Matching and Generalization Modulo Proximity
and Tolerance Relations*

Temur Kutsia and Cleo Pau

RISC, Johannes Kepler University, Linz, Austria
{kutsia,ipau}@risc.jku.at

Abstract. Proximity relations are fuzzy binary relations satisfying re-
flexivity and symmetry properties. Tolerance, which is a reflexive and
symmetric (and not necessarily transitive) relation, can be also seen as
a crisp version of proximity. We discuss two fundamental symbolic com-
putation problems for proximity and tolerance relations: matching and
anti-unification, present algorithms for solving them, and study proper-
ties of those algorithms.

Keywords: Fuzzy proximity relations - Matching - Anti-unification.

1 Introduction

Proximity relations are reflexive and symmetric fuzzy binary relations. They
generalize similarity relations, which are a fuzzy version of equivalences. Prox-
imity relations help to represent fuzzy information in situations where similarity
is not adequate.

The crisp counterpart of proximity is tolerance, which generalizes the stan-
dard equivalence relation by dropping the transitivity property. In the literature,
tolerance appears under other names as well, e.g., compatibility, similarity, or
proximity relation. The term ‘tolerance relation’ is attributed to Zeeman [17].

A tolerance relation can be expressed as an undirected graph. The vertices
of the graph form the set on which the relation is defined, and two elements
are related if and only if there is an edge in the graph connecting them. A sim-
ilar graph but with weighted edges can be associated to a proximity relation.
This graph-based view helps to easily explain two important notions related
to proximity and tolerance relations: proximity/tolerance blocks and proxim-
ity /tolerance classes (of a node). Blocks correspond to maximal cliques in the
graph and the class of a node corresponds to its set of adjacent nodes, together
with the node itself (see, e.g., [5,8]).

Unification and anti-unification are two fundamental operations for many
areas of symbolic computation. Unification aims at computing a most specific
common instance of given logical expressions, while anti-unification, a technique

* This work was supported by the Austrian Science Fund (FWF) under project 28789-
N32 and by the strategic program “Innovatives OO 2020” by the Upper Austrian
Government.

2 T. Kutsia and C. Pau

dual to unification, computes their least general generalization. Both techniques
have been studied for equivalence relations both in crisp and fuzzy settings.
Syntactic and equational unification is surveyed, e.g., in [4], for syntactic and
equational anti-unification see, e.g., [2,6,14,15]. Unification and anti-unification
modulo similarity have been investigated, e.g., in [1,16].

On the other hand, there are very few works on unification and anti-unifi-
cation modulo proximity and tolerance. In [8], the authors introduced the notion
of proximity-based unification (improved later in [9]) and used it in fuzzy logic
programming. It can be characterized as a block-based approach, because two
terms are treated as approximate in one computation when they have the same
set of positions, symbols in their corresponding positions belong to the same
block, and a certain symbol is always assigned to the same block. This approach
imposes the restriction that the same symbol can not be close to two symbols
at the same time, when those symbols are not close to each other. One of them
should be chosen as the proximal candidate to the given symbol. For matching,
it means that f(x,z) does not match to f(a,c) when a and ¢ are not close to
each other, even if there exists a b close both to a and ¢. In [11,12], we reported
the first results related to block-based anti-unification with proximity relations.

In this paper, we consider the class-based notion of approximation for proxim-
ity (and tolerance) relations, which helps relax the mentioned restriction. Under
this approach, f(z,z) matches f(a,c), when there is a b that is close to both
a and ¢, even if a and ¢ are not close to each other. It is justified by the fact
that f(b,b) and f(a,c) belong to the same proximity/tolerance class, and it has
a natural interpretation, e.g.: for two distant points a and ¢ on a plane, find a
point z that is close to each of them. As we have already shown in [13], it is
nontrivial to solve proximity constraints in this setting. Here we develop a ded-
icated algorithm for matching. In general, matching problems with proximity
or tolerance relations might have finitely many incomparable solutions, but one
can represent them in a more compact way. We show that for each matching
problem there is a single answer in such a compact form, and investigate time
and space complexity to compute it.

We also study class-based anti-unification for proximity/tolerance relations.
This problem is closely related to matching, as generalizations (whose compu-
tation is the goal of anti-unification) are supposed to match the original terms.
Also here, we aim at computing a compact representation of the solution, but
unlike matching, for anti-unification there can be finitely many different solu-
tions in compact form. If we are interested in linear generalizations (i.e., those
which do not contain multiple occurrences of the same variable) then the prob-
lem has a unique compact solution. A potential application of these techniques
includes, e.g., an extension of software code clone detection methods by treating
certain mismatches as approximations.

The paper is organized as follows. In Sect. 2, we introduce the basic notions.
The problem statement can be found in Sect. 3. In Sect. 4, we develop our
matching algorithm and study its properties. Section 5 is about anti-unification.
Section 6 contains concluding remarks.

Matching and Generalization Modulo Proximity and Tolerance Relations 3

2 Preliminaries

Proximity and Tolerance Relations

We define basic notions about proximity relations following [8].

A binary fuzzy relation on a set S is a mapping from S x S to the real
interval [0,1]. If R is a fuzzy relation on S and A is a number 0 < A <1 (called
cut value), then the A-cut of R on S, denoted R, is an ordinary (crisp) relation
on S defined as Ry := {(s1,52) | R(s1,51) > A}

Each fuzzy relation is characterized by a finite set of cut values, which we
call approximation levels of the relation.

A fuzzy relation R on a set S is called a proximity relation on S iff it is
reflexive (R(s,s) = 1 for all s € S) and symmetric (R(s1,s2) = R(s2,s1) for
all 1,82 € S). Tolerance relations are crisp reflexive and symmetric binary
relations. A A-cut of a proximity relation on S is a tolerance relation on S.

The prozimity class of level A € (0,1] of s € S with respect to a proximity
relation R (an (R, \)-class of s) is the set pc(s, R, A) := {s' | R(s,s") > A}.

A triangular norm (T-norm) A in [0,1] is a binary operation A : [0;1] X
[0,1] — [0, 1], which is associative, commutative, nondecreasing in both argu-
ments, and satisfying * A1 = 1Az = z for any = € [0,1]. T-norms have been
studied in detail in [10]. In this paper we assume that the t-norm is minimum.

Terms and Extended Terms

Given disjoint sets of variables V and fixed arity function symbols F, terms over
F and V are defined as usual, by the grammar ¢ := x| f(t1,...,t,), wherez € V
and f € F is n-ary. The set of terms over V and F is denoted by T (F,V). We
denote variables by x,y, z, arbitrary function symbols by f, g, h, constants by
a, b, c, and terms by s,t,r.

Below we will need a notation for finite sets of function symbols, whose all
elements have the same arity. They will be denoted by lower case bold face
letters: f, g, h. When we talk about finite sets of constants, we use a, b, and c.

Extended terms or, shortly, X-terms over F and V are defined by the grammar
t =z | f(t1,...,t,), where f # 0 contains finitely many function symbols
of arity n. Hence, X-terms differ from the standard ones by permitting finite
non-empty sets of n-ary function symbols in place of n-ary function symbols.
Variables in X-terms are used in the standard terms. We denote the set of X-
terms over F and V by Text(F, V), and use also bold face letters for its elements.

The set of variables for a term ¢ and for an X-term t is denoted by V(¢) and
V(t), respectively. A term (resp. X-term) is called linear if every variable occurs
in it at most once. The head of a term and an X-term is defined as

head(z) ==z, head(f(t1,...,tn)) :=f, head(f(t1,...,t,)) :=f.
The set of terms represented by an X-term t, denoted by T(t), is defined as
w(x) :i={x}, T(f(t1,...,t0)) = {f(t1,...,tn) | f €Lt €T(t;),1 <i<n}.

We also define the intersection operation for X-terms, denoted by t Ms:

4 T. Kutsia and C. Pau

— xMNx = forall x € V.

—tNs=(fNg)(tiMsy,...,t,Msy), n>0,if fNg # 0 and t;Ms; # O for all
1 <4 <n, where t =f(t1,...,t,) and t = g(s1,...,8,).

— tMs =0 in all other cases.

Positions in terms are defined with respect to their tree representation in
the standard way, as string of integers, where the empty string is denoted by e.
We will need another standard notion, the subterm of t at position p, denoted
by t|,. (See, e.g., [3] for details.) These notions straightforwardly extend to X-
terms. For instance, for an X-term t = {f}({g, h}(z,{a,b,c}),{b, c,d}), the set
of positions is {¢,1,1.1,1.2,2} and we have the X-subterms of t at those position
tle = t, tly = {g,h}(z, {a,b,c}), t}h.1 =z, tl12 = {a,b,c}, and t|z = {b, ¢, d}.

Substitutions and Extended Substitutions

Substitutions over T (F,V) (resp. over Te(F, V) are mappings from variables to
terms (resp. to X-terms), where all but finitely many variables are mapped to
themselves. The symbols o, 9, ¢ are used for term substitutions, and o, 9, @ for
X-term substitutions. The identity substitution is denoted by Id.

The domain of a substitution o is defined as dom(c) = {x | o(z) # z}.
We use the usual set notation for substitutions, writing, e.g., o as ¢ = {x —
o(x) | x € dom(o)}. Substitution application to terms is written in the postfix
notation such as to and is defined recursively as xo = o(x) and f(t1,...,t,)0 =
f(tio,...,t,0). In the same way, one can define the domain of an X-substitution
and application of an X-substitution to an X-term.!

The set of substitutions represented by an X-term substitution o is the set
1(0) :={o | o(z) € T(o(x)) for all z € V}.

Relations over Terms and Substitutions

Each proximity relation R we consider in this paper is defined on F so that
for all f,g € F, we have R(f,g) = 0 if arity(f) # arity(g). We extend such a
relation R from F to FUT(F,V):

— For function symbols R is already defined.
For variables: R(z,z) = 1.
— For nonvariable terms:

R(f(t1, - 5tn),9(81,- -, 80)) = R(f,9) ANR(t1,81) A -+ AR(tn, $n),

when f and g are both n-ary.
— In all other cases, R(T1,T2) =0 for T1,T5 € FUT(F,V).

Two terms t and s are (R, A)-close to each other, written t ~g » s, if R(¢,s) > A.

! Note that notions of application of a substitution to an X-term and application of
an X-substitution to a term are not defined.

Matching and Generalization Modulo Proximity and Tolerance Relations 5

Definition 1 (Relations <z x and <). The relations =g x and < and the
corresponding notions are defined as follows:

=<r: A termt is (R, \)-more general than s (ort is (R, A)-generalization of s,
or s is an (R, X)-instance of t), writtent =g » s, if there exists a substitution
o such that to ~g x s. We say that o is an (R, \)-matcher of ¢ to s.

: A term t is syntactically more general than s (or ¢ is a syntactic generali-
zation of s, or s is a syntactic instance of t), written t < s, if there exists a
o such that to = s. We say that o is a syntactic matcher of t to s.

N

An X-term t is an (R, \)-X-generalization of a term s, if every t € T(t) is
an (R, \)-generalization of s.

An X-substitution o is an (R, \)-X-matcher of t to s, if every o € t(0) is
an (R, \)-matcher of ¢ to s.

A substitution o that matchest to s is called a relevant (R, X)-matcher (resp.
relevant syntactic matcher) of t to s if dom(o) C V(t). A relevant (R, \)-X-
matcher is defined analogously.

The strict part of 2r,x and < are denoted respectively by <g.\ and <.

The relation < » is not transitive. If @ ~g b, b ~g » ¢, and a #%r » c,
then we have a =g x b, b g x ¢, and a AR » c. Unlike <z, < is transitive.
(In fact, < is a quasi-ordering, called instantiation quasi-ordering.) We also have
< € =g, for any R and A

Definition 2 ((R, \)-lgg). A term r is called an (R, \)-least general general-
ization (an (R, \)-lgg) of t and s iff

— 1 is (R, A)-more general than both t and s, i.e., r gt and r =g\ s, and
— there is no v’ such that r <g 7', ' Jpat, and r’ <.\ s.

An X-term r is an (R, \)-X-lgg of t and s, if every r € t(r) is an (R, \)-lgg of
t and s.

Theorem 1. If r is an (R, \)-generalization of t, then any syntactic general-
ization of v is also an (R, \)-generalization of t.

Proof. From r < » t, by definition of <z », there exists ¢ such that rJ ~x) t.
From r’ < r, by definition of <, there exists ¢ such that ' = r. Then we have
') = r ~g) t, which implies 7’ <z x t. ad

Corollary 1. Any syntactic generalization of an (R,A)-lgg of t and s is an
(R, \)-generalization of both t and s.

The notion of syntactic lgg can be defined analogously to (R, A)-lgg, using the
relation <. The syntactic lgg of two terms is unique modulo variable renaming,
see, e.g., [14,15]. In general, it is not difficult to show that for any terms ¢ and
s, if r and r’ are their syntactic lgg and (R, A)-lgg, respectively, then r < 7'

Ezample 1. Let R and A be such that a >~z x b, b ~g) ¢, and a % » c. Then
(R, \)-1gg of a and ¢ is b, while their syntactic lgg is x.

6 T. Kutsia and C. Pau

Given a term ¢, a proximity relation R, and a cut value A, the (R, \)-prozimity
class of t is an X-term pc(t, R, A), defined as

pe(z, R, A) == {z},
pc(f(t1,.. . tn), Ry A) := pe(f, R, A)(pe(ti, R, A), ..., pc(tn, R, N)).

Theorem 2. Given a proximity relation R, a cut value \, and two terms t and
s, each r € pc(t, R, \) Mpc(s,R,\) is (R, A)-close both to t and to s.

Proof. Follows directly from the definition of proximity class of a term. a
The examples below illustrate some of the notions introduced in this section.
Ezample 2. Let the proximity relation R be defined as

R(g1,92) = R(a1,a2) = 0.5, R(g1,h1) = R(g2, h1) = 0.6,
R(gl, hz) = R(al, b) = 07, R(gg, hg) R(CLQ, b) =0.8.

The set of approximation levels of R is {0.5,0.6,0.7,0.8}.
Let ¢ be the term f(g1(a1), g2(az2)). Then the proximity class pc(t, R, A) for
different values of X is:

0<A<05: {f}({9g1,92, h1, h2}({a1,az2,b}), {91, 92, h1, ha}({a1, az,b})).
05<A<0.6: {f}({g1, 1, h2}({a1,b}), {g2, b1, ha}({az,b})).
0.6 <A<0.7: {f}({g1,h2}({a1,b}),{g2, ha}({az, b})).
0.7<A<08: {f}({g1}({a1}), {92, ha}({az2,0})).
08 <A<1: {f}({gm}({a1}).{g2}({a}))-
Ezample 3. Let R be defined as in Example 2. Let t = f(x,2) and s = f(g1(a1),

g2(az)). Then for each of the following X-substitution o, the set t(o) contains
all relevant (R, \)-matchers of ¢ to s for different values of A:

0<A<05: o= {z = {g1,92,h1,h2}({a1,a2,0})}.
7(0) contains 12 substitutions.
0.5<A<06: o ={z {h1,ho}({b})}.

(o) = {{z = hi(0)}, {z — ha(b)}}.
0.6 <A<0.7: o={z~— {ha}({b})}. (o) = {{z — ha(b)}}.
0.7<A<1: No substitution matches ¢ to s.

Ezample 4. Let R be a proximity relation defined as

R(al, a) = R(ag, a) = R(bl, b) = R(bg, b) = 0.5,
R(az,a’) = R(as,a’) = R(ba,b') = R(bs,b") = 0.6, R(f,g) = 0.7.

Its set of approximation levels is {0.5,0.6,0.7}.

Matching and Generalization Modulo Proximity and Tolerance Relations 7

Let t = f(a1,a2,a3) and s = g(by1,ba,b3). Then x is the syntactic lgg of ¢
and s. As for proximity-based generalizations, for each of the following X-term
r, the set t(r) contains all (R, A)-lggs of ¢ and s for different values of A:

0<A<05:

ri = {f,gHz1,21,23). T(r1) ={f(21,21,23), g(z1,21,73)}.

ro = {f, g} (z1,22,22). T(r2) = {f(21,22,22), g(z1,72,72)}.
0.5<A<0.6:

r={f,g}&1,22,22). 7(r) ={f(z1,22,22), g(21,22,22)}.
0.6 <A<0.7:

r={f,g}z1,22,23). 7(r)={f(z1,22,23), g(x1,22,23)}.
0.7<A<1l: r=z =(r)={z}

If we are interested only in linear generalizations, we will get a single X-term
(R, M)-1gg for each fixed A:

0<A<07: r={f,9Hx1,22,23). 7T(r)={f(z1,22,23), g(z1,22,23)}.
0.7<A<1: r=z 1(r)={z}.

3 Matching and Anti-Unification: Problem Statement

Matching and anti-unification problems for terms are formulated as follows:
Given a proximity relation R, a cut value A, and two terms ¢t and s, find

— an (R, A)-matcher of ¢ to s (the matching problem) or
— an (R, A\)-lgg of t and s (the anti-unification problem).

Below we develop algorithms to solve these problems. as we will see, each
of them has finitely many solutions. It is important to mention that instead
of computing all the solutions to the problems, we will be aiming at comput-
ing their compact representations in the form of X-substitutions (for matching)
and X-terms (for generalization). Hence, our algorithms will solve the following
reformulated version of the problems:

Matching problem

Given: a proximity relation R, a cut value A\, and two terms ¢ and s.
Find: an X-substitution o s.t. each o € (@) is an (R, A)-matcher of ¢ to s.

Anti-unification problem

Given: a proximity relation R, a cut value A, and two terms ¢ and s.
Find: an X-term r such that each r € 7(r) is an (R, A)-1gg of ¢ and s.

Such a reformulation will help us compute a single X-substitution instead of
multiple matchers, and fewer X-lggs than Iggs. Moreover, if we restrict ourselves
to linear lggs (i.e., those with a single occurrence of generalization variables),
then also here we get a single answer.

8 T. Kutsia and C. Pau
4 Matching

Given R, A, t, and s (where s does not contain variables), to solve an (R, \)-
matching problem ¢ < s, we create the initial pair {¢ < s};0 and apply the rules
given below. They work on pairs M; S, where M is a set of matching problems,
and S is the set of equations of the form x & s. The rules are as follows (W stands
for disjoint union):

DEC-M: Decomposition
{f(t1,. . tn) € g(s1,. .y $n) WM S = MU{t; < s; |1 <i<n};S,
ifn>0,R(f,g) >\

VE-M: Variable elimination

{r < s}y M; S= M; SU{zx ~pc(s,R,\)}.

MER-M: Merging
M; {z=s,z=s} WS = M; SU{z~s;Msy}, if 81 Msg # 0.

CrLA-M: Clash
{f(t1, ... tn) € g(s1,...,8m) W M; S= L, where R(f,g) < A.

INc-M: Inconsistency
M; {z~s, cxstWS = 1, if s; Msy = 0.

The matching algorithm 90 uses the rules to transform pairs as long as possi-
ble, returning either | (indicating failure), or the pair (J; S (indicating success).
In the latter case, each variable occurs in S at most once and from S one can
obtain an X-substitution {z — s | x & s € S}. We call it the computed X-
substitution.

We call a substitution o an (R, \)-solution of an M; S pair, iff o is an (R, A)-
matcher of M and for all z =t € S, we have xo € T(t). We also assume that L
has no solution.

Lemma 1. If M;y;S1 = M>; S is a step made by M, then o is an (R, \)-
solution of My; Sy iff it is an (R, X)-solution of Ms; Ss.

Proof. For the rules DEC-M and CLA-M, the lemma follows by definition of
matcher. For MER-M and INC-M it is implied by definition of M. For VE-M, by
definition of pc, we have zo € pc(s, R,) iff R(zo,s) > A, which is equivalent
to the fact that o is an (R, A)-matcher of z < s. O

In the theorems below the size of a syntactic object (term, matching problem,
set of matching problems, a set of equations) is the number of alphabet symbols
in it: size(x) = 1, size(f(t1,...,tn)) = 14+ Y i, size(t;), size(t < s) = size(t ~
s) = size(t) + size(s), and size(S) = 3_ g size(p), where S is a set of matching
problems or equations.

Matching and Generalization Modulo Proximity and Tolerance Relations 9

Theorem 3. Given an (R, \)-matching problem t < s, the matching algorithm
M terminates and computes an X-substitution o such that T(o) consists of all
relevant (R, X)-matchers of t to s.

Proof. The theorem consists of three parts: termination, soundness, and com-
pleteness. We prove each of them separately.

Termination. The rules DEc-M and VE-M strictly reduce the number of sym-
bols in M. The rule MER-M does the same for S, without changing M.
CLA-M and INC-M stop the algorithm immediately. Hence, the algorithm
strictly reduces the lexicographic combination (size(M), size(S)) of sizes of
M and S, which implies termination.

Soundness. If ¢ € (o), then o is a relevant (R, A)-matcher of ¢ to s.

Let {t < s};0 =T 0;S be the derivation in 9 that computes o. By
definition of computed X-substitution, we can conclude that o € t(0) iff o
is a solution of (J; S. By induction on the length of the given derivation, using
Lemma 1, we can prove that o is an (R, A)-matcher of ¢ to s. In 9, no new
variables are created and put in S. All variables there come from the original
problem. It implies that o is a relevant matcher of ¢ to s.

Completeness. If o is a relevant (R, \)-matcher of ¢ to s, then o € t(0).
Since t < s is solvable, we can construct a derivation {t < s};0) =T ;S
in 91. This follows from the fact that for each form of matching equation we
have a rule in 91, and if we have two equations with the same variable in .S we
can also transform it. Moreover, by Lemma 1, we would never apply CLA-M
and INC-M rules, because it would contradict the solvability of ¢ < s. Hence,
we can construct the mentioned derivation, for which, again by Lemma 1,
we have that o is a (R, A)-solution of §); S. By definitions of computed X-
substitution o and T, it implies that o € t(0). O

Hence, 2 computes all relevant (R, A)-X-matchers for matching problems.

Ezample 5. We illustrate the steps of the algorithm 9 for the matching problem
in Example 3 for A = 0.6 and A = 0.8.

A=0.6:
{f(z,z) < f(g1(a1), 92(a2))}; 0 = pre-m
{r < gi(ar), * < ga(az)}; 0 =venm
{z < ga(a2)}; {z = {91, h1, ha}({a1,b})} = vEM
0; {z = {g1, h1, ha}({a1,0}), = = {ga, h1, ha}({az,b})} =\er-m
0: {x ~ {h1, ha}({b})}.
A=038:
{f(z,2) < f(g1(a1), g2(a2))}; 0 =>prc-u
{r < g1(a1), * < g2(a2)}; 0 =>vEM
{r < ga(a2)}i{z =~ {g1}({a1})}; =>vEM
0:{z = {g1}({ar}), = = {g2, ha}({a2,b})} =1vem L.

10 T. Kutsia and C. Pau

The proximity relation R can be represented as a weighted undirected graph,
whose vertices form a (finite) subset of F and if R(f, g) =0 > 0 for two vertices
f and g, then there is an edge of weight 9 between them. When we consider R as
a graph, we represent it as a pair (Vg, Er) of the sets of vertices Vx and edges
Ex. We denote by |S| the number of elements in the (finite) set S.

Graphs induced by proximity relations are sparse, since symbols of different
arities are not close to each other. Therefore, in the proofs of complexity results
below, we choose to represent the graphs by adjacency lists rather than by
adjacency matrices.

Theorem 4. Let R = (Vr, ER) be a prozimity relation and M be a matching
problem with size(M) = n. Then the algorithm 9 needs O(n|Vr |+ n|ER|) time
and O(n|Vg |+ |Er|) space to compute the (R, \)-solution to M for a given A.

Proof. We represent the graph for R as adjacency lists, in which proximity
degrees are weights of edges. Such a weight of an edge (v1,vy) is stored at
the vertex vy in the adjacency list of v; and vice versa [7]. Further, from the
given matching problem ¢ < s we can construct its directed acyclic graph (dag)
representation with shared variables (see, e.g., [4]). At each node g of s, we add
a pointer to the entry in the adjacency list of R for the symbol g. The nodes in
the representation of ¢ are labeled by function symbols and variables occurring
in t. In fact, we have a graph representation dag(t) of ¢t and a tree representation
tree(s) of s, since there are no variables to share in s.

During the run of the algorithm, we follow the structures top-down both in
dag(t) and tree(s), comparing the node labels pairwise. Assume the label of a
nonvariable node f in dag(t) is an element of the adjacency list of a node g in
tree(s), and 9 > A for the degree 9 stored together with f in the adjacency list.
Then the DEC-M rule is applied and we proceed to the successor nodes of f and
g (pairwise), as usual. Otherwise we stop (CLA-M rule).

When we reach a variable node x in dag(t) and a node g in tree(s), we check
whether there already exists a pointer from x to the root h of some tree treey. If
not, we make a copy tree, of the subtree subtree(s, g) of tree(s) rooted at g. It
means that the adjacency lists of the nodes of this subtree are also copied, not
shared. We call the copies of those lists the class labels. After that, we make a
pointer from z to g in treey, and continue with the next unvisited node-pairs in
dag(t) and tree(s) (VE-M rule). If tree, to which z points already exists, we go
top-down to the trees treep, and subtree(s, g), updating the class label at each
node of treey: if the class label at some node in this tree is Ly, and the adjacency
list of the corresponding node in subtree(s, g) is Lo, we replace Ly in tree, by
Ly N Ly, provided that L; N Ly # (), and continue with the next unvisited node-
pair. This process corresponds to the MER-M rule, eagerly applied immediately
after VE-M. If either the intersection is empty, or one tree is deeper than the
other, then we stop with failure (the INC-M rule).

First we make the space analysis. The adjacency list representation of R
needs O(|Vg| + |Er|) space [7]. The graph/tree representation of the matching
problem requires O(n) space. All the copies of trees generated by the VE-M rule

Matching and Generalization Modulo Proximity and Tolerance Relations 11

may contain in total at most n nodes, each labeled with at most |Vz| symbols,
i.e., to store them we need O(n|Vz|) space. Hence, the total amount of required
memory is O(n|Vg| + |Er|).

For the runtime complexity, constructing the adjacency list needs O(|Vz| +
|Er|) time. Construction of the dag/tree representation of the matching prob-
lem can be done in O(n) time [4]. Each node in dag(t) and tree(s) is visited
once. Hence, the structure traversal is done in linear time with respect to n.
Checking the membership of some vertex f from dag(t) in the adjacency list
of some vertex g in tree(s), needed in the DEC-M rule, requires O(degree(g))
time. Since this check is performed O(n) times, and a (rough) upper bound for
vertex degrees is |Er|, we can say that the total time needed for the adjacency
list membership operation during the run of 9% is O(n|Exr|). Creating the copies
of trees by the VE-M rule is constant for each symbol, thus needing O(n|Vgz|)
time. Computation of intersections between two proximity classes needs O(|Vr|)
time. We may need to perform O(n) such intersections, hence for them we need
O(n|Vg|) time. It implies that the runtime complexity of the matching algorithm
is O(n| Vil + | Er). 0

4.1 Computing Approximation Degrees for Matching

The algorithm above does not compute approximation degrees for the returned
matchers. We can add this feature with a small modification of the notions.

A graded set of function symbols is a finite set of pairs {(f1, 1), ..., {fn,an)},
where «; € (0, 1] and all f;’s have the same arity. Graded X-terms are constructed
from graded function symbol sets and variables in the same way X-terms were
constructed from non-graded symbol sets and variables. We reuse the bold face
letters f,a, t, etc. that denote the non-graded counterparts of these notions.

The intersection of graded function symbol sets is defined as f; N f; :=
{{f,aaha2) | {f, 1) € 1, (f, a2) € f2}. Then the intersection of graded X-terms
t1 Mty is defined as it was done for non-graded X-terms, using the intersection
of graded sets of functions symbols.

The graded (R, \)-proximity class for a symbol f is a set {{g,a) | R(f,g) =
a > A}. Also here, we reuse the notation from its non-graded version: pc(f, R, A).
The proximity class for a term is defined and denoted similarly.

Ezample 6. Let R be the proximity relation defined in example 2.
Let t be the term f(g1(a1),g2(az)). Then the graded proximity class for it,
pc(t, R, \), for different values of A is:
0 <A<05:
{<f7 1>}({<gl7 1>7 <927 05>7 <h17 06>7 <h27 07>}({
{<gla 05>7 <927 1>7 <h17 06)7 <h27 08>}({
0.5 <A <0.6:{(f,1)}({{g1,1),(h1,0.6), (h2,0.7)}
{<92a 1>a <h1706> <h’2’ 0. 8>}

0.6 <A<0.7:{{f,1)}({{91,1), (h2,0.7) }({{a, 1),

a171> <a2105> <b707>})7
a1,0.5), (az, 1), (b,0.8)})).

({<ala >7 <b7 07>})a
({(az, 1), (b,0.8)})).
(b,

0.7},

(
(

12 T. Kutsia and C. Pau

{{92,1), (h2,0.8) }({{az, 1), (b,0.8)})).
0.7 <A <0.8: {{f,)}({{g1,) }({{a1, 1)}),

{{g2,1), (h2,0.8) }({{az, 1), (b,0.8)})).
0.8 <A<1 :{{f,1)}({{g1,)}({{a1,1)}), {{g2, 1) }({{az,1)})).

The modified version of the matching algorithm works on triples M; S «,
where S is a set of equations between variables and graded X-terms, and «
is the approximation degree between function symbols, initialized with 1. The
only rule we need to change is Dec-M, which should update the approximation
degree a:

DECc-M: Decomposition

{f(t1,. . tn) € g(s1,...,8.)} W M; S; a =
MuU{t;<s; |1<i<n}; S; a AR(f,9),

ifn>0,R(f,g9) =X

The graded counterpart of T, denoted by T, takes a graded X-term and
returns a set of pairs (t,a) where t is a term and « € (0, 1]. It is defined as

T () := {(z, 1)},
Tgr(f(tl, . ,tn) = {(f(tl, A ,tn), Oé> | <f, 0&0> S f, <ti, Oéi> S Tgr<ti)7
1<i<n,a=agA--ANap}.

Similarly, we define T4 for graded X-substitutions: T4 (0) is a set of pairs
(0,), where o is a substitution and « € (0, 1], defined as

Toe({z1 = b1,z = b)) =
{({.’171 =t ..., Ty tn},al /\"-/\Oén> | <ti,0éi> GTgr(ti)7 1< < n}

When it succeeds, the matching algorithm stops with the triple of the form

0; {x1 ~ s1,...,2, = 8, }; a. From this representation, we take 0 = {z1 — s,

., Ty > Sy} as the computed graded X-substitution and « as the upper bound

of approximation degrees of all matchers. We can use o and « as the basis from

which various concrete matchers of the original (R, A)-matching problem M and
their approximation degrees can be obtained. For instance:

— Extract each solution and its approximation degree from T, (0): For each
(0,05) € Tgr(0) we get (0, a5 A).

— If we are interested only in matchers with the maximal approximation degree,
we select (0, ay) € Ty (0) so that a, A a is maximal (there can be several of
them), without unpacking the whole set of solutions.

Ezample 7. Let the proximity relation R be obtained by adding R(f1, f2) = 0.8
to the one defined in Example 2. Let t = fi(z,2) and s = fa2(g1(a1), g2(az))-

Matching and Generalization Modulo Proximity and Tolerance Relations 13

We illustrate the steps of the algorithm 9t for the matching problem fi(x,z) <
fg(gl (al), gg(ag)) fOI‘)\ = 06

{fi(z,2) < fa(g1(a1), g2(a2))}; 0; 1 =pre-m

{z < gi(a1), x < g2(az)}; 0;0.8 =-vE-m

{r < g2(a2)}; {z = {{g1,1), (h1,0.6), (h2,0.7) }({({a1, 1), (b,0.7)})}; 0.8
==VE-M

0; {x = {{g1,1), (h1,0.6), (h2,0.7) }({{a1, 1), (b,0.7)}),
x =~ {{g2,1), (h1,0.6), (ha,0.8) }({{az, 1), (b,0.8)}) }; 0.8 = ngr-M
0; {x =~ {(h1,0.6), (h2,0.7) }({(b,0.7)})}; 0.8.

If we want to extract all (R, A)-matchers, we would return ({z — h1(b)},0.6)
and ({x — ha(b)},0.7). The maximal solution would be only ({z — hs(b)},0.7).
If we had R(f1, f2) = 0.6, then the sets of all (R, A)-matchers and all maximal
(R, A)-matchers would coincide. They both would be {{({z + hi(b)},0.6), ({z —

ha(b)},0.6)}.

5 Anti-Unification

Given R and), for solving an (R, A)-anti-unification problem between two terms
t and s, we create the anti-unification triple (AUT) z : pc(t, R, \) £ pc(s, R, \)
where x is a fresh variable. Then we put it in the initial tuple {x : pc(t, R, \) =
pc(s, R, A)}; 0; 2, and apply the rules given below. They work on tuples 4; S;r,
where A is a set of AUTSs to be solved (called the AU-problem set), S is the set
consisting of AUTSs already solved (called the store), and r is the generalization
X-term computed so far. The rules transform such tuples in all possible ways as
long as possible, returning (J; S;r. In this case, we call r the computed X-term.
We denote the algorithm by &. The rules are as follows:

DEc-AU: Decomposition
{x:f(t1,...,tn) 2 g(s1,...,8,)}WA; S; v =
{yi:t1 =81, yn 60 £, UA S ez = (FNg)(y1, -, 9a)),
where n > 0, fNg # 0.

SorL-AU: Solving

{r:t&2s}wA; S;r=A; {z:t=2s}US;r,

if head(t) N head(s) = 0.

MER-AU: Merging

0; {z1:t1 281, ma:ta 28} WS; r=10; {z1:t2s}US; r{xg — 11},
ift=1t; Mty #0 and s = s1 Msy # 0.

MER-AU can be applied in different ways, which might lead to multiple X-
lggs. One may notice that we do not have a rule for AUTSs containing variables.

14 T. Kutsia and C. Pau

This is because one can treat the input variables as constants. Then AUTSs such
as x : y 2 y are dealt by the DEC-AU rule, and AUTSs of the form z : y £ 2
with y # z are processed by SOL-AU.

Theorem 5. Given a proximity relation R, a cut value \, and two terms t and
s, the anti-unification algorithm & terminates and computes X-termsry, ..., Ty,
n > 1, such that U t(r;) contains all (R, \)-least general generalizations of t
and s (modulo variable renaming).

Proof. Like Theorem 3, here also we have three parts: termination, soundness
and completeness.

Termination. The algorithm obviously terminates, since the rules DEC-AU
and SOL-AU strictly reduce the number of symbols in the AU-problem set
A, and MER-AU strictly reduces the number of symbols in the store S.
Soundness. We will prove that if » € U ;t(r;), then r is an (R, \)-generali-
zation of ¢ and s.
If r € UP_;7(r;), then r € 1(r;) for some 1 < j < n. It means that there
exists a derivation

{x:pc(t,R,\) £ pc(s, R, \)}; 0; 28 =50, 8: 2809 - - - Oy, (1)

where 99 = Id, k > 1 and r; = x8¢0; - - - 9. For the reference, we denote
the tuple at step [in this derivation by A;; Sj;r;. Observe that:

— by DEC-AU rule, whenever an AUT 2’ : t' £ s’ appears in some A4,
in this derivation (0 < I < k), then we have 2’ € V(z8¢---8)), t' =
pc(t, R, \)|, for some position p’ in pc(t, R, A), and s’ = pc(s, R,)|y
for the same position p’ in pc(s, R, \);

— by SoL-AU rule, the same is true for any 2’ : t' £ s’, which appears in
some S; in this derivation (0 <1 < k) with A4; # 0;

— by MER-AU rule, for any AUT 2/ : t' £ s’ which appears in some S
in this derivation (0 <1 < k) with 4, = 0, we have 2’ € V(z8¢ - &),
T(t") € t(pc(t, R,)|y) for some position p’ in pe(t, R,), and 1(s’) C
T(pc(s, R, \)|,) for the same position p’ in pc(s, R, A).

Coming back to the derivation in (1), we prove that for all 0 < i < k, if
x990 -+ - 9; is an (R, A)-X-generalization of ¢ and s, then 8¢9 -+ - 941 is
an (R, \)-X-generalization of ¢ and s. For ¢ = 0 it is obvious. We assume
that this statement is true for some 0 < 7 < k and show it for 7 + 1. We
should look at all possible ways to make the step

Ai; Sz, 1‘\90\91 . \92 — Ai+1; Si—i—l; 1‘\90\91 . '197;_;,_1.

— The step is made by DEC-AU. It means that the problem set A; contains
an AUT of the form ; : fi(t;,, ... t;,,) 2 gi(Siy,- - ;8i,,) with f;Ng; #
(), which is replaced in A;;1 by new AUTSs y; : t;, L Siyy- s Yn; t i, L
Si,.,» and ¥ip1 = {z; = (£ N gi)(Y1,--.,Yn,)}- There is a position p in
both pe(t, R, A) and pe(s, R, A) such that pe(t, R, A)[, = £i(ti,, ..., ti,)

Matching and Generalization Modulo Proximity and Tolerance Relations 15

and pc(s, R, A)|, = gi(si;,---,8i,,). In the same position p in ¢ and
s, we have respectively t, = fi(t;,... sti,) € t(fi(tiy, ... ti,) and
$p = Gi(Siys--,8i,,) € T(si(Siy,-.-,8i,)). Moreover, in the same p in
the X-term z9¢9; ---8; we have x; and we know (by the assumption)
that 8091 - - - 9; is an (R, A)-generalization of ¢ and s. Besides, by defini-
tion of X-generalization, its is obvious that ©;&;11 = (£:1g:)(y1, .-, Yn,)
is an (R, A)-generalization of f;(ti,,...,t;,) and gi(si,...,si,). By re-
placing x; with 2;8;41, we obtain that 8¢9 -+ 8;8;41 is an (R, \)-
generalization of ¢ and s.

— The step is made by SOL-AU. In this case, 8¢9 - - - &11 = 28901 - - - 9
and the statement holds.

— The step is made by MER-AU. In this case, S; contains two AUTSs z;, :
ti1 £ Sy iy - tig £ Si, with til |_|ti2 7& @ and Siy Flsi2 7é (Z) In Sl'+1 these
AUTs are replaced by a single AUT z;, : t;, Mt,, £ S;, Ms;,, and & 41 =
{x;, — x;, }. There are two positions p; and py in pc(t, R,) such that
T(t;,) € T(pc(t, R, A)|p,), j = 1,2. From t;, Mt;, # 0 we have t(t;,) N
T(t;,) # 0 and, as a consequence, T(pc(t, R, \)|p,)NT(pe(t, R, A)|p,) # 0.
Similarly, we get T(s;,) N T(ss,) # 0.

Since x8¢9 - -+ 9; is an (R, \)-X-generalization of ¢ and s, for any ¢ €
T(x999 - - - 9;) there exist substitutions o and o such that oy ~g x t
and gos ~g x s. For oy, we have x;, 04 ~g » t|p, and z;,0¢ ~g x t|p,. For
05, we have z;,05 ~gr x S|p, and x;,05 2R A S|p,-

In 28¢9; -+ - 9,41, we have z;, both in position p; and in position ps.
Let ¢; be a substitution such that dom () = dom(oy) \ {24, }, @iyt €
T(pe(t, R, A)|p,) NT(pe(t, R, A)|p,), and yo = yoy for all y € dom(vy) \
{zs,}. Such a ¢, exists, since we have shown that t(pc(t,R,\)|p,) N
T(pe(t, R, \)|p,) # 0. By definition, we know that every element of the
set T(pc(t, R, A)|p,) N T(pe(t, R, A)|p,) is (R, A)-close to both t|,, and
t|p,- Hence, ;¢ ~gr.\ tlp, and ;¢ g t|p,. We can define ¢
analogously, and by a similar reasoning conclude that z;, s ~z x S|p,
and z;,¢s ~g. S|p,. For every position other than those where z,
appeared in 8¢9 - --9;, the X-terms 8¢9 --- ;41 and 298¢0 --- Y,
coincide. Hence, for every ¢ € T(x8991 - - - 8;41), we get gor ~g » t and
q¥s ~Rr .\ S, implying that x9¢% - - - 8,41 is an (R, A)-X-generalization
of t and s.

Hence, we proved that in derivation (1), 289; - -- 9 is an (R, \)-X-genera-

lization of t and s. Since 28y --- 8, = r; with r € 1(r;), we get that r is

an (R, \)-generalization of ¢ and s, which proves soundness.
Completeness. If r is an (R, \)-1gg of ¢ and s, then there exists r’ € U ;T(r;)

such that r and ' are equal modulo variable renaming.

We prove completeness by structural induction on 7.

First, assume r is a variable. Since it is an (R, A)-lgg of ¢ and s, we have

t(head(pc(t,R,N))) N t(head(pc(s,R,A))) = 0. But in this case we apply

the rule SOL-AU and get also a variable as a computed X-generalization,

which may differ from r only by the name.

16 T. Kutsia and C. Pau

Now assume r = h(rq,...,7my). Then we have that ¢t = f(t1,...,tm), s =
9(s1,.--,8m), and h € £ N g, where f = pc(f,R,\) and g = pc(g, R,).
We apply the rule DEC-AU to z : pc(t, R,) = pc(s, R, \) and obtain new
AUTSs yp : pe(ty, R,\) = pc(sg, R, A), 1 < k < m. Note that each ry,
1<k <m,isan (R, \)-lgg of t; and s;. Then by the induction hypothesis,
for each 1 < k < m we compute rj, so that there exists r}, € T(r},) which is a
renamed copy of rr. We combine the initial step DEC-AU with the deriva-
/

tions that compute r; to obtain a derivation computing (f N g)(r},...,r},).
/

However, this does not yet guarantee that (f Ng)(r},...,r,,) contains a re-
named copy of r, since by being an (R, \)-lgg, r might contain the same
variable in multiple positions (in different r; and r;), which we have not
captured yet. Let p; and p; be such positions in r, containing the same vari-
able y, but having different variables y; and y; in (f Ng)(r},...,r},). Since
r is a generalization of ¢ and s, having the same variable in p; and p; im-
plies that T(pc(t, R, \)|p,) NT(pe(t, R, A)|p;) # 0. Therefore, pc(t, R, A)|p, 1
pc(t, R, A)|p, # 0. Similarly, we have pc(s, R, A)|p, Mpc(s, R, A)|p, # 0. Hav-
ing different y; and y; in positions p; and p; in (f N g)(r},...,r,,) implies
that we have y; : pc(t, R, A)|,, = pc(s,R,\)|p, and y; : pc(t,R,\)|p, =
pc(s, R,)\)|pj in the store in the derivation we just constructed. But then we
can extend this derivation by applying MER-AU rule for y; and y; obtain-
ing (fNg)(ry,..., x5, ..., x},...,ry,) which reduces the difference with 7 in
distinct variables. We can repeat these steps as long as there are positions
which contain different variables in the generalization computed by us, and
the same variable in r. In this way, we obtain an X-generalization r’ of ¢ and

s such that there exists 7' € t(r’) which is a renamed copy of r. O

Hence, the algorithm computes (R, A)-X-lggs of the given terms. To compute
linear generalizations, we do not need the MER-AU rule. In this case the anti-
unification algorithm returns a single X-term r such that t(r) contains all linear
lggs of s and ¢ (modulo variable renaming).

Ezample 8. Let R be a proximity relation defined as
R(al, a) = R(CLQ, a) = R(bh b) = R(bg, b) = 05,
R(as,a’) = R(as,a’) = R(bz, V) = R(bs,b’) = 0.6, R(f,g) =0.7.

Let t = f(a1,a2,a3) and s = g(b1, ba, b3). Then the anti-unification algorithm
run ends with the following pairs consisting of the store and an (R, A)-lgg, for
different values of A:

0<A<05: store; = {z;: {a} = {b}, z3: {as,a’} = {b3,V'}},
X-lgg, = {/, g} (w1, 21, 23).
stores = {z1 : {a1,a} = {by,b}, 2o : {a’'} £ {b'}},
X-lggy = {f, g} (w1, w2, 22).
05<A<06: store={z;:{a1} = {b1}, z2:{d'} = {V'}},

Matching and Generalization Modulo Proximity and Tolerance Relations 17

X-lgg = {f, g}(@1, 22, w2).
06 <A<0.7: store = {z1 : {a1} = {b1}, 22 : {az} = {bo},

x3: {ag} = {b3}},
X-lgg = {f, g} (1, z2, 73).

0.7<A<1: store = {z : {f(a1,a2,a3)} 2 g(b1,ba,b3)}, X-lgg = x.

The store shows how to obtain terms which are (R, \)-close to the original
terms. For instance, when 0 < A < 0.5, store; tells us that for any substitution o
from the set t({z1 — {a}, x5 — {as,a’}}), the instances of the generalizations,
f(z1,21,23)0 and g(z1, z1,x3)0 are (R, A)-close to the original term ¢. We have
two such o’s, o1 = {z1 — a,z3 — a3} and o9 = {x1 — a,z35 — a'}. They give,
respectively, f(x1,x1,23)01 = f(a,a,as3) =R fla1,az2,a3), g(x1,21,23)01 =
g(a,a,a3) ~g » f(a1,a2,a3), and f(z1,x1,23)02 = f(a,a,a’) =g\ f(a1, a2, a3),
g(x1,x1,23)02 = g(a,a,d’) ~r x flai,az2,a3).

Similarly, for any substitution ¢ from the set T({z; — {b},x3 — {b3,0'}})
(which is also extracted from store;), the instances of the generalizations f(x1,
x1,23)0 and g(x1,z1,z3)0 are (R, A)-close to the original term s.

Now we illustrate how the first two X-lggs have been computed. Let A = 0.5.
For the initial problem we take pe(t, R, \) = {f,g}({a1,a},{az,a,a’}, {as,a’'})
and pc(s,R,\) = {g, f}({b1, b}, {b2,b,0'},{b3,b'}) and proceed as follows:

{z: {f,9}({ar,a},{az,a,a'}, {a3,a'}) 2 {g, [} ({b1, b}, {ba, b, 0"}, {b3,0'})};
0; x =>prc-Av

{21 : {ay,a} 2 {b1,b}, 25 : {az,a,a’} & {by,b,0'}, 23 : {az,a'} & {b3,b'}};
0;{f, g} (x1,22,23) =>s01-AUx3

0: {x1 : {a1,a} 2 {b1,b}, 20 : {az,a,a’} & {by,b,0'}, 23 : {az,a'} & {bs,V'}};
{f, 9} (@1, 22, 23).

Now there are two alternatives: to merge x1 and xo, or xo and x3. They give:
0; {z1: {a} = {b}, 23 : {a3,a'} £ {b3,0'}}; {f, 9} (21, 21,23), or
0: {z1 = {ar,a} £ {bi, b}, 22 : {a'} = {V'}}: {f, g} (21, 22, 22).

These are exactly the stores and X-1ggs we saw at the beginning of this example.

Ezample 9. Consider again the proximity relation and the terms from Exam-
ple 8, but this times assume we are interested in linear generalizations. Then the
stores and X-lggs are the following:
0<A<05:
store = {z; : {a1,a} = {by,b},z2 : {az,a,a’} = {bs, b,V'},
r3: {ag,a’} = {b3,b'}}.

18 T. Kutsia and C. Pau

X-lgg = {f, g}(@1, z2, w3).
0.5<A<06:
store = {z1 : {a1} = {b1},x2 : {az,d'} 2 {bo,V'},
r3: {ag,a’} = {b3,b'}}.
X-lgg = {f, g}(x1, w2, 23).
0.6 <A<0.7:

store = {z1 : {a1} = {b1}, 72 : {az} = {b2}, 73 : {az} = {b3}}.
X-lgg = {f, g} (1, 22, 73).

0.7<A<1: store={z:{f(a1,as,a3)} = g(b1,ba,b3)}. X-lgg = .

Theorem 6. Let R = (Vg, Er) be a prozimity relation and X\ be a cut value.
Assume t and s are terms with size(s) + size(t) =n. Then

— & needs O(n?|Vr| + |Er|) time and O(n|Vr| + |Er|) space to compute a
single (R, \)-X-lgg of t and s;

— & needs O(n|Vg|+ |Er|) time and space to compute a linear (R, X)-X-lgg of
t and s.

Proof. To represent the relation R, we use adjacency lists in the same way as we
did for the matching algorithm (see the proof of Theorem 4). For adjacency lists,
the required amount of memory is O(|Vgz |+ |Ex|). The input can be represented
as trees in O(n) space. The same amount is needed for the store. The general-
ization X-term contains O(n) nodes, each labeled with at most |Vz| symbols.
Hence, the total space requirement is O(n|Vz| + |Er|), and it is independent
whether we compute a single (R, \)-X-1gg or a linear (R, \)-X-lgg.

As for the runtime complexity, constructing the adjacency list representa-
tion is done in O(|Vg| + |Er|) time. Besides, whenever DEC-AU or SoL-AU is
applied, we need to compute the intersection between proximity classes of two
function symbols, which needs O(|Vz|) time. Hence, applying these two rules as
long as possible requires O(n|Vg|) time. It implies that the runtime complexity
for computing linear (R, A)-X-lgg of t and s is O(n|Vg| + |Er|).

To compute an unrestricted (R, A)-X-lgg, we should further apply MER-AU
as long as possible. This may require O(n?) steps. At each step we perform
the intersection of proximity classes which is done in O(|Vz|) time. Therefore,
exhaustive application of MER-AU for computing one (R, \)-X-lgg of ¢ and
s needs O(n?|Vz|). Together with the complexity of maximal applications of
the DEC-AU or SOL-AU rules considered above, it gives the O(n?|Vz| + |Er|)
runtime bound for computing a single (R, \)-X-lgg of ¢ and s. O

5.1 Computing Approximation Degrees for Anti-Unification

We can incorporate the approximation degree computation in anti-unification
easier than we did for matching. To (R, \)-anti-unify ¢ and s, we just take their

Matching and Generalization Modulo Proximity and Tolerance Relations 19

graded proximity classes pc(t, R, \) and pc(s,R,\) and run the algorithm as
described above. The operations N and M will be performed on graded sets of
functions symbols and graded X-terms, respectively.

Ezample 10. Let R be a proximity relation from Example 8 with R(f,g) = 0.7
replaced by R(f,h) = 0.7 and R(h,g) = 0.8. Let t = f(a1,a2,a3) and s =
g(b1,b2,b3). Then for 0 < A < 0.5 we get

store; = {z1 : {(a,0.5)} £ {(b,0.5)},

w3 {(a3, 1), (a’,0.6)} = {(b3, 1), (t/,0.6)}},
X-lgg; = {(h,0.7) } (a1, z1, 23).

stores = {z1 : {{a1,1), {a,0.5)} = {(b1, 1), (b,0.5)},

zy: {(a’,0.6)} = {(v',0.6)}},
X-lggy = {(h,0.7) } (1, za, x2).

From the X-lgg’s we get the actual generalizations. For instance, X-lgg, gives
r = h(z1, T2, x2). From the generalizations, we can “get close” to the original
terms by applying the substitutions composed from the store: R(r{z; — ay,
xe — ad'},t) = R(h(a1,d,a’),t) = 0.6 and R(r{zy — by,x2 — b}, s) =
R(h(b1,',b"),s) = 0.6. Another instance would be R(r{z1 — a,z2 — a'},t) =
R(h(a,d’,a’),t) = 0.5 and R(r{zy — b,x2 — b'},s) = R(h(b,V',1'),s) = 0.5.

6 Conclusion

In this paper, we investigated two fundamental matching and anti-unification
problems with fuzzy proximity relations. Fuzzy proximity (and its crisp coun-
terpart, tolerance) is not a transitive relation, which makes these problems chal-
lenging. In general, there is no single solution to them.

We developed algorithms that solve the mentioned problems, aiming at com-
puting a compact representation of solution sets. We use extended terms (X-
terms) to represent term sets. In X-terms, instead of function symbols, finite sets
of function symbols are permitted. X-substitutions map variables to X-terms.

Our matching algorithm computes a single X-substitution solution for solv-
able proximity (and tolerance) matching problems. We prove that it is sound and
complete: every standard substitution obtained from the computed X-matcher
is a matcher, and any relevant solution of the matching problem is contained in
the set of substitutions induced by the computed X-matcher. Time and space
complexities of the algorithm are analyzed.

Unlike matching, proximity/tolerance anti-unification problems, in general,
do not have a single solution even if we restrict computed least-general general-
izations to X-terms. Our anti-unification algorithm computes a finite complete
set of X-lggs. If we consider the linear variant (i.e., if generalizations are not
permitted to contain more than one occurrence of each generalization variable),
then there exists a single linear X-lgg (which still represents a finite set of lggs

20

T. Kutsia and C. Pau

as standard terms), and our algorithm computes it. We also analyze time and
space complexities of our anti-unification algorithm and its linear variant.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

H. Ait-Kaci and G. Pasi. Fuzzy unification and generalization of first-order terms
over similar signatures. In F. Fioravanti and J. P. Gallagher, editors, Logic-Based
Program Synthesis and Transformation - 27th Int. Symposium, LOPSTR 2017,
Revised Selected Papers, volume 10855 of LNCS, pages 218-234. Springer, 2017.
M. Alpuente, S. Escobar, J. Espert, and J. Meseguer. A modular order-sorted
equational generalization algorithm. Inf. Comput., 235:98—-136, 2014.

F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

F. Baader and W. Snyder. Unification theory. In J. A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning (in 2 volumes), pages 445-532. Elsevier
and MIT Press, 2001.

W. Bartol, J. Miré, K. Piéro, and F. Rossell6. On the coverings by tolerance
classes. Inf. Sci., 166(1-4):193-211, 2004.

A. Baumgartner and T. Kutsia. A library of anti-unification algorithms. In
E. Fermé and J. Leite, editors, Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, volume 8761 of LNCS, pages 543-557. Springer, 2014.
T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 3rd Edition. MIT Press, 2009.

P. Julidn-Iranzo and C. Rubio-Manzano. Proximity-based unification theory. Fuzzy
Sets and Systems, 262:21-43, 2015.

P. Julidn-Iranzo and F. Sdenz-Pérez. An efficient proximity-based unification al-
gorithm. In 2018 IEEFE International Conference on Fuzzy Systems, FUZZ-IEEE
2018, Rio de Janeiro, Brazil, July §-13, 2018, pages 1-8. IEEE, 2018.

E. Klement, R. Mesiar, and E. Pap. Triangular Norms, volume 8 of Trends in
Logic. Springer, 2000.

T. Kutsia and C. Pau. Proximity-based generalization. In M. Ayala Rincén and
P. Balbiani, editors, 32nd International Workshop on Unification, UNIF 2018,
Proceedings, 2018.

T. Kutsia and C. Pau. Computing all maximal clique partitions in a graph. RISC
Report 19-04, RISC, Johannes Kepler University Linz, 2019.

T. Kutsia and C. Pau. Solving proximity constraints. In M. Gabbrielli, editor,
Logic-Based Program Synthesis and Transformation - 29th International Sympo-
sium, LOPSTR 2019, Revised Selected Papers, volume 12042 of LNCS, pages 107—
122. Springer, 2019.

G. D. Plotkin. A note on inductive generalization. Machine Intel., 5(1):153-163,
1970.

J. C. Reynolds. Transformational systems and the algebraic structure of atomic
formulas. Machine Intel., 5(1):135-151, 1970.

M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Theor.
Comput. Sci., 275(1-2):389-426, 2002.

E. C. Zeeman. Topology of the brain. In C. H. Waddington, editor, Towards a
Theoretical Biology, volume 1, pages 140-151. Edinburgh University Press, 1965.

	Matching and Generalization Modulo Proximity and Tolerance Relations

