
Unranked Nominal Unification?

Besik Dundua1,3, Temur Kutsia2, and Mikheil Rukhaia3

1 Kutaisi International University, Kutaisi, Georgia
2 RISC, Johannes Kepler University Linz, Austria

3 Institute of Applied Mathematics, Tbilisi State University, Georgia
bdundua@gmail.com, kutsia@risc.jku.at, mrukhaia@logic.at

Abstract. In this paper we define an unranked nominal language, an
extension of the nominal language with tuple variables and term tu-
ples. We define the unification problem for unranked nominal terms and
present an algorithm solving the unranked nominal unification problem.

1 Introduction

Solving equations between logic terms is a fundamental problem with many
important applications in mathematics, computer science, and artificial intel-
ligence. It is needed to perform an inference step in reasoning systems and
logic programming, to match a pattern to an expression in rule-based and func-
tional programming, to extract information from a document, to infer types in
programming languages, to compute critical pairs while completing a rewrite
system, to resolve ellipsis in natural language processing, etc. Unification and
matching are well-known techniques used in these tasks.

Unification (as well as matching) is a quite well-studied topic for the case
when the equality between function symbols is precisely defined. This is the
standard setting. There is quite some number of unification algorithms whose
complexities range from exponential [34] to linear [31]. Besides, many extensions
and generalizations have been proposed. Those relevant to our interests are equa-
tional unification (more precisely, associative unification with unit element) (see,
e.g., [7]), word unification [10,17,29], and sequence unification [22,25,26]. There
are some good surveys on unification [8, 11,18,19].

Nominal logic [12, 33] extends first-order logic with primitives for renaming
via name-swapping, for freshness of names, and for name-binding. Such kind of
constructs are important in meta-programming and meta-deduction. Nominal
logic provides a simple formalism for reasoning about abstract syntax modulo
α-equivalence. A nominal term a.t is an example of abstraction, binding every
occurrence of atom a in t. Term equality (t ≈ t′) in nominal language is con-
sidered modulo renaming of bound variables (atoms), i.e., it is α-equivalence,
formalized inside the language itself. The α-equivalence is a meta-relation in
first-order syntax, but it is formulated at the object level in nominal languages.

? Supported by the Austrian Science Fund (FWF), project 28789-N32, and by the
Shota Rustaveli National Science Foundation, grant YS-19-367.

For such formulations it is important to explicitly define which atom can be
considered as a new atom for a given term. This relation (a#t), called freshness
relation, is also formulated on the object level in nominal languages.

Solving equations between nominal terms needs a special unification algo-
rithm [39], which is first-order, but can be also seen from the higher-order per-
spective via mapping from/to higher-order pattern unification [28]. The standard
nominal language contains fixed-arity symbols and one kind of variable, corre-
sponding to individual variables from first-order syntax. In nominal languages, a
unification problem, e.g. a.x ≈? b.y, is solved by a pair 〈{b#x}, {y 7→ (a b) · x}〉.
The first component of the solution, the freshness constraint b#x, requires that
b should not occur free in any possible instantiation of x. The second component,
the substitution, tells us that the solution must replace the variable y with the
term (a b) ·x. The latter means that atoms a and b are swapped in every possible
instantiation of x.

As we mentioned above, the constructs provided by nominal logic are impor-
tant for meta-deduction. However, this formalism, as well as many representation
formats for formalized mathematics typically do not provide a structural analog
for ellipses (. . .) which are commonly used in mathematical texts [14,15]. In the
literature, the latter problem has been addressed by permitting unranked (also
known as variadic, flexary, or flexible arity) symbols in the language, introducing
sequences in the meta-level, and extending the language with sequence variables,
see, e.g., [15, 20,21,24].

In this paper we present a combination of these two approaches, extending
nominal languages by unranked symbols and studying the fundamental compu-
tational mechanism for them: unification. However, unlike the above mentioned
unranked languages, where sequences are introduced in the meta-level, nomi-
nal syntax allows us to introduce their analogs in the object level. This is done
by generalizing already existing syntactic constructs, pairs, to arbitrary tuples.
They should be flat, which is achieved by imposing a special α-equivalence rule
for them.

Term pairs, which are a part of nominal syntax in some papers (e.g., [2,39])
have been extended to term tuples in [3, 4], but our approach differs in that we
additionally introduce variables that can be instantiated by tuples (tuple vari-
ables, that resemble sequence variables), and the mentioned notion of flatness.

The paper is organized as follows: In Section 2, we define the language. The
unification rules and a strategy that guarantees soundness and tries to minimize
redundant computations are discussed in Section 3. Some terminating fragments
of unranked nominal unification are introduced in Section 4. In Section 5, we
discuss related problems and explain our design choices. Section 6 concludes.

2 Unranked Nominal Language

In our signature we have pairwise disjoint sets of atoms (a, b, . . .), function sym-
bols (f, g, . . .), individual variables (x, y, . . .), tuple variables (X,Y, . . .), and the
tuple constructor 〈〉. Permutations are a finite (possibly empty) sequence of

2

swappings, which are pairs of atoms (a b). We use π to denote permutations,
write id for the identity (empty) permutation and π1 ◦ π2 for concatenating two
permutations.

An unranked nominal term (t, s, . . ., shortly a term) is either an individual
term r, a tuple variable with a suspended permutation π ·X, or a possibly empty
tuple of terms 〈t1, . . . , tn〉:

t ::= r | π ·X | 〈t1, . . . , tn〉, n ≥ 0,

where individual terms are defined by the grammar

r ::= a | a.t | π · x | f〈t1, . . . , tn〉, n ≥ 0.

We will write t : ι to indicate that t is an individual term. The terms π ·x and
π ·X are called suspensions. We skip π if π = id . The inverse of a permutation
π, denoted by π−1, is obtained by reversing the list of swappings from π.

Permutation action on terms is defined as follows:

– id · a = a.

– ((a1 a2) ◦ π) · a =

a1, if π · a = a2,
a2, if π · a = a1,
π · a, otherwise.

– π · (a.t) = (π · a).(π · t).
– π · (π′ · x) = (π ◦ π′) · x and π · (π′ ·X) = (π ◦ π′) ·X.

– π · (f〈t1, . . . , tn〉) = f(π · 〈t1, . . . , tn〉), and

– π · 〈t1, . . . , tn〉 = 〈π · t1, . . . , π · tn〉.

The disagreement set of two permutations π and π′ is defined as ds(π, π′) ::=
{a | π · a 6= π′ · a}. Further, we often omit expressions like a 6= b, assuming that
atoms differ by their names.

Substitution is a mapping from individual variables to individual terms and
from tuple variables to tuples such that all but finitely many individual vari-
ables are mapped to themselves, and all but finitely many tuple variables are
mapped to singleton tuples consisting of that variable only (i.e., mapping X to
〈X〉). They are usually written as finite sets, e.g., [x1 7→ t1, . . . , xn 7→ tn, X1 7→
〈t11, . . . , t1n1〉, . . . , Xm 7→ 〈tm1, . . . , tmnm〉]. We use the letter σ for substitutions
in general and ε for the identity substitution, i.e., ε(x) = x and ε(X) = 〈X〉 for
all individual and tuple variables x and X.

Application of a substitution σ to a term t is defined as follows:

– aσ = a.

– (a.t)σ = a.tσ.

– (f〈t1, . . . , tn〉)σ = f〈t1, . . . , tn〉σ.

– 〈t1, . . . , tn〉σ = 〈t1σ, . . . , tnσ〉, where nested tuples are flattened.

– (π · x)σ = π · σ(x) and (π ·X)σ = π · σ(X), where π acts on σ(x) and σ(X)
as permutation action.

3

For instance, for a substitution

σ = [x 7→ f〈b.b〉, X 7→ 〈a, f〈c.c, (a c) · Z〉〉, Y 7→ 〈〉]

we have

a.f〈(a b) · x, (a b) ·X, (a b) · Y 〉σ = a.f〈f〈a.a〉, b, f〈c.c, (a b)(a c) · Z〉〉.

A freshness environment (denoted by ∇) is a list of freshness constraints
a#x and a#X, meaning that the instantiations of x and X cannot contain free
occurrences of a. The flatness property of tuples is formalized by the axiom
≈ -flat. (where n ≥ 0, k ≥ 0,m ≥ 0)

The equivalence (≈) is defined by the following rules:

≈ -unit∇ ` 〈〉 ≈ 〈〉 ≈ -atom∇ ` a ≈ a

≈ -flat∇ ` 〈t1, . . . , tn, 〈t′1, . . . , t′k〉, t′′1 , . . . , t′′m〉 ≈ 〈t1, . . . , tn, t′1, . . . , t′k, t′′1 , . . . , t′′m〉

∇ ` t1 ≈ t′1 . . . ∇ ` tn ≈ t′n ≈ -tuple
∇ ` 〈t1, . . . , tn〉 ≈ 〈t′1, . . . , t′n〉

∇ ` 〈t1, . . . , tn〉 ≈ 〈t′1, . . . , t′n〉 ≈ -application
∇ ` f〈t1, . . . , tn〉 ≈ f〈t′1, . . . , t′n〉

t ≈ t′ ≈ -abst.1∇ ` a.t ≈ a.t′
∇ ` t ≈ (a b) · t′ ∇ ` a#t′

≈ -abst.2∇ ` a.t ≈ b.t′

a#x ∈ ∇ for all a ∈ ds(π, π′)
≈ -susp.1

∇ ` π · x ≈ π′ · x

a#X ∈ ∇ for all a ∈ ds(π, π′)
≈ -susp.2

∇ ` π ·X ≈ π′ ·X

and the freshness predicate (#) is defined by:

#-unit
∇ ` a#〈〉

∇ ` a#t1 . . . ∇ ` a#tn
#-tuple

∇ ` a#〈t1, . . . , tn〉

#-atom∇ ` a#b
∇ ` a#〈t1, . . . , tn〉

#-application
∇ ` a#f〈t1, . . . , tn〉

#-abst.1∇ ` a#a.t
∇ ` a#t

#-abst.2∇ ` a#b.t

(π−1 · a#x) ∈ ∇
#-susp.1∇ ` a#π · x

(π−1 · a#X) ∈ ∇
#-susp.2∇ ` a#π ·X

Proposition 1. Given a freshness context ∇, a permutation π, an atom a and
a term t, we have:

4

(1) If ∇ ` a#π · t then ∇ ` π−1 · a#t.
(2) If ∇ ` π · a#t then ∇ ` a#π−1 · t.
(3) If ∇ ` a#t then ∇ ` π · a#π · t.

Proof. Using induction on the structure of t and the fact that π · a = b iff
a = π−1 · b. The last statement is the consequence of (2) and the fact that
permutations are bijections on atoms. ut

The size of a term t, denoted by |t|, is defined by:

|π · x| = |π ·X| = |a| = |〈〉| = 1, |a.t| = 1 + |t|,
|f〈t1, . . . , tn〉| = 1 + |〈t1, . . . , tn〉|, |〈t1, . . . , tn〉| = 1 + |t1|+ . . .+ |tn|.

Further, we define the size of an equation as |t ≈ t′| = |t|+ |t′| and the size of a
freshness constraint as |a#t| = |t|.

Theorem 1. ≈ is an equivalence relation.

Proof. Similar to the corresponding results from [5,39].

– Reflexivity is by a simple induction on the structure of terms.
– Transitivity is by an induction on the size of terms using the properties:
• permutations can be moved from one side of the freshness relation to the

other by forming the inverse permutation (Proposition 1).
• the freshness relation is preserved under ≈ and permutation actions.

– Symmetry is by a simple induction on the structure of terms using the Propo-
sition 1 and preservation of freshness under alpha-equivalence.

ut

3 Unification

An unranked nominal unification problem P is a finite set of equational t ≈? t′ or
freshness problems a#?t. Tuples occurring in the unification problem are always
flattened (e.g. after substitution application, etc.). A solution for P is a pair
(∇, σ) such that for all problems t ≈? t′ in P we have ∇ ` σ(t) ≈ σ(t′) and for
all problems a#?t in P we have ∇ ` a#σ(t).

To describe the unification algorithm we use so called labeled transformation

of unification problems: P
σ

=⇒ P ′ and P
∇

=⇒ P ′ which are given below (note
that if in ≈-susp.1,2 π = π′, then ds(π, π′) and thus {a#?x,X | a ∈ ds(π, π′)}
is empty; V (t) denotes the set of variables occurring in t):

(≈? -atom) {a ≈? a} ∪ P ε
=⇒ P.

(≈? -unit) {〈〉 ≈? 〈〉} ∪ P ε
=⇒ P.

(≈? -function) {f〈t1, . . . , tn〉 ≈? f〈t′1, . . . , t′m〉} ∪ P
ε

=⇒
{〈t1, . . . , tn〉 ≈? 〈t′1, . . . , t′m〉} ∪ P.

5

(≈? -abst.1) {a.t ≈? a.t′} ∪ P ε
=⇒ {t ≈? t′} ∪ P.

(≈? -abst.2) {a.t ≈? b.t′} ∪ P ε
=⇒ {t ≈? (a b) · t′, a#?t′} ∪ P.

(≈? -susp.1) {π · x ≈? π′ · x} ∪ P ε
=⇒ {a#?x | a ∈ ds(π, π′)} ∪ P.

(≈? -susp.2) {π ·X ≈? π′ ·X} ∪ P ε
=⇒ {a#?X | a ∈ ds(π, π′)} ∪ P.

(≈? -tuple) {〈t, t1, . . . , tn〉 ≈? 〈t′, t′1, . . . , t′m〉} ∪ P
ε

=⇒
{t ≈ t′, 〈t1, . . . , tn〉 ≈? 〈t′1, . . . , t′m〉} ∪ P,

where t and t′ are not tuple variables.

(≈? -proj.1) {〈π ·X, t1, . . . , tn〉 ≈? 〈t′1, . . . , t′m〉} ∪ P
σ

=⇒
{〈t1σ, . . . , tnσ〉 ≈? 〈t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X 7→ 〈〉].

(≈? -proj.2) {〈t1, . . . , tn〉 ≈? 〈π ·X, t′1, . . . , t′m〉} ∪ P
σ

=⇒
{〈t1σ, . . . , tnσ〉 ≈? 〈t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X 7→ 〈〉].

(≈? -widen.1) {〈π ·X, t1, . . . , tn〉 ≈? 〈t, t′1, . . . , t′m〉} ∪ P
σ

=⇒
{〈X ′, t1σ, . . . , tnσ〉 ≈? 〈t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X 7→ π−1 · 〈t,X ′〉], X 6∈ V (t).

(≈? -widen.2) {〈t, t1, . . . , tn〉 ≈? 〈π ·X, t′1, . . . , t′m〉} ∪ P
σ

=⇒
{〈t1σ, . . . , tnσ〉 ≈? 〈X ′, t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X 7→ π−1 · 〈t,X ′〉], X 6∈ V (t).

(≈? -var.1) {π · x ≈? t : ι} ∪ P σ
=⇒ Pσ,

where σ = [x 7→ π−1 · t], x 6∈ V (t).

(≈? -var.2) {t : ι ≈? π · x} ∪ P σ
=⇒ Pσ,

where σ = [x 7→ π−1 · t], x 6∈ V (t).

(≈? -var.3) {π ·X ≈? t} ∪ P σ
=⇒ Pσ,

where σ = [X 7→ 〈π−1 · t〉], X 6∈ V (t).

(≈? -var.4) {t ≈? π ·X} ∪ P σ
=⇒ Pσ,

where σ = [X 7→ 〈π−1 · t〉], X 6∈ V (t).

(#?-atom) {a#?b} ∪ P ∅
=⇒ P.

(#?-unit) {a#?〈〉} ∪ P ∅
=⇒ P.

6

(#?-tuple) {a#?〈t1, . . . , tn〉} ∪ P
∅

=⇒ {a#?t1, . . . , a#?tn} ∪ P.

(#?-function) {a#?f〈t1, . . . , tn〉} ∪ P
∅

=⇒ {a#?〈t1, . . . , tn〉} ∪ P.

(#?-abst.1) {a#?a.t} ∪ P ∅
=⇒ P.

(#?-abst.2) {a#?b.t} ∪ P ∅
=⇒ {a#?t} ∪ P.

(#?-susp.1) {a#?π · x} ∪ P ∇
=⇒ P, where ∇ = {π−1 · a#x}.

(#?-susp.2) {a#?π ·X} ∪ P ∇
=⇒ P, where ∇ = {π−1 · a#X}.

The naive algorithm, as presented in [28], is divided into two phases: first

apply as many
σ

=⇒ transformations as possible. It might cause branching due
to tuple variables. On some branches, there might be no equational problems

left. We expand them by
∇

=⇒ transformations as long as possible. If we do not
end up with the empty problem, then halt with failure, otherwise from the

sequence of transformations P
σ1=⇒ · · · σn=⇒ P ′

∇1=⇒ · · · ∇m=⇒ ∅ construct the
solution (∇1 ∪ · · · ∪ ∇m, σn ◦ · · · ◦ σ1). Some branches might directly lead to

failure after application of
σ

=⇒ rules. Some branches might cause more and more
branching, leading to infinite sets of solutions. Employing some fair strategy of
search tree development, we can have a complete method to enumerate them.

Example 1. We give examples of some unification problems and their solutions:

– Problem: {f〈a.〈X,x, Y 〉〉 ≈? f〈b.〈f〈X〉, x, b, c〉〉}.
Solution: (∅, [X 7→ 〈〉, x 7→ f〈〉, Y 7→ 〈f〈〉, a, c〉]).

– Problem: {a.b.f〈X, b〉 ≈? b.a.f〈a,X〉}.
Solution: (∅, [X 7→ 〈〉]).

– Problem: {f〈X, a〉 ≈? f〈a, Y 〉}.
Solutions: (∅, [X 7→ 〈〉, Y 7→ 〈〉]) and (∅, [X 7→ 〈a, Z〉, Y 7→ 〈Z, a〉]).

If instead of Y we had X, then there would be infinitely many solutions:
(∅, [X 7→ 〈〉]), (∅, [X 7→ 〈a〉]), (∅, [X 7→ 〈a, a〉]),

– Problem: {a.f〈X, a〉 ≈? b.f〈b,X〉}.
Solution: (∅, [X 7→ 〈〉]).

– Problem: {a.f〈X, a〉 ≈? b.f〈b, Y 〉}.
Solutions: (∅, [X 7→ 〈〉,Y 7→ 〈〉]) and ({b#Z}, [X 7→ 〈a, Z〉, Y 7→ 〈(a b)·Z, b〉]).

– Problem: {a.f〈X, c〉 ≈? b.f〈c, Y 〉}.
Solutions: (∅, [X 7→ 〈〉, Y 7→ 〈〉]) and ({b#Z}, [X 7→ 〈c, Z〉, Y 7→ 〈(a b)·Z, c〉]).

– Problem: {f〈X,Y 〉 ≈? f〈a, b,X〉, b#X}.
Solutions: (∅, [X 7→ 〈〉, Y 7→ 〈a, b〉]) and (∅, [X 7→ 〈a〉, Y 7→ 〈b, a〉]).

7

Without b#X, the problem {f〈X,Y 〉 ≈? f〈a, b,X〉} has infinitely many
solutions: (∅, [X 7→ 〈〉, Y 7→ 〈a, b〉]), (∅, [X 7→ 〈a〉, Y 7→ 〈b, a〉]), (∅, [X 7→
〈a, b〉, Y 7→ 〈a, b〉]), (∅, [X 7→ 〈a, b, a〉, Y 7→ 〈b, a〉]), (∅, [X 7→ 〈a, b, a, b〉, Y 7→
〈a, b〉]), (∅, [X 7→ 〈a, b, a, b, a〉, Y 7→ 〈b, a〉]),

The naive algorithm, described above, can be non-terminating even when
there is a finite number of solutions. This is illustrated by the following example.

Example 2. Let us consider the following unification problem:

{a.f〈X, a〉 ≈? b.f〈b,X〉} =⇒≈?-abst.2

{f〈X, a〉 ≈? f〈a, (a b) ·X〉, a#?f〈b,X〉} =⇒≈?-function

{〈X, a〉 ≈? 〈a, (a b) ·X〉, a#?f〈b,X〉}

Now, we can apply ≈? -proj.1 rule (followed by ≈? -atom and several
∇

=⇒ trans-
formations) to obtain a solution (∅, [X 7→ 〈〉]).

When we apply ≈? -widen.1 rules, we get non-terminating branch:

{〈X, a〉 ≈? 〈a, (a b) ·X〉, a#?f〈b,X〉} [X 7→〈a,X1〉]
=⇒

{〈X1, a〉 ≈? 〈b, (a b) ·X1〉, a#?f〈b, a,X1〉}
[X1 7→〈b,X2〉]

=⇒
{〈X2, a〉 ≈? 〈a, (a b) ·X2〉, a#?f〈b, a, b,X2〉} =⇒ · · ·

But we could apply
∇

=⇒ transformations on a subset {a#?f〈b, a,X1〉}, obtain
{a#?a, a#?X1} and stop with failure since a#?a has no solution.

An obvious attempt to fix the problem for such cases would be to delay appli-

cation of the ≈? -widen.1 and ≈? -widen.2 rules until all possible
∇

=⇒ transforma-
tions are applied. But we should be careful not to remove freshness constraints
from the problems too early.

Consider the following example: {a ≈? x, a#?x}. If we apply the #?-susp.1
rule first and then ≈? -var.2, we will obtain a wrong solution ({a#x}, [x 7→ a]).
Thus, we should delay application of the #?-susp.1 and #?-susp.2 rules until all
possible

σ
=⇒ transformations are applied.

The discussion above leads to the following strategy S:

– first apply as many
σ

=⇒ transformations as possible except the ≈? -proj.1,2
and ≈? -widen.1,2 rules.

– if no other
σ

=⇒ transformation is possible, ≈? -proj.1,2 and ≈? -widen.1,2
rules can be applied in parallel. However, before the ≈? -widen.1 and ≈?

-widen.2 rules, one should apply as many
∇

=⇒ transformations as possible
except the #?-susp.1 and #?-susp.2 rules.

– use #?-susp.1 and #?-susp.2 rules if no other rules are applicable.
– If there is at least one equational problem in P such that no transformation

rule is applicable on it, immediately halt the development of that branch
with failure.

8

Theorem 2. Given a unification problem P , if the unranked unification algo-
rithm with the strategy S fails on P , then P has no solution; and if it succeeds
on P , then the result is a unifier.

Proof. The idea is that mixing equational and freshness rules except #?-susp.1,2
does not cause soundness problems, since those freshness rules do not affect
variables. Parallel application of widening and projection rules together with
the iteration of the strategy make sure that no solution is lost (cf. Theorem 51
in [22]).

For a unification problem P , the strategy S fails on P if there is at least one
of the following pairs a ≈? b, b ≈? a, a ≈? 〈〉, 〈〉 ≈? a, a#?a in P ′, obtained
by applying simplification rules to P , or there is an occurs check violation in
≈? -var rules. Clearly, P has no solution in these cases.

If the strategy S succeeds on P , then we get a result (∇1∪ · · · ∪∇n, σ1 ◦ · · · ◦
σm). The proof continues by simple induction on transitions with the following
induction hypothesis:

– If P
σ

=⇒ P ′ and (∇, σ′) is a unifier for P ′, then (∇, σ ◦ σ′) is a unifier for P .

– If P
∇

=⇒ P ′ and (∇′, σ) is a unifier for P ′, then (∇∪∇′, σ) is a unifier for P .
ut

Example 3. We demonstrate how the strategy works on a unification problem.

{a.f〈X,x, Y, f〈y, x〉〉 ≈? b.f〈g〈X〉, x, b, Z, f〈g〈X〉, y〉〉} =⇒≈?-abst.2

{f〈X,x, Y, f〈y, x〉〉 ≈?

f〈g〈(a b) ·X〉, (a b) · x, a, (a b) · Z, f〈g〈(a b) ·X〉, (a b) · y〉〉,
a#?f〈g〈X〉, x, b, Z, f〈g〈X〉, y〉〉} =⇒≈?-function

{〈X,x, Y, f〈y, x〉〉 ≈?

〈g〈(a b) ·X〉, (a b) · x, a, (a b) · Z, f〈g〈(a b) ·X〉, (a b) · y〉〉,

a#?f〈g〈X〉, x, b, Z, f〈g〈X〉, y〉〉} [X 7→〈〉]
=⇒≈?-proj.1

Note, that at this point ≈? -widen.1 is not applicable because of occurs check:
X ∈ V (g〈(a b) ·X〉).

{〈x, Y, f〈y, x〉〉 ≈? 〈g〈〉, (a b) · x, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, x, b, Z, f〈g〈〉, y〉〉} =⇒≈?-tuple

{x ≈? g〈〉, 〈Y, f〈y, x〉〉 ≈? 〈(a b) · x, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,

a#?f〈g〈〉, x, b, Z, f〈g〈〉, y〉〉} [x 7→g〈〉]
=⇒≈?-var.1

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, g〈〉, b, Z, f〈g〈〉, y〉〉}.

9

Now, we have two branches: (a) continue again with ≈? -proj.1, followed by

≈? -tuple and several
∇

=⇒ transformations (given also below), leading to the

failure; and (b) continue with the
∇

=⇒ transformations followed by ≈? -widen.1:

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, g〈〉, b, Z, f〈g〈〉, y〉〉} =⇒#?-function

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?〈g〈〉, g〈〉, b, Z, f〈g〈〉, y〉〉} =⇒#?-tuple

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?g〈〉, a#?b, a#?Z, a#?f〈g〈〉, y〉} =⇒#?-function, tuple

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?g〈〉, a#?b, a#?Z, a#?y} =⇒#?-function, unit, atom

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,

a#?Z, a#?y} [Y 7→〈g〈〉,Y1〉]
=⇒≈?-widen.1

{〈Y1, f〈y, g〈〉〉〉 ≈? 〈a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,

a#?Z, a#?y} [Y1 7→〈a,Y2〉]
=⇒≈?-widen.1

{〈Y2, f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?Z, a#?y}.

Note that before the last ≈? -widen.1 rule application we should have the ≈?

-proj.1 branch again leading to the failure.
Now, at this point we have several options:
(1) apply ≈? -proj.1 rule

{〈Y2, f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉,

a#?Z, a#?y} [Y2 7→〈〉]
=⇒≈?-proj.1

{〈f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉, a#?Z, a#?y} [Z 7→〈〉]
=⇒≈?-proj.2

{〈f〈y, g〈〉〉〉 ≈? 〈f〈g〈〉, (a b) · y〉〉, a#?〈〉, a#?y} =⇒≈?-tuple, function

{〈y, g〈〉〉 ≈? 〈g〈〉, (a b) · y〉, a#?〈〉, a#?y} =⇒≈?-tuple

{y ≈? g〈〉, g〈〉 ≈? (a b) · y, 〈〉 ≈? 〈〉, a#?〈〉, a#?y} [y 7→g〈〉]
=⇒≈?-var.1

{g〈〉 ≈? g〈〉, 〈〉 ≈? 〈〉, a#?〈〉, a#?g〈〉} =⇒≈?-function, unit

{a#?〈〉, a#?g〈〉} =⇒#?-function, unit

∅.

10

and we obtain the solution (∅, [X 7→ 〈〉, x 7→ g〈〉, Y 7→ 〈g〈〉, a〉, Z 7→ 〈〉, y 7→ g〈〉]).
Note, that application of ≈? -widen.2 instead of ≈? -proj.2 rule in this branch
will lead to failure.

(2) applying ≈? -proj.2 rule first is similar to (1), obtaining the same solution.

(3) apply ≈? -widen.1 rule

{〈Y2, f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉,

a#?Z, a#?y} [Y2 7→〈(a b)·Z,Y3〉]
=⇒≈?-widen.1

{〈Y3, f〈y, g〈〉〉〉 ≈? 〈f〈g〈〉, (a b) · y〉〉, a#?Z, a#?y} [Y3 7→〈〉]
=⇒≈?-proj.1

{〈f〈y, g〈〉〉〉 ≈? 〈f〈g〈〉, (a b) · y〉〉, a#?Z, a#?y} =⇒≈?-tuple, function

{y ≈? g〈〉, g〈〉 ≈? (a b) · y, 〈〉 ≈? 〈〉, a#?Z, a#?y} [y 7→g〈〉]
=⇒≈?-var.1

{g〈〉 ≈? g〈〉, 〈〉 ≈? 〈〉, a#?Z, a#?g〈〉} =⇒≈?-function, unit

{a#?Z, a#?g〈〉} =⇒#?-function, unit

{a#?Z} {a#Z}
=⇒#?-susp.2

∅

and we obtain the solution ({a#Z}, [X 7→ 〈〉, x 7→ g〈〉, Y 7→ 〈g〈〉, a, (a b) · Z〉, y 7→
g〈〉]). Note, that application of ≈? -widen.1 again instead of ≈? -proj.1 rule in
this branch will lead to failure.

(4) applying ≈? -widen.2 rule first is similar to (3), obtaining the equivalent
solution ({a#Y2}, [X 7→ 〈〉, x 7→ g〈〉, Y 7→ 〈g〈〉, a, Y2〉, Z 7→ (a b) · Y2, y 7→ g〈〉])
(up to renaming of the variables).

It is clear from the example above that our algorithm is not minimal in the
sense that it computes the same or equivalent solutions several times. Finding
restrictions to achieve minimality is a topic for further research.

4 Terminating fragments

Strategy S helps to detect failures early, trying to avoid redundant computations.
However, it can not guarantee termination, even when the solution set is finite.
It is not surprising, since the strategy does not provide the decision algorithm
for unranked nominal unification.

In this section we consider three special cases for which the strategy termi-
nates. They originate from (non-nominal) unranked unification problems with
finite sets of most general unifiers [27] and, hence, keep the same property for
nominal unranked unification. Characterizations of termination based on fresh-
ness constraints require further investigation.

11

The KIF fragment. In this fragment, every occurrence of tuple variables is in
the last argument of a tuple. The name originates from Knowledge Interchange
Format (KIF), a language designed for representing and sharing information
between disparate computer systems [13]. In KIF, the variables that correspond
to our tuple variables are allowed to occur only as the last arguments in terms.
This is a so-called unitary fragment: solvable unification problems have a single
most general unifier. This property makes it suitable for reasoning, see, e.g.,
[16, 20, 30]. We can simplify the widening rules for this fragment. Instead of
stepwise computation of the substitution, we can at once replace a tuple variable
with the entire tuple in the other side of the equation:

(≈? -widen.KIF.1) {〈π ·X〉 ≈? 〈t′1, . . . , t′m〉} ∪ P
σ

=⇒ Pσ, where m ≥ 0,

σ = [X 7→ π−1 · 〈t′1, . . . , t′m〉], and X 6∈ V (〈t′1, . . . , t′m〉).

The second widening rule is adapted analogously, and the projection rules can
be dropped as they are subsumed with these KIF-specific widening rules.

Example 4. We illustrate how the KIF-adapted rules are used to solve a unifi-
cation problem in this fragment.

{f〈a.f〈a,X〉, g〈x, y,X〉, Y 〉 ≈?

f〈b.f〈b, x, Y 〉, g〈b, Z〉, U〉} =⇒≈?-function, tuple

{a.f〈a,X〉 ≈? b.f〈b, x, Y 〉,
〈g〈x, y,X〉, Y 〉 ≈? 〈g〈b, Z〉, U〉} =⇒≈?- abst.2, tuple

{f〈a,X〉 ≈? f〈a, (a b) · x, (a b) · Y 〉, 〈Y 〉 ≈? 〈U〉,
g〈x, y,X〉 ≈? g〈b, Z〉, a#?f〈b, x, Y 〉} =⇒≈?-function, tuple, atom

{〈X〉 ≈? 〈(a b) · x, (a b) · Y 〉, g〈x, y,X〉 ≈? g〈b, Z〉,
〈Y 〉 ≈? 〈U〉, a#?f〈b, x, Y 〉} =⇒≈?-function, tuple

{〈X〉 ≈? 〈(a b) · x, (a b) · Y 〉, x ≈? b, 〈y,X〉 ≈? 〈Z〉,

〈Y 〉 ≈? 〈U〉, a#?f〈b, x, Y 〉} [x 7→b]
=⇒≈?-var.1

{〈X〉 ≈? 〈a, (a b) · Y 〉, 〈y,X〉 ≈? 〈Z〉, 〈Y 〉 ≈? 〈U〉,
a#?f〈b, b, Y 〉} =⇒#?-function, tuple, atom

{〈X〉 ≈? 〈a, (a b) · Y 〉, 〈y,X〉 ≈? 〈Z〉, 〈Y 〉 ≈? 〈U〉,

a#?Y } [X 7→〈a,(a b)·Y 〉]
=⇒≈?-widen.KIF.1

{〈y, a, (a b) · Y 〉 ≈? 〈Z〉, 〈Y 〉 ≈? 〈U〉, a#?Y } [Z 7→〈y,a,(a b)·Y 〉]
=⇒≈?-widen.KIF.2

{〈Y 〉 ≈? 〈U〉, a#?Y } [Y 7→〈U〉]
=⇒≈?-widen.KIF.1

{a#?U} {a#U}
=⇒≈?-susp.2

12

∅.

Hence, the algorithm returns a most general unifier

({a#U}, [X 7→ 〈a, (a b) · U〉, x 7→ b, Z 7→ 〈y, a, (a b) · U〉, Y 7→ 〈U〉]).

Linear fragment. Unification problems in which no variable occurs more than
once are called linear. Unlike the KIF fragment, here there are unification prob-
lems that have more than one, but still finitely many solutions. For the linear
fragment we can simplify the unification rules. For instance, in the rules that
eliminate variables (proj, widen, var), the substitution σ does not have to apply
to the whole P , because the eliminated variable can not have any other occur-
rence in the remaining unification equations. It may occur only in the freshness
constraints and it is sufficient to apply σ only to them. Besides, the occurrence
check does not have to be performed. The ≈? -susp.1 and ≈? -susp.2 rules never
apply. The following is an example of linear unranked nominal unification.

Example 5. Let the unification problem be {a.f〈X, a〉 ≈? b.f〈b, Y 〉}. Then we
have two derivations. The first one is:

{a.f〈X, a〉 ≈? b.f〈b, Y 〉} =⇒≈?-abst.2, function

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?f〈b, Y 〉} =⇒#?-function, tuple, atom

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?Y } [X 7→〈〉]
=⇒≈?-proj.1

{〈a〉 ≈? 〈a, (a b) · Y 〉, a#?Y } =⇒≈?-tuple, atom

{〈〉 ≈? 〈(a b) · Y 〉, a#?Y } [Y 7→〈〉]
=⇒≈?-proj.2, unit

{a#?〈〉} =⇒#?-unit

∅.

It leads to the solution (∅, [X 7→ 〈〉, Y 7→ 〈〉]).
The second derivation is

{a.f〈X, a〉 ≈? b.f〈b, Y 〉} =⇒≈?-abst.2, function

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?f〈b, Y 〉} =⇒#?-function, tuple, atom

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?Y } [X 7→〈a,X1〉]
=⇒≈?-widen.1

{〈X1, a〉 ≈? 〈(a b) · Y 〉, a#?Y } [Y 7→〈(a b)·X1,(a b)·Y1〉]
=⇒≈?-widen.2

{〈a〉 ≈? 〈Y1〉, a#?〈(a b) ·X1, (a b) · Y1〉} =⇒#?-tuple

{〈a〉 ≈? 〈Y1〉, a#?(a b) ·X1, a#?(a b) · Y1}
[Y1 7→〈a,Y2〉]

=⇒≈?-widen.2

{〈〉 ≈? 〈Y2〉, a#?(a b) ·X1, a#?〈b, (a b) · Y2〉}
[Y2 7→〈〉]

=⇒≈?-proj.2, unit

13

{a#?(a b) ·X1, a#?〈b〉} {b#X1}
=⇒#?-susp.2, tuple, atom

∅.

From this derivation, we get the second unifier ({b#X1}, {X 7→ 〈a,X1〉, Y 7→
〈(a b) ·X1, b〉}).

Matching fragment. Matching equations are those in which variables may occur
only in one side, e.g., left. In this case, we can skip the occurrence check in
variable elimination rules. The ≈? -susp.1,2 and ≈? -susp.2 rules never apply. If
the given problem does not contain freshness constraints, they will not appear
in the result either.

Example 6. The matching problem {f〈X,x, Y, (c d)·x, Z〉 ≈? f〈a, b.b, c, a.a, b, d〉}
has two solutions (∅, {X 7→ 〈a〉, x 7→ b.b, Y 7→ 〈c〉, Z 7→ 〈b, d〉}) and (∅, {X 7→
〈a, b.b〉, x 7→ c, Y 7→ 〈a.a, b〉, Z 7→ 〈〉}).

Theorem 3. The strategy S for unranked unification algorithm is terminating
in the KIF, linear, and matching fragments.

Proof. For a unification problem P , the measure of the size of P is a tuple of
natural numbers (nx, nX , n≈, n#), where nx is the number of different individual
variables occurring in P , nX is the number of different tuple variables occurring
in P , n≈ is the total size of all equational problems in P and n# is the total size
of all freshness problems in P .

nx and nX values are decreased by the ≈? -var rules and all
∇

=⇒ transfor-
mations are decreasing n#. Analogously, in general, all

σ
=⇒ transformations are

decreasing n≈, except the ≈? -tuple, ≈? -widen.1 and ≈? -widen.2 rules. Clearly,
≈? -tuple can be applied only finitely many times, since tuples are finite. Next,
it is easy to see that in the specific cases ≈? -widen.1 and ≈? -widen.2 rules are
also decreasing n≈:

– if P is a unification problem from KIF-fragment, then ≈? -widen.1,2 and
≈? -proj.1,2 rules are replaced by ≈? -widen.KIF.1,2 which are decreasing n≈
(and nX as well).

– if P is a unification problem from linear fragment, then every tuple variable
occurs only once in P , thus ≈? -widen.1,2 rules are decreasing n≈.

– if P is a matching problem, then there is no tuple variables on the other
side, thus ≈? -widen.1,2 rules are decreasing n≈ in this case as well.

ut

5 Discussion

Both nominal and unranked languages are important for formalizing informal
mathematical practice. In nominal languages, one can represent and reason with
syntax involving explicitly named bound variables. In unranked languages, one
can express and formalize variadic operators and ellipsis that are ubiquitous

14

in mathematical practice. By bringing these two formalisms together, one can
get the best of both worlds, aiming at a combination of nominal and unranked
logical frameworks. Methods for solving term equations, such as unification and
matching, are the core computational mechanism for deduction, rewriting, and
programming in such frameworks. Our work makes a step in this direction,
providing a procedure that combines nominal and unranked features.

Unranked function symbols look similar to associative function symbols with
unit element (A1 symbols). The associativity axiom (for a symbol f) can be
expressed as f〈f〈x, y〉, z〉 ≈ f〈x, f〈y, z〉〉 and that e is the unit element of f can
be written as f〈x, e〉 ≈ x and f〈e, x〉 ≈ x. Then terms with nested associative
symbols can be flattened, writing, e.g., f〈x, y, z〉 for f〈f〈x, y〉, z〉. However, in
equation solving, unranked and A1 symbols behave differently. Even without
nominal binders and freshness atoms, unranked unification and A1-unification
are different problems, which can be illustrated with the following example:

Example 7. If f and g are unranked symbols and X is a tuple variable, then
the unranked unification problem f〈X, g〈X, c〉〉 ≈? f〈a, b, g〈a, b, c〉〉 is solved by
{X 7→ 〈a, b〉}. (In this language, tuples are flat.) If we assume that f and g are
A1 symbols and X is an individual variable (in A1 unification problems, tuple
variables do not occur), then the same problem does not have a solution: for
the left hand side, {X 7→ f〈a, b〉} gives f〈a, b, g〈f〈a, b〉, c〉〉, while {X 7→ g〈a, b〉}
leads to f〈g〈a, b〉, g〈a, b, c〉〉. None of them is equal to the right hand side. Even
if we assume that 〈a, b〉 is a term of this language and X can be instantiated
with it, we get f〈〈a, b〉, g〈〈a, b〉, c〉〉 as the instance of the left hand side, which is
different from f〈a, b, g〈a, b, c〉〉, since tuples are not flat in these theories.

In recent years, equational nominal unification has been investigated e.g.,
in [1, 3, 6, 36, 37], but associative and associative-unit theories were not among
the studied ones, although α-equivalence modulo associativity has been intro-
duced and formalized in [2] and A-matching rules were given in [9]. One can en-
code flat tuples via an A1 constructor in a two-sorted language as it was shown,
e.g., in [22]. Combining it with nominal techniques, we would get a nominal A1-
unification problem of a special kind. However, as we have already mentioned,
nominal associative unification has not been investigated so far and we would
still have to develop a dedicated solving procedure for this problem. (It would
look very similar to our unranked nominal unification algorithm and can be easily
reconstructed along the lines of the latter.) We chose not to follow that path and,
instead, stick to the unranked setting. The same approach is taken, e.g., in [15],
where the authors bring various reasons in favor of the unranked (thereby called
flexary) representation, among them the fact that unranked representation is
often more natural for implementation. As an example, they mention implemen-
tations of type theory (e.g., the Twelf logical framework [32]), where unranked
representation is preferred over associative representations both internally and
at the user level. Our own experience with implementing a combination of per-
missive nominal unification and a restricted version of sequence unification in a
mathematical assistant system [23] confirms this observation.

15

Nominal unification problems have been extended with context variables in
[38]. Relation between context and sequence unification (without nominal terms)
has been studied in [25, 26]. It would be interesting to find a similar connection
between our work and nominal context unification from [38], but it goes beyond
the scope of this paper and can be left for future investigations.

6 Conclusion

We presented an unranked nominal language as an extension of the nominal
language with tuple variables and term tuples. We developed a unification pro-
cedure for solving equality and freshness problems for unranked nominal terms
and proved its soundness and completeness. The soundness property is guaran-
teed by a specific strategy the procedure is based on. At the same time, the
strategy tries to minimize redundant computations.

Some unranked nominal unification problems have an infinite set of solutions.
Our procedure, as a complete method, does not terminate for them. It may
also run forever for some problems with finite set of solutions, which is not
surprising since the strategy is not a decision algorithm. To address this problem,
we identified three practically important finitary fragments of unranked nominal
unification and proved that our procedure terminates for them.

Acknowledgements

We would like to thank the anonymous referees for their useful comments that
helped us to improve our work.

References

1. M. Ayala-Rincón, W. de Carvalho Segundo, M. Fernández, and D. Nantes-Sob-
rinho. Nominal C-unification. In F. Fioravanti and J. P. Gallagher, editors, Logic-
Based Program Synthesis and Transformation - 27th International Symposium,
LOPSTR 2017, Namur, Belgium, October 10-12, 2017, Revised Selected Papers,
volume 10855 of Lecture Notes in Computer Science, pages 235–251. Springer,
2017.

2. M. Ayala-Rincón, W. de Carvalho-Segundo, M. Fernández, D. Nantes-Sobrinho,
and A. C. Rocha-Oliveira. A formalisation of nominal α-equivalence with A, C,
and AC function symbols. Theoretical Computer Science, 781:3–23, 2019.

3. M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho. Fixed-point constraints
for nominal equational unification. In H. Kirchner, editor, 3rd International Con-
ference on Formal Structures for Computation and Deduction, FSCD 2018, July
9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018.

4. M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho. On nominal syntax and
permutation fixed points. Log. Methods Comput. Sci., 16(1), 2020.

5. M. Ayala-Rincón, M. Fernández, and A. C. Rocha-Oliveira. Completeness in PVS
of a nominal unification algorithm. ENTCS, 323(3):57–74, 2016.

16

6. M. Ayala-Rincón, M. Fernández, G. F. Silva, and D. Nantes-Sobrinho. A certified
functional nominal C-unification algorithm. In M. Gabbrielli, editor, Logic-Based
Program Synthesis and Transformation - 29th International Symposium, LOPSTR
2019, Porto, Portugal, October 8-10, 2019, Revised Selected Papers, volume 12042
of Lecture Notes in Computer Science, pages 123–138. Springer, 2019.

7. F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

8. F. Baader and W. Snyder. Unification theory. In Robinson and Voronkov [35],
pages 445–532.

9. W. de Carvalho Segundo. Nominal Equational Problems Modulo Associativity,
Commutativity and Associativity-Commutativity. PhD thesis, Universidade de
Braśılia, Brazil, 2019.

10. V. Diekert. Makanin’s algorithm. Algebraic combinatorics on words, 90:387–442,
2002.

11. G. Dowek. Higher-order unification and matching. In Robinson and Voronkov [35],
pages 1009–1062.

12. M. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

13. M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format. Version 3.0.
Reference Manual. Technical Report KSL-92-86, Comp. Sci. Department, Stanford
University, June 1992.

14. F. Horozal. A Framework for Defining Declarative Languages. PhD thesis, Jacobs
University Bremen, 2014.

15. F. Horozal, F. Rabe, and M. Kohlhase. Flexary operators for formalized mathe-
matics. In S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, and J. Urban, ed-
itors, Intelligent Computer Mathematics - International Conference, CICM 2014,
Coimbra, Portugal, July 7-11, 2014. Proceedings, volume 8543 of Lecture Notes in
Computer Science, pages 312–327. Springer, 2014.

16. I. Horrocks and A. Voronkov. Reasoning support for expressive ontology languages
using a theorem prover. In J. Dix and S. J. Hegner, editors, Foundations of In-
formation and Knowledge Systems, 4th International Symposium, FoIKS 2006,
Budapest, Hungary, February 14-17, 2006, Proceedings, volume 3861 of Lecture
Notes in Computer Science, pages 201–218. Springer, 2006.

17. J. Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
18. J. Jouannaud and C. Kirchner. Solving equations in abstract algebras: A rule-based

survey of unification. In J. Lassez and G. D. Plotkin, editors, Computational Logic
- Essays in Honor of Alan Robinson, pages 257–321. The MIT Press, 1991.

19. K. Knight. Unification: A multidisciplinary survey. ACM Comput. Surv., 21(1):93–
124, 1989.

20. T. Kutsia. Equational prover of THEOREMA. In R. Nieuwenhuis, editor, Rewrit-
ing Techniques and Applications, 14th International Conference, RTA 2003, Va-
lencia, Spain, June 9-11, 2003, Proceedings, volume 2706 of Lecture Notes in Com-
puter Science, pages 367–379. Springer, 2003.

21. T. Kutsia. Solving equations involving sequence variables and sequence functions.
In B. Buchberger and J. A. Campbell, editors, AISC 2004, Proceedings, volume
3249 of Lecture Notes in Computer Science, pages 157–170. Springer, 2004.

22. T. Kutsia. Solving equations with sequence variables and sequence functions. J.
Symb. Comput., 42(3):352–388, 2007.

23. T. Kutsia. Unification modulo alpha-equivalence in a mathematical assistant sys-
tem. RISC Report Series 20-01, RISC, Johannes Kepler University Linz, 2020.

17

24. T. Kutsia and B. Buchberger. Predicate logic with sequence variables and sequence
function symbols. In A. Asperti, G. Bancerek, and A. Trybulec, editors, MKM
2004, Proceedings, volume 3119 of Lecture Notes in Computer Science, pages 205–
219. Springer, 2004.

25. T. Kutsia, J. Levy, and M. Villaret. Sequence unification through currying. In
F. Baader, editor, Term Rewriting and Applications, 18th International Confer-
ence, RTA 2007, Paris, France, June 26-28, 2007, Proceedings, volume 4533 of
Lecture Notes in Computer Science, pages 288–302. Springer, 2007.

26. T. Kutsia, J. Levy, and M. Villaret. On the relation between context and sequence
unification. J. Symb. Comput., 45(1):74–95, 2010.

27. T. Kutsia and M. Marin. Solving, reasoning, and programming in common logic.
In A. Voronkov, V. Negru, T. Ida, T. Jebelean, D. Petcu, S. M. Watt, and D. Za-
harie, editors, 14th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2012, Timisoara, Romania, September 26-29,
2012, pages 119–126. IEEE Computer Society, 2012.

28. J. Levy and M. Villaret. Nominal unification from a higher-order perspective.
ACM Trans. Comput. Log., 13(2):10:1–10:31, 2012.

29. G. S. Makanin. The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik, 145(2):147–236, 1977.

30. C. Menzel. Knowledge representation, the world wide web, and the evolution of
logic. Synth., 182(2):269–295, 2011.

31. M. Paterson and M. N. Wegman. Linear unification. In A. K. Chandra,
D. Wotschke, E. P. Friedman, and M. A. Harrison, editors, Proceedings of the 8th
Annual ACM Symposium on Theory of Computing, pages 181–186. ACM, 1976.

32. F. Pfenning and C. Schürmann. System description: Twelf - A meta-logical frame-
work for deductive systems. In H. Ganzinger, editor, Automated Deduction -
CADE-16, 16th International Conference on Automated Deduction, Trento, Italy,
July 7-10, 1999, Proceedings, volume 1632 of Lecture Notes in Computer Science,
pages 202–206. Springer, 1999.

33. A. M. Pitts. Nominal logic, a first order theory of names and binding. Inf. Comput.,
186(2):165–193, 2003.

34. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.
ACM, 12(1):23–41, 1965.

35. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning (in
2 volumes). Elsevier and MIT Press, 2001.

36. M. Schmidt-Schauß, T. Kutsia, J. Levy, and M. Villaret. Nominal unification of
higher order expressions with recursive let. In M. V. Hermenegildo and P. López-
Garćıa, editors, Logic-Based Program Synthesis and Transformation - 26th Inter-
national Symposium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016, Re-
vised Selected Papers, volume 10184 of Lecture Notes in Computer Science, pages
328–344. Springer, 2016.

37. M. Schmidt-Schauß, T. Kutsia, J. Levy, M. Villaret, and Y. Kutz. Nominal unifi-
cation of higher order expressions with recursive let. Frank report 62, Institut für
Informatik, Goethe-Universität Frankfurt am Main, October 2019.

38. M. Schmidt-Schauß and D. Sabel. Nominal unification with atom and context
variables. In H. Kirchner, editor, 3rd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK,
volume 108 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

39. C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. Theor. Comput. Sci.,
323(1-3):473–497, 2004.

18

	Unranked Nominal Unification

