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ABSTRACT
We introduce a general reduction strategy that enables one to search
for solutions of parameterized linear diference equations in difer-
ence rings. Here we assume that the ring itself can be decomposed
by a direct sum of integral domains (using idempotent elements)
that enjoys certain technical features and that the coeicients of
the diference equation are not degenerated. Using this mechanism
we can reduce the problem to ind solutions in a ring (with zero-
divisors) to search solutions in several copies of integral domains.
Utilizing existing solvers in this integral domain setting, we obtain
a general solver where the components of the linear diference
equations and the solutions can be taken from diference rings that
are built e.g., by �ΠΣ-extensions over ΠΣ-ields. This class of difer-
ence rings contains, e.g., nested sums and products, products over
roots of unity and nested sums deined over such objects.
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1 INTRODUCTION
In the following we denote by (E, �) a diference ring (resp. ield),
this means that E is a ring (resp. ield) E equipped with a ring (resp.
ield) automorphism � : E → E. We call (E, �) computable if the
basic operations of E and � are computable. We deine the ring
of constants of (E, �) by K = const�E = {� ∈ E | � (�) = �}. By
construction K will be a ield, called the constant ield of (E, �).

Given such a diference ring (E, �) with a constant ield K, we
are interested in the following problem: Given � = (�0, . . . , ��) ∈
E�+1 and � = (�1, . . . , �� ) ∈ E� , ind (if this is possible) a inite
representation of all solutions � ∈ E and �1, . . . , �� ∈ K of the
parameterized linear diference equation (in short PLDE)

�0 � + �1 � (�) + · · · + �� �� (�) = �1 �1 + · · · + �� �� (1)

with coeicients � and parameters � . The solution set is deined by

� = � (�,� ,E) = {(�1, . . . , �� , �) ∈ K� × E | (1) holds}
which forms aK-subspace ofK� ×E. We say thatwe can compute all
solutions in (E, �) of an explicitly given (1) if� is a inite dimensional
vector space and one can compute a basis of � . In particular, if E
is an integral domain and �0 �� ≠ 0, we have dim(� ) ≤ � + �
by [7, Thm. XII (page 272)]. In this case we say that we can solve (in
general) parameterized linear diference equations in (A, �) if one
can compute a basis of� (�,� ,E) for any 0 ≠ � ∈ E�+1 and � ∈ E� .

The problem to solve PLDEs (so far only in a ield or integral
domain E) plays a central rule in symbolic summation and various
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algorithms. It covers as special cases the telescoping problem (� =
(1,−1), � ∈ E1) for, e.g., hypergeometric products [9], the creative
telescoping problem (� = (1,−1) with appropriately chosen � ∈
E� ) for, e.g., hypergeometric products [28], or recurrence solving
(� = 1) for, e.g., rational or hypergeometric solutions [2, 16, 17]. The
parameterized version is used also in holonomic summation [6]
and generalizations of it [5]. Further details can found, e.g., in [26].

In particular, Karr’s pioneering summation algorithm [12] estab-
lished a highly general solver for irst-order PLDEs in the setting
of his ΠΣ-ield extensions (Def. 19). In this way, the coeicients �� ,
parameters �� and the solutions � can be given in a ΠΣ-ield (E, �)
that is built formally by indeinite nested sums and products. Only
recently, his general irst-order solver has been pushed forward
in [3] to the higher-order case (including also a solver to ind all hy-
pergeometric solutions over E), that covers most of the summation
algorithms mentioned above as special cases.

In this article we aim at further generalizations allowing in
addition diference rings that are built by basic �ΠΣ-ring exten-
sions [23, 24] (Def. 15) where also products over roots of unity like
(−1)� can arise. Based on the observation that such rings can be
decomposed by a direct sum of integral domains using idempo-
tent elements (which is one of the key tools in the Galois theory
of diference equations [10, 27]), we will develop in Section 2 a
general strategy to solve non-degenerated PLDEs in idempotent
diference rings (Def. 1). Inspired by [15, 18] we separate the po-
tential solutions in their diferent components (Thm. 9) and try to
combine them accordingly to the full solution (Thm. 14). Utilizing
this machinery, we will invoke in Section 3 the general ΠΣ-ield
solver [3] (and variants of it) implemented within the summation
package Sigma [21] to derive various new algorithms (see Theo-
rems 25 and 31) in order to solve non-degenerated PLDEs in basic
�ΠΣ-rings deined over ΠΣ-ield-extensions. As a special case, the
ground ield can be, e.g., the mixed multibasic diference ield [4]
introduced in Remark 26. After a concrete example in Section 4 we
conclude with Section 5.
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2 PLDES IN IDEMPOTENT DIFFERENCE RINGS
It will be convenient to denote by � mod � with � ∈ Z the unique
value � ∈ {0, . . . , � − 1} with � | � − � .
Deinition 1. Let (E, �) be a diference ring and let �� ∈ E with
0 ≤ � < � be elements such that

• they are idempotent (i.e., �2� = �� ),
• pairwise orthogonal (i.e., ���� = 0 if � ≠ � ),
• and � (�� ) = ��+1mod� .

If (E, �) can be decomposed in the form
E = �0 E ⊕ �2 E ⊕ · · · ⊕ ��−1 E (2)

such that ��E forms an computable integral domain, then (E, �) is
called an idempotent diference ring of order �.

Note that, if (E, �) is an idempotent diference ring of order � then
(�� E, ��) is a diference ring and� is a diference ring isomorphism1

between (�� E, ��) and (��+1mod� E, �
�).

Lemma 2. Let (E, �) be an idempotent diference ring of order � and
let � =

∑�−1
�=0 �� �� ∈ E, then applying � means that the component

���� is moved cyclically to (��+1mod� E, �
�)

Proof. Fix � with 0 ≤ � < �, since �� ∈ E we can write �� =∑�−1
�=0 �� ℎ� for some ℎ� ∈ E. Now applying � to ���� gives:

� (���� ) = �
(
��

�−1∑
�=0

�� ℎ�

)
= � (�� )

�−1∑
�=0

� (�� ) � (ℎ� )

= ��+1mod�

�−1∑
�=0

��+1mod�� (ℎ� ) = ��+1mod�� (ℎ� ) .

Since � (ℎ� ) ∈ E we have that � (���� ) ∈ ��+1mod�E. □

For an idempotent diference ring (E, �) of order �, with idempotent
elements �� ∈ E with 0 ≤ � < � the structure given by Lemma 2
can be illustrated as follows:

E = �0 E

�
$$

⊕ �1 E

�

  ⊕ . . .

�
$$

⊕ ��−2 E

�
$$

⊕ ��−1 E

�

kk .

The following lemma is immediate.

Lemma 3. Let (E, �) be an idempotent diference ring of order � and
let � =

∑�−1
�=0 �� �� ∈ E and � ∈ N then

� � (�) =
�−1∑
�=0

��+� mod��
� (�� ) =

�−1∑
�=0

���
� (��−� mod�). (3)

Deinition 4. Let (E, �) be an idempotent diference ring of order
� with idempotent elements �� ∈ Ewith 0 ≤ � < �. Then � : E→ E
with � (�) ↦→ �0 where � =

∑�−1
�=0 ���� is called a projection.

In this article we will always consider the projection on the irst
component, however each projection to an arbitrary component
would do the job. The following lemma summarizes several proper-
ties of the projection.
1A diference isomorphism � : A1 → A2 between two diference rings (A� , �� ) with
� = 1, 2 is a ring isomorphism with � (�1 (� )) = �2 (� (� )) for all � ∈ A1 .

Lemma 5. Let (E, �) be an idempotent diference ring of order �
with idempotent elements �� ∈ E with 0 ≤ � < � and let � : E→ E
be a projection. For �, ℎ ∈ E we have

� (� + ℎ) = � (�) + � (ℎ) and � (� · ℎ) = � (�) · � (ℎ). (4)
In addition, for � ∈ N and 0 ≤ � < � we have

� (� � (�� )) =
{
1 if � + � = 0 (mod �)
0 if � + � ≠ 0 (mod �), (5)

and for � ∈ N and � =
∑�−1
�=0 ���� we have

� (�) = �0� and � (� � (�)) = � � (�−� mod�) (6)

Proof. Let � =
∑�−1
�=0 �� �� ∈ E and ℎ =

∑�−1
�=0 �� ℎ� ∈ E then

�+ℎ =
∑�−1
�=0 �� (�� +ℎ� ) ∈ E and hence � (�+ℎ) = �0 +ℎ0 = � (�) +

� (ℎ). Similarly, since � ·ℎ =
∑�−1
�=0 �� (�� ·ℎ� ) ∈ Ewe have � (� ·ℎ) =

�0 · ℎ0 = � (�) · � (ℎ). For � ∈ N, 0 ≤ � < � we have that � � (�� ) =
��+� mod� , hence � (� � (�� )) = � (��+� mod�) which clearly evaluates
to 1 if � + � = 0 (mod �) and to 0 if � + � ≠ 0 (mod �). Finally,
from Lemma 3 we know that � � (�) = ∑�−1

�=0 ���
� (��−� mod�), hence

� (� � (�)) = ∑�−1
�=0 � (�� )� (� � (��−� mod�)) = � (� � (�−� mod�)). Since

� (� � (�−� mod�)) = �0� � (�−� mod�) = � � (�−� mod��−� mod�) we
have that � � (�) = � � (�−� mod�). □

Deinition 6. Let (E, �) be an idempotent diference ring of order �
and let � : E→ E be a projection. For � = (�0, �1, . . . , ��) ∈ E�+1
we deine the (� + 1)� −� × (� + 1)� shift projection matrix by
��,� (�) :=

©­­­­­«

� (�0 ) � (�1 ) · · · � (�� ) 0 0 · · · 0
0 � (� (�0 ) ) · · · � (� (��−1 ) ) � (� (�� ) ) 0 · · · 0
.
.
.

.
.
.

0 0 · · · 0 � (�� (�0 ) ) · · · � (�� (�� ) )

ª®®®®®®¬
,

where � := (� + 1)� −� − 1.
Deinition 7. Let (E, �) be an idempotent diference ring of order
� and let � : E→ E be a projection. A vector � = (�0, �1, . . . , ��) ∈
E�+1 is called non-degenerate if the shift projection matrix��,� (�)
has full rank, i.e., the rows are linearly independent. Likewise, a
linear diference operator

∑�
�=0 ���

� ∈ E[�] with �� ∈ E is called
non-degenerate if � is non-degenerate.
Note, that for instance a linear diference operator � =

∑�
�=0 ���

� ∈
E[�] that is a multiple of an idempotent element �� i.e., �� | �� for
all 0 ≤ � ≤ � is not non-degenerate, since for such an operator
the shift projection matrix would contain a zero row. Similarly, �
for which all coeicients vanish for a certain component is as well
degenerate, since for such an operator the shift projection matrix
would contain� + 1 zero columns, see Example 12 below.
In the following lemma, we state an immediate criterion which
implies that a linear diference operator is non-degenerate.
Lemma 8. Let (E, �) be an idempotent diference ring of order �
and let � : E → E be a projection. A linear diference operator
� :=

∑�
�=0 ���

� ∈ E[�], with �� ∈ E, is non-degenerate if either ��
or �0 is a unit in E.

Given a non-degenerate linear diference operator, the following
theorem shows, that it is possible to deine non-zero linear difer-
ence operators for each component. It is inspired by [15, 18].
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Theorem 9. Let (E, �) be an idempotent diference ring of order �
with idempotent elements �� ∈ E with 0 ≤ � < �, let � : E → E
be a projection and let � = (�0, . . . , ��) ∈ E�+1 with �� ≠ 0 be
non-degenerated. Consider the linear diference equation

�∑
�=0

���
� (�) = �. (7)

with � ∈ E, which is satisied by � =
∑�−1
�=0 �� �� ∈ E and let � ∈ N

with 0 ≤ � < �. Then there exist ��,� ∈ ��E, not all zero, and
�� ∈ ��E such that

�∑
�=0

��,� (��)� (�� ) = �� . (8)

If (E, �) is computable, then the ��,� and �� can be computed.

Proof. From (7) we can deduce for � ∈ N that

� �

(
�∑
�=0

���
� (�)

)
= � � (�) (9)

or equivalently
�∑
�=0

� � (�� )
(
��+� (�0)��+� (�0) + · · ·

· · · + ��+� (��−1)��+� (��−1)
)
= � � (�) .

Applying the projection � and using Lemma 5 yields
�∑
�=0

� (� � (�� ))� (��+� (�−(�+�) mod�)) = �
(
� � (�)

)
,

since for 1 ≤ � < �,

� (��+� (�� )) =
{
1 if � = −(� + �) (mod �)
0 if � ≠ −(� + �) (mod �).

Now, by Lemma 3 and Lemma 5 we ind
�∑
�=0

� (� � (�� ))��+� (�−(�+�) mod�) = �
(
� � (�)

)
. (10)

Now, plugging in � = 0, 1, 2, . . . , (� + 1)� −� − 1 into (10) yields
the linear system

��,� (�) ·
©­­­­­­«

�0 (�0mod�)
�1 (�−1mod�)
�2 (�−2mod�)

...

�� (�−� mod�)

ª®®®®®®¬
=

©­­­­­­«

� (�0 (�))
� (�1 (�))
� (�2 (�))

...

� (�� (�))

ª®®®®®®¬
, (11)

where � := (� + 1)� −� − 1. Since � is non-degenerate and hence
��,� (�) has full rank, we can solve this system in terms of �
variables. Finally, we can plug this solution into (8). Since this leads
to a linear system of at most� + 1 equations in� + 2 variables,
which has a nontrivial solution, we can determine the coeicients
��,� and �� of (8). In particular, if E is computable, the ��,� and ��
can be computed. □

Remark 10. Let (E, �) be a ield extension of a diference ring
(A, � ′), i.e., A is a subring of E and � |A = � ′, and suppose that the
� ∈ A�+1 and � ∈ E. Then, since we plug solutions of the linear
system (11) into (8), the right-hand sides in (8) have the form

�� =
�∑
�=0

�� � (�� (�))

with �0, . . . , �� ∈ A for some � ∈ N.
Example 11. Consider the idempotent diference ring (Q(�) [�], �)
with � (�) = � + 1 and � (�) = −� and the idempotent elements
�0 =

1−�
2 and �1 = 1−�

2 . Let � = (�, �, 1, �), then the shift projection
matrix��,� (�) yields

©­­­­­«

� � 1 −1 0 0 0 0
0 1 + � 1 + � 1 1 0 0 0
0 0 2 + � 2 + � 1 −1 0 0
0 0 0 3 + � 3 + � 1 1 0
0 0 0 0 4 + � 4 + � 1 −1

ª®®®®®¬
,

which has full rank. If � = �0�0 + �1�1 ∈ E is a solution of

�� + �� (�) + �2 (�) + ��3 (�) = 0
then we ind for �0 and �1:

� (1 + �) (5 + 2�)�0 + (7 + 7� − 3�2 − 2�3)�2 (�0)
+4(1 + �) (�2)2 (�0) + (1 + 2�) (�2)3 (�0) = 0,

� (1 + �)�1 + (3 + � − �2)�2 (�1) − 2(�2)2 (�1) + (�2)3 (�1) = 0.

Note that even in the degenerated case it might be possible to use
the method stated in the proof of Theorem 9 to construct non-zero
linear diference equations for some of the components.

Example 12. Again we consider the idempotent diference ring
(Q(�) [�], �) with � (�) = � + 1 and � (�) = −� and the idempotent
elements �0 = 1−�

2 and �1 = 1−�
2 . Let � = (�−1, � (�+1), �−1, � (�+

1)), then the shift projection matrix��,� (�) yields

©­­­­­«

−2 0 −2 0 0 0 0 0
0 0 2(1 + �) 0 2(1 + �) 0 0 0
0 0 −2 0 −2 0 0 0
0 0 0 0 2(3 + �) 0 2(3 + �) 0
0 0 0 0 −2 0 −2 0

ª®®®®®¬
,

which clearly doesn’t have full rank. Still if � = �0�0 + �1�1 ∈ E is a
solution of

(� − 1)� + � (� + 1)� (�) + (� − 1)�2 (�) + � (� + 1)�3 (�) = 0
then the irst component �0 satisies �0 + �2 (�0) = 0 but we do not
ind a non-trivial linear diference equation for �1.

With this notion the following corollary is immediate.

Corollary 13. Let (E, �) and � ∈ E�+1 be as stated in Theorem 9.
Consider the PLDE (1) with �� ∈ E and �� ∈ K, which is satisied by
� =

∑�−1
�=0 �� �� ∈ E and let � ∈ N with 0 ≤ � < �. Then there exist

��,� ∈ ��E, not all zero, and ��,� ∈ ��E such that
�∑
�=0

��,� (��)� (�� ) = �1 ��,1 + · · · + �� ��,� . (12)

In particular, if (E, �) is computable, the ��,� and ��,� are computable.
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We are now ready to obtain a general strategy to solve PLDEs
under the assumption that one can solve PLDEs in (�0 E, ��). Note
that the task to compute for �0, . . . , �� ∈ �� E a basis of

{(�1, . . . , �� ) ∈ K� | �1 �1 + · · · + �� �� = 0} (13)

is a special case by setting � = 0 in (1).

Theorem 14. Let (E, �) be an idempotent diference ring with the
idempotent elements �0, . . . , ��−1 and constant ield K, and let � ∈
E�+1 and � ∈ E� . If const���0 E = �0 K and � is non-degenerated,
� (�,� ,E) has a inite basis. If (E, �) is computable and PLDEs in
(�0E, ��) can be computed, a basis of � (�,� ,E) can be computed.

Proof. We look for a basis of � = � (�,� ,E) over K for a non-
degenerated � ∈ E�+1 and � ∈ E� . By Corollary 13 there exist
��,� ∈ �� E, not all zero, and ��,� ∈ �� E with (12). Since �� E
for 0 ≤ � < � are integral domains, we can take a inite ba-
sis {(��� (�)�,1 , . . . , ���

(�)
�,�
, ���

(�)
� )}1≤ �≤�� ⊆ (�� K)� × (�� E) with

�
(�)
�,�

∈ K of�� = � ((��,0, . . . , ��,�), (��,1, . . . , ��,� ), �� E) over �� K.
If �� = 0 for some 0 ≤ � < � it follows that� = {0} and we get the
empty basis. Otherwise, we can take a basis of

� = {(�1, . . . , �� , �0�0 + · · · + ��−1��−1) ∈ K� × E |
(���1, . . . , ���� , ���� ) ∈ �� for 0 ≤ � < �}.

as follows. We deine �� = (� �,� )1≤ �≤�� ,1≤�≤� for 0 ≤ � < � and
take a K-basis, say

{(��,0,1, . . . , ��,0,�1 , . . . , ��,�−1,1, . . . , ��,�−1,��−1 )}1≤�≤� ,
of the K-vector space

{(�0,1, . . . , �0,�1 , . . . , ��−1,1, . . . , ��−1,��−1 ) ∈ K�0+···+��−1 |
(�0,1, . . . , �0,�0 )�0 = · · · = (��−1,1, . . . , ��−1,��−1 )��−1}.

• If � > 0, we proceed as follows. We deine for 1 ≤ � ≤ � the
elements

�� = �
(0)
�

+ · · · + � (�−1)
�

∈ E
with � (�)

�
= ��,�,1 �� �

(�)
1 + · · · +��,�,�� �� �

(�)
��

where 0 ≤ � < �, and
deine for 1 ≤ � ≤ � the constants

(��,1, . . . , ��,� ) = (��,0,1, . . . , ��,0,�1 )�1 ∈ K� .
Then � = {(��,1, . . . , ��,� , �� )}1≤�≤� forms a bases of� . Now we
plug in the found basis elements into (1) and obtain linear con-
straints. Fulilling them by combining the basis elements accord-
ingly will lead inally to a basis of the solution space� . For this inal
step, take� = (��,� )1≤�≤�,1≤�≤� with ��,� ∈ K and � = (�1, . . . , �� ) ∈
E� , and deine

� ′ := �� � − (���� (�) + · · · + �0�) ∈ E� ;
here applying � to a vector means to apply � to each component.
Note that nonzero elements in � ′ relect the disagreement of the so
far found basis � to be also a basis of � . To complete the construc-
tion, we compute for the vector space

� ′ = {(�1, . . . , �� ) ∈ K� | (�1, . . . , �� )� ′} (14)

the basis {(��,1, . . . , ��,� )1≤�≤� ⊆ K� ; here one collects the compo-
nents of � ′ w.r.t. the �� for 0 ≤ � < � (which is justiied since

�0, . . . , ��−1 are linearly independent), derives the bases in the in-
tegral domains �� E for each 0 ≤ � < � and computes the inter-
section of the corresponding vector spaces to get a basis of� ′.
If � = 0, � = {0} and we get the empty basis of � . Otherwise,
take � = (��, � )1≤�≤�,1≤ �≤� and deine the entries of the matrix
(� ′�, � )1≤�≤�,1≤ �≤� := �� and the entries of the vector (�′1, . . . , �′� ) :=
� (�1, . . . , �� ) ∈ E� . By construction {(� ′�,1, . . . , � ′�,� , �′� )}1≤�≤� ⊆
K� × E is a basis of � .
• If � = 0, it follows that � ⊂ {0}� × E, i.e., we only have to search
for homogeneous solutions of (1). Using the above construction we
get a basis of the form {(0, �′� )}1≤�≤� ∪ {(1, 0)} of� (�, (0),E). This
gives the basis {(0, . . . , 0, �′� )}1≤�≤� ⊆ {0}� × E of � .
We observe that the construction above can be carried out explicitly
if the algorithmic assumptions hold: First, we can compute the bases
of �� ; more precisely, we move the problem with the isomorphism
��−� to the zero component, solve it there and move it back with
�� . Further, we can solve the various linear algebra problems in K.
Finally, �� E (0 ≤ � < �) are integral domains and we can compute
a basis of (14) (by assumption a basis of (13) can be computed). □

3 SOLVERS FOR (�)ΠΣ-EXTENSIONS
Wewill now apply Theorem 14 to a rather general class of diference
rings built by basic �ΠΣ-ring extensions [23, 24] that are deined
over ΠΣ-ield extensions [12]. Before we can state Theorem 25
below, we will present more details on the underlying construction.

Deinition 15. A diference ring (E, �) is called an �ΠΣ-ring ex-
tension of a diference ring (A, �) if A = A0 ≤ A1 ≤ · · · ≤ A� = E
is a tower of ring extensions with const�E = const�A where for
all 1 ≤ � ≤ � one of the following holds:

• A� = A�−1 [�� ] is a ring extension subject to the relation
��� = 1 for some � > 1 where � (�� )

��
∈ (A�−1)∗ is a primitive

�th root of unity (�� is called an �-monomial, and � is called
the order of the �-monomial);

• A� = A�−1 [�� , �−1� ] is a Laurent polynomial ring extension
with � (�� )

��
∈ (A�−1)∗ (�� is called a Π-monomial);

• A� = A�−1 [�� ] is a polynomial ring extensionwith � (�� )−�� ∈
A�−1 (�� is called an Σ-monomial).

Depending on the occurrences of the �ΠΣ-monomials such an
extension is also called a �-/Π-/Σ-/�Π-/�Σ-/ΠΣ-ring extension.

For convenience we use A⟨�⟩ for three diferent meanings: it is
the ring A[�] subject to the relation �� = 1 if � is an �-monomial
of order � , it is the polynomial ring A[�] if � is a Σ-monomial, or
it is the Laurent polynomial ring A[�, �−1] if � is a Π-monomial.
We will restrict �ΠΣ-ring extensions further to basic �ΠΣ-ring
extensions [24].

Deinition 16. Let (E, �) be a �ΠΣ-ring extension of (A, �) with
E = A⟨�1⟩ . . . ⟨�� ⟩. We deine the product group by

[A∗]EA := {� ��1
1 . . . �

��
� | � ∈ A∗ and�� ∈ Z
where�� = 0 if �� is an �Σ-monomial}.

Then (E, �) is called a basic �ΠΣ-ring extension of (A, �) if for
all Π-monomials �� we have � (�� )

��
∈ [A∗]A⟨�1 ⟩... ⟨��−1 ⟩

A
and for all

�-monomials �� we have � (�� )
��

∈ const�A∗.
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In the following we seek for algorithms that solve PLDEs in a
basic �ΠΣ-ring extension (E, �) of a diference ield (F, �) with
constant ield K. By Lemma 2.22 and Proposition 2.23 in [24] it
turns out that one can collect several �-monomials to one speciic
�-monomial. Thus we assume from now on that (E, �) has the form

E = F[�]⟨�1⟩ . . . ⟨�� ⟩ (15)

where � is an �-monomial of order � with � := � (�)
� ∈ K∗ and

where the �� with 1 ≤ � ≤ � areΠΣ-monomials with� (�� ) = �� ��+��
(note that either �� = 1 or �� ∈ [F∗]E

F
with �� = 0). Now take

�̃� = �̃� (�) :=
�−1∏
�=0

�≠�−1−�

(� − � � )

for 0 ≤ � < �. Since � is a �th primitive root of unity, we have that
�̃� (��−1−� ) ≠ 0. Thus we can deine

�� = �� (�) := �̃� (�)
�̃� (��−1−� )

(16)

for 0 ≤ � < � which fulill precisely the properties enumerated
in Deinition 1. In particular, by [24, Thm. 4.3] (compare also [27,
Corollary 1.16] and [10]) it follows that (E, �) is an idempotent
diference ring of order �. In particular, it is constant-stable provided
that the ground ield (F, �) is constant-stable.
Deinition 17. Adiference ring (resp. ield) (A, �) is called constant-
stable if const��A = const�A for all � ∈ N \ {0}.
Theorem 18 ([24, Thm. 4.3]). Let (E, �) be a basic �ΠΣ-ring exten-
sion of a diference ield (F, �) with (15) where � is an �-monomial of
order � with � =

� (�)
� . Let �0, . . . , ��−1 be the idempotent, pairwise

orthogonal elements deined in (16) (that sum up to one). Then:
(1) We get the direct sum (2) of the rings �� E with the multiplica-

tive identities �� .
(2) We have that �� E = �� Ẽ with the integral domain

Ẽ := F⟨�1⟩ . . . ⟨�� ⟩. (17)

(3) For 0 ≤ � < �, (�� Ẽ, ��) is a basic ΠΣ-ring extension of
(�� F, ��).

(4) � is a diference ring isomorphism between (�� Ẽ, ��) and
(��+1mod�Ẽ, �

�).
(5) Further, if (F, �) is constant-stable, const���� E = �� const�F.

In this particular setting, the used constructions in Section 2 and
in Theorem 18 can be made more precise as follows. For � ∈ E, the
projection of the irst component can be computed by

� (� ) :=
�−1∑
�=0
�� (�) �

���
�→��−1 .

Furthermore, deine for � ∈ N and � ∈ F the �-factorial

� �,� =
�−1∏
�=0
�� (� ) .

Then with � (�� ) = � �� + �� (recall that �� = 1 or �� = 0) we get
�� (�� ) = �̃� �� + �̃� with �̃� = ��,� and �̃� =

∑�−1
�=0 �

� (�). In particular,
we can deine for 0 ≤ � < � the ring automorphism �� : Ẽ → �̃

with �� (� ) = �� (� ) for � ∈ F and
�� (�� ) = �̃� �� + (�̃� |�→��−1−� ) (18)

for all 1 ≤ � ≤ � . Then (Ẽ, �� ) and (�� Ẽ, ��) are isomorphic with
the diference ring isomorphism � : Ẽ→ �� Ẽ with � (� ) = �� � for
� ∈ �̃; for further details we refer to [24, page 639]. In the following
we prefer to work with (Ẽ, �� ) instead of (��E, ��). Note that this
representation is also more convenient for implementations.

As observed in Theorem 18 we obtain the ΠΣ-ring extension
(�̃, �� ) of (F, ��) where Ẽ is an integral domain. Thus we can take
the quotient ield � (�̃) = F(�1) . . . (�� ) and by naturally extending
�� : Ẽ → Ẽ to � ′� : � (Ẽ) → � (Ẽ) with � ′� ( �� ) = �� (�)

�� (�) we get
a diference ield (� (Ẽ), � ′� ); from now on we do not distinguish
anymore between � ′� and �� .

Finally, we take the ring of fractions � (E) = { �
�
| � ∈ E, � ∈ E∗}

which can be written in terms of the idempotent representation

� (E) = �0� (Ẽ) ⊕ · · · ⊕ ��−1� (Ẽ). (19)

In particular, we can extend the automorphism � : E → E to
� : � (E) → � (E) by mapping � = �0 �0 + · · · + ��−1 ��−1 with
�� ∈ Ẽ to � (� ) = �0 � (��−1) + �1� (�0) + · · · + ��−1 ��−2; compare [11,
Sec. 1.3 ] and [10, Cor. 6.9].

Summarizing, also (� (E), �) is an idempotent diference ring of
order � as introduced in Deinition 1 and it seems naturally to apply
Theorem 14 to this more general situation. Here we note (compare
also [24, Prop. 66]) that each component (Ẽ, �� ) for 0 ≤ � < � is
actually a special case of a ΠΣ-ield-extension [12, 13].

Deinition 19. A diference ield (F, �) is called a ΠΣ-ield exten-
sion of a diference ield (H, �) if H = H0 ≤ H1 ≤ · · · ≤ H� = F is
a tower of ield extensions with const�F = const�H where for all
1 ≤ � ≤ � one of the following holds:

• H� = H�−1 (�� ) is a rational function ield extension with
� (�� )
��

∈ (H�−1)∗ (�� is called a Π-ield monomial);
• H� = H�−1 (�� ) is a rational function extension with � (�� ) −
�� ∈ H�−1 (�� is called a Σ-ield monomial).

Here we will rely on the following property of ΠΣ-ield extensions;
the irst statement has been shown in [12] for ΠΣ-ields. The second
statement appears also in [25].

Proposition 20. Let (E, �) be a ΠΣ-ield/ΠΣ-ring extension of a
diference ield (F, �) with K = const�F. Then:

(1) For � > 1, (E, �� ) is a ΠΣ-ield/ΠΣ-ring extension of (F, �� ).
(2) If (F, �) is constant-stable, (E, �) is constant-stable.

Proof. (1) Let � > 1 and suppose that there is an � ∈ E \
F with with �� (�) = �. Deine ℎ = � � (�) . . . ��−1 (�). By [25,
Lemma 31.(3)] if follows that ℎ ∉ F. Since � (ℎ)

ℎ
= �� (�)

� = 1, it fol-
lows thatℎ ∈ const�E = const�F ⊆ F, a contradiction. Note that for
any Σ-monomial � with � (�) = �+� we have �� (�)−� = ∑�−1

�=0 �
� (�)

and for any Π-monomial � with � (�) = � � we have �� (�)/� = ��,� .
Thus the automorphism �� satisies the requirements and conse-
quently (E, �� ) is a ΠΣ-ield/ΠΣ-ring extension of (F, �� ).
(2) Suppose that (F, �) is constant-stable and let � > 1. Then
const��F = const�F. By statement (1), const�F = const�E and
thus const��E = const��E. Hence (E, �) is constant-stable. □

In this particular scenario, we can reine Theorem 14 as follows.
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Proposition 21. Let (F, �) be a constant-stable diference ield with
constant ieldK, and let (E, �) with (15) be a basic�ΠΣ-ring extension
with only one �-monomial � with � (�)

� ∈ K of order �. Then one can
solve non-degenerated PLDEs in (E, �) (resp. in (� (E), �)) if (E, �) is
computable and one can solve PLDEs in the ΠΣ-ring extension (Ẽ, �0)
(resp. ΠΣ-ield extension (Q(Ẽ), �0)) of (F, ��) with (17).

Proof. (Ẽ, �0) is a basic ΠΣ-ring extension of (F, ��) by The-
orem 18.(3), and thus taking the quotient ield � (Ẽ), (Q(Ẽ), �0)
is a ΠΣ-ield extension of (F, ��) by iterative application of [24,
Cor. 2.6]. Since (F, �) is constant-stable, we get const�0� (Ẽ) =

const�0 Ẽ = const��F = const�F = K. Finally, since we can solve
PLDEs in (Ẽ, �0) (resp. in (� (Ẽ), �0)) by assumption, we can ap-
ply Theorem 14 and can compute all solutions of non-degenerated
PLDEs in (E, �) (resp. in (� (E), �)). □

3.1 The general case: basic �ΠΣ-ring extensions
over ΠΣ-ield extensions

To activate Proposition 21 we have to take an appropriate diference
ield (F, �) such that (1) it is constant-stable and such that (2) PLDEs
can be solved in (Ẽ, �0). As it turns out, both properties can be
fulilled if (F, �) itself is a ΠΣ-ield extension of a diference ield
(G, �) that enjoys certain algorithmic properties. In this situation,
the irst property can be settled using Proposition 20 from above.
To deal with the second property, we will introduce the following
problems; a certain subset of them have been introduced originally
in [14] (by analyzing Karr’s (telescoping) algorithms in [12]).
Deinition 22 ([3]). A diference ield (F, �) with constant ield K
is �-computable if (E, �) is computable and the following holds.

(1) One can factor multivariate polynomials over F.
(2) (F, �� ) is torsion free for any � ∈ Z∗, i.e.,

∀�, � ∈ Z∗ ∀� , � ∈ F∗ : � =
�� (�)
� ∧ � � = 1 ⇒ � = 1.

(3) The Π-Regularity problem is solvable: Given (F, �) and � , � ∈
F∗; ind, if possible, an � ≥ 0 with � �,� = �.

(4) The Σ-Regularity problem is solvable: Given (F, �), � ∈ Z∗,
� , � ∈ F∗; ind, if possible, � ≥ 0 with � �� ,0 + · · · + � �� ,� = �.

(5) The parameterized pseudo-orbit problem is solvable: Given
� = (�1, . . . , ��) ∈ (F∗)� ; compute a Z-basis of the module

� (� , F) = {(�1, . . . , �� ) ∈ Z� | ∃� ∈ F∗ � (�)
�

= � �11 . . . � �
�

�
}.

(6) There is an algorithm that can compute all the hypergeometric
candidates for equations with coeicients in (F, �): Given a
nonzero operator � ∈ F[�]; compute a inite set � ⊂ F such
that for any � ∈ F∗, if � −� is a right factor of � in F[�], then
� = � � (�)

� for some � ∈ � and � ∈ F∗.
(7) PLDEs are solvable in (F, �): Given 0 ≠ � ∈ F�+1, � ∈ F� ;

compute a K-basis of � (�,� , F).
Then using the brandnew framework summarized in [3, Thm. 10],

we obtain the following result which has been implemented within
the summation package Sigma.
Theorem 23 ([3]). Let (E, �) be a (nested) ΠΣ-ield extension of
(F, �). If (F, �) is �-computable, then also (E, �) is �-computable.

In particular, using [3, 14] (based on [12]) the properties given
in Deinition 22 simplify in the special case � = id as follows.

Theorem 24. Let K be a computable ield where
(1) polynomials can be factored in K[�1, . . . , �� ],
(2) a basis of {(�1, . . . , �� ) ∈ Z� | 1 = ∏�

�=1 �
��
� } can be computed,

(3) one can recognize if � ∈ � is an integer,
then (K, �) with const�� = K is �-computable.

We can now state our irst algorithmic framework to solve non-
degenerated PLDEs in (�)ΠΣ-extensions..
Theorem 25. Let (F, �) be a ΠΣ-ield extension of a diference ield
(G, �) and let (E, �) be a basic �ΠΣ-ring extension of (F, �) with one
�-monomial � with � (�)

� ∈ const�F of order �. Then one can solve
non-degenerated PLDEs in the quotient ring (� (E), �) or in (E, �) if
one of the following holds:

(1) (G, �) is constant-stable and (G, ��) is �-computable.
(2) const�G = G satisies the properties in Theorem 24.
(3) const�G = G is a rat. function ield over an alg. number ield.

Proof. (1) Since (G, �) is constant-stable, it follows that (F, �) is
constant-stable by Proposition 20.(2). Furthermore, (F, ��) is a ΠΣ-
ield extension of (G, ��) by Proposition 20.(1) and thus (� (Ẽ), �0)
is a ΠΣ-ield extension of (G, ��). Since (G, ��) is �-computable,
we conclude with Theorem 23 that also (� (Ẽ), �0) is �-computable,
in particular property (7) in Deinition 22 holds. Hence we can
apply Proposition 21 and can solve all non-degenerated PLDEs in
(� (E), �). Given a basis in � (E) one can ilter out a basis of the
subspace in E by linear algebra2.
(2) Since G = const�G, � |G = id. Thus (G, �) is trivially constant-
stable. In addition, if the properties of Theorem 24 are fulilled,
(G, �) is �-computable and thus we can apply part (1).
(3) By [8] and [19, Thm. 3.5] if follows that the algorithms required
in Theorem 24 are available. Thus we can apply part (2). □

Remark 26. Theorem 25 (Case 3) covers, e.g., the rational (� = 0) or
themixedmultibasic diference ield (G, �)withG = K(�, �1, . . . , ��)
where K = � (�1 . . . , ��) is a rational function ield (� itself is a
rational function ield over an algebraic number ield) and with
� |K = id, � (�) = � + 1 and � (�� ) = �� �� for 1 ≤ � ≤ � .

3.2 Simpliied algorithms for special ring cases
The PLDE solver summarized in Theorem 25 assumes that (G, �)
is �-computable. In the following we restrict ourselves to some
interesting sub-classes of �ΠΣ-ring extensions where the Σ- and
Π-regularity problem in Deinition 22 (but also the hidden shift-
equivalence problemwithin the tower of extensions) can be avoided.
As a consequence one ends up at lighter implementations where
most of the highly recursive algorithms from [12] can be skipped.

Let (A⟨�⟩, �) be a ΠΣ-ring extension of (A, �) with constant
ield K = const�A. Assume in addition that A is an integral domain
and that one can solve PLDEs in (A, �). Then we can apply the
following tactic [20] (which is inspired by [12] and is also the
backbone strategy in [3]) to ind a basis of � = � (�,� ,A⟨�⟩) with
0 ≠ � = (�0, . . . , ��) ∈ A⟨�⟩�+1 and � = (�1, . . . , �� ) ∈ A⟨�⟩� .
First, we bound the degree of the possible solutions: namely, we
compute �, � ∈ Z such that for any (�1, . . . , �� ,

∑�′
�=�′ �� �

� ) ∈ �

we have � ≤ �′ and � ′ ≤ �; if � is a Σ-monomial we set � = 0
2In Section 3.2 we will provide improved algorithms to accomplish this task directly.
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and search for � only. Then given such bounds �, �, we make the
ansatz (1) with unknown �0, . . . , �� ∈ K and � =

∑�′
�=�′ �� �

� with
unknown ��, . . . , �� ∈ A. By comparing coeicients in (1) w.r.t. to
the highest arising term we obtain a PLDE in (A, �) which has
�1, . . . , �� and �� ∈ A as solution. Solving this PLDE yields all
possible candidates for �� . Thus plugging these choices into (1) we
can proceed recursively (by degree reduction) to nail down �� and
the remaining coeicients ��, . . . , ��−1.

Due to [3, Theorem 7] it follows that one can determine � ∈ N
and � = 0 for a Σ-monomial � if one can solve PLDEs in (A, �). Thus
activating this machinery recursively yields the following result.

Proposition 27. If one can solve PLDEs in (A, �), then one can solve
PLDEs in a Σ-extension (A⟨�1⟩ . . . ⟨�� ⟩, �) of (A, �)

For Π-monomials one can utilize [3, Theorem 6] to compute the
above bounds �, � ∈ Z. If one applies this machinery recursively (as
for Σ-monomials) one ends up at the requirement that the ground
ring is �-computable. In a nutshell, we rediscover the ring version of
Theorem 25 ś but this time we solve it directly without computing
irst all solutions in its quotient ield.

In the following we adapt slightly the proof steps of [3, Theo-
rem 6] yielding the more lexible Lemma 29. For its proof, we need
in addition the following result.

Lemma 28. Let (F⟨�1⟩ . . . ⟨�� ⟩, �) be a Π-ring extension of (F, �)
with �� = � (�� )

��
∈ F∗. Let � = � (�1, . . . , �� , �) for some � ∈ F∗.

Then � = ∅ or � = Z(�1, . . . , ��+1) for some �� ∈ Z with ��+1 > 0.

Proof. Suppose that � ≠ ∅. Suppose further that we can take
0 ≠ (�1, . . . , �� , 0) ∈ � . Then we get � ∈ F∗ with � (�)

� = ��11 . . . �
��
� ,

not all �� being zero, which is not possible by [22, Thm. 9.1]. Conse-
quently, for any nonzero vector in� we conclude that the last entry
must be nonzero. Now take � = (�1, . . . , ��+1), � = (�1, . . . , ��+1) ∈
� \ {0}. Then ��+1, ��+1 ≠ 0. In particular, � = ��+1� − ��+1� ∈ � .
Since the last entry of � is zero, it follows that � = 0. Hence
two nonzero vectors are linearly dependent and it follows that
� = {(�1, . . . , ��+1)}Z with ��+1 ≠ 0. If ��+1 < 0, we can choose
the alternative generator (−�1, . . . ,−��+1) with −��+1 > 0. □

Lemma 29. Let (E, �) with E = F⟨�1⟩ . . . ⟨�� ⟩ be a Π-ring extension
of (F, �) with �� = � (�� )

��
∈ F∗. If one can solve the parameterized

pseudo problem in (F, �) and can ind all hypergeometric candidates
in (F, �), one can bound the degrees of the solutions w.r.t. �� .

Proof. Let � = (�1, . . . , �� ) ∈ E� and (�0, . . . , ��) ∈ E�+1 with
�0 �� ∈ E∗ and suppose that � ∈ E is a solution of (1). Let ��
be the highest degree in � w.r.t. �� . In the following we take the
lexicographic order < on � = {��1

1 . . . �
��
� | �1, . . . , �� ∈ Z} with

�1 < �2 < · · · < �� , and ��� < ��� if � < �. Let �̃ = ℎ ��11 . . . �
��
� be the

highest term in �; note that �� = �� . Further, let � = �
�1
1 . . . �

��
� ∈ �

be the largest monomial of the coeicients in �, and let �̃� ∈ F for
0 ≤ � ≤ � be the corresponding coeicient of �; note that one of
the �̃� is nonzero. Take � := �̃0 + �̃1 � + · · · + ˜�� �� ∈ F[�].
Now suppose that �(�̃) = 0 and deine � = � (ℎ)

ℎ
�
�1
1 . . . �

��
� ∈ F∗.

Note that for �̃ = � − � ∈ F[�] we have �̃(�̃) = 0 by construction.
Now we follow the arguments of [3, Lemma 2]. Let � = � �̃ + � be
the right-division of � by �̃ with � ∈ F[�] and � ∈ F. Since 0 =

�(�̃) = � �̃(�̃)+� = �, �̃ is a right-factor of �. By assumption we can
compute a set � which contains all hypergeometric candidates of
�̃. Thus we can take � ∈ � with � (ℎ)

ℎ
�
�1
1 . . . �

��
� = � = � � (�)

� . Con-
sequently, we get ��11 . . . �

��
� �

−1 = � (�′)
�′ for some � ′ ∈ F∗. Now

compute a basis �� of�� = � (�1, . . . , �� , �−1;F). By Lemma 28 we
can assume that �� = {(��,1, . . . , ��,�+1)} ∈ Z�+1 with ��,�+1 > 0.
Note that it follows even that ��,�+1 = 1 and �� = �� = ��,� .
Thus to bound the leading coeicient w.r.t. �� we proceed as follows:
We loop trough all � ∈ � and compute a basis �� of �� and take

� = max{��,� | �� = (��,1, . . . , ��,� , 1)Z for � ∈ �}.
Summarizing, let �� be the highest degree in the solution � w.r.t. ��
and let �̃ = ℎ��11 . . . �

��
� be the highest term in �. If �̃(�̃) = 0. then

�� ∈ � , i.e.,� ≠ ∅ and �� ≤ max(�). Otherwise, if� = ∅ or �̃(�̃) ≠ 0,
we conclude as follows. We note that �̃(�̃) = ℎ′��11 . . . �

��
� for some

ℎ′ ∈ F∗. Since �̃ is the largest term in our solution � and since �̃ is
the contribution of the highest term in (1), it follows by coeicient
comparison in (1) that �̃(�̃)��1

1 . . . �
��
� = ℎ′��1+�1

1 . . . �
��+��
� for

some ℎ′ ∈ F∗ must arise in �1 �1 + · · · + �� �� . Thus, if �� is the
largest exponent in �� w.r.t. �� , we get�� + �� < max(�1, . . . , �� ).
In conclusion, if� = ∅, we get �� = �� ≤ max(�1, . . . , �� ) −�� =: �.
Otherwise, we conclude that �� = �� ≤ max(max(�), �). Similarly,
we can bound the lowest term in � by repeating this procedure and
taking the order < with �1 < �2 < · · · < �� and ��� < ��� , if � > �

and replacing the max operation with the min operation, etc. □

The above results yield, in comparison to Theorem 25, the following
less general but simpler (less recursive algorithms) andmore lexible
(less requirements) toolbox to solve PLDEs in ΠΣ-ring extensions.

Theorem 30. Let (E, �) with E = F⟨�1⟩ . . . ⟨�� ⟩ be a ΠΣ-ring exten-
sion of a diference ield (F, �) where for all Π-monomials �� we have
� (�� )
��

∈ F∗. If one can solve PLDEs, the parameterized pseudo-orbit
problem and hypergeometric candidates in (F, �), then one can solve
PLDEs in (E, �).

Proof. By reordering we may assume that A = F⟨�1⟩ . . . ⟨�� ⟩
contains precisely the Π-monomials of E and that the ��+1, . . . , ��
form all Σ-monomials. By Lemma 29 we can bound the degree of the
solutions w.r.t. �� . By iteration (recursion) we can thus solve PLDEs
in (A, �). Finally, with Prop. 27 we can solve PLDEs in (E, �). □

Combining Theorem 30 with Proposition 21 yields Theorem 31.

Theorem 31. Let (E, �) be an �ΠΣ-ring extension of a constant-
stable diference ield (F, �) with one �-monomial � with � (�)

� ∈
const�F of order � and where for each Π-monomial � in the extension
E of Fwe have � (� )

� ∈ F∗. If one can solve PLDEs, solve the parameter-
ized pseudo-orbit problem and can ind all hypergeometric candidates
in (F, ��), one can solve non-degenerated PLDEs in (E, �).
Using results of [4], this PLDE solver is, e.g., applicable if one
specializes F to the mixed multibasic case introduced in Remark 26.

4 EXAMPLE
We will illustrate the whole machinery by solving the recurrence:[
(1 + �) (2 + �) ( (2 + � + (1 + �)

�∑
�=1

1
�

) (−1)� − (1 + �)2
�∑
�=1

(−1)�
�

) ]
� (�)
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+
[
(1 + �) (2 + �) ( (2 + � + 2(1 + �)

�∑
�=1

1
�

) (−1)� − (1 + �)
�∑
�=1

(−1)�
�

) ]
� (� + 1)

+
[
(1 + �)2 (2 + �) ( (−1)� �∑

�=1
1
� + �

�∑
�=1

(−1)�
�

) ]
� (� + 2)

= (2 + �)2 + (1 + �)
�∑
�=1

1
� − 2(1 + �)3 (−1)�

�∑
�=1

(−1)�
� .

Internally, we represent the recurrence in the basic �ΠΣ-ring exten-
sion (E, �) of (Q(�), �) with E = Q(�) [�] [�] [�̄] where � (�) = � +1,
� (�) = −�, � (�) = � + 1

�+1 and � (�̄) = �̄ + −�
�+1 . Note that (E, �) is an

idempotent diference ring of order 2 with �0 = 1−�
2 and �1 = 1+�

2 .
Then the recurrence turns into

∑2
�=0 ���

� (�) = � with

� =
(
(1 + �) (2 + �) (−�̄ (1 + �)2 + (2 + � + � + ��)�), (1 + �) (2 + �)
(−�̄ (1 + �) + (2 + � + 2� (1 + �))�), (1 + �)2 (2 + �) (�̄� + ��)

)
,

� =� (1 + �) + (2 + �)2 − 2�̄ (1 + �)3�.
With Theorem 9 we compute with the package HarmonicSums [1]
for the irst component the equation

∑2
�=0 �1,��

2� (�0) = �0 with
�0 = (��,0, ��,1) where
�0 =

(
� (29 + 33� + 11�2 + �3 + 2� (6 + 11� + 6�2 + �3) + �̄ (6 + 11� + 6�2

+ �3� )),−� (41 + 49� + 18�2 + 2�3 + 4� (6 + 11� + 6�2 + �3) + 2�̄ (6
+ 11� + 6�2 + �3)), � (2 + �) (3 + �)

)
,

�0 =
−�

(1 + �) (2 + �) (4 + �)

(
292 + 559� + 387�2 + 114�3 + 12�4 + 4� (22

+ 53� + 45�2 + 16�3 + 2�4) + 2�̄ (22 + 53� + 45�2 + 16�3 + 2�4)
)
.

A similar linear diference equation can be computed for the second
component. Solving these equations (activating, e.g., Theorem 30
with Sigma [21]) leads to the solutions

�0 = � + �1 + �2 (� + �̄ + 2� − 4�� − 2�̄�),
�1 = −� + �1 + �2 (−� + �̄ − 2� + 4�� − 2�̄�),

for �1, �2, �1, �2 ∈ Q. Plugging� := �0 �0+�1 �1 into
∑2
�=0 ���

� (�) = �
gives us constraints for the constants (compare Theorem 14) and
we ind �1 = −�1 and �2 = �2. These solutions can be combined to
the general solution

−�� − �1� + �2 (�̄ − 2�̄� − �� − 2�� − 4���),
of

∑2
�=0 ���

� (�) = � , i.e., {(0, �), (0, �̄−2�̄�−��−2��−4���), (1,−��)}
is a basis of� (�, (�),E). Finally, by reinterpreting the result in terms
of sums and products we ind the following general solution of the
original recurrence:

−
�∑
�=1

1
� (−1)� − �1 (−1)�

+ �2
(
− 2(−1)�� − (1 + 4�) (−1)�

�∑
�=1

1
� +

�∑
�=1

(−1)�
� (1 − 2�)

)
.

5 CONCLUSION
We have considered idempotent diference rings (heavily used in
the Galois theory of diference equations [10, 27]) and derived a
general toolbox to solve PLDEs in this setting. More precisely, we in-
troduced the notion of non-degenerated linear diference operators
and showed that inding solutions for a given PLDE in diference
rings with zero-divisors can be reduced to inding solutions in dif-
ference rings that are integral domains (see Theorems 9 and 14).
In the second part of this article we provided two general PLDE
solvers: Theorem 25 for the most general case which assumes that
rather strong properties hold in the ground ield and Theorem 31

which is less general, but where some of the complicated algo-
rithmic assumptions can be dropped. In both cases, the inner core
(Theorem 23) is a PLDE solver for ΠΣ-ield extensions that has been
elaborated in [3] and implemented within Sigma.

Our notion of non-degenerated operators is motivated by our
method to decompose the desired solution. An interesting question
is if there are equivalent (or even more lexible deinitions) that are
easier to verify. We also indicated that the decomposition method
(implemented in the package HarmonicSums) works partially if the
operator is degenerated. Further investigations in this direction,
also connected to the dimension of the solution space, would be
highly interesting. Finally, we are strongly motivated to generalize
our PLDE solver summarized in Theorem 31 further to more general
classes of (basic) �ΠΣ-ring extensions.
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