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Abstract This article presents an algorithmic theory of contiguous relations. Con-
tiguous relations, first studied by Gauß, are a fundamental concept within the theory
of hypergeometric series. In contrast to Takayama’s approach, which for elimination
uses non-commutative Gröbner bases, our framework is based on parameterized
telescoping and can be viewed as an extension of Zeilberger’s creative telescop-
ing paradigm based on Gosper’s algorithm. The wide range of applications include
elementary algorithmic explanations of the existence of classical formulas for non-
terminating hypergeometric series such as Gauß, Pfaff-Saalschütz, or Dixon sum-
mation. The method can be used to derive new theorems, like a non-terminating
extension of a classical recurrence established by Wilson between terminating 4F3-
series. Moreover, our setting helps to explain the non-minimal order phenomenon of
Zeilberger’s algorithm.

1 Preamble

A first version of this article [22] has been produced about twenty years ago. At
the occasion of the Wolfgang Pauli Centre Workshop “Antidifferentiation and the
Calculation of Feynman Amplitudes” at DESY (Deutsches Elektronen-Synchrotron,
Zeuthen, October 4–9, 2020) the organizers Johannes Blümlein and Carsten Schnei-
der asked (and encouraged!) me to speak about this work. Without their initiative
this updated version of [22] would have never appeared.
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2 Introduction

Contiguous relations are a fundamental concept within the theory of hypergeometric
series and orthogonal polynomials; see, for instance, [1]. An example in connec-
tion with the thematical scope of this volume is [13], which is contained in this
book and whose subsection 2.2 is devoted to contiguous relations for multivariate
hypergeometric functions.

As often, the story begins with Gauß [10]. Let

2F1

(
a, b
c ; z

)
=

∞∑
k=0

(a)k(b)k
(c)k k!

zk,

where (x)k is the shifted factorial

(x)k = x(x + 1) · · · (x + k − 1) if k ≥ 1 and (x)0 = 1.

Gauß defined two such 2F1 series as contiguous, if two of the parameters are pairwise
equal, and if the third pair differs by 1. In particular, Gauß showed that a 2F1 series
and any two others contiguous to it are linearly related. For instance,

(a − c) 2F1

(
a − 1, b

c ; z
)
+ (c − 2a − (b − a)z) 2F1

(
a, b
c ; z

)
+ a(1 − z) 2F1

(
a + 1, b

c ; z
)
= 0, (1)

is the first entry [10, 7.1] in Gauß’ list of fifteen (= 6 · 5/2) fundamental contiguous
relations. Moreover, in Section 11 of [10] Gauß describes how to obtain relations
between

2F1

(
a, b
c ; z

)
, 2F1

(
a + λ, b + µ

c + ν ; z
)

and 2F1

(
a + λ′, b + µ′

c + ν′ ; z
)
,

where the λ, λ′, µ, µ′, ν, ν′ are integers taken from {−1, 0, 1}. This gives in total 325
(= 26 · 25/2) relations.†

Today Gauß’ notion of contiguous relations is used in a more general sense. Namely,
two pFq series, i.e.,

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

∞∑
k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
,

† The number of these relations can be reduced further by taking symmetries (e.g., swapping a and
b) into account.
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are said to be contiguous if their parameters differ by integers. A first systematic
textbook treatment of contiguous relations was presented by E. Rainville [25]. For
an excellent up-to-date account the reader is referred to the book by G.E. Andrews,
R. Askey, and R. Roy [1].

In particular, this book has played an influential role for the work presented in this
article. Section 3.12 of [1] is devoted to summation, in particular, to a comparison
of the classic method of contiguous relations to the W–Z method, more precisely, to
Zeilberger’s algorithm [40] also called creative telescoping. It is pointed out that “the
W–Z method is an effective algorithm for discovering useful instances of contiguous
relations." Moreover, it is explained that a specific use of contiguous relations, called
Pfaff’s method, can serve as a valuable alternative. Namely, “There is a somewhat
different summation method due to Pfaff. This method is less algorithmic than the
W–Z method. However, it spreads out the algebraic complications to systems of
recurrences. Consequently, it may provide new summations in addition to the one
we wish to prove and it may allow the required algebra to be considerably simpler
than that required by the W–Z method. Pfaff’s method rather resembles the W–Z
method; however, it allows the various additional parameters in the summation to
play an important role" [1, p. 171].

In order to illustrate this point, various examples are given.We consider one of these,
namely Bailey’s summation of a balanced 4F3 series,

S(n) = S(n, a, b) = 4F3

(
a/2, (a + 1)/2, b + n,−n

b/2, (b + 1)/2, a + 1 ; 1
)
=
(b − a)n
(b)n

; n ≥ 0; (2)

see [1, (3.11.7)]. By F(n, k) we denote the kth summand of this 4F3 series.

As a note, when dealing with such hypergeometric series we always assume that
the summand terms are well-defined; this convention is made explicit also in (16).
In view of the fact that the given sum is terminating at n, in this particular case,
a + 1 + ` , 0, b/2 + ` , 0, and (b + 1)/2 + ` , 0 for 0 ≤ ` ≤ n.

Following the presentation in [1], we first prove (2) by applying Zeilberger’s algo-
rithm‡ which computes the telescoping summand recurrence

(n + 1)(−n − b + a) F(n, k) + (−a2 + ab − a + 2nb + 3b + 2 + 4n + 2n2) F(n + 1, k)

− (b + n + 1)(a + n + 2) F(n + 2, k) = ∆k G(n, k − 1),
(3)

where the (forward) difference operator is defined as usual as

∆k f (k) = f (k + 1) − f (k), (4)

and where
‡ We are using the Mathematica package “fastZeil” presented in [19]; it is freely available as
described at https://combinatorics.risc.jku.at/software
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G(n, k) = −
(a + 1 + 2k)(a + 2k)(b + n + k)(n + 1)

(b + n)(n − k + 1)
F(n, k). (5)

Summing (3) over k from 0 to n implies a recurrence for the sum S(n),

(n + 1)(−n − b + a) S(n) + (−a2 + ab − a + 2nb + 3b + 2 + 4n + 2n2) S(n + 1)
− (b + n + 1)(a + n + 2) S(n + 2) = 0. (6)

Since S(0) = 1, S(1) = (b−a)/b, and since (b−a)n/(b)n satisfies (6), the summation
(2) is proven.We note that owing to the constraint on b, the denominator on the right-
hand side of (5) is non-zero for 0 ≤ k ≤ n.

Notice that Zeilberger’s algorithm has not produced a minimal recurrence for S(n).
This is in contrast to the closed form representation (b−a)n/(b)n which corresponds
to a recurrence of order 1. The reason for this phenomenon will be explained below.

Again following [1], Pfaff’s method works as follows. By subtracting the summands
term by term one finds that

S(n, a, b) − S(n − 1, a, b) =
a(1 − b − 2n)

b(b + 1)
T(n − 1, a + 2, b + 2), (7)

where
T(n, a, b) = 4F3

(
a/2, (a + 1)/2, b + n − 1,−n

b/2, (b + 1)/2, a ; 1
)
.

Then inspection of T(n, a, b) for some concrete values of n leads to the conjecture

T(n, a, b) =
(b − a)n

(b + 2n − 1)(b)n−1
. (8)

Next one repeats this step by subtracting S(n − 1, a, b) from T(n, a, b), which yields,

T(n, a, b) − S(n − 1, a, b) = −
(a + n)(b + n − 1)

b(b + 1)
T(n − 1, a + 2, b + 2). (9)

The proof is then completed by observing that (7) and (9), together with the initial
values S(0, a, b) = T(0, a, b) = 1, completely define S(n, a, b) and T(n, a, b), and by
verifying that the right sides of (2) and (8) satisfy the same recurrences and initial
values.

Summarizing, as pointed out in [1, Sect. 3.12], both proofs rely on contiguous
relations. The Zeilberger output recurrence (6) is of the form

c0 · 4F3

(
a1, a2, a3, a4

b1, b2, b3
; 1

)
+ c1 · 4F3

(
a1, a2, a3 + 1, a4 − 1

b1, b2, b3
; 1

)
+ c2 · 4F3

(
a1, a2, a3 + 2, a4 − 2

b1, b2, b3
; 1

)
= 0, (10)
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where the 4F3 parameters ai and bj are taken as in the 4F3 series in (2), and where the
cl are the coefficients in the recurrence (6). The existence of this relation is predicted
by Theorem 1C in Section 10. To compute the relation as in (3), the rational function
version (116) applies.

The proof by Pfaff’s method relies on two contiguous relations. Namely, if the 4F3
parameters ai and bj are taken again as in the 4F3 series in (2), then

c0 · 4F3

(
a1, a2, a3, a4

b1, b2, b3
; 1

)
+ c1 · 4F3

(
a1, a2, a3 − 1, a4 + 1

b1, b2, b3
; 1

)
+ c2 · 4F3

(
a1 + 1, a2 + 1, a3, a4 + 1

b1 + 1, b2 + 1, b3 + 1 ; 1
)
= 0 (11)

with c0 = 1, c1 = −1 and c2 = −a(1 − b − 2n)/(b(b + 1)) corresponds to (7), and

c0 · 4F3

(
a1, a2, a3 − 1, a4

b1, b2, b3 − 1 ; 1
)
+ c1 · 4F3

(
a1, a2, a3 − 1, a4 + 1

b1, b2, b3
; 1

)
+ c2 · 4F3

(
a1 + 1, a2 + 1, a3, a4 + 1

b1 + 1, b2 + 1, b3 + 1 ; 1
)
= 0 (12)

with c0 = 1, c1 = −1 and c2 = (a + n)(b + n − 1)/(b(b + 1)) corresponds to (9).
The existence of both of these contiguous relations is implied by Theorem 1B in
Section 9.

We note that proving (2) by Pfaff’s method leads in a direct manner to the discovery
and the proof of a ‘companion summation’, namely (8). Another difference between
the methods is that, when executing the ‘Pfaff proof’, the relations (11) and (12)
in [1] have been derived ‘by hand’, whereas (10) was delivered automatically by
Zeilberger’s algorithm. This latter aspect of ‘hand-computation’ will be removed by
the main theorems in this article. In particular, we will see that:

Any contiguous relation between terminating and most of the contiguous relations
between non-terminating hypergeometric series can be found automatically by the
computer.

In particular, this means that in its essence Pfaff’s method is as algorithmic as the
W–Z method. For example, if we do not know the coefficients in (11) and (12), we
simply compute them by the algorithm described in Section 3.

It is important to note that conceptually even more is true. As explained in Section 4,
contiguous relations can be found automatically by the same mechanism which is
applied to find Zeilberger recurrences, namely, creative telescoping [40].

Zeilberger’s algorithm [39] is based on the observation that a straightforward exten-
sion of Gosper’s algorithm [11] for indefinite hypergeometric summation (hyperge-
ometric telescoping) can be used for automatic definite hypergeometric summation
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(creative telescoping). For the sake of completeness of the presentation, the essence
of creative telescoping, the parameterized Gosper algorithm, is briefly sketched in
Section 3; in Section 7we showhow theRISCpackage fastZeil, which implements
this extended Gosper algorithm, can be brought into action. For further information
on Zeilberger’s algorithm, creative telescoping, and the W–Z method, the reader is
referred to the book [23] by M. Petkovšek, H.S. Wilf, and D. Zeilberger.

Before listing the contents of this article, we illustrate this new application of creative
telescoping by having another look at Bailey’s summation (2).

First of all we note that running Zeilberger’s algorithm with order 1 results in an
empty output. This proves that there does not exist a contiguous relation of the form

c0 S(n, a, b) + c1 S(n − 1, a, b) = 0.

To overcome this issue, in the spirit of creative telescoping, we introduce a further
shift – but not with respect to n as we would do when using Zeilberger’s algorithm!
Instead we shift one of the parameters, say a, and take as a new ansatz,

c0 S(n, a, b) + c1 S(n − 1, a, b) + c2 S(n − 1, a − 1, b) = 0. (13)

Then we apply the package described in Section 7 which computes indeed a relation
of type (13) with the coefficients

c0 = −(a + n)(n + b − 1)(2n + b − 2),

c1 = (n + b − a − 1)
(
(a2 + a(2n − 1) + n(2n + b − 2)

)
, and

c2 = a(a − b)(1 + a − b). (14)

This provides a new proof of Bailey’s summation (2), since (13) with the values cl
from (14) together with the initial value S(0, a, b) = 1 completely define S(n, a, b),
and it is easy to verify that (b − a)n/(b)n satisfies the same recurrence and initial
value.

As described in Section 4, all such contiguous relations can be computed automat-
ically by creative telescoping via telescoping contiguous relations; see Theorem 1
and Theorem 2. For instance, in order to obtain (13), the corresponding telescoping
contiguous relation for all k ≥ 0 is computed as

c0
(a1)k(a2)k(a3)k(a4)k
(b1)k(b2)k(b3)k k!

+ c1
(a1)k(a2)k(a3 − 1)k(a4 + 1)k

(b1)k(b2)k(b3)k k!

+ c2
(a1)k(a2 − 1)k(a3 − 1)k(a4 + 1)k

(b1)k(b2)k(b3 − 1)k k!
= ∆k C(k)

(a1)k(a2)k(a3)k(a4)k
(b1)k(b2)k(b3)k k!

(15)

with cl as in (14),

a1 =
a
2
, a2 =

a + 1
2

, a3 = b + n, a4 = −n, b1 =
b
2
, b2 =

b + 1
2

, b3 = a + 1,
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and
C(x) =

x(x + a)(2x + b − 2)(2x + b − 1)(b + n − 1)(a + 2n − 1)
n(2x + a − 1)(x + b + n − 1)

.

Summing both sides of (15) over k from 0 to n results in (13). We want to stress that
the existence of (15), and thus that of (13), is predicted by Theorem 1C in Section 10.

There is quite some literature where contiguous relations are used. Most often
this usage is more or less of implicit nature, for instance, as part of a method or
a derivation. Much less literature can be found where general aspects of how to
compute contiguous relations are treated; but there is still some. In addition to
the books [25] and [1], there are articles such as [35], [36], [26], [27], or [9]; the
latter devoted to q-series summation. In particular we want to stress the pioneering
work of Takayama [35], where for elimination in difference-differential operator
rings, non-commutative Gröbner bases methods are introduced. This theme reoccurs
in the context of Zeilberger’s holonomic systems approach to special functions
identities [41]; see, for instance, the work of Chyzak [5] and of Koutschan [16], and
also the references given there.

Despite all this work, we feel that our viewpoint and methods described in this
article have particular advantages. Based on difference equations our approach is
elementary and connects directly to Zeilberger’s extension of Gosper’s algorithm. An
independent development in this direction is [3]. This article mentions connections
to Karr-Schneider summation theory which also applies here: Basically all what
we describe can be algorithmically realized using Schneider’s Sigma package [30].
Further references to Schneider’s work are given in Section 3.1.

Nevertheless, there are other aspects like summation theory for non-terminating hy-
pergeometric series. In our setting, the existence of fundamental summation theorems
like the Gauß 2F1 or the Pfaff-Saalschütz 3F2 formulas find natural explanations; see
the Sections 8.2 and 10.2. This, in particular, includes contiguous relations between
non-terminating hypergeometric series. Another spin-off concerns the fact that our
setting in many cases admits explanations of the phenomenon why Zeilberger’s
algorithm does not always deliver the minimal recurrence and why ‘creative sym-
metrizing’ sometimes can help; see the Sections 11.2 and 11.3. For related work
see [6]. Finally, all what we say in this article, including the explanations for non-
minimality of Zeilberger orders, carries over to the case of q-hypergeometric series
and q-contiguous relations.

The organization of the rest of this paper is as follows. In Section 3 a brief de-
scription of the parameterized Gosper algorithm is given. This section is kept as
short as possible since this algorithm is essentially the same as when used as the
computational engine in Zeilberger’s algorithm for proving definite hypergeometric
summation identities.

Section 4 presents Theorem 1 which states the existence of telescoping contiguous
relations for termswhich are summands of hypergeometric pFq-series with argument
z = 1 or when p , q + 1. In Section 5 a detailed proof of Theorem 1 is given.
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The examples presented in Section 6 should give a first impression of the vari-
ety of potential applications for telescoping contiguous relations and the methods
described. In this section the examples are enriched with some details for proper
illustration of the method, a theme which is continued further in Section 7. There
we give a brief description of the computer algebra package we have used for our
algorithmic applications.

The Sections 8, 9, and 10 describe three somehow disjoint refinements of Theorem 1
which imply the existence of contiguous relations for hypergeometric q+1Fq-series
with argument z = 1. Illustrating examples concern formulas such as the non-
terminating versions of Gauß’ 2F1 and the Pfaff-Saalschütz 3F2 summations, but
include also the examples from the Introduction as Bailey’s 4F3-series summation.

Finally, Section 11 presents further, more involved applications. Using parameter-
ized telescoping, we derive a generalization of a result which arose in the classical
work by James Wilson on hypergeometric recurrences and contiguous relations. In
addition, we discuss non-minimality of Zeilberger recurrences from telescoping con-
tiguous relations point of view. In particular, we explain why ‘creative symmetrizing’
in some instances successfully reduces the order. This discussion includes a new (al-
gorithmic) proof of the non-terminating version of Dixon’s well-poised 3F2-series.
The concluding Section 12 points to the fact that all what has been said in this article
carries over to q-hypergeometric series and to q-contiguous relations.

3 The Parameterized Gosper Algorithm

Zeilberger, [39] and [40], was the first who discovered that Gosper’s algorithm [11]
finds a straightforward extension that can be used for creative telescoping. In other
words, Zeilberger observed that Gosper’s algorithm for indefinite hypergeometric
summation can be used to solve also definite hypergeometric summation problems.
On this basis, Wilf and Zeilberger developed a rich theoretical framework which, for
instance, includes also W–Z pairs and companion identities; see [23].

We present the essence of creative telescoping in the form of an input/output de-
scription of the corresponding parameterized extension of Gosper’s algorithm. To
this end we need to introduce a few definitions.

Throughout this article, p and q denote fixed non-negative integers; ∆k is the differ-
ence operator defined in (4). The parameters ai, bj , and the argument z range over
the complex numbers; for z we assume z , 0, unless explicitly mentioned otherwise.

Remark. As in the computer algebra examples presented, for the purpose of symbolic
computation the ai, bj , and z usually are taken as indeterminates; i.e., instead of
K = C, one takes
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K = C(a1, . . . , ap, b1, . . . , bq, z);

or, even more precisely,

K = F(a1, . . . , ap, b1, . . . , bq, z),

where the field F is a computable algebraic extension of Q depending on extra
parameters involved.

However, when seeing K in this article, the reader should feel free to interpret it as
K = C.

In contrast to complex variables like ai , bj , or z, the variable x will always denote
an indeterminate. As usual, with K as the coefficient domain, K[x] is the ring of
polynomials in x; K(x) is its quotient field, the rational functions in x.

Throughout, N := Z≥0 is the set of non-negative integers. The variables n and k
always denote non-negative integers; i.e., n, k ∈ N.

Following [12], for k ∈ N we will use the notation

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

:=
(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
. (16)

When dealing with such a term we always assume it is well-defined; this means,
bj + ` , 0 for 0 ≤ ` ≤ k − 1 and all j. The analogous convention applies to
hypergeometric series,

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

∞∑
k=0

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

.

The notation pFq(a1, . . . , ap; b1, . . . , bq; z) and pFq(a1, . . . , ap; b1, . . . , bq; z)k will
be used within text lines.

Definition 1 A sequence t(k) over K is called a hypergeometric term if there exists a
rational function ρ ∈ K(x) such that t(k + 1) = ρ(k) · t(k) for all sufficiently large k.

Definition 2 Two hypergeometric terms s(k) and t(k) over K are similar if there
exists a rational function ρ ∈ K(x) such that s(k) = ρ(k)t(k) for all sufficiently
large k.

3.1 The Parameterized Gosper Algorithm

Input. Hypergeometric terms t(k), t0(k), . . . , td(k) over K where each tl(k),
0 ≤ l ≤ d, is similar to t(k).
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Remark. Wewant to comment on the way how to actually input a hypergeomet-
ric term. According to Definition 1, this, for instance, can be done by specifying
a homogeneous first-order recurrence with polynomial coefficients plus an initial
value. Alternatively, one can give an expression in closed form, for instance, in
the form of a hypergeometric term as in (16).

Output. All hypergeometric terms g(k) over K and all tuples (c0, . . . , cd) ∈ Kd+1

such that for all sufficiently large k,

c0 t0(k) + · · · + cd td(k) = g(k + 1) − g(k) (= ∆kg(k)) . (17)

One can show that each such g(k) must be of the form

g(k) = r(k) t(k) (18)

where r ∈ K(x) is a rational function which is computed by the algorithm.

Note. Gosper’s algorithm is the special case d = 0 with t(k) = t0(k). Let t(k) =
f (n, k) be a term which is hypergeometric with respect to k and n (plus mild side
conditions), then Zeilberger’s algorithm is the special case with tl(k) = f (n+ l, k)
for 0 ≤ l ≤ d, and K, for instance, chosen as K = C(n). For more detailed
descriptions of these algorithms see, for instance, [23].

We also note that the zero term g(k) = 0 together with (c0, . . . , cd) = (0, . . . , 0)
always form a solution to (17). All solutions (c0, . . . , cd, g(k)) form a vector space
over K, hence the output of the parameterized Gosper algorithm can be given in
terms of a basis.

Independent Verification

It is important to note that running the algorithm delivers all the information neces-
sary to prove the correctness of the telescoping recurrence (17) independently from
the steps of the algorithm. Namely, suppose we want to verify (17) for certain cl and
g(k), where g(k) is given as in (18) by the rational function r ∈ K(x).

Since all terms tl(k) are similar to t(k), the left hand side of (17) can be written as a
rational function multiple of t(k). Due to

g(k + 1) − g(k) =
(
r(k + 1)

t(k + 1)
t(k)

− r(k)
)

t(k)

we can divide both sides of (17) by t(k), and checking (17) then reduces to checking
the resulting equality of rational functions. Wilf and Zeilberger [37] call r(x) the
certificate.



Contiguous Relations and Creative Telescoping 11

Remark. As already mentioned, the parameterized Gosper algorithm (creative tele-
scoping) is the driving engine of Zeilberger’s algorithm. It is described in detail in
a slightly different form in [23]. — It is interesting to note that the parameterized
Gosper algorithm, in much more general form, has been used extensively byM. Karr
[14, 15] in his difference field approach to symbolic summation. However, Karr
has never linked it to definite summation. In the framework of difference fields
and, more recently, difference rings, this step has been carried out, accompanied by
other substantial theoretical and algorithmical enhancements, by Carsten Schneider
in [31], [32]; [33], [34]; see also the references given there.

4 Telescoping Contiguous Relations for z , 1 or p , q + 1

This section contains the first main theorem of the paper, Theorem 1. It states the
existence of telescoping contiguous relations with respect to non-negative integer
shifts if z , 1 or p , q + 1 (or both).

Despite the existence of telescoping contiguous relations apriori is independent from
the question whether they involve summands of convergent series, for applications
such as taking the infinite sum over such summands,

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

∞∑
k=0

pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

,

we need to consider the conditions for the convergence of such series in case they
are non-terminating; i.e., where none of the ai is zero or a negative integer.

According to [1, Th. 2.1.1] such series converge absolutely for all z if p ≤ q and for
|z | < 1 if p = q+ 1; if p > q+ 1 they diverge for all z , 0. The remaining case, “The
case |z | = 1 when p = q + 1 is of great interest”; see [1, p. 62]. According to [1, Th.
2.1.2], the q+1Fq-series with |z | = 1 converges absolutely if

Re
( q∑
j=1

bj −

q+1∑
i=1

aj

)
> 0. (19)

For |z | = 1 and z , 1 it converges conditionally if

0 ≥ Re
( q∑
j=1

bj −

q+1∑
i=1

aj

)
> −1, (20)

and it diverges if this real part is less or equal −1.
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We want to note explicitly that if z = 1 and p = q + 1, the criteria for the existence
of telescoping contiguous relations, given by the Theorems 1A, 1B, and 1C, come
in the form of refinements of (19).

Theorem 1 Suppose z , 1 or p , q + 1. Let d = max{p, q + 1}. For 0 ≤ l ≤ d
let (α(l)1 , . . . , α

(l)
p , β

(l)
1 , . . . , β

(l)
q ) be pairwise different tuples with non-negative integer

entries. Then there exist c0, . . . , cd in K, not all 0, and a polynomial C(x) ∈ K[x]
such that for all k ≥ 0,

d∑
l=0

cl · pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; z

)
k

= ∆k C(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

. (21)

Moreover, C(0) = 0, and if C(x) , 0, for the polynomial degree of C(x) one has

deg C(x) ≤ q + 1 − d + max
0≤l≤d

{α
(l)
1 + · · · + α

(l)
p + β

(l)
1 + · · · + β

(l)
q }; (22)

in addition, if p ≤ q + 1,

lim
k→∞

C(k)pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= 0. (23)

If p > q the limit (23) is valid if one of the ai is a non-positive integer.

Proof. Since C(x) is a polynomial, the limit (23) is immediate from classical asymp-
totics as Theorem 2.2.1 in [1]. The rest of Theorem 1 is proven in Section 5. �

Remark. According to the convergence criteria stated above, when summing (21)
over k from 0 to∞, imposing |z | < 1 or p ≤ q guarantees the absolute convergence
of pFq(a1, . . . , ap; b1, . . . , bq; z) and of the series

pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , d}.

If p = q+1 and z , 1 in such applications of Theorem 1, one needs to check whether
the criteria for absolute or conditional convergence are satisfied. An example for
z = −1 and p = 2 = q+1 is provided by Kummer’s summation formula (152). There
we also show that, alternatively, Kummer’s identity can be derived as a limiting
case of Dixon summation (150) which can be obtained from Theorem 1A with
p = 3 = q + 1 and argument z = 1.

Remark. In Theorem 1 one can allow arbitrary integer parameters instead of restrict-
ing to non-negative integers. More precisely, for arbitrary parameters α(l)i and β(l)j
this gives a relation,



Contiguous Relations and Creative Telescoping 13

d∑
l=0

cl · pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; z

)
k

= ∆k R(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

, (24)

with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. For this
extension, in view of (30) and (31), it is important to notice that because of possible
poles of the R(x), not all integer choices of α(l)i and β(l)j are admissible.

Definition 3 The relations (21) and (24) are called telescoping contiguous relations.

The next corollary shows that the restriction to non-negative integer shifts in Theo-
rem 1 is not an essential one.

Corollary 1 Any telescoping contiguous relation of the form (21) and, if poles of
R(x) cause no problem, in the version of (24) can be computed by the parameterized
Gosper algorithm.

Proof. It suffices to prove the statement with respect to the form (24). For the
parameterized Gosper algorithm described in Section 4, take as input

tl(k) = pFq

(
a1 + α

(l)
1 , . . . , ap + α

(l)
p

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; z

)
k

and
t(k) = pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

with K = C(a1, . . . , ap, b1, . . . , bq, z) as the field of constants. Note that t(k) and
the tl(k) are hypergeometric terms; in addition, all terms tl(k) are similar to t(k)
as required. The parameterized Gosper algorithm finds all (c0, . . . , cd) ∈ Kd+1 and
R(x) ∈ K(x) such that for g(k) = R(k)t(k) the tuple (c0, . . . , cd, g(k)) satisfies (17).
Therefore the solution (c0, . . . , cd, R(k)t(k)) as in (24) will be found by the algorithm.
�

Before proving Theorem 1 in Section 5, we present some immediate consequences.
Further applications are given in Section 6.

4.1 Telescoping Contiguous Relations for z , 1 and (p, q) = (1, 0)

Suppose z , 1 and (p, q) = (1, 0). In this case, d = max{p, q + 1} = 1. According
to Theorem 1 there exist c0 and c1, not all 0, and a polynomial C(x) with C(0) = 0
such that for all k ≥ 0,
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c0 t0(k) + c1 t1(k) = ∆k C(k) t(k), (25)

where
t(k) = t0(k) = 1F0

(
a
−

; z
)
k

and t1(k) = 1F0

(
a + α
−

; z
)
k

with α ∈ Z>0 According to (22),

deg C(x) ≤ q + 1 − d + α = α.

For fixed α, the cj andC(x) can be computed automatically as described in Section 7.
For example, for α = 1 one obtains (25) with c0 = a, c1 = a(z − 1), and C(x) = x.
For |z | < 1 one can sum the resulting telescoping relation over k from 0 to infinity,
which using (23) gives,

a · 1F0

(
a
−

; z
)
− a(1 − z) · 1F0

(
a + 1
−

; z
)
= 0; (26)

this is in accordance with the binomial expansion

1F0

(
a
−

; z
)
= (1 − z)a .

4.2 Telescoping Contiguous Relations for z , 1 and (p, q) = (2, 1)

Suppose z , 1 and (p, q) = (2, 1). In this case, d = max{p, q + 1} = 2. According to
Theorem 1 there exist c0, c1 and c2, not all 0, and a polynomial C(x) with C(0) = 0
such that for all k ≥ 0,

c0 t0(k) + c1 t1(k) + c2 t2(k) = ∆k C(k) t(k), (27)

where t(k) = t0(k) and

t0(k) = 2F1

(
a, b
c

; z
)
k

, t1(k) = 1F0

(
a + α1, b + β1

c − γ1
; z

)
k

, t2(k) = 2F1

(
a + α2, b + β2

c − γ2
; z

)
k

.

Here the (αl, βl, γl) for l = 1 and l = 2 are different triples of non-negative integers,
each with entries not all 0. For |z | < 1 one can sum the telescoping relation (27) over
k from 0 to infinity, which using (23) gives,

c0 ·2F1

(
a, b
c ; z

)
+c1 ·1F0

(
a + α1, b + β1

c − γ1
; z

)
+c2 ·2F1

(
a + α2, b + β2

c − γ2
; z

)
= 0. (28)
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For fixed αl ,βl , and γl , the cj and C(x) can be computed automatically as described
in Section 7; concrete examples are given there.

We want to conclude this section with the remark that Theorem 1 together with our
implementation of parameterized telescoping presented in Section 7 (or any other
implementation meeting the specification given in Section 3) settles the existence
and the computation of the general three term contiguous 2F1-relations treated by
Gauß in [10].

5 Proof of Theorem 1

In this section we prove Theorem 1. To this end we make use of several elementary
facts which are presented in the form of lemmas.

5.1 Preparatory Lemmas

Definition 4 Let x be an indeterminate, c ∈ C\Z≤0, andm ∈ N. Define µ0(c; x) := 1,
and

µm(c; x) :=
(
1 +

x
c

) (
1 +

x
c + 1

)
· · ·

(
1 +

x
c + m − 1

)
, m ≥ 1.

For the degree of the polynomial µm(c; x) ∈ K[x] we have

deg µm(c; x) = m. (29)

Lemma 1 Let (α1, . . . , αp, β1, . . . , βq) ∈ N
p+q such that for all i ∈ {1, . . . , p} and

j ∈ {1, . . . , q},
ai + αi < {1, . . . , αi} and bj − βj < Z≤0.

Then for all k ≥ 0,

pFq

(
a1 + α1, . . . , ap + αp

b1 − β1, . . . , bq − βq
; z

)
k

=

p∏
i=1

µαi (ai; k) ·
q∏
j=1

µβ j (bj − βj ; k) · pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

.
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Proof. For k ≥ 0,

(a + 1)k =
(
1 +

k
a

)
(a)k (30)

and

1
(b − 1)k

=

(
1 +

k
b − 1

)
1
(b)k

. (31)

The lemma is proven by iterated application of (30) and (31). �

For

t(k) =
(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k!
(32)

let us consider all pairs P(x) ∈ K[x] and R(x) ∈ K(x) such that for all k ≥ 0,

P(k) t(k) = ∆kR(k) t(k). (33)

It turns out that if (33) holds, then R(x) has to be a polynomial, too. More precisely,
all such pairs can be characterized as follows. We note that the essence of this char-
acterization is closely related to what is called the Gosper, resp. Gosper-Petkovšek,
form and to the author’s concept of greatest factorial factorization; see [20].

Lemma 2 Suppose P(x) ∈ K[x] and R(x) ∈ K(x) satisfy the relation

P(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= ∆k R(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

, k ≥ 0. (34)

Then there exists a polynomial P1(x) ∈ K[x] such that

P(x) = z
p∏
i=1
(x + ai) · P1(x + 1) − x

q∏
j=1
(x + bj − 1) · P1(x) (35)

and

R(x) = x
q∏
j=1
(x + bj − 1) · P1(x). (36)

Vice versa, if P(x) and R(x) are of the form (35) and (36) with P1(x) being an
arbitrary polynomial in K[x], then relation (34) is satisfied.

Proof. First we prove the statement assuming that
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ai < Z and ai − bj < N, i ∈ {1, . . . , p}, j ∈ {1, . . . , q}.

Then, since (34) is a finite sum, analytic continuation proves the statement without
these restrictions.

With t(k) as in (32), relation (34) turns into P(k)t(k) = R(k + 1)t(k + 1) − R(k)t(k).
Dividing out t(k) results in an equality between rational functions; in other words,
relation (34) is equivalent to the relation

P(x) + R(x)
R(x + 1)

=
(x + a1) · · · (x + ap)

(x + b1) · · · (x + bq)
z

x + 1
. (37)

Suppose P(x) and R(x) are of the form (35) and (36) with P1(x) being an arbitrary
polynomial in K[x]. It is easily verified that then relation (37) is satisfied. Therefore
it remains to prove the other direction of the lemma.

To this end, suppose that (34) holds for some P(x) ∈ K[x] and R(x) = R1(x)/R2(x) ∈
K(x) with R1 and R2 being coprime polynomials in K[x]. So we can rewrite relation
(37) as

(x + 1)
q∏
j=1
(x + bj) · P(x) R2(x + 1) = z

p∏
i=1
(x + ai) · R1(x + 1) R2(x) (38)

where

P(x) = R1(x) + P(x)R2(x). (39)

In the following we will use that gcd (R1(x), R2(x)) = 1, gcd
(
P(x), R2(x)

)
= 1,

and the fact that if h(x) ∈ K[x] is irreducible then gcd (h(x), h(x + l)) = 1 for all
non-zero integers l.

Suppose that x + b | R2(x) where b = 1 or b = bj for some j ∈ {1, . . . , q}. Then
x + b + 1 divides R2(x + 1), and (38) implies that x + b + 1 | R2(x). By iterating
this observation we obtain that x + b + l | R2(x) for all l ∈ N, a contradiction to
R2(x) being a non-zero polynomial. Consequently (x + 1)

∏q
j=1(x + bj)must divide

R1(x + 1); in other words, there exists a polynomial P1(x) ∈ K[x] such that

R1(x) = x
q∏
j=1
(x + bj − 1) · P1(x). (40)

By an analogous reasoning one can show that
∏p

i=1(x + ai) must divide P(x); this
means, there exists a polynomial Q(x) ∈ K[x] such that
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P(x) =
p∏
i=1
(x + ai) · Q(x). (41)

By (40) and (41), equation (38) reduces to

Q(x) R2(x + 1) = z P1(x + 1) R2(x). (42)

Without loss of generality we may assume that the leading coefficient of R2(x) is
equal to 1. The next proof step will show that R2(x)must have degree 0which implies
that

R2(x) = 1 and Q(x) = z P1(x + 1). (43)

For proving this, suppose that an arbitrary irreducible polynomial h(x) divides
R2(x). Then h(x + 1) | R2(x + 1), and (42) implies that h(x + 1) | R2(x). Iterating
this observation we obtain that h(x + l) | R2(x) for all l ∈ N. Therefore R2(x) can
only have irreducible factors which are constants, and (43) is proved.

Finally, equation (39) together with (40) and (41) imply (35). Since R2(x) = 1 we
have R(x) = R1(x), and equation (36) is nothing but relation (40). This completes
the proof of the lemma. �

We are interested in polynomial solutions P(x) and R(x) to (34) which are minimal
with respect to their degree in x; see also Lemma 3.

Corollary 2 The minimal non-trivial choice for P(x) ∈ K[x] and R(x) ∈ K(x) such
that (34) holds is the following:

P(x) = z
p∏
i=1
(x + ai) − x

q∏
j=1
(x + bj − 1) (44)

and

R(x) = x
q∏
j=1
(x + bj − 1). (45)

Proof. Immediate from Lemma 2 choosing P1(x) = 1. �

The minimally chosen polynomials P(x) and Q(x) from Corollary 2 will play a
fundamental role which gives rise to the following definition.
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Definition 5 To any hypergeometric term pFq(a1, . . . , ap; b1, . . . , bq; z)k we asso-
ciate the polynomials

pPq(x) := z
p∏
i=1
(x + ai) − x

q∏
j=1
(x + bj − 1) (46)

and

pRq(x) := x
q∏
j=1
(x + bj − 1). (47)

For the proof of Theorem 1 we need a bit more than the minimal non-trivial choice
specified in Corollary 2; we also need the cases where P1(x) = xn.

Definition 6 For any non-negative integer n,

pP(n)q (x) := z (x + 1)n
p∏
i=1
(x + ai) − xn+1

q∏
j=1
(x + bj − 1) ∈ K[x]. (48)

Notice that pP(0)q (x) = pPq(x).

Lemma 3 Suppose z , 1 or p , q + 1. Then

deg pP(n)q (x) = max{n + p, n + 1 + q} = n +max{p, q + 1} = n + deg pPq(x),
(49)

and for the leading coefficient,

lcf pP(n)q (x) =

−1 , if p ≤ q

z − 1 , if p = q + 1
z , if p > q + 1

. (50)

Proof. Immediate by inspection. �

Lemma 4 (“Reduction Lemma”)

Suppose z , 1 or p , q + 1. Fix n ∈ N. Let

d = deg pPq(x) and cn = lcf pP(n)q (x)
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be the degree and the leading coefficient, respectively, of the polynomial pP(n)q (x).
Then there exists a polynomial pQ(n)q [x] ∈ K[x] with deg pQ(n)q (x) ≤ n + d − 1 such
that for all k ≥ 0,

cn · kn+d
pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

=
(
pQ(n)q (k) + ∆k kn

pRq(k)
)
pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

.

(51)

Proof. Let P1(x) = xn. Then according to Lemma 2 we have for all k ≥ 0,

pP(n)q (k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= ∆k kn
pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

. (52)

By Lemma 3 we have deg pP(n)q (x) = n+ d; i.e., choosing cn := lcf pP(n)q (x) ∈ K we
can define

pQ(n)q (x) := cn · xn+d − pP(n)q (x) ∈ K[x]

where deg pQ(n)q (x) ≤ n + d − 1. Hence Lemma 4 follows from (52) after replacing
pP(n)q (k) by cn · kn+d − pQ(n)q (k). �

The Reduction Lemma implies the following result in a straightforward manner.

Corollary 3 Suppose z , 1 or p , q + 1. Let d = deg pPq(x). For any fixed n ∈ N
there exist polynomials un(x) and vn(x) in K[x] with

deg un(x) ≤ d − 1 and deg vn(x) = n (53)

such that for all k ≥ 0,

kn+d
pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= un(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

+ ∆k vn(k) pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

.

(54)

Proof. The proof proceeds by induction on n. For n = 0 we invoke Lemma 4 with
n = 0; i.e., we can choose u0(x) = 1/c · pQ(0)q (x) with deg u0(x) ≤ d − 1 and
v0(x) = 1/c where c = lcf pP(0)q (x).

For proving the induction step, let t(k) be as in (32). According to Lemma 4 we have
with c = lcf pP(n+1)

q (x) that for all k ≥ 0,
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kn+1+d t(k) =
1
c
· pQ(n+1)

q (k) t(k) + ∆k
1
c
· kn+1

pRq(k) t(k). (55)

Since deg pQ(n+1)
q (x) ≤ n + d, the polynomial pQ(n+1)

q (x) can be written in the form

pQ(n+1)
q (x) =

n+d∑
j=0

Q j x j with Q j ∈ K.

For all m with 0 ≤ m ≤ n we apply the induction hypothesis to Qm+d km+d t(k), and
thus by (54) we obtain polynomials u(x) and v(x) in K[x] with deg u(x) ≤ d − 1 and
deg v(x) ≤ n such that for all k ≥ 0,

pQ(n+1)
q (k) t(k) =

d−1∑
j=0

Q j k j t(k) + u(k) t(k) + ∆k v(k) pRq(k) t(k). (56)

Finally combining (56) with (55) we obtain the polynomials

un+1(x) =
1
c

(
u(x) +

d−1∑
j=0

Q j x j
)
and vn+1(x) =

1
c

(
xn+1 + v(x)

)
,

which satisfy (53) and (54) for n + 1 instead of n. This completes the proof of
Corollary 3. �

We shall utilize Corollary 3 in the following form.We note explicitly that if 0 ∈ K[x]
is the zero polynomial, we use the convention deg 0 = −1.

Corollary 4 Suppose z , 1 or p , q + 1. Let d = deg pPq(x). For any M ∈ K[x]
with deg M(x) = m there exist polynomials U(x) and V(x) in K[x] with

deg U(x) ≤ d − 1 and deg V(x) = max{m − d,−1} (57)

such that for all k ≥ 0,

M(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= U(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

+ ∆k V(k) pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

. (58)

Proof.Without loss of generality we can rewrite M(x) into the form

M(x) =
d−1∑
j=0

Mj x j +

m−d∑
n=0

Mn+dxn+d
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with coefficients Mi in K.

Ifm < d the second sum is zero. This means, in this case we can chooseU(x) = M(x)
and V(x) = 0, and both, (57) and (58), are satisfied. In particular we have that
deg V(x) = deg 0 = max{m − d,−1} = −1.

In order to prove the corollary also for m ≥ d, let t(k) be as in (32). By invoking
Corollary 3 we obtain that for all k ≥ 0,

M(k) t(k) =
d−1∑
j=0

Mj k j t(k)

+

m−d∑
n=0

Mn+d un(k) t(k) + ∆k
m−d∑
n=0

Mn+d vn(k) pRq(k) t(k).

But this proves Corollary 4 since we can choose,

U(x) =
d−1∑
j=0

Mj x j +

m−d∑
n=0

Mn+d un(x) and V(x) =
m−d∑
n=0

Mn+d vn(x),

and it is easily verified that both, (57) and (58), are satisfied. �

5.2 Proof of Theorem 1

With the results of the preceding subsection we are ready to prove Theorem 1.

Let t(k) be as in (32). First we prove the statement of Theorem 1 assuming that the
condition to apply Lemma 1 holds; namely, for i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, l ∈
{0, . . . , d},

ai + α
(l)
i < {1, . . . , α

(l)
i } and bj − β

(l)
j < Z≤0.

Then, analytic continuation proves the statement without these restrictions an the
ai .§

According to Lemma 1 the left hand side of (21), with unspecified cl ∈ Kwhich will
be specialized further in a later step, can be rewritten as

( d∑
l=0

cl Ml(k)
)

t(k)

where
§ The conditions on the b j − β

(l)
j remain valid as being those for pFq bottom parameters.
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Ml(x) =
p∏
i=1

µ
α
(l)
i
(ai; x)

q∏
j=1

µ
β
(l)
j
(bj − β

(l)
j ; x) ∈ K[x],

with µm(c, x) as in Definition 4 of Section 5.1.

According to Corollary 4 there exist polynomials Ul(x) and Vl(x) in K[x] with

deg Ul(x) ≤ d − 1 and deg Vl(x) = max{deg Ml(x) − d,−1} (59)

such that for all k ≥ 0,

( d∑
l=0

cl Ml(k)
)

t(k) =
( d∑
l=0

cl Ul(k)
)

t(k) + ∆k
( d∑
l=0

cl Vl(k)
)
pRq(k) t(k). (60)

If we can choose cl ∈ K, not all zero, such that

d∑
l=0

cl Ul(x) = 0, (61)

then Theorem 1 is proven. Namely, using these specific solutions c0, . . . , cd , not all
0, we can set

C(x) :=
( d∑
l=0

cl Vl(x)
)
pRq(x). (62)

And, choosing the cl and C(x) this way, (60) is nothing but (21); moreover, we have
C(0) = 0 owing to pRq(0) = 0. In addition, if C , 0 the degree estimate (22) holds
which can be seen as follows. From (62) and (59) we have that

deg C(x) ≤ deg pRq(x) − d + max
0≤l≤d

{deg Ml(x)},

and (22) is implied by deg pRq(x) = q + 1 together with

deg Ml(x) = α
(l)
1 + · · · + α

(l)
p + β

(l)
1 + · · · + β

(l)
q ,

according to (29).

Finally we show that a non-trivial choice of cl satisfying (61) indeed exists. To this
end we define for 0 ≤ m ≤ d − 1 and 0 ≤ l ≤ d,

um,l := coefficient of xm in Ul(x).

This gives rise to a d × (d + 1) matrix U via
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U := (um,l) =
©«

u0,0 u0,1 · · · u0,d
...

...
. . .

...
ud−1,0 ud−1,1 · · · ud−1,d

ª®®¬ . (63)

Now finding all cl satisfying (61) is equivalent to finding all solutions (c0, . . . , cd) ∈
Kd+1 to the homogeneous nullspace problem

©«
u0,0 u0,1 · · · u0,d
...

...
. . .

...
ud−1,0 ud−1,1 · · · ud−1,d

ª®®¬
©«

c0
c1
...

cd

ª®®®®¬
=

©«
0
...
0

ª®®¬ .
Since we have d + 1 unknowns and d equations, there exists a solution (c0, . . . , cd) ∈
Kd+1 where the cl are not all 0. This completes the proof of Theorem 1. �

Remark. In symbolic summation various articles describe algorithms that split the
summand into a summable and a non-summable part. Then computing a recurrence
only for the non-summable part often yields a speed-up. For the hypergeometric case
this has been considered, e.g., in [4]. The approach presented in this subsection is
different: the main goal is to find optimal estimates on the shift-set and to guarantee
that the certificate C(x) is a polynomial. As pointed out by the anonymous referee,
the approach of Section 5.2 might also yield a refined method to compute the
parameterized telescoping solution, and that it would be interesting to check if the
underlying system to be solved is simpler than the system one has to solve in the
standard parameterized Gosper method.

5.3 Connection to Differential Equations

This section is not necessary for understanding the flow of the arguments. Neverthe-
less, we feel that we should at least mention how things are related to the classical
hypergeometric differential equations.

We begin by recalling a fact which is straight-forward. In this section we suppose
that p ≤ q + 1.

Lemma 5 Let Dx be the differential operator with respect to x. For n, k ∈ N such
that n ≥ k,

(xDx)
n
pFq

(
a1, . . . , ap

b1, . . . , bq
; x

)
k

= kn
pFq

(
a1, . . . , ap

b1, . . . , bq
; x

)
k

. (64)
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Next, for the choice P(x) = pPq(x) and R(x) = pRq(x), we sum both sides of (34)
over all k from 0 to∞ to obtain,

∞∑
k=0

pPq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= −pRq(0) + lim
k→∞

pRq(k) pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
k

= 0, (65)

where the last equality is owing to (23) and (36). Setting θ = zDz and using Lemma 5,
the left hand side of (65) turns into

(
z

p∏
i=1
(θ + ai) − θ

q∏
j=1
(θ + bj − 1)

)
pFq

(
a1, . . . , ap

b1, . . . , bq
; z

)
(66)

which is the non-trivial side of the classic homogeneous differential equation for
pFq; see, for instance, [25, §47, eq. (2)].

Thus we can summarize as follows: Relation (34) with the minimal choice P(x) =
pPq(x) and R(x) = pRq(x) can be considered as a finite, telescoping version of the
homogeneous differential equation for pFq series.

6 Applications of Theorem 1

Example. We begin by considering one of Gauß’ fifteen classical contiguous rela-
tions [10, 7.2],

(b − a) 2F1

(
a, b
c

; z
)
+ a 2F1

(
a + 1, b

c
; z

)
− b 2F1

(
a, b + 1

c
; z

)
= 0. (67)

We have p = 2, q = 1, and thus d = deg 2P1(x) = 2; in addition, c < Z≤0, and
|z | < 1 as a condition for convergence.

Following the proof of Theorem 1 in Section 5.2, let us determine complex numbers
c0, c1, and c2, and a polynomial C(x) ∈ C[x] with C(0) = 0 and

deg C(x) ≤ q + 1 − d +max{0, 1} = 1 + 1 − 2 +max{0, 1} = 1,

such that for all k ≥ 0,

c0 · 2F1

(
a, b
c

; z
)
k

+ c1 · 2F1

(
a + 1, b

c
; z

)
k

+ c2 · 2F1

(
a, b + 1

c
; z

)
k

= ∆k C(k) 2F1

(
a, b
c

; z
)
k

. (68)
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As in the proof of Lemma 2, w.l.o.g. we may assume that a < {0} and b < {0}. Let

t(k) =
(a)k(b)k
(c)k

zk

k!
. (69)

According to Lemma 1 the left hand side of (68) can be written as

( 2∑
l=0

cl Ml(k)
)

t(k)

where
M0(x) = 1, M1(x) = 1 +

x
a
, and M2(x) = 1 +

x
b
.

Hence, according to Corollary 4, to establish the relation (60) we can choose

Ul(x) = Ml(x) and Vl(x) = 0, 0 ≤ l ≤ 2. (70)

Then (62) implies that C(x) = 0; i.e., C(0) = 0 and deg C(x) = −1 ≤ 1.

Finally we have to choose cl ∈ C, not all 0, such that
∑2

l=0 cl Ul(x) = 0. Because of
(70) we obtain according to (63),

U =
(
1 1 1
0 1/a 1/b

)
.

It is easily verified that
(c0, c1, c2) = (b − a, a,−b)

generates the one-dimensional nullspace of

U =
(
1 1 1
0 1/a 1/b

) ©«
c0
c1
c2

ª®¬ =
(
0
0

)
.

Consequently we obtain as the desired telescoping contiguous relation

(b − a) 2F1

(
a, b
c

; z
)
k

+ a 2F1

(
a + 1, b

c
; z

)
k

− b 2F1

(
a, b + 1

c
; z

)
k

= 0. (71)

Note that the right hand side is 0 which is due to C(x) = 0; this means, in this case
the contiguous relation (67) is already true when restricted to the kth summand. Of
course, as any (telescoping) contiguous relation, the equality (71) can be verified
independently from its derivation. Namely, after dividing both sides by t(k), relation
(71) reduces to

b − a + a
a + k − 1

a
− b

b + k − 1
b

= 0. (72)

Example. As a second example we again consider relation (1),
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(a + 1 − c) 2F1

(
a, b
c

; z
)
+ ((a + 1 − b)z − 2(a + 1) + c) 2F1

(
a + 1, b

c
; z

)
+ (1 − z)(a + 1) 2F1

(
a + 2, b

c
; z

)
= 0, (73)

which is the first of Gauß’ fifteen fundamental contiguous relations with a replaced
by a + 1. As explained in [1, (2.5.19)], this relation gives rise to a set of orthogonal
polynomials. — As in the previous example we have p = 2, q = 1, and thus
d = deg 2P1(x) = 2; in addition, c < Z≤0, and |z | < 1 as a condition for convergence.

Again by following the proof of Theorem 1 in Section 5.2, we determine complex
numbers c0, c1, and c2 and a polynomial C(x) ∈ C[x] with C(0) = 0 and

deg C(x) ≤ 1 + 1 − 2 +max{0, 1, 2} = 2, (74)

and such that for all k ≥ 0,

c0 · 2F1

(
a, b
c

; z
)
k

+ c1 · 2F1

(
a + 1, b

c
; z

)
k

+ c2 · 2F1

(
a + 2, b

c
; z

)
k

= ∆k C(k) 2F1

(
a, b
c

; z
)
k

. (75)

As in the proof of Lemma 2, w.l.o.g. we may assume that a < {0,−1}. Let t(k) be as
in (69).

According to Lemma 1 the left hand side of (75) can be written as

( 2∑
l=0

cl Ml(k)
)

t(k)

where

M0(x) = 1, M1(x) = 1 +
x
a
, and

M2(x) =
(
1 +

x
a

) (
1 +

x
a + 1

)
= 1 +

2a + 1
a(a + 1)

x +
1

a(a + 1)
x2.

From Lemma 4 (with n = 0) we obtain that for all k ≥ 0,

(z − 1) · k2 t(k) = 2Q(0)1 (k) t(k) + ∆k 2R1(k) t(k) (76)

where

2Q(0)1 (x) = lcf 2P1(x) · x2 − 2P1(x) = − ((a + b)z − c + 1) x − abz,

and
2R1(x) = x(x + c − 1).
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Utilizing (76) we obtain

( 2∑
l=0

cl Ml(k)
)

t(k)

=

(
c0 M0(k) + c1 M1(k) + c2

(
1 +

2a + 1
a(a + 1)

k
) )

t(k) + c2
k2

a(a + 1)
t(k)

= (c0 U0(k) + c1 U1(k) + c2 U2(k)) t(k) + ∆k C(k) t(k)

where

U0(x) = 1 (= M0(x)) , U1(x) = 1 +
x
a
, (= M1(x)) , and

U2(x) =
(a − b + 1)z − a − 1
(a + 1)(z − 1)

+
(a − b + 1)z − 2a − 2 + c

a(a + 1)(z − 1)
x. (77)

and
C(x) =

c2
a(a + 1)(z − 1) 2R1(x). (78)

Now (78) implies that C(0) = 0 and deg C(x) = 2 in accordance with (74).

Finally we have to choose cl ∈ C, not all 0, such that
∑2

l=0 cl Ul(x) = 0. Because of
(77) we obtain according to (63),

U =

(
1 1 (a−b+1)z−a−1

(a+1)(z−1)
0 1

a
(a−b+1)z−2a−2+c

a(a+1)(z−1)

)
.

It is easily verified that

(c0, c1, c2) = (a(a − c + 1), a((a − b + 1)z − 2a − 2 + c), a(a + 1)(1 − z)) (79)

generates the one-dimensional nullspace of

U =

(
1 1 (a−b+1)z−a−1

(a+1)(z−1)
0 1

a
(a−b+1)z−2a−2+c

a(a+1)(z−1)

) ©«
c0
c1
c2

ª®¬ =
(
0
0

)
.

Consequently, by choosing the cl as in (79), and C(x) with substituting c2 = a(a +
1)(1 − z) into (78), we obtain as the desired telescoping contiguous relation (75)
from which (73) is obtained as usual by summation over all k ≥ 0.

In practice, as stated and proven in Corollary 1, the coefficients cl and the polynomial
C(x) are computed by the Parameterized Gosper Algorithm; see Section 7 and the
examples presented subsequently.
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7 A Package for Computing Telescoping Contiguous Relations

In Section 4 we began to explain that telescoping and classical contiguous relations
can be computed automatically— up to restrictions imposed by computational com-
plexity — by creative telescoping. Each computer algebra package that implements
Zeilberger’s algorithm is in its essence based on the parameterized Gosper algorithm
which executes creative telescoping. Consequently each of these packages can be
easily adapted to contiguous relations computations.

Already at the time of the prototype version [22] of this article, Axel Riese has carried
out such an adaption within the Paule–Schorn [19] package fastZeil, written in
the Mathematica system and available from the Web at

https://combinatorics.risc.jku.at/software

To use this package, follow the installation instructions, open aMathematica session,
and read in the package as follows:

In[1]:= << RISC‘fastZeil‘

Fast Zeilberger Package version 3.61
written by Peter Paule, Markus Schorn, and Axel Riese
© RISC-JKU

For better readability, we write the rising factorials in ‘pretty print’ format:
In[2]:= (x_)k_ := Pochhammer[x, k]

In[3]:= {(x)0, (x)1, (x)2, (x)5 }

Out[3]= {1, x, x(1 + x), x(1 + x)(2 + x)(3 + x)(4 + x)}

7.1 Computer discovery and proof of (67)

To do the example (67), resp. (68), we consider the problem to compute c0, c1, c2,
not all 0, and a polynomial C(x) such that for all k ≥ 0,

c0 t0(k) + c1 t1(k) + c2 t2(k) = ∆k C(k) t(k), (80)

where t(k) = t0(k), and

t0(k) = 2F1

(
a, b
c ; z

)
k

, t1(k) = 2F1

(
a + 1, b

c ; z
)
k

, t2(k) = 2F1

(
a, b + 1

c ; z
)
k

.

To invoke the package, we need to make explicit use of the similarity¶ between the
tj(k):

¶ Recall Definition 2.
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In[4]:= t[a_, b_, c_, k_] :=
(a)k(b)k
(c)kk!

zk

In[5]:= ra = t[a + 1, b, c, k]/t[a, b, c, k] //FullSimplify

Out[5]=
a + k

a

In[6]:= rb = t[a, b + 1, c, k]/t[a, b, c, k] //FullSimplify

Out[6]=
b + k

b

Hence we have,

t1(k) = ra · t(k) =
a + k

a
· t(k) and t2(k) = rb · t(k) =

b + k
b
· t(k).

To solve the problem related to (80), we call parameterized telescoping as follows:
In[7]:= Gosper[t[a, b, c, k], {k, n1, n2}, Parameterized→ {1, ra, rb}]

If ‘-n1+n2’ is a natural number, then: :

Out[7]= {Sum [(a − b)F0(k) − aF1(k) + bF2(k), {k, n1, n2}] = 0}

This output has to be interpreted as follows: in the setting

F0(k) = t0(k), F1(k) = t1(k), and F2(k) = t2(k),

one has for all nj ∈ N such that n1 ≤ n2:

(a − b)
n2∑

k=n1

t(k) − a
n2∑

k=n1

t1(k) + b
n2∑

k=n1

t2(k) = 0. (81)

For n = n1 = n2 this is (71).

Remark. As alreadymentioned, despite being a trivial relation on the summand level,
relation (71), resp. (81), cannot be handled with the standard Zeilberger algorithm
owing to the fact that we have shifts in two parameters: a→ a + 1 and b→ b + 1.

7.2 Computer discovery and proof of (73)

To do the example (73), resp. (75), we consider the problem to compute c0, c1, c2,
not all 0, and a polynomial C(x) such that for all k ≥ 0,

c0 t0(k) + c1 t1(k) + c2 t2(k) = ∆k C(k) t(k), (82)

where t(k) = t0(k), and
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t0(k) = 2F1

(
a, b
c ; z

)
k

, t1(k) = 2F1

(
a + 1, b

c ; z
)
k

, t2(k) = 2F1

(
a + 2, b

c ; z
)
k

.

To invoke the package, we need again use similarity between the tj(k):
In[8]:= t[a_, b_, c_, k_] :=

(a)k(b)k
(c)kk!

zk

In[9]:= ra1 = t[a + 1, b, c, k]/t[a, b, c, k] //FullSimplify

Out[9]=
a + k

a

In[10]:= ra2 = (t[a + 2, b, c, k]/t[a + 1, b, c, k] //FullSimplify) ∗
(t[a + 1, b, c, k]/t[a, b, c, k] //FullSimplify)//Factor

Out[10]=
(a + k)(1 + a + k)

a(1 + a)

Hence we have,

t1(k) = ra1 · t(k) =
a + k

a
· t(k) and t2(k) = ra2 · t(k) =

(a + k)(1 + a + k)
a(1 + a)

· t(k).

To solve the problem related to (82), we again call parameterized telescoping:
In[11]:= Gosper[t[a, b, c, k], {k, 0, n}, Parameterized→ {1, ra1, ra2}]

If ‘n’ is a natural number, then: :

Out[11]= {Sum [−a(a − c + 1)F0(k) − a(az − 2a − bz + c + z − 2)F1(k) + a(a + 1)(z − 1)F2(k), {k, 0, n}]

=
(a + n)(b + n)zn+1(a)n(b)n

n!(c)n
}

This output has to be interpreted as follows: taking

F0(k) = t0(k), F1(k) = t1(k), and F2(k) = t2(k),

one has for all n ∈ N:

a(a + 1 − c)
n∑

k=0
t(k) + a((a + 1 − b)z − 2(a + 1) + c)

n∑
k=0

t1(k)

+ a(a + 1)(1 − z)
n∑

k=0
t2(k) = −(n + 1)(c + n) · t(n + 1). (83)

For n→∞ this relation becomes Gauß’ relation (73) since the right-hand side turns
to zero owing to the limit property (23).

Finally, we note that subtracting from (83) the case n − 1 results in

a(a + 1 − c)t(n) + a((a + 1 − b)z − 2(a + 1) + c)t1(n) + a(a + 1)(1 − z)t2(n)

= −∆nn(c + n − 1)t(n),

which confirms the choice of the ci as in (79). With these ci we obtained the desired
telescoping contiguous relation of the form (75) with C(x) = −x(c + x − 1).
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8 Telescoping Contiguous Relations for z = 1: Case A

An important class of contiguous relations concerns the case z = 1 and p = q+1 ≥ 1;
i.e., involving summands of the form

q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

. (84)

To establish versions of Theorem 1 for this situation, we need to refine further.

Definition 7 (Case-A condition)We say that the complex parameters in (84) satisfy
the Case-A condition, if

q∑
j=1

bj −

q+1∑
i=1

ai − q < Z≥0. (85)

This section gives a Case-A version of Theorem 1; in the Sections 9 and 10 corre-
sponding theorems, Theorem 1B and Theorem 1C, for other parameter conditions,
Case-B and Case-C, respectively, are presented.

Theorem 1A. Suppose z = 1 and p = q + 1. Let the complex parameters ai and bj

satisfy the Case-A condition (85). For 0 ≤ l ≤ q let (α(l)1 , . . . , α
(l)
q+1, β

(l)
1 , . . . , β

(l)
q ) be

pairwise different tuples with non-negative integer entries.

Then there exist c0, . . . , cq in K, not all 0, and a polynomial C(x) ∈ K[x] such that
for all k ≥ 0,

q∑
l=0

cl ·q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
k

= ∆k C(k) q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

.

(86)
Moreover, C(0) = 0, and if C(x) , 0, for the polynomial degree of C(x) one has

deg C(x) ≤ 1 + M where M := max
0≤l≤q

{α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β

(l)
q }; (87)

in addition,

Re
( q∑
j=1

bj −

q+1∑
i=1

ai
)
> M ⇒ lim

k→∞
C(k)pFq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

= 0. (88)

Remark. According to [1, Thm. 2.1.2], the condition on the left-hand side of (88) is
exactly the condition needed for the absolute convergence of all series
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q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , q}.

Proof. Observe that when z = 1,

q+1Pq(x) = xq
( q+1∑
i=1

ai −
q∑
j=1

bj + q
)
+O(xq−1),

hence deg q+1Pq(x) = q and deg q+1P(n)q (x) = n + q. Using these degree estimates
the statement is proven analogously to the proof of Theorem 1. The limit (88) follows
from (87) by using,

q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
∼
Γ(b1) . . . Γ(bq)
Γ(a1) . . . Γ(aq+1)

k−1+
∑

i ai−
∑

j b j , k →∞; (89)

see [1, proof of Thm. 2.1.2] for this asymptotic estimate. �

Remark. As in Theorem 1 one can allow arbitrary integer parameters instead of
restricting to non-negative integers. More precisely, for arbitrary parameters α(l)i and
β
(l)
j this gives a relation,

q∑
l=0

cl ·q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 + β
(l)
1 , . . . , bq + β

(l)
q

; 1

)
k

= ∆k R(k) q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

,

(90)
with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. Again,
as in (24), it is important to notice that because of possible poles of the R(x), not all
integer choices of α(l)i and β(l)j are admissible.

Definition 8 Also the relations (86) and (90) are called telescoping contiguous rela-
tions.

Corollary 5 Any telescoping contiguous relation of the form (86) and, if poles of
R(x) cause no problem, in the version of (90) can be computed by the parameterized
Gosper algorithm.

Proof. Analogous to that for Corollary 1. �

We present some illustrating applications.
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8.1 Telescoping Contiguous Relations for z = 1 and (p, q) = (1, 0)

Suppose z = 1 and (p, q) = (1, 0). According to Theorem 1 there exist c0 , 0 and a
polynomial C(x) with C(0) = 0 such that for all k ≥ 0,

c0 · 1F0

(
a + α
−

; 1
)
k

= ∆k C(k) 1F0

(
a
−

; 1
)
k

. (91)

For all α ∈ Z≥0 this is true if the case-A condition,

q∑
j=1

bj −

q+1∑
i=1

ai − q = −a < Z≥0, (92)

holds. It turns out that C(x) = x/(a + α), and summing (91) over k from 0 to n
produces a telescoping hypergeometric sum,

n∑
k=0

1F0

(
a + α
−

; 1
)
k

=

n∑
k=0
(−1)k

(
−(a + α)

k

)
=

n + 1
a + α

(a)n+1
(n + 1)!

. (93)

Independently from Theorem 1A, this is obtained— including a confirmation of the
Case-A condition — by our implementation of parameterized telescoping:

In[12]:= Gosper
[ (a +α)k

k!
, {k, 0, n}

]

If ‘n’ is a natural number and a + α , 0, then: :

Out[12]= Sum
[
(a + α)k
k!

, {k, 0, n}

]
=
(a + α + n)(a + α)n

n!(a + α)

Finally, we remark that applying the limit formula (88) the relation (93) turns into

∞∑
k=0

(a + α)k
k!

=

∞∑
k=0
(−1)k

(
−(a + α)

k

)
= 0,

matching (1 − 1)−(a+α) = 0.

8.2 Computer Proof of Gauß’ 2F1 Summation

Most of the classical non-terminating pFq series summation formulas can be proved
using contiguous relations. With the means of telescoping contiguous relations the
essential part of these proofs can be done automatically by the computer.

For example, let us take Gauß’ 2F1 summation theorem [1, Thm. 2.2.2]:
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∞∑
k=0

(a)k(b)k
(c)k k!

= 2F1

(
a, b
c ; 1

)
=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

, Re(c − a − b) > 0. (94)

The condition on the real part is to guarantee absolute convergence; see [1,
Thm. 2.1.2]. We will follow a variant of the proof idea presented in [1, 2.2]. Its
key ingredient is the contiguous relation

2F1

(
a, b
c ; 1

)
=
(c − 1)(c − a − b − 1)
(c − a − 1)(c − b − 1) 2

F1

(
a, b

c − 1 ; 1
)
. (95)

Once this relation is found, the rest of the proof of (94) follows by unfolding (95),

2F1

(
a, b
c ; 1

)
=
(c − 1)(c − a − b − 1)
(c − a − 1)(c − b − 1)

(c − 2)(c − a − b − 2)
(c − a − 2)(c − b − 2) 2

F1

(
a, b

c − 2 ; 1
)
= . . .

=
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c − b)

·
Γ(c − a − n)Γ(c − b − n)
Γ(c − n)Γ(c − a − b − n) 2

F1

(
a, b

c − n ; 1
)
,

and by observing that

lim
n→∞

Γ(c − a − n)Γ(c − b − n)
Γ(c − n)Γ(c − a − b − n) 2

F1

(
a, b

c − n ; 1
)
= 1.

Using the parameterized Gosper algorithm, relation (95) is found automatically as
follows. For the ansatz

c0 · 2F1

(
a, b
c ; 1

)
k

+ c1 · 2F1

(
a, b

c − 1 ; 1
)
k

= ∆k C(k) 2F1

(
a, b
c ; 1

)
k

(96)

the algorithm computes

c0 = (c−a−1)(c−b−1), c1 = −(c−1)(c−a−b−1), and C(x) = x(x+c−1). (97)

Consequently, deg C(x) ≤ 1 + M where M = 1. To ensure convergence of all series
involved, one has to require also Re(c − a − b) > 1 = M . This allows to apply (88)
after summing (96) over k from 0 to∞, which gives the desired (95).

9 Telescoping Contiguous Relations for z = 1: Case B

The next refinement of Theorem 1 concerns the following violation of the Case-A
condition

Definition 9 (Case-B condition) The parameters a1, . . . , aq+1 and b1, . . . , bq satisfy
the Case-B condition, if
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q∑
j=1

bj −

q+1∑
i=1

ai − q ∈ Z≥1. (98)

Hence the remaining violation of the Case-A condition is when
∑q

j=1 bj −
∑q+1

i=1 ai =
q; this is Case-C which is treated in Section 10.

Theorem 1B. Suppose z = 1 and p = q+1 ≥ 2. Let the complex parameters ai and
bj satisfy the Case-B condition (98) and let d = q − 1 or d = q. For 0 ≤ l ≤ d let
(α
(l)
1 , . . . , α

(l)
q+1, β

(l)
1 , . . . , β

(l)
q ) be pairwise different tuples with non-negative integer

entries. Suppose,

M := max
0≤l≤d

{α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β

(l)
q } <

q∑
j=1

bj −

q+1∑
i=1

ai . (99)

Then for d = q − 1 or d = q there exist c0, . . . , cd in K, not all 0, and a polynomial
C(x) ∈ K[x] such that for all k ≥ 0,

d∑
l=0

cl ·q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
k

= ∆k C(k) q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

.

(100)
Moreover, C(0) = 0, and

deg C(x) ≤ 1 +
q∑
j=1

bj −

q+1∑
i=1

ai . (101)

In addition, owing to (89), if strict inequality in (101) holds,

lim
k→∞

C(k)pFq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

= 0; (102)

otherwise,

lim
k→∞

C(k)q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

= leading coefficient of C(x)·
Γ(b1) . . . Γ(bq)
Γ(a1) . . . Γ(aq+1)

.

(103)

Remark. According to [1, Thm. 2.1.2], the condition (99) is exactly the condition
needed for the absolute convergence of all series

q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , q − 1}.
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Proof. Let k0 :=
∑q

j=1 bj −
∑q+1

i=1 ai , and suppose that k0 − q = α ∈ Z≥1. Observe
that

deg q+1Pq(x) = q, . . . , deg q+1P(α−1)
q (x) = q + α − 1, deg q+1P(α)q (x) = q + α − 1,

(104)
but

deg q+1P(α+1)
q (x) = q + α + 1.

Owing to (104), one can find a polynomial P1(x) with deg P1(x) = α such that

P(x) =
q+1∏
i=1
(x+ai) ·P1(x+1)− x

q∏
j=1
(x+bj −1) ·P1(x) = c · xq−1+O(xq−2), (105)

where c is some constant in K. Analogously to the proof of Theorem 1, for

tl(k) := q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
k

and t(k) := q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)

one carries out the following transformation into a telescoping form:

d∑
l=0

cltl(k) =
d∑
l=0

cl
q+1∏
i=1

µ
α
(l)
i
(ai; k)

q∏
j=1

µ
β
(l)
j
(bj − β

(l)
j ; k)t(k)

=

d∑
l=0

clMl(k)t(k)

=
( d∑
l=0

cl Ul(k)
)

t(k) + ∆k
( d∑
l=0

cl Vl(k)
)
pRq(k) t(k).

For each l ∈ {0, . . . , d}: if the constant c in (105) is non-zero, then deg Ul(x) ≤ q−2;
otherwise, deg Ul(x) ≤ q − 1. In the first case one has d := q − 1; otherwise d := q.
For both cases, with the same argument as in Theorem 1, there is a choice of the cl ,
not all zero, such that

∑d
l=0 cl Ul(x) = 0. Notice that for the transformation into a

telescoping form we used the condition (99) for the estimate,

deg Ml(x) = α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β

(l)
q ≤ M < k0 = q + α,

together with (104) and (105). To prove the remaining statements, one again uses the
arguments as in the proof of Theorem 1. �

Remark. Again one can allow arbitrary integer parameters instead of restricting to
non-negative integers. More precisely, for arbitrary parameters α(l)i and β(l)j this gives
a relation,
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d∑
l=0

cl ·q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 + β
(l)
1 , . . . , bq + β

(l)
q

; 1

)
k

= ∆k R(k) q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

,

(106)
with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. Again,
as in (24), it is important to notice that because of possible poles of the R(x), not all
integer choices of α(l)i and β(l)j are admissible.

For the sake of better visibility, we state the criterion for the choice of d, which
emerged from the proof, as a particular corollary.

Corollary 6 Let c be the constant as in (105). Then a criterion for the choice of d in
Theorem 1B is this:

d =

{
q − 1, if c , 0
q, if c = 0

. (107)

Definition 10 Also the relations (100) and (106) are called telescoping contiguous
relations.

Corollary 7 Any telescoping contiguous relation of the form (86) and, if poles of
R(x) cause no problem, in the version of (90) can be computed by the parameterized
Gosper algorithm.

Proof. Analogous to that for Corollary 1. �

An example is provided by the existence of the contiguous relation (11), representing
the Pfaff relation (7), which is predicted by Theorem 1B with d = 2 = q − 1 and
with M = 4 for the maximum of the shift sums; moreover, connecting to the proof
of Theorem 1B, k0 = 5. With the same data, Theorem 1B also implies the existence
of the contiguous relation (12), representing the Pfaff relation (9).

The next subsections show two more illustrating examples.

9.1 Telescoping Contiguous Relations for z = 1 and (p, q) = (2, 1)

The minimal choice for Theorem 1B is q = 1; i.e., assuming that the constant c in
Corollary 6 is non-zero, we seek for a relation,

c0 · 2F1

(
a1 + α1, a2 + α2

b1 − β1
; 1

)
k

= ∆k C(k) 2F1

(
a1, a2

b1
; 1

)
k

, k ≥ 0.
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The Case-B condition is b1 − a1 − a2 − 1 := α ∈ Z≥1; hence α := 1 is again
a minimal choice. Finally, we need condition (99) to be satisfied. This means,
M := α1+α2+ β1 < b1−a1−a2 = 2, and (α1, α2, β1) = (0, 0, 0) is a minimal choice.
Then Theorem 1B tells us that the sum

n∑
k=0

(a1)k(a2)k
(a1 + a2 + 2)k k!

has a closed form by telescoping. In view of (99), other admissible choices are
(α1, α2, β1) = (1, 0, 0) or (α1, α2, β1) = (0, 0, 0), which says that the sums

n∑
k=0

(a1 + 1)k(a2)k
(a1 + a2 + 2)k k!

and
n∑

k=0

(a1)k(a2)k
(a1 + a2 + 1)k k!

are also telescoping.‖ This can be confirmed by running Gosper’s algorithm, for
example:

In[13]:= Gosper
[ (a1)k(a2)k
(a1 + a2 + 1)kk!

, {k, 0, n}
]

If ‘n’ is a natural number and a1a2 , 0, then: :

Out[13]= Sum
[
(a1)k(a2)k

(a1 + a2 + 1)kk!
, {k, 0, n}

]
=
(a1 + n)(a2 + n)

a1a2

(a1)n(a2)n
(a1 + a2 + 1)nn!

The algorithm computes C(x) = x(x + a1 + a2)/(a1a2), which means that we have
equality in the bound estimate (101), and the limit (103) of Theorem 1B implies,

∞∑
k=0

(a1)k(a2)k
(a1 + a2 + 1)k k!

=
1

a1a2

Γ(a1 + a2 + 1)
Γ(a1)Γ(a2)

=
Γ(a1 + a2 + 1)
Γ(a1 + 1)Γ(a2 + 1)

.

Notice that this is a telescoping special case of Gauß’ summation formula (94).

10 Telescoping Contiguous Relations for z = 1: Case C

It remains to consider the final possibility for a violation of the Case-A condition,
namely, when

∑q
j=1 bj −

∑q+1
i=1 ai = q.

Definition 11 (Case-C condition) The parameters a1, . . . , aq+1 and b1, . . . , bq sat-
isfy the Case-C condition, if

q∑
j=1

bj −

q+1∑
i=1

ai = q. (108)

‖ Notice that the right-hand sum is obtained by replacing a1 with a1 − 1 in the left sum.
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Theorem 1C. Suppose z = 1 and p = q + 1 ≥ 2. Let the complex parameters ai
and bj satisfy the Case-C condition (108) and let

d :=

{
q − 1, if deg q+1Pq(x) = q − 1
q, if deg q+1Pq(x) < q − 1

. (109)

For 0 ≤ l ≤ d let (α(l)1 , . . . , α
(l)
q+1, β

(l)
1 , . . . , β

(l)
q ) be pairwise different tuples with

non-negative integer entries. Suppose,

M := max
0≤l≤d

{α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β

(l)
q } < q. (110)

Then for d there exist c0, . . . , cd in K, not all 0, and a polynomial C(x) ∈ K[x] such
that for all k ≥ 0,

d∑
l=0

cl ·q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
k

= ∆k C(k) q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

.

(111)
Moreover, C(0) = 0, and

deg C(x) ≤ 1 + q. (112)

In addition, owing to (89), if strict inequality in (112) holds,

lim
k→∞

C(k)pFq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

= 0; (113)

otherwise,

lim
k→∞

C(k)q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

= leading coefficient of C(x)·
Γ(b1) . . . Γ(bq)
Γ(a1) . . . Γ(aq+1)

.

(114)

Remark. According to [1, Thm. 2.1.2], the condition (99) is exactly the condition
needed for the absolute convergence of all series

q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
, l ∈ {0, . . . , q − 1}.

Proof. Observe that

deg q+1Pq(x) ≤ q − 1, but deg q+1P(n)q (x) = q + n, n ≥ 1; (115)

hence the degree q − 1 provides a natural bound. Analogously to the proof of
Theorem 1, for
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tl(k) := q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 − β
(l)
1 , . . . , bq − β

(l)
q

; 1

)
k

and t(k) := q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)

one carries out the following transformation into a telescoping form:

q−1∑
l=0

cltl(k) =
q−1∑
l=0

cl
q+1∏
i=1

µ
α
(l)
i
(ai; k)

q∏
j=1

µ
β
(l)
j
(bj − β

(l)
j ; k)t(k)

=

q−1∑
l=0

clMl(k)t(k)

=
(q−1∑
l=0

cl Ul(k)
)

t(k) + ∆k
(q−1∑
l=0

cl Vl(k)
)
pRq(k) t(k).

For each l ∈ {0, . . . , d}: if q+1Pq(x) = q − 1 then deg Ul(x) ≤ q − 2; otherwise,
deg Ul(x) ≤ q − 1. In the first case one has d := q − 1; otherwise d := q. For
both cases, with the same argument as in Theorem 1, there is a choice of the cl ,
not all zero, such that

∑d
l=0 cl Ul(x) = 0. Notice that for the transformation into a

telescoping form we used the condition (110) for the estimate,

deg Ml(x) = α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β

(l)
q ≤ M < q.

To prove the remaining statements, one again uses the arguments as in the proof of
Theorem 1. �

Remark. Again one can allow arbitrary integer parameters instead of restricting to
non-negative integers. More precisely, for arbitrary parameters α(l)i and β(l)j this gives
a relation,

q−1∑
l=0

cl ·q+1Fq

(
a1 + α

(l)
1 , . . . , aq+1 + α

(l)
q+1

b1 + β
(l)
1 , . . . , bq + β

(l)
q

; 1

)
k

= ∆k R(k) q+1Fq

(
a1, . . . , aq+1
b1, . . . , bq

; 1
)
k

,

(116)
with a rational function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x]. Again,
as in (24), it is important to notice that because of possible poles of the R(x), not all
integer choices of α(l)i and β(l)j are admissible.

Definition 12 Also the relations (111) and (116) are called telescoping contiguous
relations.

Corollary 8 Any telescoping contiguous relation of the form (111) and, if poles of
R(x) cause no problem, in the version of (116) can be computed by the parameterized
Gosper algorithm.
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Proof. Analogous to that for Corollary 1. �

An example is provided by the existence of the contiguous relation (10), representing
the Zeilberger output recurrence (6), which is predicted by Theorem 1C with d =
deg 4P3(x) = 2 = q−1 and with M = 2 for the maximum of the shift sums. With the
same data, Theorem 1C implies the contiguous relation (15) representing the new
mixed relation (13) for Bailey’s summation. To compute the relation as in (15), one
uses the rational function variation (116) of Theorem 1C.

The next subsections show two more illustrating examples.

10.1 Telescoping Contiguous Relations for z = 1 and (p, q) = (2, 1)

The minimal choice for Theorem 1C is q = 1. Let us seek for a relation,

c0 · 2F1

(
a1 + α1, a2 + α2

b1 − β1
; 1

)
k

= ∆k C(k) 2F1

(
a1, a2

b1
; 1

)
k

, k ≥ 0.

To guarantee existence, according to Theorem 1C we consider,

deg 2P1(x) = deg
(
(x + a1)(x + a2) − x(x + b1 − 1)

)
= deg

(
(a1 + a2 − b1 + 1)x + a1a2

)
= deg a1a2 = 0,

invoking the Case-C condition, b1−a1−a2 = 1. Hence, if a1a2 , 0 then deg 2P1(x) =
0 = q − 1, and we can call Theorem 1C with d = q − 1 = 0. Moreover, we need
M := α1 + α2 + β1 < q = 1, thus (α1, α2, β1) = (0, 0, 0) is the only choice, and
Theorem 1C tells us that the sum,

n∑
k=0

(a1)k(a2)k
(a1 + a2 + 1)k k!

=
(a1 + 1)n(a2 + 1)n
(a1 + a2 + 1)nn!

, (117)

has a closed form by telescoping; for the evaluation see Out[13]. In other words,
this minimal case coincides with that of Theorem 1B presented in Section 9.1.

10.2 Telescoping Contiguous Relations for z = 1 and (p, q) = (3, 2)

We proceed with q = 2 as the next to minimal choice for Theorem 1C. Let us seek
for a relation,
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c0 · 3F2

(
a1 + α

(0)
1 , a2 + α

(0)
2 , a3 + α

(0)
3

b1 − β
(0)
1 , b2 − β

(0)
1

; 1

)
k

+ c1 · 3F2

(
a1 + α

(1)
1 , a2 + α

(1)
2 , a3 + α

(1)
3

b1 − β
(1)
1 , b2 − β

(1)
1

; 1

)
k

= ∆k C(k) 3F2

(
a1, a2, a3
b1, b2

; 1
)
k

, k ≥ 0.

To guarantee existence, according to Theorem 1C, we consider,

deg 3P2(x) = deg
(
(x + a1)(x + a2)(x + a3) − x(x + b1 − 1)(x + b2 − 1)

)
= deg

(
(a1 + a2 + a3 − b1 − b2 + 2)x2 + (a1a2 + a1a3 + a2a3 − (b1 − 1)(b2 − 1))x + a1a2a3

)
= deg

(
(a1a2 + a1a3 + a2a3 − (b1 − 1)(b2 − 1))x + a1a2a3

)
invoking the Case-C condition, b1 + b2 − a1 − a2 − a3 = 2. Hence we assume that

a1a2 + a1a3 + a2a3 − (b1 − 1)(b2 − 1) , 0,

because then deg 3P2(x) = 1, and we can call Theorem 1C with d = q − 1 = 1.
Moreover, we need to have,

M := max
0≤l≤1

{α
(l)
1 + α

(l)
2 + α

(l)
3 + β

(l)
1 + β

(l)
2 } < q = 2.

Thus, (β(0)2 , α
(1)
3 ) = (1, 1) and all other parameters equal to zero, is an admissible

choice. For this choice, Theorem 1C tells us that a non-trivial telescoping relation
of the form

c0 · 3F2

(
a1, a2, a3
b1, b2 − 1 ; 1

)
k

+ c1 · 3F2

(
a1, a2, a3 + 1

b1, b2
; 1

)
k

= ∆k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

, k ≥ 0,

exists provided that b1 + b2 − a1 − a2 − a3 = 2. As described in Section 7, the RISC
package fastZeil by applying parameterized telescoping computes:

c0 = −a3(1+a3−b1)(1+a1+a2+a3−b1), c1 = a3(1+a1+a3−b1)(1+a2+a3−b1)

and
C(x) = x(x + b1 − 1)(x + a1 + a2 + a3 − b1 + 1);

for the computation b2 is replaced by a1 + a2 + a3 − b1 + 2. Applying (114) one
obtains in the limit k →∞ the relation:

c0 · 3F2

(
a1, a2, a3

b1, a1 + a2 + a3 − b1 + 1 ; 1
)
+ c1 · 3F2

(
a1, a2, a3 + 1

b1, a1 + a2 + a3 − b1 + 2 ; 1
)

=
Γ(b1)Γ(a1 + a2 + a3 − b1 + 2)

Γ(a1)Γ(a2)Γ(a3)
. (118)
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Another special case is obtained by replacing a3 with −n ∈ Z≤0 and then taking the
limit k →∞,

S(n) =
(b1 − a1 + n − 1)(b1 − a2 + n − 1)
(b1 + n − 1)(b1 − a1 − a2 + n − 1)

S(n − 1), n ≥ 1. (119)

where
S(n) := 3F2

(
a1, a2,−n

b1, a1 + a2 − b1 − (n + 1) ; 1
)
.

Unfolding the relation (119) gives the celebrated Pfaff-Saalschütz formula [1,
Thm. 2.2.6],

S(n) =
(b1 − a1)n(b1 − a2)n
(b1)n(b1 − a1 − a2)n

. (120)

Finally, setting b1 = −n in S(n) gives the telescoping special case (117) of Gauß’
summation formula.

11 Further Applications

The examples presented in this section should deepen the impression of a wide spec-
trum of potential applications of telescoping contiguous relations and the methods
described. Using parameterized telescoping, we derive a generalization, Theorem 2,
of a result which arose in the classical work by James Wilson on hypergeometric re-
currences and contiguous relations. Two further subsections discuss non-minimality
of Zeilberger recurrences from telescoping contiguous relations point of view. In
particular, we explain why ‘creative symmetrizing’ in some instances successfully
reduces the order. This discussion includes a new (algorithmic) proof of the non-
terminating version of Dixon’s well-poised 3F2-series.

11.1 Generalizing a Theorem by James A. Wilson

As mentioned, in [1] various approaches for deriving contiguous relations are de-
scribed, for instance, by integration or by using Wilson’s method [38]. We choose
an example that is given in [1, (3.7.5)] for explaining Wilson’s technique, namely

f g 4F3

(
a, b, c, d
e, f , g ; 1

)
− ( f − a)(g − a) 4F3

(
a, b + 1, c + 1, d + 1
e + 1, f + 1, g + 1 ; 1

)
+

a(e − b)(e − c)(e − d)
e(e + 1) 4F3

(
a + 1, b + 1, c + 1, d + 1

e + 2, f + 1, g + 1 ; 1
)
= 0, (121)
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where one of the upper parameters is a negative integer, and where

a + b + c + d + 1 = e + f + g. (122)

Throughout this sectionwe assume (122) to hold. To connect to classical terminology
we remark that Wilson’s contiguous relation is between balanced 4F3-series; i.e.,
as in (122) the sum of the top parameters plus 1 equals the sum of the bottom
parameters. More generally, if the parameters of a q+1Fq-series satisfy the relation

q∑
j=1

bj −

q+1∑
i=1

ai = m (123)

for m ∈ Z, the series is called m-balanced.

To fit (121) into our framework we set

a1 = a, a2 = b, a3 = c, a4 = d, b1 = e + 2, b2 = f + 1, b3 = g + 1,

which translates (121) into the telescoped version,

c0 4F3

(
a1, a2, a3, a4

b1 − 2, b2 − 1, b3 − 1 ; 1
)
k

+ c1 4F3

(
a1, a2 + 1, a3 + 1, a4 + 1

b1 − 1, b2, b3
; 1

)
k

+ c2 4F3

(
a1 + 1, a2 + 1, a3 + 1, a4 + 1

b1, b2, b3
; 1

)
k

= ∆kC(k)4F3

(
a1, a2, a3, a4
b1, b2, b3

; 1
)
k

, k ≥ 0,

(124)

with

b1 + b2 + b3 − (a1 + a2 + a3 + a4) − q = e+ 2+ f + 1+ g+ 1− (a+ b+ c+ d) − 3 = 2.

Consequently, this turns the series into ones which are 5-balanced and the Case-B
condition (98) is satisfied. Moreover, in view of

M := max
0≤l≤q−1

{α
(l)
1 + · · · + α

(l)
q+1 + β

(l)
1 + · · · + β

(l)
q } = 4 <

q∑
j=1

bj −

q+1∑
i=1

ai = 5,

the existence of (124) is guaranteed by Theorem 1B with d = q − 1 = 2, and where
the coefficients cj and the polynomial C(x) can be computed by parameterized
telescoping.

We remark explicitly that to this end, instead of renaming the variables, one can work
directly in the original setting (121). More precisely, using our package we compute
coefficients c0, c1, c2, not all 0, and a polynomial C(x) such that for all k ≥ 0,

c0 t0(k) + c1 t1(k) + c2 t2(k) = ∆k C(k) t(k), (125)

where
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t(k) = 4F3

(
a, b, c, d

e + 2, f + 1, g + 1 ; 1
)
k

,

t0(k) = 4F3

(
a, b, c, d
e, f , g ; 1

)
k

,

t1(k) = 4F3

(
a, b + 1, c + 1, d + 1
e + 1, f + 1, g + 1 ; 1

)
k

, and

t2(k) = 4F3

(
a + 1, b + 1, c + 1, d + 1

e + 2, f + 1, g + 1 ; 1
)
k

.

For running the program we supply the rational functions rl that are induced by the
hypergeometric similarity relations

tl(k) = rl(k) t(k);

recall Definition 2. More concretely:
In[14]:= t[k_] :=

(a)k(b)k(c)k(d)k
(e + 2)k(f + 1)k(g + 1)kk!

In[15]:= r0 =
(a)k(b)k(c)k(d)k
k!(e)k(f)k(g)k

1
t[k] //FullSimplify

Out[15]=
(k + e)(k + e + 1)(k + f)(k + g)

e(e + 1)fg

In[16]:= r1 =
(a)k(b + 1)k(c + 1)k(d + 1)k
k!(e + 1)k(f + 1)k(g + 1)k

1
t[k] //FullSimplify

Out[16]=
(k + b)(k + c)(k + d)(k + e + 1)

bcd(e + 1)

In[17]:= r2 =
(a + 1)k(b + 1)k(c + 1)k(d + 1)k

k!(e + 2)k(f + 1)k(g + 1)k
1

t[k] //FullSimplify

Out[17]=
(k + a)(k + b)(k + c)(k + d)

abcd

In[18]:= RatFuMults = {r0, r1, r2} /. g→ a + b + c + d − e − f + 1

After these preparations we are ready to compute the desired telescoping relation:
In[19]:= Gosper[t[k] /. g→ a + b + c + d − e − f + 1, {k, 0, n − 1}, Parameterized→ RatFuMults]

If ‘n’ is a natural number, then: :

Out[19]= Sum[bcde(e + 1)f(a + b + c + d − e − f + 1)t0(k) + bcde(e + 1)(a − f)(b + c + d − e − f + 1)t1[k]

− abcd(b − e)(c − e)(d − e)t2[k], {k, 0, n − 1}]

= −n(n+ e+ 1)(n+ f)(n+ a+ b+ c+ d− e− f + 1)
(
bcd − bce − bde − ben − cde − cen − den − en2

)
(a)n(b)n(c)n(d)n

n!(e + 2)n(f + 1)n(a + b + c + d − e − f + 2)n

In other words, the telescoping relation (125) is constituted by

c0 = bcde(e + 1) f g, c1 = −bcde(e + 1)( f − a)(g − a),

c2 = −abcd(b − e)(c − e)(d − e),
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and the polynomial

C(x) = −x(x+e+1)(x+ f )(x+g)
(
bcd − bce − bde − cde − (b + c + d)ex − ex2

)
.

We remark that after executing the call In[19] for parameterized telescoping, the
program allows to retrieve the polynomial C(x) explicitly with

In[20]:= show[R]

Out[20]= k(1 + e + k)(1 + a + b + c + d − e − f + k)(f + k)(−bcd + bce + bde + cde + (b + c + d)ek + ek2)

Obviously, if one of the entries a, b, c, d is a negative integer, relation (125) in the limit
k → ∞ implies Wilson’s relation (121). But applying the limit property (103), the
telescoping relation (125) as a “bonus” implies a generalization of Wilson’s (121),
which does not require that one of the upper parameters is a negative integer:

Theorem 2 If a + b + c + d + 1 = e + f + g then

f g 4F3

(
a, b, c, d
e, f , g ; 1

)
− ( f − a)(g − a) 4F3

(
a, b + 1, c + 1, d + 1
e + 1, f + 1, g + 1 ; 1

)
+

a(e − b)(e − c)(e − d)
e(e + 1) 4F3

(
a + 1, b + 1, c + 1, d + 1

e + 2, f + 1, g + 1 ; 1
)

=
Γ(e + 1)Γ( f + 1)Γ(g + 1)
Γ(a)Γ(b + 1)Γ(c + 1)Γ(d + 1)

. (126)

11.2 Non-Minimality of Zeilberger Recurrences

Bailey’s summation (2) already has shown that Zeilberger’s algorithm does not
always deliver a recurrence of minimal order for the sum in question. Another such
example is the summation

Sd(n) =
n∑

k=0
(−1)k

(
n
k

) (
d k
n

)
= (−d)n, n ≥ 0, (127)

where d is any positive integer.

We remark that this evaluation is an immediate consequence of the following ele-
mentary fact which is implied by the binomial theorem. For any choice of complex
numbers ai ,

n∑
k=0
(−1)k

(
n
k

)
(a0 + a1 k + · · · + an kn) = (−1)nn! an;
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see, for instance, [12, Ch. 5].

However, in [19] it has been pointed out that the Zeilberger recurrence for Sd(n),
d ≥ 2, is of order d − 1. For instance, for d = 3 by running Zeilberger’s algorithm
one obtains

2(2n + 3) S3(n + 2) + 3(5n + 7) S3(n + 1) + 9(n + 1) S3(n) = 0

as the output recurrence for the sum S3(n).

In order to consider the problem from contiguous relations point of view, we translate
S3(n) for n = 3m into hypergeometric notation. One can easily verify that

S3(3m) = (−1)m
(
3m
m

)
T(m) (m ≥ 0) (128)

where

T(m) =
2m∑
k=0

(−2m)k(m + 1/3)k(m + 2/3)k
(1/3)k(2/3)k k!

= 3F2

(
−2m,m + 1/3,m + 2/3

1/3, 2/3 ; 1
)
.

(129)

According to (127) we have for m ≥ 0,

T(m) = (−1)m
(
3m
m

)−1
(−3)3m. (130)

The fact that the Zeilberger recurrence for T(m) is of order 2 tells us that there is no
contiguous relation with cl ∈ C(m) of the form

c0 · 3F2

(
−2m,m + 1/3,m + 2/3

1/3, 2/3 ; 1
)
+ c1 · 3F2

(
−2m − 2,m + 4/3,m + 5/3

1/3, 2/3 ; 1
)
= 0,

where in the second 3F2-series m is replaced by m + 1.

However, one can try another ansatz for a (telescoping) contiguous relation, for
instance,

c0 3F2

(
−2m,m + 1/3,m + 2/3

1/3, 5/3 ; 1
)
k

+ c1 3F2

(
−2m,m + 1/3,m + 2/3

1/3, 2/3 ; 1
)
k

+ c2 3F2

(
−2m − 2,m + 4/3,m + 5/3

1/3, 2/3 ; 1
)
k

= ∆k C(k) 3F2

(
−2m − 2,m + 1/3,m + 2/3

1/3, 5/3 ; 1
)
k

.

(131)

Summing (131) over k from 0 to 2m + 2 would then give the recurrence

c0 P(m) + c1 T(m) + c2 T(m + 1) = 0, m ≥ 0, (132)
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where
P(m) = 3F2

(
−2m,m + 1/3,m + 2/3

1/3, 5/3 ; 1
)

(133)

is a balanced series which owing to the Pfaff-Saalschütz formula (120) evaluates to

P(m) = 0 for m ≥ 1. (134)

Running the parameterized Gosper algorithm shows that a formula of type (131)
indeed exists. Our package computes that (131), and thus (132), holds for

c0 = 9m(3m − 1)(21m2 + 27m + 8),
c1 = 18(m + 1)(2m + 1)(9m + 1),
c2 = −(3m + 1)(3m + 2)(9m + 1), and

C(x) =
x(9x2 − 4)C̃(x)

2(m + 1)(3m + 2)(3m + 4)

where

C̃(x) = 3x(162m3 + 405m2 + 261m+ 40) − (3m+ 1)(189m3 + 549m2 + 555m+ 184).

Summarizing, in contrast to Zeilberger’s algorithm the contiguous relations approach
allows additional integer shifts in other parameters. So in the present example this
enables one to invoke the Pfaff-Saalschütz evaluation (134) to zero, which finally
has led to the desired order 1 recurrence for T(m), namely

T(m + 1)
T(m)

= 18
(m + 1)(2m + 1)
(3m + 1)(3m + 2)

,

which together with T(0) = 1 proves (130). In other words, why Zeilberger’s algo-
rithm sometimes misses to compute the minimal recurrence simply is explained by
the fact that this algorithm searches only within a restricted subclass of contiguous
relations.

Remark. We want to note explicitly that this example is remarkable also with regard
to the existence of (131). Renaming the variables as follows,

a1 = −2m − 2, a2 = m + 1/3, a3 = m + 2/3, b1 = 1/3, b2 = 5/3,

turns (131) into

c0 · 3F2

(
a1 + 2, a2, a3

b1, b2
; 1

)
k

+ c1 · 3F2

(
a1 + 2, a2, a3

b1, b2 − 1 ; 1
)
k

+ c2 · 3F2

(
a1, a2 + 1, a3 + 1

b1, b2 − 1 ; 1
)
k

= ∆k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

. (135)
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In this case,

b1 + b2 − (a1 + a2 + a3) − q = 1/3 + 5/3 − (−2m − 2 +m + 1/3 +m + 2/3) − 2 = 1,

which matches the Case-B condition (98). But

M := max
0≤l≤2

{α
(l)
1 + α

(l)
2 + α

(l)
3 + β

(l)
1 + β

(l)
2 } = 3 <

2∑
j=1

bj −

3∑
i=1

ai = 3

violates the requirement (99), and thus the existence of (131) cannot be derived
from the generic form of Theorem 1B with d = q = 2. Nevertheless, the following
refinement for q = 2 applies.

Corollary 1B. Suppose z = 1 and p = q + 1 = 3. Let the complex parameters ai
and bj satisfy the Case-B condition (98). For 0 ≤ l ≤ 2 let (α(l)1 , α

(l)
2 , α

(l)
3 , β

(l)
1 , β

(l)
2 )

be pairwise different tuples with non-negative integer entries such that

M := max
0≤l≤2

{α
(l)
1 + α

(l)
2 + α

(l)
3 + β

(l)
1 + β

(l)
2 } = 3. (136)

Then there exist c0, c1, c2 in K, not all 0, and a polynomial C(x) ∈ K[x] such that for
all k ≥ 0,

2∑
l=0

cl · 3F2

(
a1 + α

(l)
1 , a2 + α

(l)
2 , a3 + α

(l)
3

b1 − β
(l)
1 , b2 − β

(l)
2

; 1

)
k

= ∆k C(k) 3F2

(
a1, a2, a3

b1, b2
; 1

)
k

.

(137)

Proof. To prove the statement one modifies the proof of Theorem 1; we restrict to
presenting a sketch. In the case of Corollary 1Bwe have k0 :=

∑q
j=1 bj−

∑q+1
i=1 ai = 3;

this means, k0 − q = α with q = 2 and α = 1. Observe that

deg 3P2(x) = 2, deg 3P(1)2 (x) = 2, but deg 3P(2)2 (x) = 4. (138)

Owing to (138), one can find a polynomial P1(x) with deg P1(x) = 1, or deg P1(x) =
0, such that

P(x) =
3∏
i=1
(x + ai) · P1(x + 1) − x

2∏
j=1
(x + bj − 1) · P1(x) = p1x + p0, (139)

where p0, p1 ∈ K are not both zero. Suppose p1 , 0. Then for j = 1, 2 there are
γj ∈ K and polynomials Cj(x) ∈ K[x] such that

k j t(k) = γj t(k) + ∆kCj(x)t(k), (140)

where t(k) = 3F2(a1, a2, a3; b1, b2; 1)k . Again with the notation used in the proof of
Theorem 1B, the left-hand side of (137) turns into,
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2∑
l=0

cltk(k) =
2∑
l=0

clMl(k)t(k),

with polynomials Ml(x) of the form,

Ml(x) = γl,0 + γl,1x + γl,2x2 + γl,3x3, l = 0, 1, 2.

Finally, owing to (140),

2∑
l=0

clMl(k)t(k) =
( 2∑
l=0

cl Ul(k)
)

t(k) + ∆k
( 2∑
l=0

cl Vl(k)
)
pRq(k) t(k),

with Ul(x) of the form Ul(x) = ul,0 + ul,3x3. Hence there exist c0, c1, c2 ∈ K, not all
zero, such that

∑2
l=0 cl Ul(x) = 0. �

11.3 Creative Symmetrizing Revisited

The discussion in Section 11.2 has shed new light on the fact that Zeilberger’s
algorithm does not always deliver a minimal recurrence for a given sum. In several
such instances, by the method of ‘creative symmetrizing’, introduced in [18], it is
possible to transform the original sum in such a way that for the transformed version
Zeilberger’s recurrence is minimal. In this section we shall see that the contiguous
relations point of view can help to understand why creative symmetrizing can help.

As an illustrating example we consider a sum which Helmut Prodinger [24] has
brought to our attention; namely for n ≥ 1 let

S(n) =
n∑

k=1
(−1)k

(
n
k

)2 ( n
k − 1

)
. (141)

Carlitz [2], using Pfaff-Saalschütz summation, gave the evaluation

S(2m) = (−1)m
(3m)!

(m!)2 (m − 1)! (2m + 1)
(142)

for m ≥ 1. However, he did not mention what happens if n is odd.

Before applying contiguous relations we explain what creative symmetrizing is
about. Let A(m) = S(2m) for m ≥ 1. Again Zeilberger’s algorithm does not deliver
the first order recurrence corresponding to (142); rather than this it outputs,
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− 18(2m + 1)(3m + 1)(3m + 2)(4m + 7)(6m + 5)(6m + 7) A(m)

− 12(2m + 3)(4m + 5)(36m4 + 180m3 + 341m2 + 290m + 90) A(m + 1)
− 2(m + 1)(m + 2)(2m + 3)(2m + 5)2(4m + 3) A(m + 2) = 0,

which together with the corresponding certificate, which is too huge to be displayed
here, is sufficient to prove (142).

However, as observed by Axel Riese [28] creative symmetrizing reduces the order
to the minimal one. Namely, consider

2A(m) =
2m∑
k=1
(−1)k

(
2m
k

)2 ( 2m
k − 1

)
+

2m∑
k=1
(−1)2m+1−k

(
2m

2m + 1 − k

)2 ( 2m
2m − k

)
=

2m∑
k=1
(−1)k

(
2m
k

)2 ( 2m
k − 1

) (
1 −

(
2m

k − 1

) (
2m
k

)−1
)

=

2m∑
k=1
(−1)k

2m − 2k + 1
2m − k + 1

(
2m
k

)2 ( 2m
k − 1

)
.

This way we obtain an equivalent but transformed sum presentation a(m) of A(m),
where

a(m) =
2m∑
k=1
(−1)k

2m − 2k + 1
2(2m − k + 1)

(
2m
k

)2 ( 2m
k − 1

)
. (143)

Now, when we take the summand of a(m) as input for Zeilberger’s algorithm, it
outputs as recurrence for the sum a(m),

3(2m + 1)(3m + 1)(3m + 2) a(m) + m(m + 1)(2m + 3) a(m + 1) = 0 (144)

which, in view of a(1) = A(1) = S(2) = −2 immediately implies (142).

We note that in the odd case, i.e., if n = 2m + 1, Zeilberger’s algorithm again
gives a second order recurrence; but creative symmetrizing also helps here. Namely,
analogous to above, for B(m) = S(2m + 1), m ≥ 0, one obtains an equivalent but
transformed sum presentation b(m), where

b(m) =
2m+1∑
k=1
(−1)k

m + 1
2(2m − k + 2)

(
2m + 1

k

)2 (2m + 1
k − 1

)
. (145)

For this rearrangement, Zeilberger’s algorithm again outputs theminimal recurrence,
namely

−3(3m + 4)(3m + 5) b(m) − (m + 2)2 b(m + 1) = 0. (146)

Consequently, since b(0) = B(0) = S(1) = −1, we obtain for m ≥ 0,

S(2m + 1) = b(m) = (−1)m+1 (3m + 2)!
2 (m + 1)!2 m!

(147)
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as a closed form evaluation for the odd case.

Summarizing, we have seen that creative symmetrizing, i.e., rearranging the sum-
mation by combining the first and the last summand, the second and the term before
the last one, a.s.o., resulted in an order reduction of Zeilberger’s output recurrence.

In the remaining part of this section we show that an explanation of this phenomenon
is provided by the contiguous relations point of view.

To this end, let us consider the odd case (the even case can be treated analogously)
and rewrite B(m) = S(2m + 1) into hypergeometric notation, i.e.,

B(m) = −(2m + 1)2 3F2

(
−(2m + 1),−2m,−2m

2, 2 ; 1
)
. (148)

The 3F2 series is nearly-poised, this means, the second top and the first bottom
parameter add up to the same number as the third top and the second bottom
parameter; in the given example this is −2m + 2. The series would be well-poised, if
the remaining top parameter increased by 1 would be the same number. As we will
explain below, well-poised series behaves “more nicely”with respect to (telescoping)
contiguous relations.

First, we point out that creative symmetrizing converts the sum representation (145)
into a (terminating) well-poised series; namely,

b(m) = −(m + 1)(2m + 1) 3F2

(
−2m,−(2m + 1),−(2m + 1)

2, 2 ; 1
)
. (149)

In fact, this well-poised 3F2 is the special case a = −2m, b = c = −(2m + 1) of
Dixon’s summation formula [1],

3F2

(
a, b, c

a + 1 − b, a + 1 − c
; 1

)
=
Γ(1 + a

2 )Γ(1 +
a
2 − b − c)Γ(1 + a − b)Γ(1 + a − c)

Γ(1 + a)Γ(1 + a − b − c)Γ(1 + a
2 − b)Γ(1 + a

2 − c)
,

(150)
where Re(1 + 1

2 − b − c) > 0. The substitution a = −2m, b = c = −(2m + 1) gives a
hypergeometric term on the right-hand side of (150), hence b(m) satisfies an order
1 recurrence.

Second,we explainwhywell-poised series behave betterwith respect to (telescoping)
contiguous relations than nearly-poised series. Namely, Theorem 1A with d = q = 2
and parameterized telescoping gives,

c0 · 3F2

(
a, b, c

a + 1 − b, a + 1 − c
; 1

)
k

+ c1 · 3F2

(
a + 1, b, c

a + 2 − b, a + 2 − c
; 1

)
k

+ c2 · 3F2

(
a + 2, b, c

a + 3 − b, a + 3 − c
; 1

)
k

= ∆kR(k)3F2

(
a, b, c

a + 1 − b, a + 1 − c
; 1

)
k

,

(151)
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where

c0 = −a(1 + a − b)(2 + a − b)(2 + a − 2b − 2c)(1 + a − c)(2 + a − c),

c1 = 0,
c2 = a(1 + a)(2 + a − 2b)(2 + a − 2c)(1 + a − b − c)(2 + a − b − c),

and
R(k) = p(k)

(−2 − a + b)(−1 − a + b)(−2 − a + c)(−1 − a + c)k
(1 + a − b + k)(1 + a − c + k)

with

p(k) = −2 − a + 3a2 + 2a3 + 4b + ab − 2a2b − 2b2 + 4c + ac − 2a2c − 6bc − abc

+ 2b2c − 2c2 + 2bc2 + 3ak + 3a2k − 2abk − 2ack + ak2.

Remark. Notice that in view of the pattern of the shifts of the bottom parameters in
the 3F2-series, we applied Theorem 1A in the version of (106) which gives a rational
function R(x) ∈ K(x) instead of a polynomial C(x) ∈ K[x].

Inspection of the coefficients cj reveals the crucial feature of thewell-poised property:
it puts c1 to zero!

Besides its relevance for our example, the fact that c1 = 0 allows a proof of Dixon’s
identity along the same lines as our proof of Gauß’ summation formula (94). Using
the abbreviation,

F(a, b, c) := 3F2

(
a, b, c

a + 1 − b, a + 1 − c
; 1

)
,

in the limit k →∞ relation (151) turns into

F(a, b, c) =
(1 + a)(2 + a − 2b)(2 + a − 2c)(1 + a − b − c)(2 + a − b − c)

(1 + a − b)(2 + a − b)(2 + a − 2b − 2c)(1 + a − c)(2 + a − c)
F(a + 2, b, c)

=
(a)2n(

a
2 − b + 1)n( a2 − c + 1)n(a − b − c + 1)2n

( a2 )n(
a
2 − b − c + 1)n(a − b + 1)2n(a − c + 1)2n

F(a + 2n, b, c).

Finally, applying

Γ(x) = lim
n→∞

n!nx−1

(x)n
and lim

n→∞
F(a + 2n, b, c) = 1

proves (150).

Remark. Connecting to the remarks given after the statement of Theorem 1 in
Section 4, we note that Dixon’s identity (150) in the limit c→∞ gives

2F1

(
a, b

a + 1 − b
;−1

)
=
Γ(1 + a

2 )Γ(1 + a − b)
Γ(1 + a)Γ(1 + a

2 − b)
, Re(b) < 1, (152)
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which is Kummer’s summation theorem [1, Cor. 3.1.2], Alternatively, one can com-
pute the telescoping relation of the form,

c0 · 2F1

(
a, b

a + 1 − b
;−1

)
k

+ c1 · 2F1

(
a + 1, b

a + 2 − b
;−1

)
k

+ c2 · 2F1

(
a + 2, b

a + 3 − b
;−1

)
k

= ∆kR(k)2F1

(
a, b

a + 1 − b
;−1

)
k

, (153)

where c0 = −(a + 1 − b)(a + 2 − b), c1 = 0, c2 = (a + 1)(a + 2 − 2b) and R(x) =
(a+1−b)(a+2−b)(b−1)x/(a(a+1−b+x)). Aswith (151), this relation is a recurrence
with shifts in a only, hence it can be computed already with Zeilberger’s algorithm.
However, we want to emphasize that its existence is predicted by Theorem 1 applied
with the condition p = 2 = q+1 and z = −1. Finally note that Kummer’s summation
follows by taking the limit k → ∞ in (153), and by iterating the resulting relation
as we did to obtain the Dixon sum. To arrive at (152), one has to apply the binomial
theorem [1, (2.1.6)] in the form,

1F0

(
b
−

;−1
)
= 2−b .

12 Conclusion: q-Case

There are many variations like Corollary 1B of the method presented. Such varia-
tions depend on the particular application, needless to say. But even when facing
a problem not generically covered by one of the theorems in this article, using a
computer algebra implementation of parameterized telescoping could lead to the
desired (telescoping) contiguous relation. Still this algorithmic possibility does not
make tables of such relations obsolete. An excellent reference in this regard is [17],
a huge collection of hypergeometric series summation and transformation identi-
ties including contiguous relations; most importantly, the table look-up is greatly
supported by coming in the form of a Mathematica package.

Another aspect is that all what has been said in this article carries over to q-
hypergeometric series and to q-contiguous relations. We are planning to treat the
q-case in a subsequent paper.

As a kind of a “preview”: already at the time of [22], Axel Riese has implemented a q-
version of the algorithm for computing (telescoping) contiguous relations described
in Section 4. This extension of his Mathematica package qZeil [21] allows to derive
automatically (telescoping) q-contiguous relations, for example, those of Heine [8,
Exercise 1.9]. Also in the scope are q-functional relations like
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F(a, b; t) =
1 − atq
1 − t

+
(1 − aq)(b − atq)
(1 − bq)(1 − t)

tqF(aq, bq; tq)

where

F(a, b; t) = 1 +
∞∑
n=1

(1 − aq)(1 − aq2) · · · (1 − aqn)

(1 − bq)(1 − bq2) · · · (1 − bqn)
tn;

see, for instance, the book by N.J. Fine [7, (4.1)].
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