to) ≤ to)));

theorem T ⇔ ∀a:Array. (’Array::type’(a) ⇒

(∀from:Index. (’Index::type’(from) ⇒ (∀to:Index. (’Index::type’(to) ⇒

(∀x:Int. (((from ≤ to) ∧ sorted(a,from,to)) ⇒

((key(a[’choose§86’(from,to)]) < x) ⇒

(¬(∃j:Index. (’Index::type’(j) ∧ (((from ≤ j) ∧

(j < ’choose§86’(from,to))) ∧ ’=§0’(key(a[j]),x)))))))))))));

===

=== proof method ’fol’ not yet implemented

FAILURE termination.

In the future, we plan to extend this step to an actual prover that combines internal methods

for reasoning in first-order logic (possibly including equality) with an SMT solver for reasoning

about equality and integer arithmetic.

4 Conclusions

Currently, only the proof method smt is well supported; RISCTP can be thus seen as just a

convenient mechanism to access the functionality of an SMT solver such as Z3. This mechanism

is availablle via the command-line interface but also via the internal Java API of the software: our

next steps will be to integrate RISCTP into the RISCAL model checker, to translate RISCAL

proof problems to RISCTP, and to crack them via SMT solving.

In the future, however, we also plan to elaborate the proof method fol by implementing a

prover for first-order logic; here our main goal will be to make proof attempts as transparent as

possible such that the human user understands why a proof has failed. This is in our opinion the

main drawback of fully automated theorem proving systems such as Z3 that are essentially “black

boxes”: if a proof succeeds, everything is fine; however, if a proof fails, the underlying reason

remains unclear. Our plan is here to implement a “human-understandable” proof strategy that

clearly illustrates the overall goal and structure of a proof; this prover, however, will be combined

with an SMT solver, in particular for lower level reasoning about equality and integer arithmetic.

If successful, RISCTP may thus become interesting as a proof system on its own.
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A The RISCTP Software

In the following sections, we describe the software that implements the RISCTP language.

A.1 Installing the Software

The README file of the installation is included below.

------------------------------------------------------------------------------

README

Information on RISCTP.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

Copyright (C) 2022-, Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria, https://www.risc.jku.at

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <https://www.gnu.org/licenses/>.

------------------------------------------------------------------------------

The RISCTP Theorem Proving Interface

====================================

https://www.risc.jku.at/research/formal/software/RISCTP

The RISCTP theorem proving interface consists of a language for specifying

proof problems and of an associated software for solving these problems. The

RISCTP language is a typed variant of first-order logic whose level of

abstraction is between that of higher level formal specification languages

(such as the language of the RISCAL model checker) and lower level theorem

proving languages (such as the language SMT-LIB supported by various

satisfability modulo theories solvers such as Z3). Thus the RISCTP language

can serve as an intermediate layer that simplifies the connection of

specification and verification systems to theorem provers; in fact, it was

developed to equip the RISCAL model checker with theorem proving

capabilities. The RISCTP software is implemented in Java with an API that

enables the implementation of such connections; however, RISCTP also

provides a text-based frontend that allows its interactive use as a theorem

prover on its own. RISCTP already implements a backend that translates a

proving problem into SMT-LIB and solves it by the "black box" application of

Z3; in the future, RISCTP shall also provide built-in proving capabilities

with greater transparency.

The Distribution
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================

The distribution has the following contents:

README ... this file

COPYING ... the GNU General Public Licence Version 3

CHANGES ... the version history of the software

etc/

RISCTP ... the execution script

z3 ... Z3 (GNU Linux/x86-64 executable)

lib/

*.jar ... the Java-compiled libraries

doc/

main.pdf ... the manual

spec/

*.txt ... sample specifications

src/

*/*.java ... the Java source code

Installation

============

First make sure that you have installed the Java Development Kit (see below).

Then copy file etc/RISCTP to a directory in your PATH and adapt in this file

the variable JAVA to point to the Java executable "java". Adapt LIB to point

to the directory "lib" of the RISCTP distribution.

You should then be able to execute

RISCTP -h

Third Party Software That You Have to Install

=============================================

RISCTP assumes that the following third party software is installed on your

computer (if it is not already provided by your GNU/Linux distribution, you have

to downlad and install it manually).

Java Development Kit (Oracle JDK 11 recommended)

http://www.oracle.com/technetwork/java/javase/downloads/index.html

------------------------------------------------------------------

Go to the "Downloads" section to download the JDK.

Oracle JDK 11 is recommended. Other JDK versions will most probably work but

have not been tested.

Third Party Software That Comes with RISCTP

===========================================

RISCTP also uses the the following open source software developed by third

parties. This software is already included in the distribution, but if you want

or need, you can download the source code from the denoted locations and compile

it on your own. Many thanks to the respective developers for making this great

software freely available!

ANTLR 4.9.2

http://www.antlr.org
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--------------------

This is a framework for constructing parsers and lexical analyzers used for

processing the RISCTP language.

On a Debian 11 "bullseye" GNU/Linux distribution, just install the package

"antlr4" by executing (as superuser) the command

apt-get install antlr4

Z3 4.8.17: https://github.com/Z3Prover

--------------------------------------

To use the SMT mode, Z3 has to be installed (above versions has been tested,

other versions may or may not work).

The RISCTP distribution is bundled with an GNU Linux/x86-64 executable of

this solver.

------------------------------------------------------------------------------

End of README.

------------------------------------------------------------------------------

A.2 Running the Software

The RISCAL software can be used in interactive mode by executing the shell script

RISCTP

which prints out the copyright message

RISC Theorem Proving Interface 1.0 (June 8, 2022)

https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)

This is free software distributed under the terms of the GNU GPL.

Execute "RISCTP -h" to see the available command line options.

-----------------------------------------------------------------

Reading standard input...

If we then press <CTRL>-D to close the standard input stream, this terminates the program.

In general, RISCTP terminates with a negative exit code if an error has occurred and with a

non-negative code, otherwise.

However, if we execute (as indicated in above message)

RISCTP -h

we get the following output:

RISCTP [ <options> ] [ <path> ]

<path>: path of problem file (if none, read from stdin)

<options>: the following command line options

-h: print this message and exit

-options: show further options

FAILURE termination.
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The option -h just prints the help message and exits. However, if RISCTP -options is executed,

then at last the full list of options is printed:

RISCTP [ <options> ] [ <path> ]

<path>: path of problem file (if none, read from stdin)

<options>: the following command line options

-h: print this message and exit

-options: show further options

<options> includes the following options:

-theorem T: prove theorem T (default: all theorems)

-method M: user proof method M (none, smt, fol; default: none)

-mode M: use proof mode M (default 2)

M=0: prove only type-checking theorems

M=1: prove no type-checking theorems

M=2: prove both kinds of theorems

-solver S: use solver S (default: <Z3>, currently only choice)

-path P: set path to solver executable (default: <z3>)

-timeout T: use timeout T ms (default: 15000)

-q: do not print copyright message

-pall: switch on all of the following print options

-p: print problem after parsing

-ptc: print problem after type-checking

-pov: print problem after overloading resolution

-pch: print problem after choice removal

-pst: print problem after subtype removal

-pva: print problem after variable processing

-pfd: print problem after function definition processing

-pdt: print problem after datatype processing

-ple: print problem after let processing

-pfo: print problem after formula processing

-ppr: print problem after pruning the problem

-pat: print axioms and theorems

-psmt: print SMT-LIB translation of problem

FAILURE termination.

The interpretation of these options is as follows:

-theorem � indicates that only theorem � is to be proved (multiple instances of this option may

be given). If no such option is given, all theorems in the problem file are proved.

-method � determines the method to be be used for proving the theorem. If method none is

chosen, no method is selected and no proof is performed (this is the default). If smt is

chosen, the problem is translated into the SMT-LIB language and an SMT solver is applied

to solve the problem. If fol is chosen, the problem is translated into a problem of first-order

logic (however, currently no corresponding prover is provided by RISCTP yet).
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-mode � selects the proof mode. For � = 0, only the type-checking theorems generated from

the declarations in the problem file are proved. For � = 1, only the declared theorems (but

not the type-checking theorems) are proved. For � = 2, both the generated type-checking

theorems and the declared theorems are proved (this is the default).

-solver � If proof method smt has been selected (see option -method), this option determines

the SMT solver to be applied. Currently, only solver Z3 may be selected.

-path � If proof method smt has been selected (see option -method), this option determines the

path to the executable of the SMT solver; the current default and only choice is z3.

-timeout � This option determines the number � of milliseconds, after which the attempt to

prove a theorem may be aborted (the current default is 15000).

-q This option indicates that software shall run “quietly”; in particular, the copyright message

shall not be printed.

-p* This set of options determines after which transformation stage(s) the current version of the

proof problem shall be printed. Option -p lets the proof problem be printed after parsing

(including all parentheses that make the interpretation of nested expressions unambiguous).

Option -pall prints after every stage (maximal output). The other options print output

after specific stages. If proof method smt is chosen (see option -method), option -psmt

prints the SMT-LIB translation of the problem.

B The RISCTP Language

In the following sections, we describe the proof problem language.

B.1 Lexical Structure

On the lowest level, a RISCTP proof problem is a file encoded in UTF-8 format. RISCTP

uses several Unicode characters that cannot be found on keyboards, but for each such character

there exists an equivalent string in ASCII format that can be typed on a keyboard. While the

RISCTP grammar supports both alternatives, the use of the Unicode characters yields much

prettier specifications and is thus recommended. See Figure 1 for the ASCII strings and the

corresponding Unicode symbols.

A specification file may include two kinds of comments which are ignored when processing

the file:

• Comments starting with // and ranging till the end of the file.

• Comments starting with /* and ending with */ (such comments must not be nested).

Likewise white space characters (blanks, tabulators, new lines, returns, form feeds) are ignored.

The syntactical grammar of RISCTP uses the following kinds of terminal symbols:

• An identifier 〈ident〉 may be either a “plain” identifier or a “quoted” identifier.
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ASCII String Unicode Character

Int ℤ

Nat ℕ

:= :=

true ⊤

false ⊥

~ ¬

/\ ∧

\/ ∨

=> ⇒

<=> ⇔

forall ∀

exists ∃

~= ≠

<= ≤

>= ≥

* ·

<< 〈

>> 〉

Figure 1: ASCII Strings and their Equivalent Unicode Characters

– A plain identifier is a non-empty sequence of (lower and upper case) ASCII letters,

decimal digits, and the underscore character _ starting with a letter or underscore,

e.g.pos0 or _0x.

– A quoted identifier is any non-empty sequence of characters enclosed by single

quotes, e.g. ’8-?’, which does not include any of the characters ’ (single quote), \

(backslash), and § (paragraph) between the single quotes1.

• A decimal number literal 〈decimal〉 is a non-empty sequence of decimal digits, e.g. 123.

B.2 Grammar

The RISCAL grammar (for both lexical analysis and syntax analysis) is formally defined below as

an ANTLR4 grammar file. Please note that the order of options in a grammar rules determine

precedences; options that come earlier have higher precedence than others.

// ---------------------------------------------------------------------------

// RISCTP.g4

// RISC Theorem Proving Interface ANTLR4 Grammar

// $Id: RISCTP.g4,v 1.2 2022/06/02 14:29:52 schreine Exp $

//

1A backslash is not allowed, because this character is also prohibited in the quoted identifiers of SMT-LIB. A

paragraph is not allowed, because it used for identifiers internally generated by RISCTP.
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// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

// Copyright (C) 2022-, Research Institute for Symbolic Computation (RISC)

// Johannes Kepler University, Linz, Austria, https://www.risc.jku.at

//

// This program is free software: you can redistribute it and/or modify

// it under the terms of the GNU General Public License as published by

// the Free Software Foundation, either version 3 of the License, or

// (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program. If not, see <http://www.gnu.org/licenses/>.

// ----------------------------------------------------------------------------

grammar RISCTP;

options

{

language=Java;

}

@header

{

package risctp.parser;

}

// ---------------------------------------------------------------------------

// problems and declarations

// ---------------------------------------------------------------------------

// problems

problem: ( decl )* EOF ;

// declarations

decl:

’type’ id ( ’=’ type ( ’with’ exp )? )? EOS #TypeDecl

| ’datatype’ dtitem ( ’and’ dtitem)* EOS #DataType

| ’fun’ id ( ’(’ ( tvar ( ’,’ tvar )* )? ’)’ )? ’:’ type

(’=’ exp )? EOS #Function

| ’const’ id ’:’ type ( ’=’ exp )? EOS #Constant

| ’pred’ id ( ’(’ ( tvar ( ’,’ tvar )* )? ’)’ )?

( ( ’⇔’ | ’<=>’ ) exp )? EOS #Predicate

| ’axiom’ id ( ’⇔’ | ’<=>’ ) exp EOS #Axiom

| ’theorem’ id ( ’⇔’ | ’<=>’ ) exp EOS #Theorem

;

// ---------------------------------------------------------------------------

// expressions and types

// ---------------------------------------------------------------------------
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// expressions

exp :

dec #Decimal

| id ( ’(’ ( exp ( ’,’ exp )* )? ’)’ )? #Apply

// maps, tuples, variants

| ’map’ ’[’ pid ’,’ pid ’]’ ’(’ exp ’)’ #MapConstruct

| ( ’〈’ | ’〈’ | ’〈’ | ’<<’ ) exp ( ’,’ exp )* ( ’〉’ | ’〉’ | ’〉’ | ’>>’ )

#TupleConstruct

| exp ’[’ exp ’]’ #MapSelect

| exp ’.’ dec #TupleSelect

| exp ’with’ ’[’ exp ’]’ ’=’ exp #MapStore

| exp ’with’ ’.’ dec ’=’ exp #TupleStore

// arithmetic

| ’-’ exp #Neg

| exp ( ’*’ | ’·’ ) exp #Mult

| exp ’/’ exp #Div

| exp ’%’ exp #Mod

| exp ’-’ exp #Minus

| exp ’+’ exp #Plus

// infix relations

| exp ’=’ exp #Equal

| exp ( ’≠’ | ’~=’ ) exp #NotEqual

| exp ’<’ exp #Less

| exp ( ’≤’ | ’<=’ ) exp #LessEqual

| exp ’>’ exp #Greater

| exp ( ’≥’ | ’>=’ ) exp #GreaterEqual

// formulas

| ( ’⊥’ | ’false’ ) #False

| ( ’⊤’ | ’true’ ) #True

| ( ’¬’ | ’~’ ) exp #Not

| exp ( ’∧’ | ’/\\’ ) exp #And

| exp ( ’∨’ | ’\\/’ ) exp #Or

| exp ( ’⇒’ | ’=>’ ) exp #Imp

| exp ( ’⇔’ | ’<=>’ ) exp #Equiv

| ( ’∀’ | ’forall’ ) tvar ( ’,’ tvar )* ’.’ exp #Forall

| ( ’∃’ | ’exists’ ) tvar ( ’,’ tvar )* ’.’ exp #Exists

// generic terms

| ’if’ exp ’then’ exp ’else’ exp #IfThenElse

| ’match’ exp ’with’

( ’|’ )? mbinder ( ’|’ mbinder )* #Match

| ’let’ lbinder ( ’,’ lbinder )* ’in’ exp #Let

| ’choose’ tvar ’with’ exp #Choose

// parenthesized expressions

| ’(’ exp ’)’ #Parentheses

;

// types

type : id ( ’[’ ( type ( ’,’ type )* )? ’]’ )? ;

28



// ---------------------------------------------------------------------------

// miscellaneous

// ---------------------------------------------------------------------------

// typed variables

tvar : id ’:’ type ;

// let binders

lbinder : id ’=’ exp ;

// match binders

mbinder : pattern ’->’ exp ;

// patterns

pattern :

’_’ #DefaultPattern

| id ( ’(’ ( tvar ( ’,’ tvar )* )? ’)’ )? #ConstrPattern

;

// datatype items

dtitem: id ’=’ dtconstr ( ’|’ dtconstr )* ( ’with’ exp )? ;

// datatype constructors

dtconstr : id ( ’(’ ( tvar ( ’,’ tvar )* )? ’)’ )? ;

// identifiers (plain or quoted)

id:

ID #PId

| QID #QId

;

// plain ids

pid: ID;

// decimal literals

dec: DEC ;

// ---------------------------------------------------------------------------

// lexical rules

// ---------------------------------------------------------------------------

// reserve \ for internal identifiers

ID : [a-zA-Z_][a-zA-Z_0-9]* ;

QID : [’]~[’\\§]+[’] ;

DEC : [0-9]+ ;

EOS : ’;’ ;

WHITESPACE : [ \t\r\n\f]+ -> skip ;

LINECOMMENT : ’//’ .*? ’\r’? (’\n’ | EOF) -> skip ;

COMMENT : ’/*’ .*? ’*/’ -> skip ;

// matches any other character

ERROR : . ;
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// ---------------------------------------------------------------------------

// end of file

// ---------------------------------------------------------------------------

C Examples

In the following, we list the example proof problems used in this document.

C.1 An Array Problem

// problem file "arrays.txt"

const N:Nat; axiom posN ⇔ N > 0;

type Index = Nat with value < N;

type Value; type Elem = Tuple[Int,Value]; type Array = Map[Index,Elem];

fun key(e:Elem):Int = e.1;

pred sorted(a:Array,from:Index,to:Index) ⇔

∀i:Index,j:Index. from ≤ i ∧ i < j ∧ j ≤ to ⇒ key(a[i]) ≤ key(a[j]);

theorem T ⇔

∀a:Array,from:Index,to:Index,x:Int.

from ≤ to ∧ sorted(a,from,to) ⇒

// let i = (from+to)/2 in

let i = choose i:Index with from ≤ i ∧ i ≤ to in

key(a[i]) < x ⇒ ¬∃j:Index. from ≤ j ∧ j < i ∧ key(a[j]) = x;

> RISCTP -method smt arrays.txt

RISC Theorem Proving Interface 1.0 (June 8, 2022)

https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)

This is free software distributed under the terms of the GNU GPL.

Execute "RISCTP -h" to see the available command line options.

-----------------------------------------------------------------

Reading file /usr2/schreine/papers/RISCTP2022/arrays.txt...

=== SMT solving

SMT solver: Z3 version 4.8.17 - 64 bit

Proving theorem ’typecheck(Nat)§0’...

SUCCESS: theorem was proved (38 ms).

Proving theorem ’typecheck(Index)§2’...

SUCCESS: theorem was proved (3 ms).

Proving theorem ’typecheck(T)§7’...

SUCCESS: theorem was proved (7 ms).

Proving theorem T...

SUCCESS: theorem was proved (12 ms).

===

SUCCESS termination.

C.2 A List Problem

// problem file "lists.txt"

datatype IntList = empty | cons(head:Int,tail:IntList);

fun sum(l:IntList):Int;

axiom sumax ⇔ ∀l:IntList.
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sum(l) =

match l with

| empty -> 0

| cons(h:Int,t:IntList) -> h+sum(t);

theorem T ⇔

let l = cons(1, cons(2, empty)) in sum(l) = 3;

> RISCTP -method smt lists.txt

RISC Theorem Proving Interface 1.0 (June 8, 2022)

https://www.risc.jku.at/research/formal/software/RISCTP

(C) 2022-, Research Institute for Symbolic Computation (RISC)

This is free software distributed under the terms of the GNU GPL.

Execute "RISCTP -h" to see the available command line options.

-----------------------------------------------------------------

Reading file /usr2/schreine/papers/RISCTP2022/problems/lists.txt...

=== SMT solving

SMT solver: Z3 version 4.8.17 - 64 bit

Proving theorem ’typecheck(Nat)§0’...

SUCCESS: theorem was proved (36 ms).

Proving theorem T...

SUCCESS: theorem was proved (7 ms).

===

SUCCESS termination.
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