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ABSTRACT. In 1999, Frank Schmidt noted that the number of partitions of integers with distinct
parts in which the first, third, fifth, etc., summands add to n is equal to p(n), the number of
partitions of n. The object of this paper is to provide a context for this result which leads
directly to many other theorems of this nature and which can be viewed as a continuation of
our work on elongated partition diamonds. Again generating functions are infinite products
built by the Dedekind eta function which, in turn, lead to interesting arithmetic theorems and
conjectures for the related partition functions.
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1. INTRODUCTION

In 1999, Frank Schmidt [13] proposed the following problem in the American Mathematical
Monthly. We state it as a Theorem.

Theorem 1. Let p(n) denote the number of partitions of the integer n, and let f(n) denote the
number of partitions a1 + as + az + ... satisfying a1 > as > a3 > ... andn=a;+az+as+....
For example, p(5) counts the 7 partitions 5, 4+1,3+2,3+1+1,24+2+1,24+1+1+1, and
1+14+14141, and f(5) counts the 7 partitions 5, 5+1,5+2,5+3,5+4,4+3+1, and
442+ 1. Then

(1.1) p(n) = f(n), n>1

Peter Mork’s solution was published [10], and eight others were noted as solvers. Ali Uncu [15,
Thm. 3.1] proved (1.1) in the context of weighted Rogers-Ramanujan partitions and Dyson crank.

The point of this paper is the observation that this theorem has a very natural setting in
MacMahon’s Partition Analysis. The advantage of this approach is that it leads to a variety of
related theorems of which the following is the most immediate.

Theorem 2. Let s(n) denote the number of partitions ay + as + as + ... satisfying a1 > as >
az > ... andn = a; +az+ a5+ .... Let t(n) denote the number of two-color partitions of n.
Then

(1.2) s(n) =t(n), n>1.

For example, s(3) counts the ten partitions 3, 34+3,3+2,3+1,24+24+1,2+2+1+1,
24141,2+1+14+1,1+1+14+14+1,and 1+1+1+14+1+1. And ¢(3) counts the ten red and
green partitions 3, 34, 2, +1,, 2, +1,, 2, + 14, 2, + 14, 1, + 1, +1,, 1, + 1, + 1,4, 1, + 15 + 1,
1g+ 1, + 1.

The study of MacMahon’s Partition Analysis has been the topic of twelve papers we wrote
jointly on this topic. Partition Analysis is ideal to study questions of this nature. One of our hopes
in launching our study is that we might find new classes of partitions whose generating functions
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are modular forms. In the following sections, a number of Schmidt type partitions arising from
partitions on various graphs will be seen to have modular forms as generating functions. For
example, in [2], we considered “plane partition diamonds”; i.e., partitions whose parts, a;, lie on
the following graph, Figure 1, with each directed edge indicating >.

a2 as as a3n—1
ai T A3n+41
(£} ar aio a3n—2
as Qg ag a3n

FIGURE 1. A plane partition diamond of length n.

Now, taking such plane partition diamonds of unrestricted length (i.e., n — 00), and if instead
of adding up all the parts, we only add a1 + a4 + a7 + - - - + asp+1, we will find in Theorem 4 that
the generating function is

(=49

(13) (¢ 9)3

)

where
(Aiq)n = (1= A)(1 - Ag)...(1 = Ag"™") and (A;q)o = lim (A;q)y.

After giving a short review of Partition Analysis in Section 2, in Section 3 we prove Schmidt’s
original result, Theorem 1, and also Theorem 2. Moreover, we extend Theorem 2 to partitions
with three colors; see Theorem 3

The remainder of our article is devoted to other appealing applications of Schmidt’s original
idea. In Section 4 we sum the links of partition diamonds and prove Theorem 4. In Section 5 we
turn to the aspect of modular functions and related arithmetic properties of the coefficients of the
constructed counting functions for Schmidt type partitions. Our primary tool in these investiga-
tions is Smoot’s implementation [14], the Mathematica package RaduRK, of Radu’s Ramanujan-
Kolberg algorithm [12]. With this package we prove a variety of identities which, as immediate
corollaries, imply divisibility properties. To supplement the “computer proof” of Theorem 5 given
in Section 5, in Section 6 we present a classical proof which invokes two identities from the work
of Nathan Fine [5]. In Section 7 we sum the links of k-elongated partition diamonds, objects
introduced in [4]. In (7.3) we define the corresponding infinite family of generating functions,
(Di(q))k>1, counting Schmidt type partitions, and prove a variety of g-series relations and con-
gruences for k = 2 and k = 3. In Subsection 7.1, some conjectures concerning congruences living
on arithmetic subsequences of Schmidt type partition numbers for k£ = 2 are stated.

2. PARTITION ANALYSIS: Basic FacTs

We shall treat Theorem 1 in great detail to make clear how Partition Analysis is the ideal tool
for managing partition questions of this nature. To this end, we prepare by providing some basic
facts of MacMahon’s method.

The MacMahon operator {2, is given by

(2.1) Q _Z o 3T A A=Y Y A,

s1=— §p=—00 s1=0 s,-=0

where the domain of the A;, . . is the field of rational functions over C in several complex
variables and the \; are restricted to a neighborhood of the circle |A;| = 1. In addition, the
As, .5, are required to be such that any of the series involved is absolute convergent within the
domain of the definition of Ay, ., .
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The only application we need for Theorem 1 is

A~ A

where r,s € Z>o. This result follows easily,

)\_S - - n myn—mnr—s __ - - n m
Y- ST m ) 2 AP
o0 o0 AS
—_ An+mr+s mo__ .
n;); B =0=aa=as

To connect to Partition Analysis, we first consider the generating function of Schmidt partitions
of n having exactly one summand a;. It is given by the coefficient of ¢™ in

ay a2
E L1 Lo

a1>a2>0

z1=q,x2=1

The full generating function in z; and x5 translates into
/\—1
xalxag -0 xalxtm)\al—ag—l -0
Z te2 Ty Z L2 > (1 — 21 A)(1 — 22A71)
ai1>a2>0 ai,a2>0
T1

C (=)l - @)
where the last equality is by (2.2). Consequently, the counting function for the number of Schmidt
partitions having exactly one summand is

(2.3) Z xtrg?

a1>az>0

-4
r1=q,x2=1 (1 — q)2 '

To determine the closed form of
(2.4) > TP s p

a1>az>a3>as >0

)
r1=q,x2=1,x3=q,x4=1

the counting function for the number of Schmidt partitions a; + a3 formed by exactly two sum-
mands, we use the Omega package written in the Mathematica system. After placing the package
in a directory where we open a Mathematica session, we read it in as follows®:

In[1l:= << RISC‘Omega‘

Omega Package version 2.49 written by Axel Riese (in cooperation
with George E. Andrews and Peter Paule) (© Research Institute for
Symbolic Computation (RISC), Johannes Kepler University Linz

First we translate the z;-series from (2.4) into what MacMahon called the crude generating
function,

in2:= crude = OSum[x7'x52x53x3%, {a1 > az,a2 > as,az > ag,as > 0}, A]

AT
Out[2]= Q
ut[2] > (17>\1X1)(1*¥)(1*?)(3)(17;*4)
A1, A2, Ag ' : ®

Next, we ask the program to eliminate all the slack variables \;,
In[3l:= OR[crude]

3.2
XXX
Out[3]= 17273

(1 —x1)(1 — x1%2) (1 — x1%X2%x3) (1 — X1X2X3Xs)
The program, in this step, applies the elimination rule (2.2) to eliminate successively A;, Mg, and
As. Consequently,

q4

2.5 Rl el el = .
(2.5) Z 1 T2 X3" Ty (1—q)2(1—¢2)2

r1=q,x2=1,23=q,24=1
ay>az>az>as>0 1 s

IThe package is freely available at https://combinatorics.risc.jku.at/software upon password request via
email to the second named author.
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Summarizing, the experiments with the Omega package suggest that

il
b k Z 17
(I—g)(1—¢*?2...(1—q")?
is the counting function for the number of Schmidt partitions a; + az + -+ + asr_1 formed by
exactly k& summands. Finally, recall [1, (1.2.3) and (2.2.9)],

(2.6)

) qu - o ) ) - )
(2.7) = (1—q)?(1—¢?)?... (1—g")? = E —¢ nz::op(n)q ,

This would prove Theorem 1, once the form (2.6) for Schmidt partitions into k parts is proven.
This is done in the next section, again by using Partition Analysis.

3. PROOF OF THEOREM 1 AND PARTITIONS WITH TWO AND THREE COLORS

For the proof of Theorem 1 and of similar results the following Lemma is crucial.

Lemma 3.1. For the n-variable generating function for partitions with n parts > s € Z>y and

difference at least r € Z>o between parts, and where x; keeps track of the ith part of the partition,
(3.1)

S

Z x{lscjf xﬁ[‘ i (z1x2)" .. (z12a .. 1) (X120 . . X))

J1seerin>s (1—21)(1 — z122)(1 — 2120m3) ... (L — 2122 .. Tp)

J1—d2=>7md2—J3>1. 0, Jn—1—Jdn=>T

Proof. We rewrite the left-hand side of (3.1) using MacMahon’s operator 2., and then successively
apply (2.2),
J1,.J2 Jn \J1—J2—T\j2—J3—T Jn—1=Jn—Tyjn—s
Q S alal N A D Vi bV
J1sesJn 20
_q AT AT
= (L=2 M) (L — 222 ) o (L= Tt A1 A ) (1= 2 A A L)

B x] O )\2_7“...)\;11)\.;8
L—z1 > (1—2@ada) (1 — 23305 1) oo (1= 21 A1 A, 1) (1T — 2 A A )
_ zy(z122)" Q Agm DA
(= 2) (1= m1m2) 2 (1 — pwawsds) (1 — 2adadz ) oo (1= 1 Am A o) (1 — 2 A A L))
i (xza)" .. (T2 . )" A8

(1—2)Q—z122) ... (1 — 21272 .. . Tpy_1) 2 1 —21T2 ... Ty Ay

Finally, another application of (2.2), this time with B = 0, proves (3.1). O

Corollary 1. The counting function for Schmidt partitions a1 +as+- - -+ asx—1 formed by exactly
k summands is of the form as in (2.6).

Proof. The desired counting function is obtained by the following substitution in (3.1) with r =1,
s =0 and n = 2k,

E J1 .92 J2k
'rl .1‘2 te x2k T1=¢,T3=q,..-, T2 _1=4q;
]‘l’m,jzkzo zo=1,x4=1,...,x9) =1
J1=32>0,j2-373>0,....do8 1 —J2k >0
2 4 2k—2 |k K2
qq ...4q q q

- (1_Q)2(1_q2)2...(1—qk)2 - (1—Q)2(1—q2)2...(1—qk)2’ k> 1.
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Proof of Theorem 1. Theorem 1 is an immediate consequence of Corollary 1 together with (2.7).
O

Proof of Theorem 2. Let s(n, k) be the number of partitions a; + as + a3 + ... satisfying a; >
ay>as> ... andn=ay;+as+---+ asx_1. Then by Lemma 3.1 with r = s = 0 and n = 2k,

o0
_ Ji .3 J
Z s(n, k)" = Z xtwy . aht A —aama s 1=,
n=0 G1s-dok >0 zo=1,m4=1,..., 29 =1
41—342>0,j2—33>0,....dok_1—d2k 20
B 1
O e N
Letting & — oo we obtain the generating function for partitions with two colors. O

We conclude this Section with another application of Lemma 3.1.

Theorem 3. Let u(n, k) denote the number of partitions ay + as + - - - + asg satisfying a1 > as >
oo >agg > 0andn=a; +ag+ar+ -+ agg—a. Let v(n, k) denote the number of three-color
partitions of n using exactly k parts of the first color with minimal difference 2 between parts,
exactly k parts of the second color with minimal part-difference 1, and mazimally k parts of the
third color. Then

(3.2) u(n, k) =v(n, k), nk>1

Proof. By Lemma 3.1 with r =1, s =0 and n = 3k,

oo
E u(n, k)q" = E o' xl L wll| mi=qwa=q,.. za2=q,
70 S1reidan20 r2=l,x5=1,...,x3-1=1,
J1—32>0,42=33>0,".. Gz _1 —dgk >0 z3=1,26=1,...,x35=1
3,6 3k=1) k. k
P PR gk g
= 3 213 03
(1-g)P(1—¢*3...(1 -4~
1434 42k—1 14244k
q q 1

I-g)(1—¢*)...(0—=¢*) 1-q(1—¢*)...(1—=¢*) (1-q¢)(1—¢*)...(1—¢qF)

4. SUMMING LINKS OF PARTITION DIAMONDS

In the Introduction we mentioned plane partition diamonds a; +as+- - -+agn4+1 with a3 > ag >
-+ > agnt1 > 0 of length n; see Figure 1. Now, for such plane partition diamonds of unrestricted
length (i.e., n — oo) our Schmidt type condition consists of adding up the parts on the nodes
linking the diamonds,

ay +ag+ay+ -+ azpy1.

For example, there are 13 such plane partition diamonds that yield 2: four with source 1 as shown
in Figure 2, and the nine with source 2, Figure 3.

1 1 1 1 1 |
101 1@‘/ 1@ 1%
i i i i i i

FIGURE 2. Four plane partition diamonds with source 1.



6 GEORGE E. ANDREWS AND PETER PAULE

o

FIGURE 3. Nine plane partition diamonds with source 2.

Theorem 4. The generating function for the Schmidt type partitions obtained by adding the
summands a1 + aq4 + - -+ + asgr1, k > 0, at the linking nodes in the plane partition diamonds of
unrestricted length is given by

(4.1) D(q) = > _ d(m)q™ := ((_qqq‘;}” =1+ 4q+ 13¢% + 36¢> + 90¢* 4 208¢° + 455¢° + O(¢").
m=0 ) oo

Remark. There is a variety of combinatorial interpretations of the infinite product D(g). For
example, it generates four-color partitions in which one of the colors has distinct parts.

Proof. In [2, Thm. 2.1] we proved that the generating function for the plane partition diamonds

of length n, where x; keeps track of the part on the ith node (as indicated in Fig. 1), is given by
1 1 —X1X3 1—X4X6 1_X3n—2X3n

(17X1)(17X2)(17X3n+1) ].7X3/$2 17X6/£L’5 1*X3n/x3n—17

(4.2)
where X = x129... 21, kK > 1.
To obtain those partitions where we consider
a1 +aq +ay 4 -+ a3,

we set x3;41 = ¢, and z; = 1if j Z 1 (mod 3). As aresult, X3;41 = X3;40 = X343 = ¢, i >0,
and (4.2) becomes

(" 1 ) 1 1—¢2 1—¢* 1—¢*
(=g l—gtt 1—q 1-¢* 1-gq"’
and letting n — oo, we obtain the product (4.1). O

Corollary 2. Let d(m) be the number of partitions considered in Theorem 4. Then for m >0,
4|d(2m+1) and d(2m) =p(m) (mod 4).

Proof.
o0 [e’s} 1 q% e o] 1— q27l
d m = —_— = N n o 7y

mz::o (m)q E (1—qi)* H 1 — 4¢° + 6¢% — 4g37 + g%
B o0 1— q2’i
= Zl;[l =T (mod 4)
=[Ii=z = 2w

i=1 q m=1

O

In the next section, this corollary will be put into a broader context involving modular functions.
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5. WITNESS IDENTITIES FOR PARTITION DIAMOND CONGRUENCES

As pointed out in the Introduction, one of the goals of our study of this type of partitions,
enabled by the usage of Partition Analysis, is to give combinatorial constructions of modular
forms which, in turn, will give rise to new arithmetical theorems. In this section will illustrate
this aspect with the modular form D(g) introduced in Theorem 4.

Our first result is the first statement of Corollary 2 in the form of a witness identity.
Theorem 5. Let d(m) be the number of partitions considered in Theorem 4. Then
2 4
(¢%d%) . (a*a%) .
(¢ 0)%

(5.1) i d2m+1)¢" =4
m=0

Today, identities like (5.1) can be proven with computer algebra programs which implement
Radu’s Ramanujan-Kolberg algorithm [12]. We will apply the Mathematica package RaduRK by
Nicolas Smoot [14] which is very convenient to use.? To prepare for its usage, follow the installation
instructions given in [14], and invoke it within a Mathematica session as follows:

In[4]:= << RaduRK*

math4ti2: Mathematica interface to 4ti2 (http://www.4ti2.de)
© 2017, Ralf Hemmecke <ralf@hemmecke.org>
© 2017, Silviu Radu <sradu@risc. jku.at>

RaduRK: Ramanujan-Kolberg Program Version 3.0 2021 written by
Nicolas Smoot <nicolas.smoot@risc.jku.at> (©) Research Institute
for Symbolic Computation (RISC), Johannes Kepler University Linz

Before running the program, one needs to set the two global key variables ¢ and ¢:
In[5]:= {SetVarl[q], SetVar2[t]}
Out[s]= {q,t}
Proof. The algorithmic proof of (5.1) is done with the procedure call
Inf6]:= RK[4, 2,{—4,1}, 2,1]

After a few seconds, Smoot’s package delivers the proof in the form,

N: 4
{M7 (T5)5|]M}: {27(7471)}
m: 2
P ) 0]
out[6] = fi(q) : %
4 (4;9)%
: q(q*;91)3
AB: {1}
{py(t): g €EAB} {4}
Common Factor: 4

O

The interpretation of the output is as follows:

e The assignment {M, (r5)sn} = {2,(—4,1)} comes from the second and third entry of the
procedure call RK[4,2,{-4,1},2,1]; this corresponds to specifying M = 2 and (rs)s2 = (r1,72) =
(—4,1) such that

G , . (24
dn)g" = [ [ (% ") = 5=
,;0 51;»[1 (4,9)4%

In the output expression P, ,(j) the abbreviation 7 := (rs)s s is used; i.e., here r = (—4,1).

2The package is freely available at https://combinatorics.risc.jku.at/software upon password request via
email to the second named author.
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e The last two entries in the procedure call RK[4,2,{-4,1},2,1] correspond to the assignment
m =2 and j = 1, which means that we are interested in the generating function

o0 o0
Z d(mn+ j)q¢" = Z d(2n + 1)q".
n=0 n=0
In the output expression P, ,(j) these parameters m and j are used; i.e., here Py, ,(j) = P2 ,(1)
with r = (—4,1).
e The first entry in the procedure call RK[4,2,{-4,1},2,1] corresponds to specifying N = 4,

which fixes the space of modular functions the program will work with:

M(To(N)) := the algebra of modular functions for T'o(V).

e The output Py, (j) = P2 (—4,1)(1) = {1} means that there exists an infinite product

(¢:9)%
(% ¢*)% (g% q*)4

fl(Q) =
such that

fi(@) > d(2n +1)g" € M(Io(N)) with N =4,

n=0
e The output
5.2 —}% AB =11 d : AB} = {4
(5.2) = = {1}, and {p,y(t): g € AB} = {4}

presents a solution to the following task: find a modular function ¢ € M (T'o(N)) and polynomials
pg(t) such that

(5.3) fi(@) D d@2n+1)g" = > py(t) - g.
n=0 g€eEAB

In general, the elements of the finite set AB constitute a C[t]-module basis of M (I'o(N)), resp.
of a large subspace of M(T'g(N)). The elements g of AB are C-linear combinations of modular
functions in M (T'g(V)) which are representable in infinite product form such as fi(¢) and ¢. In
the specific case under consideration, the program delivers (5.2), which means,

fil@) > d2n+1)g" =4 1.
n=0

This is (5.1).

Remark. For the definition of notions such as I'g(IV) or M (T'g(N)), together with a general intro-
duction to Radu’s Ramanujan-Kolberg algorithm, see [11]. For the correctness proof and details
of the algorithm, resp. of the implementation, see [12], resp. [14].

The next result is a witness identity which implies the second statement of Corollary 2.

Theorem 6. Let d(m) be the number of partitions considered in Theorem 4. Then

(0% ¢%) 2 (4% ¢®)% (g% q*)20
(D% (a4 aY)%  (G0)2%(¢% %)%

(5.4) > d(2m)g™ = 4q

m=0
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To see that this indeed implies the second statement of Corollary 2, one uses (1—xz)* = (1—22)?
(mod 4) repeatedly to obtain,

(a%a)2  _  (ahe)d  _ (ahah)i (mod 4)
(G053 a®)%  (94)% (@5 ¢%)% (6% 24 (6% ¢®)4
4. 10
_ (g% ¢ (mod 4)

(g% ¢*)%(a% ¢*)%
(SR @y gy

(a5 %)% (a5 %)%

Proof. For the algorithmic proof of (5.4) we again use Smoot’s package,
In[7}:= RKI[8,2,{—4,1},2,0]

which, after a few seconds, computes the constituents of the witness identity (5.4) in the form,

N: 8
{Ma (r5)5|ﬂf}: {27(_471)}
m: 2
Pm7r(j): Q{Oi N2
out (7] = fig) W
‘- (q%qh)%2
: a(g%:9%)2(4%:¢%)8
AB:
{py(t): g €AB} {4+1t}
Common Factor: None

Remark. Notice that this time N = 8; i.e., the witness identity of the form,
File) D d@2n)g" = (4+1) -1,
n=0

is an identity involving modular functions in M (T'y(8)). Trying the package with N = 4 gives,

Infgl:= RK[4, 2,{—4,1}, 2, 0]
Select another N.

The next result is a Ramanujan-Kolberg relation which, as a witness identity, is a g-series
refinement of the fact that 4 | a(2m + 1).
Theorem 7. Let d(m) be the number of partitions considered in Theorem 4. Then

> d(Am+1)g™ > d(4m + 3)g™
m=0

m=0

. (q2 q2)16(q8. q8)22
(5.5) =16¢° (qjq)3§?q4.;4)7°° (44 t)(4 + 3t) (64 + 528¢ + 108t2 + 3t%)

(g% q")12
(2% 4%)3. (g% ¢®)%,

Corollary 3. For the number d(m) of partitions considered in Theorem 4,

4] d(4m+1) and 4|d(dm+3), m>0.

For the algorithmic proof of (5.5) we again use Smoot’s package.
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Proof. Choosing m =4 and j = 1 as the last two entries in the procedure call,
In[o]:= RK[8, 2,{—4,1},4,1]

the program produces the Ramanujan-Kolberg type identity (5.5) as follows:

N: 8
{M, (rs)sn}: {2,(=4,1)}
m: 4
Pm’r(]). g'}’ 3)}4 19
. [CRT S
t: a(q%¢®)% (4%;9%)8
AB: {1}
{py(t): g €AB} | {16t(4 +1t)(4+ 3t)(64 + 528t + 108t% + 3t%)}
Common Factor: 16

O

Remark. Again the relation involves modular functions in M (I'¢(N)) with N = 8. But now,
according to the output P, ,(j) = {1,3}, the witness identity involves a product of generating
functions,

A@ I ddn+k)g" = fi(e) D d(dn+1)g" Y d(4n+3)g" = pi(t) - 1,
kEPm ~(5) n=0 n=0

with the polynomial p;(t) as given in the output Out[9]. Identities involving products in this
form were first studied in systematic manner by Kolberg [8]. The entry “Common Factor” in the
output refers to the common factor 16 of all the coefficients of p; ().

Equipped with the RaduRK package, one can derive numerous identities of Ramanujan-Kolberg
type. We restrict to state immediate corollaries of three identities which we derived analo-
gously to the examples above, using the procedure call RK[10, 2, {-4, 1}, 5, j] and choosing
j € {1,2,3}. Notice that N = 10; i.e., the corresponding Ramanujan-Kolberg relations involve
modular functions for I'y(10).

Corollary 4. Let d(m) be the number of partitions considered in Theorem 4. Then

- o m_ ()50
(5.6) d(5m)q d(5m +1)q :q( )P (q10; g10)20 (mod 2),
= = 4;9)°°(¢"% ¢
o0
(4% 4%)3.(¢% ¢°)2
5.7 d(bm+3)¢™ =¢q %0 > (mod 4),
(57) mZ::O ( ) (4;9)22(4"%5 ¢19)3, ( )
and
) o0 2. 2\12(,5. 5140
m m o — Q(Q7q)oo(q’q)oo
(5.8) > dBm+2)g™ > d(5m+4)g" =q B (mod 2).
m=0 m=0 ’ ’

6. A CLassICAL PROOF OF THEOREM 5

Let d(m) be the number of partitions considered in Theorem 4. In Section 5 we presented a
“computer-proof” of the infinite product representation of ) - d(2m+1)¢"™ stated in Theorem 5.
We find it instructive to show how this identity, (5.1), can be proven with classical means. To this
end, recall
(0% ¢%) o

D(q) = 49 and define ¥(q) := (0% o0

(¢:9)3,
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Proof of (5.1). We begin by “summing the odd part”,

2 3" d@m+ 1)@ = D(q) — D(—q) = (0% (69

>0 (93 (-9
(6 P)x(-0*1P)x (66 x(—0"¢)x
( 7*)3.(q 2 ) (—4:0*)3. (6% ¢%)3
% 4%

_ (=4 oo(( 600 (QQq2)oo>

(@)% \ (6% (-¢¢%)3

(= q,q2) (=4 4%) o0 (4 4o " 4
- o (v(@* = v(-*).

To simplify further, we recall two identities arising as special cases of a more general framework
studied by Nathan Fine. The first one is [5, p. 76, (31.51)],

(6.1) ba) == 3 o2 - 1)

N>1

where o is the sum of divisors function.® The second identity is [5, p. 76, (31.54)],

(6.2) S o(4N —1)g" = 4g %

= (4:9%)%

Now, by “summing the even part”,

2
P(g) = (=) = g 2 TN — Dg*N  (by (6.1))
N>1
(6% q®)%,
I’ o0
Consequently,
(=% ) oo (400 (¢56*) o (¢°;0%)2
2 d(2m + 1)¢*™ ! =8¢ =
2 dame ) (L (%
(6% q®)%
=8¢(—¢:9)(q; ¢
(05 0)oe 0:0)o0 Tyt (2
PR C T
(g% ¢*)% (a5 a*)3%
(qg;qg)io 2. .2\2 (2. 4\2
8. 8\4 4 8
9549 ) o q;q q;q
=8¢ qu.qgig (% *)% (@ 6% 8y (q)2.q(2>9 )
This completes the proof of (5.1). O

Remark. Mike Hirschhorn showed us an alternative classical proof. Namely, multiplying for-
mula (19.2.5) in [7] with 1(¢?)?, and then using [7, (1.5.13)] gives (5.1) with g replaced by ¢2.

7. SUMMING LINKS OF k-ELONGATED PARTITION DIAMONDS

In this section we will continue the theme of summing links of partition diamonds. To this end,
we consider k-elongated plane partition diamonds introduced in [4]. The case k = 1 corresponds
to using square-shaped building blocks of plane partition diamonds as depicted in Figure 1.

Instead of glueing squares together as in Figure 1, we take as building blocks k-elongated
partition diamonds, which are configurations as shown in Fig. 4.

The result of gluing n such k-elongated diamonds together is shown in Figure 5.

3This identity was already known by Legendre [9, p. 134].



12 GEORGE E. ANDREWS AND PETER PAULE

as as ar a2k—1 A2k+1
al ﬂ i@ o
a2 Gy ag a2k—2 G2k

FIGURE 4. A k-elongated partition diamond of length 1.

A2k+1 A2k+4 A4k+4-2 A(2k+1)n
< Askto Qugppg Do < >a(2k+1)n+1
a2k+3 A4k+1 A(2k+1)n—1

FIGURE 5. A k-elongated partition diamond of length n.

The corresponding generating function is defined as

R ay a2 A(2k+1)n+1
P (1, T2kt 1yng1) = Z Ty X" Tiogy1ypy1r
(a1, a2k+1)ynt+1)€EHn i
where
2k+1)n+1 . . R
Hy o= {(a1,...,a@ks1)n+1) € Z( FOnHL L e a; satisfy the order relations in Figure 5}.

As a consequence, the generating functlon of partition numbers produced by summing the links
of k-elongated plane partition diamonds of length n (Figure 5) is obtained by the substitutions

T| = Topyo = Tapy3 = = T(2kt)nt1 = ¢ and x5 = 1if j# 1  (mod 2k +1).
For n,k € Z>; we define
(7.1) D, i (q) = hnp(z1, .- -, $(2k+1)n+1)’ 1=, T2k 4250 e T (24 1) m g1 =
z;=1if j#1 (mod 2k+1)
By [4, Thm. 6] we know,
(2k+1)n+1

1
h e =
n,k($179€2, ,$(2k+1)n+1) 31;[1 1- X,
[ L X(2k Dit20—1X (2k+1)i4+2041
B +1)i+ +1)i+26+
(72) X H H _ X@rt1)it2et1 ’
=0 =1 T(2k+1)i420
where Xy :=1 and X,,, ;= z129-- -2, m > 1.
The substitution as in (7.1) gives
X(2k+1)i+1 = X(2k+1)i+2 == X(2k+1)i+2k+1 = QH_l’ t=0,...,n—1
Consequently, (7.2) implies
1 1 2. 2\k
Dn,k(q> = 2k+1 nt1 (q 4 ])cnv

which in the limit n — oo turns into

(7.3) Di(q) =Y di(m)q™ := lim D, 1(q) = Lq?)k)-i-l
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Notice that for £ = 1 we have
(%) . _
Di(q) = ~——;— = D(q); ie., di(m)=d(m), m >0.
(¢ 9)%
The remaining part of this section presents various observations on Dy(q), respectively on the
partition numbers di(m), for k = 2 and k = 3.

7.1. Arithmetic properties of dy(m). This subsection is devoted to a study of arithmetic prop-
erties of the coefficients of the generating function for 2-elongated plane partitions,

_ - m m_m
(7.4) D2<q)—n;)d2( Ja" = (¢ 0)%

=14 7q + 33¢> +126¢> + 419¢" + 1260¢° + 3509¢° + 9185¢" + 22842¢° + O(¢%).
In this case the building blocks, 2-elongated diamonds of length 1, are of hexagonal shape. Divis-
ibility by powers of 3 seem to be among the most striking properties of the da(m).
We begin with a witness identity.
Theorem 8. Let do(m) be the number of partitions as in (7.4). Then

oo

(7.5) fro ) da(3m+2)g™ = 3(8+)(1728 + 288t + 11t7),
m=0
where 19¢,.2. 2 3. .,3\6 5 3. .3
1 (69)x(0% )00 )0 0y - L (@0)s(6¢%)
¢ (4% ¢%)2L q (4% 4*) oo (4% ¢5)%
Corollary 5. Let da(m) be the number of partitions as in (7.4). Then

3| dy(3m +2), m>0.

fi=

The algorithmic proof of (7.5) is by Smoot’s package:

Proof. Choosing N = 6, and m = 3 and j = 2 as the last two entries in the procedure call RK[6,
2, {-7, 2}, 3, 21, produces (7.5) as a relation between modular functions for T'y(6). O

Another corollary of Theorem 8 concerns the general distribution of even and odd partitions
numbers dg(3m + 2).

Corollary 6. Let dy(m) be the number of partitions as in (7.4). Then

(7.6) m;)@(sm £ 2)g" = ((gqg)igo (mod 2).

Proof. Notice that 33 is the only odd coefficient occuring in the polynomial on the right-hand side
of (7.5), which implies,

Z d2(3m +2)¢™ = — (mod 2)
m=0 fl
_ (2% 4% _ % q9),
(€ 0%(0* )% (6% ) (Ga)f
The last equivalence is by (1 —z)2 =1 — 2% (mod 2). O

In a similar fashion, relation (7.5) implies further identities of the form (7.6), for example, with
respect to mod 4 and mod 8. This principle applies in general: identities as (7.5) often give rise to
equivalences such as (7.6), provided the coefficients of the polynomial in ¢ show sufficiently “nice”
patterns when taken modulo suitable integers. To illustrate this aspect in the given context, we
restrict to showing only a small sample of such results.

For instance, the procedure calls RK[6, 2, {-7, 2}, 3, 0] and RK[6, 2, {-7, 2}, 3, 1]
deliver relations implying the following equivalences as immediate consequences.



14 GEORGE E. ANDREWS AND PETER PAULE

Corollary 7. Let da(m) be the number of partitions as in (7.4). Then

= mo @S
(77 mZ:OdQ(gm)q (@%0%)5%(@%56*)5 (mod 16),
- m_ o (4555 .
(7.8) mz::Odg(Bm-i—l)q =7 O (& (mod 64),
and
- mo ()%
(7.9) m2_;0d2(3m +1)¢" = G (mod 3).

The procedure calls RK[6, 2, {-7, 2}, 9, 5] and RK[6, 2, {-7, 2}, 9, 8] deliver rela-
tions with polynomials in ¢ of degree 14, which imply the following divisibilities.

Corollary 8. Let dy(m) be the number of partitions as in (7.4). Then

(7.10) 9| dz(9m+5), m>0,
and
(7.11) 27 | dy(9m +8), m > 0.

The procedure calls RK[6, 2, {-7, 2}, 27, 81, RK[6, 2, {-7, 2}, 27, 171, and RK[6,
2, {-7, 2}, 27, 26] deliver relations with polynomials in ¢ of degree 48, which imply the fol-
lowing divisibilities.

Corollary 9. Let dy(m) be the number of partitions as in (7.4). Then

(7.12) 3% | do(3*m +8), m >0,
(7.13) 33 | do(33m + 17), m >0,
and

(7.14) 3% | do(3°m +26), m > 0.

Applying the RaduRK package, based on computer algebra, to sequences dy(3*m + j) for k > 4
runs up against computational limits when using a standard laptop. Hence we conclude this
subsection with several conjectures made on the basis of numerical computations.

Congecture 1. Let d2(m) be the number of partitions as in (7.4). Then for m > 0,

(7.15) 3% | da(3*m + j) for j e {8,35,62,71},

and

(7.16) 3% | do(3*m + 44).

Congecture 2. Let d2(m) be the number of partitions as in (7.4). Then for m > 0,
(7.17) 35 | dy(3%m + §) for j € {8,35,62,89,116, 143,152, 170,197, 224, 233},
and

(7.18) 35 | do(3°m + 71).

Owing to lack of numerical evidence the following conjecture concerning an infinite Ramanujan
type family of divisibilities is more daring.

Congecture 3. Let da2(m) be the number of partitions as in (7.4). Then for m > 0,
(7.19) 3% | da(3Fm + ji) for all k> 1,

where the integers jj are chosen such that 8j; = 1 (mod 3%) and 1 < ji < 3F. The first j;, are
2,8,17,71,152, ctc.
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Note added in proof. Ralf Hemmecke, using his implementation of Radu’s Ramanujan-Kolberg
algorithm from the QEta package [6], succeeded to produce a computer proof of Conjecture 1
for the case j = 71. In addition, Nicolas Smoot succeeded to prove the instance j = 152 of
Conjecture 2. Moreover, Smoot was able to find a refinement of Conjecture 3 together with a
proof.

7.2. Arithmetic properties of ds3(m). This subsection is devoted to a study of arithmetic prop-
erties of the coefficients of the generating function for 3-elongated plane partitions

(7.20)

e 2. .2\3
Daa) = 3 damja™ =
m=0 1 /00

=14 10q + 62¢* + 300¢> + 1235¢* 4 4522¢° + 15130¢° + 47084¢" + 137990¢° + O(¢?).
In this case the building blocks, 3-elongated diamonds of length 1, are of octagonal shape.

We present a couple of a witness identities which again imply various congruences.

Theorem 9. Let d3(m) be the number of partitions as in (7.20). Then

(7.21) fro ) ds(2m+1)g™ = 2(16 + 40t + 5t°),
m=0
where 22/ 4. 4\5 4. 4\12
1 . . o 1 .
h=- (Z’q;o?(()qéqz)zoio and t= -3 (zqz;q)sooss'
@* (¢%:¢*) (¢ ¢®) 8 7 (0% 6%)5.(¢% a®)%

Corollary 10. Let d3(m) be the number of partitions as in (7.20). Then
2]ds(2m+1), m>0.

The algorithmic proof of (7.21) by Smoot’s package is done as follows:

Proof. Choosing N =8, and m = 2 and j = 1 as the last two entries in the procedure call RK[8,

2, {-10, 3}, 2, 11, produces (7.21) as a relation between modular functions for I'y(8). O
Theorem 10. Let d3(m) be the number of partitions as in (7.20). Then
(7.22) fro ) ds(2m)q™ = £(80 + 40t + t2),
m=0

where 22(,4. 4\11 4. 4\12

I (49)55(9759 ) 1 14"

h== (czqu 1§q8?2314 and t= -5 (§4q)s. 8)8

7* (¢%:¢*)R(¢% ¢®) & 7 (9% ¢*)% (0% ¢%)%
Proof. Choosing N = 8, and m = 2 and j = 0 as the last two entries in the procedure call RK[8,
2, {-10, 3}, 2, 0], produces (7.22) as a relation between modular functions for I'¢(8). O

Corollary 11. Let d3(m) be the number of partitions as in (7.20). Then

5 (mod 2).

(7.23) mzz:odg(Zm)qm = oL

Proof. Notice that the only odd coefficient occuring in the polynomial on the right-hand side
of (7.21) is 1, the coefficient of 5. This implies,

oo 3
Z ds3(2m)q™ = r (mod 2)
m=0

1
(¢5¢M2 _ 1
T GOZ(E PO T (972 (mod 2).
) oo ’ oo ? oo

The last equivalence is by (1 —z)?2 =1 — 2% (mod 2). O
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Remark. It is interesting to note that the right-hand side of (7.23) leads us back to our first
result on Schmidt type partitions, Theorem 2. Moreover, as already remarked, the structure of
the polynomial #(80 + 40t + t?) gives rise to further equivalences, e.g., modulo 5 and 8.

Theorem 11. Let ds(m) be the number of partitions as in (7.20). Then

(7.24) Zd 3 _ (q *)a(q% ¢%)2
3(3m) ng (3m+1)q ng (3m+2)¢" = 0P (mod 2).

m=0 m=0 m=0

The proof is obtained from the Kolberg type relation involving modular functions for T'g(18)
which is computed with the procedure call RK[18, 2, {-10, 3}, 3, 0]. The respective polyno-
mial in ¢ is of degree 41. For the generating functions Zﬁ:o ds(4m+ j)q™ the respective relations
are between modular functions for I'g(8). The case j = 0 gives no divisibility.

Theorem 12. Let d3(m) be the number of partitions as in (7.20). Then

(oo}
fro ) ds(4m+ 1)g™ = 2¢(1228800 + 8597504¢ + 12672000t + 6344448¢° + 1263680t*

(7.25) + 9512065 + 2036t° + 5¢7),
uhere (4:0)2(" 42 (¢ 4"
1 (¢9)(qa";q q*;q
fi=— and t=
YT (@B ) 0 (%624 (5% ¢®)%,

Proof. Choosing N =8, and m =4 and j = 1 as the last two entries in the procedure call RK[8,
2, {-10, 3}, 4, 1], produces (7.25) as a relation between modular functions for I'(8). O

In view of Corollary 10, the divisibility 2 | d3(4m + 1), implied by (7.25), is no news.
Theorem 13. Let d3(m) be the number of partitions as in (7.20). Then

fre ) ds(4m +2)q™ = 2(4 + £)(16384 + 1216512t + 51824641” + 5201152¢% + 16959361

m=0
(7.26) + 188848t° + 6108t° + 31t7),
where i
1 1
flzig(qq)lgq Q)34 und 1= L (a5
¢® (a%:¢*)8(¢%; ¢®)% 0 (%)L (¢%¢%)%

Proof. Choosing N = 8, and m =4 and j = 2 as the last two entries in the procedure call RK[8,
2, {-10, 3}, 4, 21, produces (7.26) as a relation between modular functions for I'y(8). O

Corollary 12. Let d3(m) be the number of partitions as in (7.20). Then
2| ds(4m+2), m>0.
Theorem 14. Let d3(m) be the number of partitions as in (7.20). Then

Z ds(4m + 3)¢™ = 4t(81920 + 2084864t + 6087680t + 5054720t° + 1586112t

m=0
(7.27) + 198000t + 8396t° + 75t7),
where e
flzi(QQ) ST - S U T
¢® (0%:¢*)32(¢% ¢°) 28 7 (4% ¢°)% (0% )%

Proof. Choosing N = 8, and m = 4 and j = 3 as the last two entries in the procedure call RK[8,
2, {-10, 3}, 4, 31, produces (7.26) as a relation between modular functions for I'y(8). O

Corollary 13. Let d3(m) be the number of partitions as in (7.20). Then
4|ds(4m+3), m>0.



MACMAHON’S PARTITION ANALYSIS XIII: SCHMIDT TYPE PARTITIONS AND MODULAR FORMS 17

The degrees of the polynomials p(t) grow fast when increasing k in the relations

fre ) ds(km + j)g™ = p(t).

m=0

Consequently, we restrict to presenting two further results related to k = 5.

Theorem 15. Let d3(m) be the number of partitions as in (7.20). Then
F1o D7 ds(5m + 1)g™ = 5¢(335544320 + 4143072352 + 18433066080t + 46252687360t

+ 74878812160t* 4+ 86169354240t° + 74399891456t° + 50069135360¢7
+ 26613713920¢% + 11145157120t° + 361557632010 + 8648778561

(7.28) + 133950780¢'2 + 10750435t + 341960¢'* + 2900¢'° + 2¢19),
where
P (@9)%(a% ¢ o, 1(6% ) (q 4°)3%
a'7 (¢% ¢*)35(¢"% ¢'°)32 0 (4:9)oc ("% ¢"0)3,

Proof. Choosing N = 10, and m = 5 and j = 1 as the last two entries in the procedure call RK[10,
2, {-10, 3}, 5, 1], produces (7.28) as a relation between modular functions for I'¢(10). O

Corollary 14. Let d3(m) be the number of partitions as in (7.20). Then
5]ds(5m+1), m >0.
Theorem 16. Let d3(m) be the number of partitions as in (7.20). Then

(7.29) Z d3(5m + 3)q Z ds(5m + 4)g™ = p(t),
m=0 m=0
where
fe b @aR(@)R 10500 )5
7% (%435 (¢"% ¢ )R ¢ (4900 (d"%5¢M0)5

and
p(t) = 25t*(117093590311632896 + 2842897264777625600¢ 4 29684351043905781760t>

+ 183865787974376488960t° 4 773262866324631060480t* + 23835559149208086773761
+ 5664084337113767608320t° + 10753875441422748876800¢" + 16753765696748178636800t"
+ 21860867201684629094400t° + 24274755761068247613440t'° 4 23223590260152310169600t"*
+ 19321344609893325209600t'? + 14073379704545057177600¢ ' + 9014270525233220812800¢"*
+ 5088865294954182737920t° + 2532462032626332467200¢'° + 1108705968828389785600t" 7
+ 425105816599919001600"® + 141700146400976076800t"° + 40608572249636413440t>°
+ 9846762031189683200t>" + 1974753256674540800¢% + 317218144362572800t>°
+ 39075625930290400¢>* + 3492651955227376¢>° + 212202881089575t°° + 8134117807260t>"
+ 179717975960>° + 2032304980t>° + 9576646t + 14820t>").

Proof. Choosing N = 10, and m = 5 and j = 3 as the last two entries in the procedure call RK[10,
2, {-10, 3}, 5, 31, produces (7.29) as a Kolberg type relation between modular functions for
I'o(10). O

Corollary 15. Let d3(m) be the number of partitions as in (7.20). Then for all m > 0,
5| ds(5m+3) and 5| ds(bm +4).
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8. CONCLUSION

This paper hopefully will spur efforts to find further natural arithmetic/combinatorial objects
generated by modular forms. Applications most often arise from the combinatorial side with
subsequent important information being supplied by the fact that the generating functions are
modular forms. The richness of results found from these few instances considered here suggests
that much awaits.

Concerning the topical area of this paper, the Conjectures 1, 2, and 3 stated in Subsection 7.1
seem to be particularly challenging, especially the infinite family (7.19) of Ramanujan type congru-
ences. A related open problem is the question about the possible existence of other such families
in the context of Schmidt type partition numbers dj(n).

Many of the presented results were proven with the use of computer algebra. Nevertheless,
in order to obtain more substantial mathematical insight, classical proofs, such as that one of
Theorem 5, given in Section 6, would be desirable.
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