
A framework for approximate

generalization in quantitative

theories

Temur Kutsia, Cleo Pau

May 2022

RISC Report Series No. 22-04

ISSN: 2791-4267 (online)

Available at https://doi.org/10.35011/risc.22-04

This work is licensed under a CC BY 4.0 license.

Editors: RISC Faculty

B. Buchberger, R. Hemmecke, T. Jebelean, T. Kutsia, G. Landsmann,

P. Paule, V. Pillwein, N. Popov, J. Schicho, C. Schneider, W. Schreiner,

W. Windsteiger, F. Winkler.

Altenberger Str. 69

4040 Linz, Austria

www.jku.at

DVR 0093696

https://doi.org/10.35011/risc.22-04
https://creativecommons.org/licenses/by/4.0/

A framework for approximate generalization in

quantitative theories

Temur Kutsia and Cleo Pau

RISC, Johannes Kepler University Linz, Austria
{kutsia,ipau}@risc.jku.at

Abstract. Anti-unification aims at computing generalizations for given
terms, retaining their common structure and abstracting differences by
variables. We study quantitative anti-unification where the notion of the
common structure is relaxed into “proximal” up to the given degree
with respect to the given fuzzy proximity relation. Proximal symbols
may have different names and arities. We develop a generic set of rules
for computing minimal complete sets of approximate generalizations and
study their properties. Depending on the characterizations of proximities
between symbols and the desired forms of solutions, these rules give rise
to different versions of concrete algorithms.

Keywords: Generalization · Anti-unification · Quantiative theories ·
Fuzzy proximity relations.

1 Introduction

Generalization problems play an important role in various areas of mathematics,
computer science, and artificial intelligence. Anti-unification [12,14] is a logic-
based method for computing generalizations. Being originally used for inductive
and analogical reasoning, some recent applications include recursion scheme de-
tection in functional programs [4], programming by examples in domain-specific
languages [13], learning bug-fixing from software code repositories [15,3], auto-
matic program repair [7], preventing bugs and misconfiguration in services [10],
linguistic structure learning for chatbots [6], to name just a few.

In most of the existing theories where anti-unification is studied, the back-
ground knowledge is assumed to be precise. Therefore, those techniques are not
suitable for reasoning with incomplete, imprecise information (which is very
common in real-world communication), where the exact equality is replaced by
its (quantitative) approximation. Fuzzy proximity and similarity relations are
notable examples of such extensions. These kinds of quantitative theories have
many useful applications, some most recent ones being related to artificial in-
telligence, program verification, probabilistic programming, or natural language
processing. Many tasks arising in these areas require reasoning methods and
computational tools that deal with quantitative information. For instance, ap-
proximate inductive reasoning, reasoning and programming by analogy, similar-
ity detection in programming language statements or in natural language texts

2 T Kutsia and C. Pau

could benefit from solving approximate generalization constraints, which is a the-
oretically interesting and challenging task. Investigations in this direction have
been started only recently. In [1], the authors proposed an anti-unification algo-
rithm for fuzzy similarity (reflexive, symmetric, min-transitive) relations, where
mismatches are allowed not only in symbol names, but also in their arities (fully
fuzzy signatures). The algorithm from [8] is designed for fuzzy proximity (i.e.,
reflexive and symmetric) relations with mismatches only in symbol names.

In this paper, we study approximate anti-unification from a more general
perspective. The considered relations are fuzzy proximity relations. Proximal
symbols may have different names and arities. We consider four different variants
of relating arguments between different proximal symbols: unrestricted relations
/ functions, and correspondence (i.e. left- and right-total) relations / functions.
A generic set of rules for computing minimal complete sets of generalizations
is introduced and its termination, soundness and completeness properties are
proved. From these rules, we obtain concrete algorithms that deal with different
kinds of argument relations. We also show how the existing approximate anti-
unification algorithms and their generalizations fit into this framework.

Related works that concern unification in fully fuzzy signatures have been
published in [1] (for similarity) and [11] (for proximity).

Organization: In Sect. 2 we introduce the notation and definitions. Sect. 3 is
devoted to a technical notion of term set consistency and to an algorithm for
computing elements of consistent sets of terms. It is used later in the main set
of anti-unification rules, which are introduced and characterized in Sect. 4. The
concrete algorithms obtained from those rules are also described in this section.
In Sect. 5, we discuss complexity. In Sect. 6, and extended example is given.
Sect. 7 offers a high-level picture of the studied problems and concludes.

2 Preliminaries

Proximity relations. Given a set S, a mappingR from SˆS to the real interval
r0, 1s is called a binary fuzzy relation on S. By fixing a number λ, 0 ď λ ď 1,
we can define the crisp (i.e., two-valued) counterpart of R, named the λ-cut of
R, as Rλ :“ tps1, s2q | Rps1, s2q ě λu. A fuzzy relation R on a set S is called
a proximity relation if it is reflexive (Rps, sq “ 1 for all s P S) and symmetric
(Rps1, s2q “ Rps2, s1q for all s1, s2 P S).

A T-norm ^ is an associative, commutative, non-decreasing binary operation
on r0, 1s with 1 as the unit element. We take minimum in the role of T-norm.

Terms and substitutions. We consider a first-order alphabet consisting of a
set of fixed arity function symbols F and a set of variables V, which includes
a special symbol (the anonymous variable). The set of named (i.e., non-ano-
nymous) variables Vzt u is denoted by VN. When the set of variables is not
explicitly specified, we mean V. The set of terms T pF ,Vq over F and V is
defined in the standard way: t P T pF ,Vq iff t is defined by the grammar t :“ x |

A framework for approximate generalization in quantitative theories 3

fpt1, . . . , tnq, where x P V and f P F is an n-ary symbol with n ě 0. Terms over
T pF ,VNq are defined similarly except that all variables are taken from VN.

We denote arbitrary function symbols by f, g, h, constants by a, b, c, variables
by x, y, z, v, and terms by s, t, r. The head of a term is defined as headpxq :“ x

and headpfpt1, . . . , tnqq :“ f . For a term t, we denote with Vptq (resp. by VNptq)
the set of all variables (resp. all named variables) appearing in t. A term is called
linear if no named variable occurs in it more than once.

The deanonymization operation deanon replaces each occurrence of the anony-
mous variable in a term by a fresh variable. For instance, deanonpfp , x, gp qqq “
fpy1, x, gpy2qqq, where y1 and y2 are fresh. Hence, deanonptq P T pF ,VNq is unique
up to variable renaming for all t P T pF ,Vq. If t is linear, then deanonptq is linear
as well and vice versa.

The notions of term depth, term size and a position in a term are defined in
the standard way, see, e.g. [2]. By t|p we denote the subterm of t at position p

and by trssp a term that is obtained from t by replacing the subterm at position
p by the term s.

A substitution is a mapping from VN to T pF ,VNq (i.e., without anonymous
variables), which is the identity almost everywhere. We use the Greek letters
σ, ϑ, ϕ to denote substitutions, except for the identity substitution which is writ-
ten as Id . We represent substitutions with the usual set notation. Application
of a substitution σ to a term t, denoted by tσ, is defined as σ :“ , xσ :“ σpxq,
fpt1, . . . , tnqσ :“ fpt1σ, . . . , tnσq. Substitution composition is defined as a com-
position of mappings. We write σϑ for the composition of σ with ϑ.

Argument relations and mappings. Given two sets N “ t1, . . . , nu and
M “ t1, . . . ,mu, a binary argument relation over N ˆ M is a (possibly empty)
subset of N ˆ M . We denote argument relations by ρ. An argument relation
ρ Ď N ˆM is (i) left-total if for all i P N there exists j P M such that pi, jq P ρ;
(ii) right-total if for all j P M there exists i P N such that pi, jq P ρ. Corres-
pondence relations are those that are both left- and right-total.

An argument mapping is an argument relation that is a partial injective
function. In other words, an argument mapping π from N “ t1, . . . , nu to M “
t1, . . . ,mu is a function π : In ÞÑ Im, where In Ď N , Im Ď M and |In| “ |Im|.
Note that it can be also the empty mapping: π : H ÞÑ H. The inverse of an
argument mapping is again an argument mapping.

Given a proximity relation R over F , we assume that for each pair of function
symbols f and g with Rpf, gq “ α ą 0, where f is n-ary and g is m-ary,
there is also given an argument relation ρ over t1, . . . , nu ˆ t1, . . . ,mu. We use
the notation f „ρ

R,α g. These argument relations should satisfy the following
conditions: ρ is the empty relation if f or g is a constant; ρ is the identity if

f “ g; f „ρ
R,α g iff g „ρ´1

R,α f , where ρ´1 is the inverse of ρ.

Example 1. Assume that we have four different versions of defining the notion of
author (e.g., originated from four different knowledge bases) author1pfirst-name,
middle-initial , last-nameq, author2pfirst-name, last-nameq, author3plast-name,
first-name, middle-initialq, and author4pfull -nameq. One could define the ar-

4 T Kutsia and C. Pau

gument relations/mappings between these function symbols e.g., as follows:

author1 „
tp1,1q,p3,2qu
R,0.7 author2, author1 „

tp3,1q,p1,2q,p2,3qu
R,0.9 author3,

author1 „
tp1,1q,p3,1qu
R,0.5 author4, author2 „

tp1,2q,p2,1qu
R,0.7 author3,

author2 „
tp1,1q,p2,1qu
R,0.5 author4, author3 „

tp1,1q,p2,1qu
R,0.5 author4.

Proximity relations over terms. Each proximity relation R in this paper is
defined on F YV such that Rpf, xq “ 0 for all f P F and x P V, and Rpx, yq “ 0
for all x ‰ y, x, y P V. We assume that R is strict : for all w1, w2 P F Y V, if
Rpw1, w2q “ 1, then w1 “ w2. Yet another assumption is that for each f P F ,
its pR, λq-proximity class tg | Rpf, gq ě λu is finite for any R and λ.

We extend such an R to terms from T pF ,Vq as follows:

(a) Rpt, sq :“ 0 if Rpheadpsq, headptqq “ 0;
(b) Rpt, sq :“ 1 if t “ s and t, s P V;
(c) Rpt, sq :“ Rpf, gq ^ Rpti1 , sj1q ^ ¨ ¨ ¨ ^ Rptik , sjkq, if t “ fpt1, . . . , tnq, s “

gps1, . . . , smq, f „ρ
R,λ g, and ρ “ tpi1, j1q, . . . , pik, jkqu.

If Rpt, sq ě λ, we write t »R,λ s. When λ “ 1, the relation »R,λ does not
depend on R due to strictness of the latter and is just the syntactic equality “.

The pR, λq-proximity class of a term t is pcR,λptq :“ ts | s »R,λ tu.

Generalizations. Given R and λ, a term r is an pR, λq-generalization of (alter-
natively, pR, λq-more general than) a term t, written as r ÀR,λ t, if there exists
a substitution σ such that deanonprqσ »R,λ deanonptq. The strict part of ÀR,λ

is denoted by ăR,λ, i.e., r ăR,λ t if r ÀR,λ t and not t ÀR,λ r.

Example 2. Given a proximity relation R, a cut value λ, constants a „H
R,α1

b

and b „H
R,α2

c, binary function symbols f and h, and a unary function symbol

g such that h „
tp1,1q,p1,2qu
R,α3

f and h „
tp1,1qu
R,α4

g with αi ě λ, 1 ď i ď 4, we have

– hpx, q ÀR,λ hpa, xq, because hpx, x1qtx ÞÑ a, x1 ÞÑ xu “ hpa, xq »R,λ hpa, xq.
– hpx, q ÀR,λ hp , xq, because hpx, x1qtx ÞÑy1, x1 ÞÑxu “ hpy1, xq »R,λ hpy1, xq.
– hpx, xq ÂR,λ hp , xq, because hpx, xq ÂR,λ hpy1, xq.
– hpx, q ÀR,λ fpa, cq, because hpx, x1qtx ÞÑ bu “ hpb, x1q »R,λ fpa, cq.
– hpx, q ÀR,λ gpcq, because hpx, x1qtx ÞÑ cu “ hpc, x1q »R,λ gpcq.

The notion of syntactic generalization of a term is a special case of pR, λq-
generalization for λ “ 1. We write r À t to indicate that r is a syntactic gener-
alization of t. Its strict part is denoted by ă.

Since R is strict, r À t is equivalent to deanonprqσ “ deanonptq for some σ

(note the syntactic equality here).

Theorem 1. If r À t and t ÀR,λ s, then r ÀR,λ s.

Proof. r À t implies deanonprqσ “ deanonptq for some σ, while from t ÀR,λ s we
have deanonptqϑ »R,λ deanonpsq for some ϑ. Then deanonprqσϑ »R,λ deanonpsq,
which implies r ÀR,λ s. [\

A framework for approximate generalization in quantitative theories 5

Note that r ÀR,λ t and t ÀR,λ s, in general, do not imply r ÀR,λ s due to
non-transitivity of »R,λ.

Definition 1 (Minimal complete set of pR, λq-generalizations). Given R,
λ, t1, and t2, a set of terms T is a complete set of pR, λq-generalizations of t1
and t2 if

(a) every r P T is an pR, λq-generalization of t1 and t2,
(b) if r1 is an pR, λq-generalization of t1 and t2, then there exists r P T such that

r1 À r (note that we use syntactic generalization here).

In addition, T is minimal, if it satisfies the following property:

(c) if r, r1 P T , r ‰ r1, then neither r ăR,λ r1 nor r1 ăR,λ r.

A minimal complete set of pR, λq-generalizations (pR, λq-mcsg) of two terms is
unique modulo variable renaming. The elements of the pR, λq-mcsg of t1 and t2
are called least general pR, λq-generalizations (pR, λq-lggs) of t1 and t2.

This definition directly extends to generalizations of finitely many terms.

The problem of computing an pR, λq-generalization of terms t and s is called
the pR, λq-anti-unification problem of t and s. In anti-unification, the goal is to
compute their least general pR, λq-generalization.

The precise formulation of the anti-unification problem would be the follow-
ing: Given R, λ, t1, t2, find an pR, λq-lgg r of t1 and t2, substitutions σ1, σ2, and
the approximation degrees α1, α2 such thatRprσ1, t1q “ α1 andRprσ2, t2q “ α2.
A minimal complete algorithm to solve this problem would compute exactly
the elements of pR, λq-mcsg of t1 and t2 together with their approximation de-
grees. However, as we see below, it is problematic to solve the problem in this
form. Therefore, we will consider a slightly modified variant, taking into account
anonymous variables in generalizations and relaxing bounds on their degrees.

We assume that the terms to be generalized are ground. It is not a restriction
because we can treat variables as constants that are close only to themselves.

Recall that the proximity class of any alphabet symbol is finite. Also, the
symbols are related to each other by finitely many argument relations. One may
think that it leads to finite proximity classes of terms, but this is not the case.

Consider, e.g., R and λ, where h »
tp1,1qu
R,λ f with binary h and unary f . Then the

pR, λq-proximity class of fpaq is infinite: tfpaqu Y thpa, tq | t P T pF ,Vqu. Also,
the pR, λq-mcsg for fpaq and fpbq is infinite: tfpxqu Y thpx, tq | t P T pF ,Hqu.

Definition 2. Given the terms t1, . . . , tn, n ě 1, a position p in a term r is
called irrelevant for pR, λq-generalizing (resp. for pR, λq-proximity to) t1, . . . , tn
if rrssp ÀR,λ ti (resp. rrssp »R,λ ti) for all 1 ď i ď n and for all terms s.

We say that r is a relevant pR, λq-generalization (resp. relevant pR, λq-pro-
ximal term) of t1, . . . , tn if r ÀR,λ ti (resp. r »R,λ ti) for all 1 ď i ď n and
r|p “ for all positions p in r that is irrelevant for generalizing (resp. for
proximity to) t1, . . . , tn. The pR, λq-relevant proximity class of t is

rpcR,λptq :“ ts | s is a relevant pR, λq-proximal term of tu.

6 T Kutsia and C. Pau

In the example above, position 2 in hpx, tq is irrelevant for generalizing fpaq
and fpbq, and hpx, q is one of their relevant generalizations. Note that fpxq
is also a relevant generalization of fpaq and fpbq, since it contains no irrelevant
positions. More general generalizations like, e.g., x, are relevant as well. Similarly,
position 2 in hpa, tq is irrelevant for proximity to fpaq and rpcR,λpfpaqq “ tfpaq,
hpa, qu. Generally, rpcR,λptq is finite for any t due to the finiteness of proximity
classes of symbols and argument relations mentioned above.

Definition 3 (Minimal complete set of relevant pR, λq-generalizations).
Given R, λ, t1, and t2, a set of terms T is a complete set of relevant pR, λq-
generalizations of t1 and t2 if

(a) every element of T is a relevant pR, λq-generalization of t1 and t2, and
(b) if r is a relevant pR, λq-generalization of t1 and t2, then there exists r1 P T

such that r À r1.

The minimality property is defined as in Definition 1.

This definition directly extends to relevant generalizations of finitely many terms.
We use pR, λq-mcsrg as an abbreviation for minimal complete set of relevant
pR, λq-generalization. Like relevant proximity classes, mcsrg’s are also finite.

Lemma 1. For given R and λ, if all argument relations are correspondence
relations, then pR, λq-mcsg’s and pR, λq-proximity classes for all terms are finite.

Proof. Under correspondence relations no term contains an irrelevant position
for generalization or for proximity. [\

Hence, for correspondence relations the notions of mcsg and mcsrg coincide,
as well as the notions of proximity class and relevant proximity class.

For a term r, we define its linearized version linprq as a term obtained from
r by replacing each occurrence of a named variable in r by a fresh one. For
instance, linpfpx, , gpy, x, aq, bqq “ fpx1, , gpy1, x2, aq, bq, where x1, x2, y1 are fresh
variables. Linearized versions of terms are unique modulo variable renaming.

Definition 4 (Generalization degree upper bound). Given two terms r

and t, a proximity relation R, and a λ-cut, the pR, λq-generalization degree
upper bound of r and t, denoted by gdubR,λpr, tq, is defined as follows:

Let α :“ maxtRplinprqσ, tq | σ is a substitutionu. Then gdubR,λpr, tq is α if
α ě λ, and 0 otherwise.

Intuitively, gdubR,λpr, tq “ α means that no instance of r can get closer than
α to t in R. From the definition it follows that if r ÀR,λ t, then 0 ă λ ď
gdubR,λpr, tq ď 1 and if r ÂR,λ t, then gdubR,λpr, tq “ 0.

The upper bound computed by gdub is more relaxed than it would be if the
linearization function were not used, but this is what we will be able to compute
in our algorithms later.

Example 3. Let Rpa, bq “ 0.6, Rpb, cq “ 0.7, and λ “ 0.5. Then gdubR,λpfpx, bq,
fpa, cqq “ 0.7 and gdubR,λpfpx, xq, fpa, cqq “ gdubR,λpfpx, yq, fpa, cqq “ 1.

A framework for approximate generalization in quantitative theories 7

It is not difficult to see that if rσ »R,λ t, then Rprσ, tq ď gdubR,λpr, tq. In
Example 3, for σ “ tx ÞÑ bu we have Rpfpx, xqσ, fpa, cqq “ Rpfpb, bq, fpa, cqq “
0.6 ă gdubR,λpfpx, xq, fpa, cqq “ 1.

We compute gdubR,λpr, tq as follows: If r is a variable, then gdubR,λpr, tq “ 1.
Otherwise, if headprq „ρ

R,β headptq, then gdubR,λpr, tq “ β^
Ź

pi,jqPρ gdubR,λpr|i,

t|jq. Otherwise, gdubR,λpr, tq “ 0.

3 Term set consistency

The notion of term set consistency plays an important role in the computation
of proximal generalizations. Intuitively, a set of terms is pR, λq-consistent if all
the terms in the set have a common pR, λq-proximal term. In this section, we
discuss this notion and the corresponding algorithms.

Definition 5 (Consistent set of terms). A finite set of terms T is pR, λq-
consistent if there exists a term s such that s »R,λ t for all t P T .

pR, λq-consistency of a finite term set T is equivalent to
Ş

tPT pcR,λptq ‰ H,
but we cannot use this property to decide consistency, since proximity classes of
terms can be infinite (when the argument relations are not restricted). For this
reason, we introduce the operation [on terms as follows: (i) t [“ [t “ t,
(ii) fpt1, . . . , tnq [fps1, . . . , snq “ fpt1 [s1, . . . , tn [snq, n ě 0. Obviously, [is
associative (A), commutative (C), idempotent (I), and has as its unit element
(U). It can be extended to sets of terms: T1 [T2 :“ tt1 [t2 | t1 P T1, t2 P T2u. It
is easy to see that [on sets also satisfies the ACIU properties with the set t u
playing the role of the unit element.

Lemma 2. A finite set of terms T is pR, λq-consistent iff
Ű

tPT rpcR,λptq ‰ H.

Proof. pñq If s »R,λ t for all t P T , then st P rpcR,λptq, where st is obtained
from s by replacing all subterms that are irrelevant for its pR, λq-proximity to t

by . Assume T “ tt1, . . . , tnu. Then st1 [¨ ¨ ¨ [stn P
Ű

tPT rpcR,λptq.

pðq Obvious, since s »R,λ t for s P
Ű

tPT rpcR,λptq and for all t P T . [\

Now we design an algorithm C that computes
Ű

tPT rpcR,λptq without actu-
ally computing rpcR,λptq for each t P T . A special version of the algorithm can
be used to decide the pR, λq-consistency of T .

The algorithm is rule-based. The rules work on states, that are pairs I; s,
where s is a term and I is a finite set of expressions of the form x in T , where
T is a finite set of terms. R and λ are given. There are two rules (Z stands for
disjoint union):

Rem: Removing the empty set

tx in Hu Z I; s ùñ I; stx ÞÑ u.

8 T Kutsia and C. Pau

Red: Reduce a set to new sets

tx in tt1, . . . , tmuu Z I; s ùñ ty1 in T1, . . . , yn in Tnu Y I; stx ÞÑ hpy1, . . . , ynqu,

where m ě 1, h is an n-ary function symbol such that h „ρk

R,γk
headptkq with

γk ě λ for all 1 ď k ď m, and Ti :“ ttk|j | pi, jq P ρk, 1 ď k ď mu, 1 ď i ď n,
is the set of all those arguments of the terms t1, . . . , tm that are supposed to be
pR, λq-proximal to the i’s argument of h.

To compute
Ű

tPT rpcR,λptq, C starts with tx in T u;x and applies the rules
as long as possible. Red causes branching. A state of the form H; s is called
a success state. A failure state has the form I; s, to which no rule applies and
I ‰ H. In the full derivation tree, each leaf is a either success or a failure state.

Example 4. Assume a, b, c are constants, g, f, h are function symbols with the
arities respectively 1, 2, and 3. Let λ be given and R be defined so that Rpa, bq ě

λ, Rpb, cq ě λ, h „
tp1,1q,p1,2qu
R,β f , h „

tp2,1qu
R,γ g with β ě λ and γ ě λ. Then

rpcR,λpfpa, cqq “ tfpa, cq, fpb, cq, fpa, bq, fpb, bq, hpb, , qu,

rpcR,λpgpaqq “ tgpaq, gpbq, hp , a, q, hp , b, qu,

and rpcR,λpfpa, cqq[rpcR,λpgpaqq “ thpb, a, q, hpb, b, qu. We show how to com-
pute this set with C: tx in tfpa, cq, gpaquu; x ùñRed ty1 in ta, cu, y2 : tau, y3 in Hu;
hpy1, y2, y3q ùñRem ty1 in ta, cu, y2 : tauu;hpy1, y2, q ùñRed ty2 in tauu;hpb, y2, q.
Here we have two ways to apply Red to the last state, leading to two elements
of rpcR,λpfpa, cqq [rpcR,λpgpaqq: hpb, a, q and hpb, b, q.

Theorem 2. Given a finite set of terms T , the algorithm C always terminates
starting from the state tx in T u;x (where x is a fresh variable). If S is the set
of success states produced at the end, we have ts | H; s P Su “

Ű

tPT rpcR,λptq.

Proof. Termination: Associate to each state tx1 in T1, . . . xn in Tnu; s the multi-
set td1, . . . , dnu, where di is the maximum depth of terms occurring in Ti. di “ 0
if Ti “ H. Compare these multisets by the Dershowitz-Manna ordering [5]. Each
rule strictly reduces them, which implies termination.

By the definitions of rpcR,λ and [, hps1, . . . , snq P
Ű

tPtt1,...,tmu rpcR,λptq

iff h „ρk

R,γk
headptkq with γk ě λ for all 1 ď k ď m and si P

Ű

tPTi
rpcR,λptq,

where Ti “ ttk|j | pi, jq P ρk, 1 ď k ď mu, 1 ď i ď n. Therefore, in the Rem rule,
the instance of x (which is hpy1, . . . , ynq) is in

Ű

tPtt1,...,tmu rpcR,λptq iff for each

1 ď i ď n we can find an instance of yi in
Ű

tPTi
rpcR,λptq. If Ti is empty, it

means that the i’s argument of h is irrelevant for terms in tt1, . . . , tmu and can be
replaced by . (Rem does it in a subsequent step.) Hence, in each success branch
of the derivation tree, the algorithm C computes one element of

Ű

tPT rpcR,λptq.
Branching at Red helps produce all elements of

Ű

tPT rpcR,λptq. [\

It is easy to see how to use C to decide the pR, λq-consistency of T : it is
enough to find one successful branch in the C-derivation tree for tx in T u;x.
If there is no such branch, then T is not pR, λq-consistent. In fact, during the
derivation we can even ignore the second component of the states.

A framework for approximate generalization in quantitative theories 9

4 Solving generalization problems

Now we can reformulate the anti-unification problem that will be solved in the
remaining part of the paper. R is a proximity relation and λ is a cut value.

Given: R, λ, and the ground terms t1, . . . , tn, n ě 2.

Find: a set S of tuples pr, σ1, . . . , σn,α1, . . . ,αnq such that

– tr | pr, . . .q P Su is an pR, λq-mcsrg of t1, . . . , tn,
– rσi »R,λ ti and αi “ gdubR,λpr, tiq, 1 ď i ď n, for each pr, σ1, . . . , σn,

α1, . . . ,αnq P S.

(When n “ 1, this is a problem of computing a relevant proximity class of
a term.) Below we give a set of rules, from which one can obtain algorithms to
solve the anti-unification problem for four versions of argument relations:

1. The most general (unrestricted) case; see algorithm A1 below, the computed
set of generalizations is an mcsrg;

2. Correspondence relations: using the same algorithm A1, the computed set of
generalizations is an mcsg;

3. Mappings: using a dedicated algorithm A2, the computed set of generaliza-
tions is an mcsrg;

4. Correspondence mappings (bijections): using the same algorithm A2, the
computed set of generalizations is an mcsg.

Each of them has also the corresponding linear variant, computing minimal
complete sets of (relevant) linear pR, λq-generalizations. They are denoted by
adding the superscript lin to the corresponding algorithm name: Alin

1
and Alin

2
.

For simplicity, we formulate the algorithms for the case n “ 2. They can be
extended for arbitrary n straightforwardly.

The main data structure in these algorithms is an anti-unification triple
(AUT) x : T1 fi T2, where T1 and T2 are finite consistent sets of ground terms.
The idea is that x is a common generalization of all terms in T1 Y T2. A config-
uration is a tuple A;S; r;α1;α2, where A is a set of AUTs to be solved, S is a
set of solved AUTs (the store), r is the generalization computed so far, and the
α’s are the current approximations of generalization degree upper bounds of r
for the input terms.

Before formulating the rules, we discuss one peculiarity of approximate gen-
eralizations:

Example 5. For a given R and λ, assume Rpa, bq ě λ, Rpb, cq ě λ, h „
tp1,1q,p1,2qu
R,α

f and h „
tp1,1qu
R,β g, where f is binary, g, h are unary, α ě λ and β ě λ. Then

– hpbq is an pR, λq-generalization of fpa, cq and gpaq.
– x is the only pR, λq-generalization of fpa, dq and gpaq. One may be tempted

to have h as the head of the generalization, e.g., hpxq, but x cannot be
instantiated by any term that would be pR, λq-close to both a and d, since in
the given R, d is pR, λq-close only to itself. Hence, there would be no instance

10 T Kutsia and C. Pau

of hpxq that is pR, λq-close to fpa, dq. Since there is no other alternative
(except h) for the common neighbor of f and g, the generalization should
be a fresh variable x.

This example shows that generalization algorithms should take into account not
only the heads of the terms to be generalized, but also should look deeper, to
make sure that the arguments grouped together by the given argument relation
have a common neighbor. This justifies the requirement of consistency of a set
of arguments, the notion introduced in the previous section and used in the
decomposition rule below.

Anti-Unification for unrestricted argument relations. Algorithms Alin
1

and A1 use the rules below to transform configurations into configurations. Given
R, λ, and the ground terms t1 and t2, we create the initial configuration tx :
tt1u fi tt2uu;H;x; 1; 1 and apply the rules as long as possible. Note that the rules
preserve consistency of AUTs. The process generates a finite complete tree of
derivations, whose terminal nodes have configurations with the first component
empty. We will show how from these terminal configurations one collects the
result as required in the anti-unification problem statement.

Tri: Trivial

tx : H fi Hu Z A; S; r; α1;α2 ùñ A; S; rtx ÞÑ u; α1;α2.

Dec: Decomposition

tx : T1 fi T2u Z A;S; r;α1;α2 ùñ
tyi : Qi1 fi Qi2 | 1 ď i ď nu Y A;S; rtx ÞÑ hpy1, . . . , ynqu;α1 ^ β1;α2 ^ β2,

where T1 Y T2 ‰ H; h is n-ary with n ě 0; y1, . . . , yn are fresh; and for j “ 1, 2,
if Tj “ ttj

1
, . . . , tjmj

u, then

– h „
ρ
j

k

R,γ
j

k

headptjkq with γ
j
k ě λ for all 1 ď k ď mj and βj “ γ

j
1

^ ¨ ¨ ¨ ^ γj
mj

(note that βj “ 1 if mj “ 0),

– for all 1 ď i ď n, Qij “ Y
mj

k“1
ttjk|q | pi, qq P ρ

j
ku and is pR, λq-consistent.

Sol: Solving

tx : T1 fi T2u Z A; S; r; α1;α2 ùñ A; tx : T1 fi T2u Y S; r; α1;α2,

if Tri and Dec rules are not applicable. (It means that at least one Ti ‰ H and
either there is no h as it is required in the Dec rule, or at least one Qij from Dec

is not pR, λq-consistent.)

Let expand be an expansion operation defined for sets of AUTs as

expandpSq :“ tx :
ę

tPT1

rpcR,λptq fi
ę

tPT2

rpcR,λptq | x : T1 fi T2 P Su.

Exhaustive application of the three rules above leads to configurations of the
form H;S; r;α1;α2, where r is a linear term. These configurations are further

A framework for approximate generalization in quantitative theories 11

postprocessed, replacing S by expandpSq. We will use the letter E for expanded
stores. Hence, terminal configurations obtained after the exhaustive rule appli-
cation and expansion have the form H;E; r;α1;α2, where r is a linear term.1

This is what Algorithm Alin
1

stops with.
To an expanded store E “ ty1 : Q11 fi Q12, . . . , yn : Qn1 fi Qn2u we associate

two sets of substitutions ΣLpEq and ΣRpEq, defined as follows: σ P ΣLpEq (resp.
σ P ΣRpEq) iff dompσq “ ty1, . . . , ynu and yiσ P Qi1 (resp. yiσ P Qi2) for each
1 ď i ď n. We call them the sets of witness substitutions.

Configurations containing expanded stores are called expanded configura-
tions. From each expanded configuration C “ H;E; r;α1;α2, we construct the
set SpCq :“ tpr, σ1, σ2,α1,α2q | σ1 P ΣLpEq, σ2 P ΣRpEqu.

Given an anti-unification problem R, λ, t1 and t2, the answer computed by
Algorithm Alin

1
is the set S :“ Ym

i“1
SpCiq, where C1, . . . , Cm are all of the final

expanded configurations reached by Alin
1

for R, λ, t1, and t2.
2

Example 6. Assume a, b, c and d are constants with b „H
R,0.5 c, c „H

R,0.6 d, and f ,
g and h are respectively binary, ternary and quaternary function symbols with

h „
tp1,1q,p3,2q,p4,2qu
R,0.7 f and h „

tp1,1q,p3,3qu
R,0.8 g. For the proximity relation R given in

this way and λ “ 0.5, Algorithm Alin
1

performs the following steps to anti-unify
fpa, bq and gpa, c, dq:

tx : tfpa, bqu fi tgpa, c, dquu;H;x; 1; 1 ùñDec

tx1 : tau fi tau, x2 : H fi H, x3 : tbu fi tdu,

x4 : tbu fi Hu;H;hpx1, x2, x3, x4q; 0.7; 0.8 ùñDec

tx2 : H fi H, x3 : tbu fi tdu, x4 : tbu fi Hu;H;hpa, x2, x3, x4q; 0.7; 0.8 ùñTri

tx3 : tbu fi tdu, x4 : tbu fi Hu; H;hpa, , x3, x4q; 0.7; 0.8 ùñDec

tx4 : tbu fi Hu;H;hpa, , c, x4q; 0.5; 0.6.

Here Dec applies in two different ways, with the substitutions tx4 ÞÑ bu and
tx4 ÞÑ cu, leading to two final configurations: H;H;hpa, , c, bq; 0.5; 0.6 and
H;H;hpa, , c, cq; 0.5; 0.6. The witness substitutions are the identity substitu-
tions. Then we have Rphpa, , c, bq, fpa, bqq “ 0.5, Rphpa, , c, bq, gpa, c, dqq “ 0.6,
Rphpa, , c, cq, fpa, bqq “ 0.5, and Rphpa, , c, cq, gpa, c, dqq “ 0.6.

If we had h „
tp1,1q,p1,2q,p4,2qu
R,0.7 f , then the algorithm would perform only the

Sol step, because in the attempt to apply Dec to the initial configuration, the
set Q11 “ ta, bu is inconsistent: rpcR,λpaq “ tau, rpcR,λpbq “ tb, cu, and, hence,
rpcR,λpaq [rpcR,λpbq “ H.

Algorithm A1 is obtained by further transforming the expanded configura-
tions produced by Alin

1
. This transformation is performed by applying the Merge

rule below as long as possible. Intuitively, its purpose is to make the linear gen-
eralization obtained by Alin

1
less general by merging some variables.

1 Note that no side of the AUTs in E in those configurations is empty due to the
condition at the Decomposition rule requiring the Qij ’s to be pR, λq-consistent.

2 If we are interested only in linear generalizations without witness substitutions, there
is no need in computing expanded configurations in A

lin
1 .

12 T Kutsia and C. Pau

Mer: Merge

H; tx1 : R11 fi R12, x2 : R21 fi R22u Z E; r; α1; α2 ùñ
H; ty : Q1 fi Q2u Y E; rσ; α1; α2,

where Qi “ pR1i [R2iq ‰ H, i “ 1, 2, y is fresh, and σ “ tx1 ÞÑ y, x2 ÞÑ yu.

The answer computed by A1 is defined similarly to the answer computed by Alin
1
.

Example 7. Assume a, b are constants, f1, f2, g1, and g2 are unary function
symbols, p is a binary function symbol, and h1 and h2 are ternary function

symbols. Let λ be a cut value and R be defined as fi „
tp1,1qu
R,αi

hi and gi „
tp1,2qu
R,βi

hi

with αi ě λ, βi ě λ, i “ 1, 2. To generalize ppf1paq, g1pbqq and ppf2paq, g2pbqq,
we use A1. The derivation starts as

tx : tppf1paq, g1pbqqu fi tppf2paq, g2pbqquu; H; x; 1; 1 ùñDec

ty1 : tf1paqu fi tf2paqu, y2 : tg1pbqu fi tg2pbquu; H; ppy1, y2q; 1; 1 ùñ2

Sol

H; ty1 : tf1paqu fi tf2paqu, y2 : tg1pbqu fi tg2pbquu; ppy1, y2q; 1; 1.

At this stage, we expand the store, obtaining

H; ty1 : tf1paq, h1pa, , qu fi tf2paq, h2pa, , qu,

y2 : tg1pbq, h1p , b, qu fi tg2pbq, h2p , b, quu; ppy1, y2q; 1; 1.

If we had the standard intersection X in the Mer rule, we would not be able
to merge y1 and y2, because the obtained sets in the corresponding AUTs are
disjoint. However, Mer uses [: we have tfipaq, hipa, , qu [tgipbq, hip , b, qu “
thipa, b, qu, i “ 1, 2 and, therefore, can make the step

H; ty1 : tf1paq, h1pa, , qu fi tf2paq, h2pa, , qu,

y2 : tg1pbq, h1p , b, qu fi tg2pbq, h2p , b, quu; ppy1, y2q; 1; 1 ùñMer

H; tz : th1pa, b, qu fi th2pa, b, quu; ppz, zq; 1; 1.

Indeed, if we take the witness substitutions σi “ tz ÞÑ hipa, b, qu, i “ 1, 2, and
apply them to the obtained generalization, we get

ppz, zqσ1 “ pph1pa, b, q, h1pa, b, qq »R,λ ppf1paq, g1pbqq,

ppz, zqσ2 “ pph2pa, b, q, h2pa, b, qq »R,λ ppf2paq, g2pbqq.

Theorem 3. Given R, λ, and the ground terms t1 and t2, Algorithm A1 termi-
nates for tx : tt1u fi tt2uu;H;x; 1; 1 and computes an answer set S such that

1. the set tr | pr, σ1, σ2,α1,α2q P Su is an pR, λq-mcsrg of t1 and t2,
2. for each pr, σ1, σ2,α1,α2q P S we have Rprσi, tiq ď αi “ gdubR,λpr, tiq,

i “ 1, 2.

Proof. Termination: Define the depth of an AUT x : tt1, . . . , tmu fi ts1, . . . ,
snu as the depth of the term fpgpt1, . . . , tmq, hps1, . . . , snqq. The rules Tri, Dec,
and Sol strictly reduce the multiset of depths of AUTs in the first component

A framework for approximate generalization in quantitative theories 13

of the configurations. Mer strictly reduces the number of distinct variables in
generalizations. Hence, these rules cannot be applied infinitely often and A1

terminates.

In order to prove 1), we need to verify three properties:

– Soundness: If pr, σ1, σ2,α1,α2q P S, then r is a relevant pR, λq-generalization
of t1 and t2.

– Completeness: If r1 is a relevant pR, λq-generalization of t1 and t2, then there
exists pr, σ1, σ2,α1,α2q P S such that r1 À r.

– Minimality: If r and r1 belong to two tuples from S such that r ‰ r1, then
neither r ăR,λ r1 nor r1 ăR,λ r.

Soundness: We show that each rule transforms an pR, λq-generalization into
an pR, λq-generalization. Since we start from a most general pR, λq-generalization
of t1 and t2 (a fresh variable x), at the end of the algorithm we will get an
pR, λq-generalization of t1 and t2. We also show that in this process all irrele-
vant positions are abstracted by anonymous variables, to guarantee that each
computed generalization is relevant.

Dec: The computed h is pR, λq-close to the head of each term in T1 Y T2.
Qij ’s correspond to argument relations between h and those heads, and each
Qij is pR, λq-consistent, i.e., there exists a term that is pR, λq-close to each term
in Qij . It implies that xσ “ hpy1, . . . , ynq pR, λq-generalizes all the terms from
T1 YT2. Note that at this stage, hpy1, . . . , ynq might not yet be a relevant pR, λq-
generalization of T1 and T2: if there exists an irrelevant position 1 ď i ď n for
the pR, λq-generalization of T1 and T2, then in the new configuration we will
have an AUT yi : H fi H.

Tri: When Dec generates y : H fi H, the Tri rule replaces y by in the
computed generalization, making it relevant.

Sol does not change generalizations.
Mer merges AUTs whose terms have nonempty intersection of rpc’s. Hence,

we can reuse the same variable in the corresponding positions in generalizations,
i.e., Mer transforms a generalization computed so far into a less general one.

Completeness: We prove a slightly more general statement. Given two finite
consistent sets of ground terms T1 and T2, if r

1 is a relevant pR, λq-generalization
for all t1 P T1 and t2 P T2, then starting from tx : T1 fi T2u;H;x; 1; 1, Algorithm
A1 computes a pr, σ1, σ2,α1,α2q such that r1 À r.

We may assume w.l.o.g. that r1 is a relevant pR, λq-lgg. Due to the transitivity
of À, completeness for such an r1 will imply it for all terms more general than r1.

We proceed by structural induction on r1. If r1 is a (named or anonymous)
variable, the statement holds. Assume r1 “ hpr1

1
, . . . , r1

nq, T1 “ tu1, . . . , umu,
and T2 “ tw1, . . . , wlu. Then h is such that h „ρi

R,βi
headpuiq for all 1 ď i ď m

and h „
µj

R,γj
headpwjq for all 1 ď j ď l. Moreover, each r1

k is a relevant pR, λq-

generalization of Qk1 “ Ym
i“1

tui|q | pk, qq P ρiu and Qk2 “ Yl
j“1

twj |q | pk, qq P
µju and, hence, Qk1 and Qk2 are pR, λq-consistent. Therefore, we can perform a
step by Dec, choosing hpy1, . . . , ykq as the generalization term and yi : Qi1 fi Qi2

14 T Kutsia and C. Pau

as the new AUTs. By the induction hypothesis, for each 1 ď i ď n we can
compute a relevant pR, λq-generalization ri for Qi1 and Qi2 such that r1

i À ri.
If r1 is linear, then the combination of the current Dec step with the deriva-

tions that lead to those ri’s computes a tuple pr, . . .q P S, where r “ hpr1, . . . , rnq
and, hence, r1 À r.

If r1 is non-linear, assume w.l.o.g. that all occurrences of a shared variable z

appear as the direct arguments of h: z “ r1
k1

“ ¨ ¨ ¨ “ r1
kp

for 1 ď k1 ă ¨ ¨ ¨ ă kp ď

n. Since r1 is an lgg, Qki1
and Qki2

cannot be generalized by a non-variable term,
thus, Tri and Dec are not applicable. Therefore, the AUTs yi : Qki1

fi Qki2
would

be transformed by Sol. Since all pairs Qki1
and Qki2

, 1 ď i ď p, are generalized
by the same variable, we have [tPQj

rpcR,λptq ‰ H, where Qj “ Yp
i“1

Qkij ,
j “ 1, 2. Additionally, r1

k1
, . . . , r1

kp
are all occurrences of z in r1. Hence, the

condition of Mer is satisfied and we can extend our derivation with p ´ 1-fold
application of this rule, obtaining r “ hpr1, . . . , rnq with z “ rk1

“ ¨ ¨ ¨ “ rkp
,

implying r1 À r.
Minimality: Alternative generalizations are obtained by branching in Dec or

Mer. If the current generalization r is transformed by Dec into two generalizations
r1 and r2 on two branches, then r1 “ h1py1, . . . , ymq and r2 “ h2pz1, . . . , znq
for some h’s, and fresh y’s and z’s. It may happen that r1 ÀR,λ r2 or vice
versa (if h1 and h2 are pR, λq-close to each other), but neither r1 ăR,λ r2 nor
r2 ăR,λ r1 holds. Hence, the set of generalizations computed before applying
Mer is minimal. Mer groups AUTs together maximally, and different groupings
are not comparable. Therefore, variables in generalizations are merged so that
distinct generalizations are not ăR,λ-comparable. Hence, 1) is proven.

As for 2), for i “ 1, 2, from the construction in Dec follows Rprσi, tiq ď αi.
Mer does not change αi, thus, αi “ gdubR,λpr, tiq also holds, since the way how αi

is computed corresponds exactly to the computation of gdubR,λpr, tiq: r ÀR,λ ti
and only the decomposition changes the degree during the computation. [\

Corollary 1. Given R, λ, and the ground terms t1 and t2, Algorithm Alin
1

ter-
minates for tx : tt1u fi tt2uu;H;x; 1; 1 and computes an answer set S such that

1. the set tr | pr, σ1, σ2,α1,α2q P Su is a minimal complete set of relevant linear
pR, λq-generalizations of t1 and t2,

2. for each pr, σ1, σ2,α1,α2q P S we have Rprσi, tiq ď αi “ gdubR,λpr, tiq,
i “ 1, 2.

Anti-Unification with correspondence argument relations. Correspon-
dence relations make sure that for a pair of proximal symbols, no argument is
irrelevant for proximity. Left- and right-totality of those relations guarantee that
each argument of a term is close to at least one argument of its proximal term
and the inverse relation remains a correspondence relation. Consequently, in the
Dec rule of A1, the sets Qij never get empty. Therefore, the Tri rule becomes
obsolete and no anonymous variable appears in generalizations. As a result, the
pR, λq-mcsrg and the pR, λq-mcsg coincide, and the algorithm computes a solu-
tion from which we get an pR, λq-mcsg for the given anti-unification problem.
The linear version Alin

1
works analogously.

A framework for approximate generalization in quantitative theories 15

Anti-Unification with argument mappings. When the argument relations
are mappings, we are able to design a more constructive method for computing
generalizations and their degree bounds. (Recall that our mappings are partial
injective functions, which guarantees that their inverses are also mappings.) The
configurations stay the same as in before, but the AUTs in A will contain only
empty or singleton sets of terms. In the store, we may still get (after the expan-
sion) AUTs with term sets containing more than one element. Only the Dec rule
differs from its previous counterpart.

Dec: Decomposition

tx : T1 fi T2u Z A;S; r;α1;α2 ùñ
tyi : Qi1 fi Qi2 | 1 ď i ď nu Y A;S; rtx ÞÑ hpy1, . . . , ynqu;α1 ^ β1;α2 ^ β2,

where T1 Y T2 ‰ H; h is n-ary with n ě 0; y1, . . . , yn are fresh; for j “ 1, 2 and
for all 1 ď i ď n, if Tj “ ttju then h „

πj

R,βj
headptjq and Qij “ ttj |πjpiqu, and if

Tj “ H then βj “ 1 and Qij “ H.

This Dec rule is equivalent to the special case of Dec for argument relations
where mj ď 1. The new Qij ’s contain at most one element (due to mappings)
and, thus, are always pR, λq-consistent. Various choices of h in Dec and alterna-
tives in grouping AUTs in Mer cause branching in the same way as in A1. It is
easy to see that the counterparts of Theorem 3 hold for A2 and Alin

2
as well.

A special case of this fragment of anti-unification is anti-unification for sim-
ilarity relations in full fuzzy signatures from [1]. Similarity relations are min-
transitive proximity relations. The position mappings in [1] can be modeled by
our argument mappings, requiring them to be total for symbols of the smaller
arity and to satisfy the similarity-specific consistency restrictions from [1].

Anti-Unification with correspondence argument mappings. Correspon-
dence argument mappings are bijections between arguments of function symbols
of the same arity. For such mappings, if h »π

R,λ f and h is n-ary, then f is also
n-ary and π is a permutation of p1, . . . , nq. Hence, A2 combines in this case the
properties of A1 for correspondence relations (Section 4) and of A2 for argument
mappings (Section 4): all generalizations are relevant, computed answer gives an
mcsg of the input terms, and the algorithm works with term sets of cardinality
at most 1.

5 Remarks about the complexity

The proximity relation R can be naturally represented as an undirected graph,
where the vertices are function symbols and an edge between them indicates that
they are proximal. Graphs induced by proximity relations are usually sparse.
Therefore we can represent them by (sorted) adjacency lists. In the adjacency
lists, we can also accommodate the argument relations and proximity degrees.

In the rest of this section we use the following notation:

– n: the size of the input (number of symbols) of the corresponding algorithms,

16 T Kutsia and C. Pau

– ∆: the maximum degree of R considered as a graph,

– a: the maximum arity of function symbols that occur in R.

– m‚n: a function defined on natural numbers m and n such that 1‚n “ n and
m‚n “ mn for m ‰ 1.

We assume that the given anti-unification problem is represented as a com-
pletely shared directed acyclic graph (dag). Each node of the dag has a pointer
to the adjacency list (with respect to R) of the symbol in the node.

Theorem 4. Time complexities of C and the linear versions of the generaliza-
tion algorithms are as follows:

– C for argument relations and Alin
1
: Opn ¨ ∆ ¨ ∆‚a‚n

q,

– C for argument mappings and Alin
2
: Opn ¨ ∆ ¨ ∆‚nq.

Proof (Sketch). In C, in the case of argument relations, an application of the Red
rule to a state I; s replaces one element of I of size m by at most a new elements,
each of them of size m ´ 1. Hence, one branch in the search tree for C, starting
from a singleton set I of size n, will have the length at most l “

řn´1

i“0
ai. At each

node on it there are at most ∆ choices of applying Red with different h’s, which
gives the total size of the search tree to be at most

řl´1

i“0
∆i, i.e., the number

of steps performed by C in the worst case is Op∆‚a‚n

q. Those different h’s are
obtained by intersecting the proximity classes of the heads of terms tt1, . . . , tmu
in the Red rule. In our graph representation of the proximity relation, proximity
classes of symbols are exactly the adjacency lists of those symbols which we
assume are sorted. Their maximal length is ∆. Hence, the work to be done at
each node of the search tree of C is to find the intersection of at most n sorted
lists, each containing at most ∆ elements. It needs Opn ¨ ∆q time. It gives the
time complexity Opn ¨ ∆ ¨ ∆‚a‚n

q of C for the relation case.

In the mapping case, an application of the Red rule to a state I; s replaces
one element of I of size m by at most a new elements of the total size m ´ 1.
Therefore, the maximal length of a branch is n, the branching factor is ∆, and
the amount of work at each node, like above, is Opn ¨ ∆q. Hence, the number of
steps in the worst case is Op∆‚nq and the time complexity of C is Opn ¨∆ ¨∆‚nq.

The fact that consistency check is incorporated in the Dec rule in Alin
1

can be
used to guide the application of this rule, using the values memoized by the pre-
vious applications of Red. The very first time, the appropriate h in Dec is chosen
arbitrarily. In any subsequent application of this rule, h is chosen according to
the result of the Red rule that has already been applied to the arguments of the
current AUT for their consistency check, as required by the condition of Dec. In
this way, the applications of Dec and Sol will correspond to the applications of
Red. There is a natural correspondence between the applications of Rem and Tri

rules. Therefore, Alin
1

will have the search tree analogous to that of C. Hence the
complexity of Alin

1
is Opn ¨∆ ¨∆‚a‚n

q. Alin
2

does not call the consistency check, but
does the same work as C and, hence, has the same complexity Opn ¨∆ ¨∆‚nq. [\

A framework for approximate generalization in quantitative theories 17

6 An extended example

In this section we illustrate the details of computing (R, λ)-lggs by Alin
1
.

Assume a, b, c, d are constants, f and h are binary function symbols, and g is a

unary function symbol. Let R be defined as a „H
R,0.6 b, b „H

R,0.7 c, f „
tp1,1q,p2,1qu
R,0.8

h, and h „
tp1,1qu
R,0.9 g.

Take λ “ 0.5 and consider the anti-unification problem between fpfpfpa, cq,
fpa, cqq, gpgpaqqq and fpgpgpbqq, fpfpb, cq, fpb, cqqq. The dag representation of the
problem looks as follows (the bold face numbers are the node IDs):

0: fi

1: txf, tp1, 1q, p2, 2qu, 1y, xh, tp1, 1q, p1, 2qu, 0.8yu 2: txf, tp1, 1q, p2, 2qu, 1y, xh, tp1, 1q, p1, 2qu, 0.8yu

3:
txf, tp1, 1q, p2, 2qu, 1y,

xh, tp1, 1q, p1, 2qu, 0.8yu
4:

txg, tp1, 1qu, 1y,
xh, tp1, 1qu, 0.9yu

1 2

6:
txf, tp1, 1q, p2, 2qu, 1y,

xh, tp1, 1q, p1, 2qu, 0.8yu
5:

txg, tp1, 1qu, 1y,
xh, tp1, 1qu, 0.9yu

21

7:
txf, tp1, 1q, p2, 2qu, 1y,

xh, tp1, 1q, p1, 2qu, 0.8yu

1 2

8:
txg, tp1, 1qu, 1y,

xh, tp1, 1qu, 0.9yu

1

10:
txf, tp1, 1q, p2, 2qu, 1y,

xh, tp1, 1q, p1, 2qu, 0.8yu

1 2

9:
txg, tp1, 1qu, 1y,

xh, tp1, 1qu, 0.9yu

1

11:
txa, H, 1y,

xb, H, 0.6yu
12:

txb, H, 1y,
xa, H, 0.6y,
xc, H, 0.7yu

13:
txc, H, 1y

xb, H, 0.7yu

21 211 1

Fig. 1. Dag representation of the anti-unification problem between fpfpfpa, cq, fpa, cqq,

gpgpaqqq and fpgpgpbqq, fpfpb, cq, fpb, cqqq.

Each subgraph of this graph is a compact representation of a set of terms
that form the proximity class of the corresponding subterm in the problem. For
instance, the subgraph at node 3 is a compact representation of the proximity
class of the subterm fpfpa, cq, fpa, cqq. The label txf, tp1, 1q, p2, 2qu, 1y, xh, tp1, 1q,
p1, 2qu, 0.8yu of 3 is the adjacency list of f inR (containing the argument relation
and the proximity degree for each symbol proximal to f).

Algorithm Alin
1

starts with the configuration

tx : tfpfpfpa, cq, fpa, cqq, gpgpaqqqu fi tfpgpgpbqq, fpfpb, cq, fpb, cqqquu;

H; x; 1; 1

The attempt to apply the Decomposition rule involves checking whether
the labels at nodes 1 (i.e., the adjacency list of f) and 2 (the adjacency list of the
same f) have a common symbol. There are actually two: f (with the argument
relation tp1, 1q, p2, 2qu) and h (with the argument relation tp1, 1q, p1, 2qu).

18 T Kutsia and C. Pau

The next step is the consistency check. For the case of f , we should check
whether the set of terms at nodes 3 (corresponds to Q11 in the Dec rule), 5
(Q12), 4 (Q21), and 6 (Q22) are consistent. All these checks are successful. In
the process, we can do even more: perform the consistency check concurrently
for 3 and 5, and for 4 and 6 (as these pairs come from the same AUTs), and
use the same new function symbol in each pair when applying the Red rule. (For
instance, we can use h for 3 and 5 as it appears in both nodes.). Repeatedly
apply this concurrent check to the children of the involved nodes in the process of
showing consistency. Memoize common function symbols as they will be useful
in the subsequent applications of Dec. After applying this process as long as
possible, in the cash we will have:3

3 and 5 are consistent and have the common symbol h,

4 and 6 are consistent and have the common symbol h,

7 and 9 are consistent and have the common symbol h,

8 and 10 are consistent and have the common symbol h,

11 Y 13 and 12 are consistent and have the common symbol b,

11 and 12 Y 13 are consistent and have the common symbol b.

It is important to notice that if the consistency check failed for at least one
node, e.g., for 9, then the condition of Dec would fail and this rule would not be
applicable for 1 and 2 using f . Then we should try h. If the same thing happens
for h as well, then Dec is not applicable to 1 and 2 at all and we have to use
Sol. Another important thing is to see what would happen if a pair of consistent
nodes did not have a common symbol: for instance, if 5 and 6 are consistent but
do not have a common symbol. In this case, we would cash this info and would
not continue to check consistency of the successors of these nodes, i.e., we would
not check whether 8 and 10, and 11 and 12 Y 13 are consistent.

Coming back to the derivation, we have a new configuration

ty1 : tfpfpa, cq, fpa, cqqu fi tgpgpbqqu, y2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu;

H; fpy1, y2q; 1; 1.

We select the first AUT and apply Dec. It should check whether nodes 3
and 5 have a common symbol. But we already did it in the consistency check
and cashed the value. It is h. (If the cashed result told us there is no such
common symbol, we would use Sol instead of Dec.) Subsequently, since in 3 the
h comes with ρ “ tp1, 1q, p1, 2qu, we need to check whether the set of the first
and second successors of 3 is consistent (the set Q11 in Dec). As one can see
from the shared representation of the graph, this set is just 7. We already know
that it is consistent, because we checked its consistency when we showed that 3
is consistent. Similarly, 9 is consistent (the set Q12 in Dec). As for Q21 and Q22,

3 By “3 is consistent” we actually mean “the set of terms at node 3 is consistent”,
etc. Consistency of 11 Y 13 means that the union of term sets at 11 and at 13 is
consistent.

A framework for approximate generalization in quantitative theories 19

they both are empty because the second argument of h does not appear in the
ρ’s at 3 and at 5. Therefore, the new configuration is

tz1 : tfpa, cqu fi tgpbqu, z2 : H fi H, y2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu;

H; fphpz1, z2q, y2q; 0.8; 0.9.

By the Tri rule, we can remove z2:

tz1 : tfpa, cqu fi tgpbqu, y2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu;

H; fphpz1, q, y2q; 0.8; 0.9.

Now we apply Dec to the first AUT. It should check whether the nodes that
correspond to the terms in this AUT (i.e., 7 and 9) have a common symbol. But
again, we can retrieve it from the cash. It is h. Based on the ρ’s of h in these
nodes, we need to check whether the set of the first and second successors of 7,
i.e., 11 Y 13, is consistent (the set Q11 in Dec), and the successor of 9, i.e., 12,
is consistent (the set Q12 in Dec). We again reuse the cashed info that we got
when we checked the consistency of 3. Hence, the new configuration is

tu1 : ta, cu fi tbu, u2 : H fi H, y2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu;

H; fphphpu1, u2q, q, y2q; 0.8; 0.9.

By the Tri rule, we can remove u2:

tu1 : ta, cu fi tbu, y2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu;

H; fphphpu1, q, q, y2q; 0.8; 0.9.

Applying Dec to the first AUT, we check what is the common symbol between
the nodes that correspond the terms there: 11 Y 13 and 12. The cashed result
tells us that it is b. No further consistency checks are needed because of the
empty ρ it has. We get

ty2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu; H; fphphpb, q, q, y2q; 0.6; 0.9

and continue in the similar manner:

ty2 : tgpgpaqqu fi tfpfpb, cq, fpb, cqquu; H; fphphpb, q, q, y2q; 0.6; 0.9 ùñDec

tv1 : tgpaqu fi tfpb, cqu, v2 : H fi Hu; H;

fphphpb, q, q, hpv1, v2qq; 0.6; 0.8 ùñTri

tv1 : tgpaqu fi tfpb, cquu; H; fphphpb, q, q, hpv1, qq; 0.6; 0.8 ùñDec

tw1 : tau fi tb, cu, w2 : H fi Hu; H;

fphphpb, q, q, hphpw1, w2q, qq; 0.6; 0.8 ùñTri

tw1 : tau fi tb, cuu; H; fphphpb, q, q, hphpw1, q, qq; 0.6; 0.7 ùñDec

H; H; fphphpb, q, q, hphpb, q, qq; 0.6; 0.7.

20 T Kutsia and C. Pau

This is the first terminal configuration. Remember that in the first decom-
position step, we had an alternative in choosing h instead of f . Exploring it, we
start with the step:

tx : tfpfpfpa, cq, fpa, cqq, gpgpaqqqu fi tfpgpgpbqq, fpfpb, cq, fpb, cqqquu;

H; x; 1; 1 ùñDec

ty1 : tfpfpa, cq, fpa, cqq, gpgpaqqu fi tgpgpbqq, fpfpb, cq, fpb, cqqu,

y2 : H fi Hu;H; hpy1, y2q; 0.8; 0.8.

(To perform this step, we had to make sure that both 3Y4 and 5Y6 are pR, λq-
consistent.) Continuing further, we reach the next terminal configuration:

ty1 : tfpfpa, cq, fpa, cqq, gpgpaqqu fi tgpgpbqq, fpfpb, cq, fpb, cqqu,

y2 : H fi Hu;H; hpy1, y2q; 0.8; 0.8 ùñ˚

H; H; hphphpb, q, q, q; 0.6; 0.7.

Hence, we got two answers computed by Alin
1
:

fphphpb, q, q, hphpb, qqq; 0.6; 0.7, hphphpb, q, q, q, 0.6, 0.7.

A1 would give the same answers, since the store is empty: no merging is needed.

7 Discussion and conclusion

The diagram below illustrates the connections between different anti-unification
problems based on argument relations:

unrestricted relations

unrestricted mappings

correspondence relations

correspondence mappings

The arrows indicate the direction from more general problems to more spe-
cific ones. For the unrestricted cases (left column) we compute mcsrg’s. For
correspondence relations and correspondence mappings (right column), mcsg’s
are computed. (In fact, for them, the notions of mcsrg and mcsg coincide). The
algorithms for relations (upper row) are more involved than those for mappings
(lower row): Those for relations deal with AUTs containing arbitrary sets of
terms, while for mappings, those sets have cardinality at most one, thus sim-
plifying the conditions in the rules. Moreover, the two cases in the lower row
generalize the existing anti-unification problems:

– the unrestricted mappings case generalizes the problem from [1] by extending
similarity to proximity and relaxing the smaller-side-totality restriction;

– the correspondence mappings case generalizes the problem from [8] by al-
lowing permutations between arguments of proximal function symbols.

A framework for approximate generalization in quantitative theories 21

All our algorithms can be easily turned into anti-unification algorithms for
crisp tolerance relations4 by taking lambda-cuts and ignoring the computation of
the approximation degrees. Besides, they are modular and can be used to com-
pute only linear generalizations by just skipping the merging rule. We provided
complexity estimations for the algorithms that compute linear generalizations
(that often are of practical interest).

In this paper, we did not consider cases when the same pair of symbols is
related to each other by more than one argument relation. Our results can be
extended to them, that would open a way towards approximate anti-unification
modulo background theories specified by shallow collapse-free axioms. Another
interesting direction of future work would be extending our results to quantita-
tive algebras [9] that also deal with quantitative extensions of equality.

Acknowledgment. Supported by the Austrian Science Fund, project P 35530.

References

1. Aı̈t-Kaci, H., Pasi, G.: Fuzzy lattice operations on first-order terms over signatures
with similar constructors: A constraint-based approach. Fuzzy Sets Syst. 391, 1–46
(2020). https://doi.org/10.1016/j.fss.2019.03.019

2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press
(1998)

3. Bader, J., Scott, A., Pradel, M., Chandra, S.: Getafix: learning to fix bugs
automatically. Proc. ACM Program. Lang. 3(OOPSLA), 159:1–159:27 (2019).
https://doi.org/10.1145/3360585

4. Barwell, A.D., Brown, C., Hammond, K.: Finding parallel functional
pearls: Automatic parallel recursion scheme detection in Haskell func-
tions via anti-unification. Future Gener. Comput. Syst. 79, 669–686 (2018).
https://doi.org/10.1016/j.future.2017.07.024

5. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979). https://doi.org/10.1145/359138.359142

6. Galitsky, B.: Developing Enterprise Chatbots - Learning Linguistic Structures.
Springer (2019). https://doi.org/10.1007/978-3-030-04299-8

7. Kirbas, S., Windels, E., McBello, O., Kells, K., Pagano, M.W., Szalanski, R.,
Nowack, V., Winter, E.R., Counsell, S., Bowes, D., Hall, T., Haraldsson, S., Wood-
ward, J.R.: On the introduction of automatic program repair in Bloomberg. IEEE
Softw. 38(4), 43–51 (2021). https://doi.org/10.1109/MS.2021.3071086

8. Kutsia, T., Pau, C.: Matching and generalization modulo proximity and tolerance
relations. In: Özgün, A., Zinova, Y. (eds.) Language, Logic, and Computation - 13th
International Tbilisi Symposium, TbiLLC 2019, Batumi, Georgia, September 16-
20, 2019, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13206,
pp. 323–342. Springer (2019). https://doi.org/10.1007/978-3-030-98479-3 16

9. Mardare, R., Panangaden, P., Plotkin, G.D.: Quantitative algebraic reasoning. In:
Grohe, M., Koskinen, E., Shankar, N. (eds.) Proc. of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS’16. pp. 700–709. ACM (2016).
https://doi.org/10.1145/2933575.2934518

4 Tolerance: reflexive, symmetric, not necessarily transitive relation. According to
Poincaré, a fundamental notion for mathematics applied to the physical world.

https://doi.org/10.1016/j.fss.2019.03.019
https://doi.org/10.1145/3360585
https://doi.org/10.1016/j.future.2017.07.024
https://doi.org/10.1145/359138.359142
https://doi.org/10.1007/978-3-030-04299-8
https://doi.org/10.1109/MS.2021.3071086
https://doi.org/10.1007/978-3-030-98479-3_16
https://doi.org/10.1145/2933575.2934518

22 T Kutsia and C. Pau

10. Mehta, S., Bhagwan, R., Kumar, R., Bansal, C., Maddila, C.S., Ashok, B., Asthana,
S., Bird, C., Kumar, A.: Rex: Preventing bugs and misconfiguration in large ser-
vices using correlated change analysis. In: Bhagwan, R., Porter, G. (eds.) 17th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2020, Santa Clara, CA, USA, February 25-27, 2020. pp. 435–448. USENIX Associa-
tion (2020), https://www.usenix.org/conference/nsdi20/presentation/mehta

11. Pau, C., Kutsia, T.: Proximity-based unification and matching for fully
fuzzy signatures. In: 30th IEEE International Conference on Fuzzy Systems,
FUZZ-IEEE 2021, Luxembourg, July 11-14, 2021. pp. 1–6. IEEE (2021).
https://doi.org/10.1109/FUZZ45933.2021.9494438

12. Plotkin, G.D.: A note on inductive generalization. Machine Intel. 5(1), 153–163
(1970)

13. Raza, M., Gulwani, S., Milic-Frayling, N.: Programming by example using least
general generalizations. In: Brodley, C.E., Stone, P. (eds.) Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27–31, 2014,
Québec City, Québec, Canada. pp. 283–290. AAAI Press (2014)

14. Reynolds, J.C.: Transformational systems and the algebraic structure of atomic
formulas. Machine Intel. 5(1), 135–151 (1970)

15. Rolim, R., Soares, G., Gheyi, R., D’Antoni, L.: Learning quick fixes from code
repositories. CoRR abs/1803.03806 (2018), http://arxiv.org/abs/1803.03806

https://www.usenix.org/conference/nsdi20/presentation/mehta
https://doi.org/10.1109/FUZZ45933.2021.9494438
http://arxiv.org/abs/1803.03806

	A framework for approximate generalization in quantitative theories

