
RISC-Linz

Research Institute for Symbolic Computation

Johannes Kepler University

A-4040 Linz, Austria, Europe

First-order factorizable systems

of differential equations in one

variable

N. Fadeev

November 2020

RISC-Linz Report Series No. 20-20

Editors: RISC-Linz Faculty

B. Buchberger, R. Hemmecke, T. Jebelean, T. Kutsia, G. Landsmann, P. Paule,

V. Pillwein, N. Popov, J. Schicho, C. Schneider, W. Schreiner, W. Windsteiger,

F. Winkler.

ESR Progress Report

First-order factorizable systems of differential equations in

one variable

Nikolai FadeevI

Under the supervision of Carsten SchneiderII

This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement No.

764850 (SAGEX)

Research Insitute for Symbolic Computation (RISC)
RISC Software GmbH

November 26, 2020
IE-mail: nfadeev@risc.jku.at

IIE-mail: carsten.schneider@risc.jku.at

Contents

1 Introduction 2

2 Preprocessing the system 3

2.1 Solving hypotheses . 3
2.2 Triangularization . 6

3 Solving iteratively the system 7

3.1 Defining recursive sub-systems . 7
3.2 Uncoupling the system . 8
3.3 Solving the higher-order differential equation at order k 8
3.4 Solving the system at order k and iterating 12

4 Solving iteratively the system using the Sigma package 12

4.1 Uncoupling the system . 13
4.2 Order by order solving . 14
4.3 Solving for the other master integrals and iterating 20
4.4 Alternative application of the method 20

5 Extending the scope of the algorithm 21

6 Conclusion 23

1

1 Introduction

Developped in the first half of the XXth century, quantum field theory (QFT) is one
of the most powerful modern theories that describes the world of the very small.
Designed originally to deal with relativistic quantum mechanics, it came out to be
a general framwork for dealing with many-particle problems that could also provide
a consistent quantum mechanical description for most of the fundamental forces –
electromagnetism, the strong force and the weak one. At the heart of the theory
lies the notion of scattering amplitude, i.e. the probability amplitude for scattering
from some initial state |i〉 with m particles to some final state |f〉 with n particles.
In interacting theories, scattering amplitudes are often defined perturbatively and
computing them to higher order is necessary to better understand the theory and
make more precise experimental predictions.

For involved QFTs such as Yang-Mills theories, these computations can be par-
ticularly difficult when we are going to higher numbers of loops, and are usually
carried in the following way: taking the traditional approach, one can write all the
Feynman diagrams with their particular color, momentum and Dirac structure and
then reduce them all to some master integrals [24, 25, 27, 32, 33, 35–37]. These will
depend typically on two parameters: some x that might be a Feynman parameter
or a Landau variable on which depends the center-of-mass energy s, but also the
ǫ variable, coming from the dimensional regularisation (or any other regularisation
scheme).

It so happens that the method used to reduce the many Feynman diagrams
with given topology to master integrals, called "integration by parts" (IBP) method,
provides also another way to compute them by generating a system of first order
differential equations in the x variable for the said master integrals [3, 28, 30, 39].
The question is therefore simple: how to solve this first order differential system
order by order in the ǫ parameter?

In this report, we present two methods that allow to do so. After some prepro-
cessing of the system that allows to reduce it to simpler subproblems (section 2),
the first method consists in expanding the system in ǫ and solving the subsequent
series of systems by uncoupling them [10] (section 3), wheareas the second one un-
couples them first and then proceeds to expand the obtained higher order differential
equation in ǫ to solve it iteratively [45] (section 4), using in particular difference ring
and field machinery. Both methods are mostly designed for systems obeying some
constraints (in particular they must be first-order factorizable). Expanding the scope
of those as well as implementing extensions for new classes of functions will be part
of future work that will be explicitely outlined (section 5).

2

2 Preprocessing the system

From now on, we denote the master integrals of our system as Ii(x, ǫ), and we define
the vector containing all of them as I(x, ǫ) := (I1(x, ǫ), . . . , In(x, ǫ)⊤, where n is the
total number of master integrals we are dealing with as well as the size of our system
obtained from IBP. The latter is defined therefore as follows:

d
dx

I(x, ǫ) = M(x, ǫ)I(x, ǫ) + R(x, ǫ) (1)

where M(x, ǫ) is the matrix of coefficients and R(x, ǫ) := (R1(x, ǫ), . . . , Rn(x, ǫ))⊤

is the inhomogeneous part of the system. Due to the IBP reduction principles,
M(ǫ, x) ∈ Mn(K(x, ǫ)), i.e. the coefficient matrix is defined over the field of rational
functions in ǫ and x over K, where K is a computable subfield of R (for instance Q).
As for the inhomogeneous part, it might contain new Feynman integrals obtained
when integration by parts produces integrals that are not part of our I(x, ǫ) master
integrals – those will be called base integrals (BI) in the following, and we suppose
that some expansion of those is already known, or can be obtained1.

2.1 Solving hypotheses

In order to solve our system, it has to verify several general assumptions, which are
the following:

• The coefficient matrix M(x, ǫ) has no poles around ǫ = 0, i.e. it has a Taylor
expansion of the following form:

M(x, ǫ) =
∞∑

i=0

M(i)(x)ǫi. (2)

This form of expansion can actually always be achieved by index-shift. More
precisely, suppose that M(x, ǫ) has a pole of order k in ǫ, i.e.

M(x, ǫ) =
∞∑

i=−k

M(i)(x)ǫi =
M(−k)(x)

ǫk
+ · · · +

∞∑

i=0

M(i)(x)ǫi.

1For instance, one could apply recursively the IBP method and/or use symbolic summation/in-
tegration algorithms (see [20] and the literature therein) in order to obtain new systems or closed
form representations.

3

Then, since M(x, ǫ) only appears in the equation (1) as the matrix multiplying
the MI vector I(x, ǫ), we can do the following redefinition of the latter:

∞∑

i=−k

M(i)(x)ǫiI(x, ǫ) =
∞∑

i=−k

M(i)(x)ǫi+k

(

I(x, ǫ)
ǫk

)

= M̃(x, ǫ)
︸ ︷︷ ︸

=:
∑

∞

i=0
M(i−k)(x)ǫi

Ĩ(x, ǫ)
︸ ︷︷ ︸

=:
I(x,ǫ)

ǫk

.

This means that poles of I(x, ǫ) will be shifted, but this is not a problem
because of the second assumption.
In addition, after such a shift has been achieved, we suppose that

det M(0)(x) 6= 0.

• Each element of R(x, ǫ) can be Laurent-expanded in ǫ and therefore the so-
lutions I(x, ǫ) that we search are also assumed to be expandable in the same
way, i.e.

∃k ∈ N ∀i ∈ {1, . . . , n} Ri(x, ǫ) =
∞∑

j=−k

R(j)
i (x)ǫj, Ii(x, ǫ) =

∞∑

j=−k

I(j)
i (x)ǫj.

Therefore, the previous point makes sense – if M(x, ǫ) has poles around ǫ = 0,
we index-shift it so that the poles of Ii(x, ǫ) are themselves shifted and this is
fine, since we suppose they have poles anyway.

• The given coefficients R(j)
i (x) are polynomial expressions in terms of hyperex-

ponential functions and iterated integrals over hyperexponential functions, and
therefore we seek for solution coefficients I(j)

i (x) in the same function space.

Let us now define what is exactly an hyperexponential function.

Definition 2.1 (Hyperexponential function). Let K be some (computable) field. A
non-zero function f(x) over K is called hyperexponential if there exists some non
zero r(x) ∈ K(x) such that2

dxf(x)
f(x)

= r(x).

We will denote the set of hyperexponential functions over K with He(K).

Examples: The class of hyperexponential functions is relatively large, it includes
for instance:

2We note as an abreviation d
dx

≡ dx.

4

• all rational functions over K, i.e. K(x) ⊂ He(K);

• more generally, all rational functions to some power, i.e.

{f q(x) | f(x) ∈ K(x), q ∈ K} ⊂ He(K).

In our case and for our computations, this reduces usually to rational functions
to some rational power, i.e. q ∈ Q;

• the exponential function exp itself.

The last point prompts us to write another possible definition of an hyperexpo-
nential function f(x) as an exponentiated integral over a rational function r(x):

∃l ∈ K, f(x) = e
∫ x

l
dy r(y).

From the hyperexponential function one might extend naturally to iterated inte-
grals over such functions:

Definition 2.2 (Iterated integral over hyperexponential functions). Let K be a (com-
putable) field, l0, . . . , ln ∈ K and f1, . . . , fn ∈ He(K). Then the following integral

I(x) =
∫ x

l0

dx1f1(x1)
∫ x1

l1

dx2f2(x2) · · ·
∫ xn−1

ln−1

dxnfn(xn) with l0, . . . , ln ∈ K

is called an iterated integral over hyperexponential functions3. We will de-
note the set of IOH over K with IHe(K).

The set He(K) is also especially nice since it is in particular stable under:

• Multiplication: take f(x), g(x) ∈ He(K) such that there exists r(x), s(x) ∈ K(x)
such as:

dxf

f
= r,

dxg

g
= s.

Then

dx(fg)
fg

=
(dxf)g

fg
+

f(dxg)
fg

=
dxf

f
+

dxg

g
= r + s ∈ K(x).

• Inversion: take f(x) ∈ He(K) with r(x) ∈ K(x) such that dxf

f
= r. Then

dx

(
1
f

)

(
1
f

) = f ×
(

−dxf

f 2

)

= −dxf

f
= −r ∈ K(x).

3Abreviated as IOH from now on.

5

• Differentiation: take f(x) ∈ He(K) with r(x) ∈ K(x) such that dxf

f
= r. Then

d2
xf

dxf
=

dx(rf)
rf

=
(dxr)f

rf
+

r(dxf)
rf

=
dxr

r
+ r ∈ K(x).

Moreover, due to the structure of the shuffle algebra of iterated integrals over hy-
perexponential functions4, any polynomial expression out of hyperexponential func-
tions and IOH can always be written as a linear combination of the form

f1(x)I1(x) + · · · + fn(x)In(x) with hi(x) ∈ He(K), Ii(x) ∈ IHe(K).

Note: The functions that are not included in this set are for instance some classes of
special functions, such as the elliptic functions – those must be dealt with differently,
and we plan to investigate this part in the future.

2.2 Triangularization

When applying the IBP method [3, 28, 30, 39], we usually end up with a system
with a rather high size n, usually of order n ∼ 100. Nevertheless, from a physical
point of view, there is an argument that allows to reorganize it in a way that is
advantageous for us. Indeed, the MI are classified in what is called "sectors", i.e.
sets of maximum number of non-vanishing propagators in a single Feynman graph.
When some propagator is absent, this defines a sub-sector, and a differential equation
for a MI only contains integrals from the same sector or its sub-sectors. What this
technically entails at our level is that one can find several sub-systems where the MIs
depend only on themselves and on MIs from lower sub-systems (so that they can be
considered effectively as BIs in this sub-system). More precisely, one can perform
the following pre-processing step:

Step 0: We "triangularize" the system in n smaller sub-systems where the ith
subsystem of coupled MIs depend only on the said MIs and on those from the
systems 1 through i − 1.

Note: This step is per se not included in the algorithm and relies once more on
the IBP machinery, but is is of uttermost importance as it usually reduces a unique
problem of size n ∼ 100 to several recursive problems of size n . 10 that are much
easier to deal with.

4See for instance [14].

6

3 Solving iteratively the system

3.1 Defining recursive sub-systems

We will denote from now on the subsystems with a tilde, i.e. Ĩ = (Ĩ1(x), ..., Ĩn(x))
(n . 10), and we study now a subsystem MI obtained after such a step:

d
dx

Ĩ(x, ǫ) = M̃(x, ǫ)Ĩ(x, ǫ) + R̃(x, ǫ). (3)

Given the expansion assumptions of the previous section, we can Laurent-expand
the MI, BI and the coefficient matrix5:

M̃ =
∞∑

j=0

M̃ (j)ǫj, R̃ =
∞∑

j=−k

R(j)
i ǫj, Ĩ =

∞∑

j=−k

I(j)
i ǫj. (4)

Step 1: Plugging (4) in (3), we can collect the terms with the same powers of
ǫ, which gets us an infinite-dimensional series of differential equation systems
(DES):







dxĨ(−l) = M̃(0)Ĩ(−l) + R̃(−l) ǫ−l

dxĨ(−l+1) = M̃(0)Ĩ(−l+1) + (M̃(1)Ĩ(−l)) + R̃(−l+1) ǫ−l+1

...
...

...
dxĨ(k) = M̃(0)Ĩ(k) +

(
∑k+l

i=1 M̃(i)Ĩ(k−i)
)

+ R̃(k) ǫk

...
...

...

(5)

By doing this step, we’ve eliminated the ǫ dependence from the system, so what
remains is a set of recursively dependent systems of first order that depend on x.
Let us see how we can iteratively solve these in a bottom-up approach. We will take
for the example the first system of the set, i.e.

d
dx

Ĩ(−l) = M̃(0)Ĩ(−l) + R̃(−l). (6)

Remark: Even though it seems the easiest choice, it is actually perfectly representa-
tive of the general method. Indeed, we see that in all the subsystems, the coefficient
matrix is always M(0), and only the inhomogeneous part changes, including each

5From now on, since we suppressed the dependence on x of the coefficients, we will omit the (x).

7

time new contributions from the previous MI coefficients Ĩ(k). Therefore, solving
this once will provide us with the general steps and solutions to solve each higher
DES.

3.2 Uncoupling the system

In order to solve the system, the first (and natural) step is to uncouple it, i.e. to
transform a first-order system of n equations in n MIs into a single inhomogeneous
higher-order differential equation (HODE) in one of the MI, say Ĩ(−l)

1 , where the
inhomogeneous part depends on the inhomogeneous part of the system, combined
with n − 1 equations relating linearly over the field of rational functions the other
MIs to the first one, its derivatives and the inhomogeneous part of the system. In
all those linear relations, the coefficients are from the field K(x). In order to do the
uncoupling step, we use the packages OreSys [26], written by Stefan Gerhold and
optimised by Carsten Schneider for our problem.

Step 2: Using the OreSys package, we uncouple the sub-system:

(6)
OreSys
=⇒







m∑

k=0

pk(x)dk
xĨ(−l)

1 (x) = r(x)

�
HODE in Ĩ(−l)

1 (x), pi(x) ∈ K(x)
r(x) =

∑p
i=0

∑m
j=1 ri,j(x)di

xR̃(−l)
j (x)

�

p ∈ N, ri,j(x) ∈ K(x)
Ĩ(−l)

j (x) =
∑m−1

i=0 ak,i(x)di
xĨ(−l)

1 (x) + ρk(x)

�

j ∈ {2, . . . , m}, ak,i(x) ∈ K(x), ρk(x) like r(x)

(7)

Note: There exists several possible uncoupling algorithms in the package OreSys

– Gauß, Euclid, Zürcher [16, 22, 46] among others – and their efficiency vary depend-
ing on the systems.

3.3 Solving the higher-order differential equation at order k

Now, in order to solve the HODE, we need one crucial assumption: it must be first-

order factorizable, i.e. there must exist rational functions p̂i(x) ∈ K(x) such that
we can write the homogeneous HODE in the following form:

(dx − p̂m(x))(dx − p̂m−1(x)) · · · (dx − p̂1(x))y(x) = 0. (8)

8

Then, solutions of the HODE respecting such a factorization in a sense that we pre-
cise below are called d’Alembertian solutions [12].
Note: There exist algorithms to check whether the HODE is factorizable and to
perform it whenever it is possible [23].

Supposing that we are able to do so, we define then the following hyperexponential
functions that are the solutions of the first-order factors of the HODE:

∀k ∈ {1, . . . , m}, hk(x) = e

∫ x

ℓ′

k

dyp̂k(y)
⇔ (dx − p̃k(x))hk(x) = 0 and ℓ′

k ∈ K. (9)

One can check that the m homogeneous d’Alembertian solutions are the following
ones:

y1(x) = h1(x),

y2(x) = h1(x)
∫ x

ℓ0

dx1
h2(x1)
h1(x1)

, ℓ0 ∈ K,

...

yi(x) = h1(x)
∫ x

ℓ0

dx1
h2(x1)
h1(x1)

· · ·
∫ xi−2

ℓi−2

dxi−1
hi(xi−1)

hi−1(xi−1)
, ℓi−2 ∈ K,

...

ym(x) = h1(x)
∫ x

ℓ0

dx1
h2(x1)
h1(x1)

· · ·
∫ xm−2

ℓm−2

dxm−1
hm(xm−1)

hm−1(xm−1)
, ℓm−2 ∈ K.

The solution vector space is therefore:

Sh =

{
m∑

i=1

ciyi(x)

∣
∣
∣
∣
∣
ci ∈ K

}

.

The d’Alembertian solutions above are constructed iteratively using the following
idea6: suppose that we have a simple solution for our equation (8) – and this is
indeed the case, taking y(x) = h1(x) that cancels the first factor. Now, we define
the ansatz y(x) = h1(x)

∫ x dx1 u(x1), for some u(x) that we want to find. Plugging
this in (8) gives us:

LHS (8) = (dx − p̂m(x)) · · · (dx − p̂2(x))

[

dx

(

h1(x)

∫ x

dx1 u(x1)

)

− p̂1(x)h1(x)

∫

dx1 u(x1)

]

= (dx − p̂m(x)) · · · (dx − p̂2(x)) [h1(x)u(x)]

6For more details, see for instance [12].

9

Since we know that h2(x) is a solution (up to a constant) of (dx − p̂2(x))z(x) = 0:

u(x)h1(x) = h2(x) ⇔ u(x) =
h2(x)
h1(x)

,

we get the solution

y2(x) = h1(x)
∫ x

ℓ0

dx1
h2(x1)
h1(x1)

.

It suffices to apply this procedure recursively to get all the other solutions yi(x), with
i ∈ {3, · · · , m}. Note that by doing this we prove the unicity of such solutions, but
to be rigourous one would also need to prove their independence – this is less trivial,
and done in detail in [12].

From the algorithmic side, given that the HODE factors in first-order factors,
the function SolveDE[diff_eqn_in_f,f[x],x] of the package HarmonicSums of J.
Ablinger [1, 2] will find the full set of solutions described above with all possible
simplifications, in particular down to expressions involving base harmonic polyloga-
rithms (HPL) and cyclotomic harmonic polylogarithms (CHPL)7.

Step 3: Factorize the HODE and solve it using HarmonicSums’ SolveDE func-
tion.

Note: It might very well happen that the HODE doesn’t fully factor into only
first-order factors, and some higher-order factors remain. Then, the system might
still be solvable in the same way, provided that we manage to find enough solutions
of the higher-order factor. For example, suppose that we have a third order system
that factored into the following form:

(d2
x + p̂2,1(x)dx + p̂2,2(x))(dx − p̂1(x))y(x) = 0. (10)

Then, supposing that one can solve with SolveDE 8 or a different solver, say the
standard Mathematica DSolve, the higher-order factor and get all the solutions, e.g.
here two, the solutions will have mostly the same form. More precisely, let us take
for example p̂2,1(x) = 1, p̂2,2(x) = −x and p̂1(x) = x

1+x2 . While SolveDE fails to find
a solution to (d2

x + dx − x)y(x) = 0, DSolve finds a two-dimensional solution space
made up of Airy functions of the first and second kind:

7Where all the (C)HPL were maximally simplified using identities, shuffle and stuffle algebra of
the associated S-sums for instance, see for instance [11].

8The Kovavacic’s algorithm [31] is actually implemented in SolveDE [1] and can already find
solutions outside of d’Alembertian ones for second-order factors.

10

In[1]:= DSolve[D[y[x],{x,2}]+D[y[x],x]-x*y[x]==0,y[x],x]

Out[1]= {{y[x]→c1e
-x/2 AiryAi[

1

4
+x] + c2e

-x/2 AiryBi[
1

4
+x]}}

So defining the following solutions:

h2,1(x) = e− x
2 Ai

(

x +
1
4

)

, h2,2(x) = e− x
2 Bi

(

x +
1
4

)

,

the solutions of the whole HODE are therefore:

y1(x) = h1(x) = e
∫ x

dy x

1+x2 =
√

1 + x2,

y2(x) = h1(x)
∫ x

ℓ0,1

dy
h2,1(x)
h1(x)

=
√

1 + x2

∫ x

ℓ0,1

dy
e−

y

2 Ai
(

y + 1
4

)

√
1 + y2

,

y3(x) = h1(x)
∫ x

ℓ0,2

dy
h2,2(x)
h1(x)

=
√

1 + x2

∫ x

ℓ0,2

dy
e−

y

2 Bi
(

y + 1
4

)

√
1 + y2

.

Related to that, a rather general machinery has been developed in [1, 5, 8, 20] that
will be explored further in the future.
In the same way as for the homogeneous solutions, one can actually check that the
particular solution of the first equation of (7) has the following form:

g(x) = h1(x)
∫ x

ℓ0

dx1
h2(x1)
h1(x1)

· · ·
∫ xm−2

ℓm−2

dxm−1
hm(xm−1)

hm−1(xm−1)

∫ xm−1

ℓm−1

dxm

r(xm)
hm(xm)

. (11)

So that combining the particular and homogeneous solutions, the general solution
has the following form:

Ĩ(−l)
1 (x) = g(x) + c1y1(x) + · · · + cmym(x) with ∀i ∈ {1, . . . , m}, ci ∈ K. (12)

Finally, using the physical data, e.g. the value of the MI in several particular
regimes of x, we can carry out

Step 4: Fix the general solution constants using the initial conditions.

11

3.4 Solving the system at order k and iterating

With this, the most technical part of the algorithm is done, since we have an explicit
solution of the (−l)-th coefficient of our first MI, and all that remains is to unroll
everything and get the other solutions. More particularly, we plug the solution (12)
into the relations (7) relating the first MI to the others to get all those at order (−l),
i.e. for all k ∈ {2, . . . , m}:

Ĩ(−l)
k (x) =

m−1∑

i=0

ak,i(x)di
xĨ(−l)

1 (x) + ρk(x)

=
m−1∑

i=0

m∑

j=1

cjak,i(x)di
xyj(x) +

m−1∑

i=0

ak,i(x)g(x) + ρk(x).

Finally, we can plug the whole vector of solution Ĩ(−l) = (Ĩ(−l)
1 , . . . , Ĩ(−l)

n) into

d

dx
Ĩ(k) = M̃(0)Ĩ(k) +

(
k+l∑

i=1

M̃(i)Ĩ(k−i)

)

+ R̃(k) with k = −l + 1. (13)

Step 5: We reiterate the whole process, solving now the system (13).

Remark: Let us note that one of the advantages of the method presented above
is that we don’t have to redo all the steps at each iteration. Indeed, when we do
the uncoupling, we can replace the explicit inhomogeneous part R̃(−l) by a gen-
eral vector of undefined functions, e.g. Inhomog[(-l)]={R[1][x],...,R[n][x]} in
Mathematica. The uncoupling is in this case absolutely generic and depends only
on the matrix coefficient. Since the latter is actually always M̃(0) as seen in (5), the
uncoupling doesn’t change and so do the homogeneous solutions of the HODE. The
only quantity that changes is the particular solution (11), since it depends directly
on the inhomogeneous part of the system, which changes at each iteration.

4 Solving iteratively the system using the Sigma

package

The first method presented above to solve iteratively the system at each order of ǫ

concentrates on the series of subsystems obtained for each order of ǫ, that is solved
iteratively by uncoupling each of them as first-order systems in one variable. There

12

exists another method, presented in great detail in [45], that exchanges the order of
step 1 and step 2, i.e. that uncouples the equation before solving it. Let us present
it now.

4.1 Uncoupling the system

We suppose once more that the system has been triangularized before, and we are
examining one of the ’tilde’ sub-systems of the form (3) obtained as a consequence:

d
dx

Ĩ(x, ǫ) = M̃(x, ǫ)Ĩ(x, ǫ) + R̃(x, ǫ).

In addition we assume that M̃(x, ǫ) is invertible, and that the inhomogeneous part
can be expanded as a power series in x, i.e. for each R̃i(x, ǫ) we can write:

R̃i(x, ǫ) =
∞∑

n=0

R̃i(n, ǫ)xn. (14)

Furthermore, we suppose that the Taylor coefficients themselves can be Laurent
expanded in ǫ, i.e.

R̃i(n, ǫ) =
∞∑

k=l

R̃i,k(n)ǫk with l ∈ Z. (15)

We proceed now to the first alternative step9:

Step 2.b: Uncouple the equation (3) using OreSys.

We obtain a scalar HODE in x in one of the MI, say Ĩ(x):

α0(x, ǫ)Ĩ1(x, ǫ) + · · · + αm(x, ǫ)dm
x Ĩ1(x, ǫ) = β(x, ǫ) (16)

where the αi(x, ǫ) ∈ K[x, ǫ]. If we find those in the rational field K(x, ǫ) instead
of the ring, it suffices to multiply the whole equation by lcm(den α1, . . . , den αn)10.
Similarly to the previous case, we have the inhomogeneous right-hand side (RHS)
r(x, ǫ) of the equation that depends only on the inhomogeneous part of the system

9We will denote with a "b" the steps of this second approach.
10Where den αi denotes the denominator of αi, i.e. if αi(x, ǫ) = pi(x,ǫ)

qi(x,ǫ) with (pi, qi) ∈ K[x, ǫ] ×
K[x, ǫ]⋆, then den αi(x, ǫ) = qi(x, ǫ).

13

and its derivatives, and the other MIs on the first MI, its derivatives and the RHS
part, i.e.:

β(x, ǫ) =
p
∑

i=0

m∑

j=1

βi,j(x, ǫ)di
xR̃j(x, ǫ) with p ∈ N, βi,j(x, ǫ) ∈ K(x, ǫ), (17)

Ĩj(x, ǫ) =
m−1∑

i=0

ak,i(x, ǫ)di
xĨ1(x, ǫ) + ρk(x, ǫ) with j ∈ {2, . . . , m}, ak,i(x) ∈ K(x, ǫ),

ρk(x, ǫ) =
q
∑

i=0

m∑

j=1

ρk,i,j(x, ǫ)di
xR̃j(x, ǫ) with q ∈ N, ρk,i,j(x, ǫ) ∈ K(x, ǫ). (18)

Note: It is actually possible at this point to introduce a small refinement [45] that
might be very helpful to improve the speed of our algorithm. Indeed, let us define

p(x) := gcd(α0(x, 0), . . . , αm(x, 0))

Then we can divide the equation (16) by p(x), so that

m∑

n=0

αn(x, ǫ)
p(x)

Ĩ1(x, ǫ) =
β(x, ǫ)
p(x)

.

It is equivalent to (16) modulo the fact that the coefficients have a reduced degree
and that the cofficients of the expansion of the RHS in ǫ changes.

4.2 Order by order solving

Now, we write the following ansatz for the MI Ĩ1(x, ǫ):

Ĩ1(x, ǫ) =
∞∑

n=0

I1(n, ǫ)xn, (19)

i.e. we suppose that it is regular in x. This leads us to the next step:

Step 3.b: Plugging the relation (19) in the HODE (16), we perform coeffcient
comparison with respect to powers of x and write a recurrence of the form

a0(n, ǫ)I1(n, ǫ) + a1(n, ǫ)I1(n + 1, ǫ) + · · · + ad(n, ǫ)I1(n + d, ǫ) = b(n, ǫ) (20)

14

where d ∈ N, ai(n, ǫ) ∈ K[n, ǫ], b(n, ǫ) can be expanded in Laurent series

b(n, ǫ) =
∞∑

k=−l

bk(n)ǫk with l ∈ N. (21)

In addition, we can compute the coefficients b−l(n), . . . , br(n) ∈ K(n), r ∈ Z for
n ∈ N as expressions in terms of indefinite nested sums.

Proof. Let us show this for the homogeneous HODE11, i.e. for r(x, ǫ) = 0 and
therefore b(n, ǫ) = 0. For all i ∈ {1, . . . , m}, since αi(x, ǫ) ∈ K[x, ǫ] we have

αi(x, ǫ) =
pi∑

r=0

āi(r, ǫ)xr with pi = degx(αi) ∈ N.

Therefore, using the Cauchy product:

αi(x, ǫ)di
xĨ1(x, ǫ) =

(
pi∑

r=0

āi(r, ǫ)xr

)(
∞∑

n=i

n!
(n − i)!

I1(n, ǫ)xn−i

)

=

(
pi∑

r=0

āi(r, ǫ)xr

)(
∞∑

n=0

(n + i)!
n!

I1(n + i, ǫ)xn

)

=
∞∑

n=0

Ci(n, ǫ)xn

where, since for all n > pi we have ai(n, ǫ) = 0, the Cauchy product Ci(n, ǫ) can be
written as12

Ci(n, ǫ) :=
min(n,pi)∑

k=0

(n + i − k)!
(n − k)!

āi(k, ǫ)I1(n + i − k, ǫ)

We plug this in (16) and we get:

α0(x, ǫ)Ĩ1(x, ǫ) + · · · + αm(x, ǫ)dm
x Ĩ1(x, ǫ) = 0 ⇒

∞∑

n=0

[
m∑

i=0

Ci(n, ǫ)

]

xn = 0

That is to say we have for n ≥ max1≤i≤m pi:

m∑

i=0

pi∑

k=0

(n + i − k)!

(n − k)!
āi(k, ǫ)I1(n + i − k, ǫ) = 0 (22)

11For more informations on holonomic fonctions and sequences, see for instance [34].
12This operation is perfectly fine within the ring of formal power series. If one wants to stay

in the analytic world, one might need to check the absolute convergence of the di
xĨ1(x, ǫ) series in

order to perform the Cauchy product on it and αi(x, ǫ).

15

We define now
M := max

1≤i≤m
pi.

The coefficient in front of I1(n + j, ǫ) for j ∈ {−M, . . . , −1, 0, 1, . . . , m} is obtained
by setting i − k = j ⇔ i = k + j and collecting the relevant āi(k, ǫ) coefficients, i.e.
by defining

ãj(n, ǫ) :=
m−j
∑

r=max(0,−j)

(n + j)!
(n − r)!

ār+j(r, ǫ). (23)

We get a difference equation of the following form:

ã−M(n, ǫ)I1(n − M, ǫ) + · · · + am(n, ǫ)I1(n + m, ǫ) = 0. (24)

Shifting everything by M and defining the following quantities:

aj(n, ǫ) := ãj−M(n, ǫ) =
m+M−j
∑

r=max(0,M−j)

(n + j − M)!
(n − r)!

ār+j−M(r, ǫ) (25)

we finally get the expected difference equation:

a0(n, ǫ)I1(n, ǫ) + · · · + ad(n, ǫ)I1(n, ǫ) = 0; (26)

it is of order d ≤ m + M , since some of the aj(n, ǫ) might be equal to 0 or cancel
among themselves.

Note: With the refinement introduced above, consisting in dividing (16) by the
GCD of the coefficients, there is actually an even stronger bound on d, that is to say
d ≤ m + M − deg p.

At this point, we obtained a difference equation of higher order in n that still
depends on ǫ. In order to solve it, we need to get rid of the latter.

16

Step 4.b: We solve the difference equation (26) order by order in ǫ, i.e. we
search for a Laurent expansion for I1(n, ǫ) of the form

I1(n, ǫ) =
∞∑

k=−l

I1,k(n)ǫk (27)

where l ∈ N and the I1,k(n) can be given in terms of indefinite nested sums over
hypergeometric products.

Definition 4.1 (hypergeometric sequence). A sequence (f(n))n≥0 is called hyper-
geometric if f(n) 6= 0 ∀n ≥ l for some l ∈ N and there exists a rational function
r(x) ∈ K(x) such that

∀n ≥ l,
f(n + 1)

f(n)
= r(n).

Note: (f(n))n≥0 with f(x) ∈ K(x) without poles is an hypergeometric sequence.

Often hypergeometric sequences can be represented by hypergeometric products:

Definition 4.2 (hypergeometric product). Let f(x) ∈ K(x) and l, n ∈ N. If ∀j ≥
l, f(j) 6= 0 and its evaluation does not introduce poles, then

∏n
j=l f(j) is called an

hypergeometric product.

Examples:

• n! =
∏n

i=1 i

•
(

m

n

)

=
∏n

i=1
m+1−i

i

Definition 4.3 (indefinite nested sums over HGP [45]). An expression in terms
of indefinite nested sums over hypergeometric products (INSH) in k over
K is composed recursively by the three operations (+, −, ·) with:

• elements from the rational function field K(k),

• hypergeometric products in k over K,

• and sums of the form
∑k

j=l f(j) with l ∈ N where f(j) is an expression of INSH
in j over K13.

13Here it is assumed that the evaluation of f(j)|j 7→m for all m ∈ Z with m ≥ l does not introduce

any poles.

17

That is to say, after the use of the quasi-shuffle algebra [11], it simplifies down to an
expression of the form:

S(n) =
n∑

i1=l0

f1(i1)
i1∑

i2=l1

f2(i2) · · ·
in−1∑

in=ln−1

fn(in)

where the f1, . . . , fn are hypergeometric products. If such an expression is a solution
to a linear difference equation, it is called a d’Alembertian solution [12].

In order to solve the difference equation (26) recursively, we suppose first that all
the ai(x, 0) ∈ K[x, ǫ] are not zero at the same time, which can always be achieved.
Indeed, if this is the case, we can write them all in the form:

ai(x, ǫ) = ǫui āi(x, ǫ) where ui ∈ N, āi(x, ǫ) ∈ K[x, ǫ], āi(x, 0) 6= 0.

Then by setting u := lcm(u1, . . . , ud) we divide (26) by ǫu so that the equation
becomes:

ā0(n, ǫ)I1(n, ǫ) + · · · + ād(n, ǫ)Id(n, ǫ) = b̄(n, ǫ)

where the lowest pole of b(n, ǫ) around ǫ = 0 is shifted by u:

b̄(n, ǫ) :=
∞∑

k=−l

bk(n)ǫk−u =
∞∑

k=−(l+u)

bk+u(n)ǫk.

Now, we can define a maximal d′ ∈ N, d′ < d such that ad′(x, 0) 6= 0 as well as
a M ∈ N such that for all n ≥ M , ad′(n, 0) 6= 0. The idea is to algorithmically
construct when possible an expansion of the form (27) using Sigma14, with given
initial values I1,j(i) = ci,j for j ∈ {l, . . . , r} and i ∈ {0, . . . , max(d′, M) − 1}. The
general steps of the method are as follows:

1. We plug the expansion (27) in (26) :

a0(n, ǫ)
[

I1,−l(n)ǫ−l + I−l+1,1(n)ǫ−l+1 + · · ·
]

+a1(n, ǫ)
[

I1,−l(n + 1)ǫ−l + I−l+1,1(n + 1)ǫ−l+1 + · · ·
]

+ · · ·
+ad′(n, ǫ)

[

I1,−l(n + d)ǫ−l + I−l+1,1(n + d′)ǫ−l+1 + · · ·
]

= b−l(n)ǫ−l + b−l+1(n)ǫ−l+1

14See for more detail [19].

18

and then collect terms:

[a0(n, ǫ)I1,−l(n) + · · · + ad′(n, ǫ)I1,−l(n + d′) − bl(n)] ǫ−l

+ [a0(n, ǫ)I1,−l+1(n) + · · · + ad′(n, ǫ)I1,−l+1(n + d′) − b−l+1(n)] ǫ−l+1

+ · · · = 0.

2. We multiply everything by ǫl and then send ǫ → 0. Since ai(n, 0) 6= 0, the only
term that remains is therefore

a0(n, 0)I1,−l(n) + · · · + ad′(n, 0)I−l,1(n + d′) = bl(n).

3. Now we use Sigma to solve15 the obtained recurrence equation and to combine
the solutions such that the initial conditions are fulfilled. If SolveRecurrence

fails to find a solution, then we stop. Otherwise, we obtain an expression of
I1,−l(n) in terms of INSH.

4. We define then

I ′
1(n, ǫ) := I1(n, ǫ) − I1,−l(n)ǫ−l =

∞∑

k=−l+1

I1,k(n)ǫk (28)

and plug this into (26):

a0(n, ǫ)
[

I1,l(n)ǫl + I ′
1(n, ǫ)

]

+· · ·+ad′(n, ǫ)
[

I1,l(n + d′)ǫl + I ′
1(n + d′)

]

= bl(n, ǫ).

5. Collecting the ǫl terms and getting them on the other side, we get an equation
of a form similar to (26) for I ′

1(n, ǫ) with an updated RHS:

a0(n, ǫ)I ′
1(n, ǫ) + · · · + ad′(n, ǫ)I ′

1(n + d′, ǫ) = b′(n, ǫ) (29)

where

b′(n, ǫ) := b(n, ǫ) − [a0(n, ǫ)I1,−l(n) + · · · + ad′(n, ǫ)I1,−l(n + d′, ǫ)] ǫ−l.

Note that the coefficients of the pole of order l in b′(n, ǫ) cancel among them-
selves and b′(n, ǫ) has only a pole of order l − 1 around ǫ = 0.

6. We loop this procedure to get the next term I1,−l+1(n).

15The underlying algorithm can be considered as the discrete version described in section 3.3. In
particular, we have to assume that the recurrence factorizes into first-order factors (see [12]).

19

4.3 Solving for the other master integrals and iterating

Step 5.b: Once we get a solution for Ĩ1(x, ǫ) up to some order l′ in ǫ, we plug
it in (18) in order to get the other MIs up to the required order in ǫ.

Note: It might well be possible that due to the structure of the equations (18), there
are some simplifications or some coefficients ak,i(x, ǫ) that have poles in ǫ. What is
actually necessary to do is some additional preprocessing in order to find the order
k ∈ N of the maximal pole in each of those expressions for the Ĩj(x, ǫ) and compute
Ĩ1(x, ǫ) up to the required order+k.

4.4 Alternative application of the method

The second method presented above relies, compared to the first one, on the setting
of recurrences and Sigma, whereas the first one was really dealing with differential
equations through extensive use of the SolveDE function of the HarmonicSums pack-
age. It is actually possible to remain in this setting also for the second method,
and this consists in taking the following twist16: after the Step 2.b, i.e. the uncou-
pling through OreSys of the whole subsystem, instead of expanding Ĩ1(x, ǫ) in x, we
expand in ǫ, i.e.:

Ĩ1(x, ǫ) =
∞∑

n=0

I1(n, ǫ)xn → Ĩ1(x, ǫ) =
∞∑

k=−l

Ĩ1,k(x)ǫk (30)

Note: Actually, to be once again perfectly rigourous and if one does not want to
stay within the formal Laurent setting, one might need to use some discrete version
of the Fubini theorem to check whether this alternative expansion is equivalent to
the first one, i.e. if one is allowed to interchange freely the ǫ and x sums:

Ĩ1(x, ǫ) =
∞∑

n=0

∞∑

k=−l

I1(n)ǫkxn =
∞∑

k=−l

∞∑

n=0

I1(n)ǫkxn

Now, expanding the αi(x, ǫ) and β(x, ǫ) of (16) in ǫ instead of x, we can proceed
exactly in the spirit of the ideas of the proof for the step 3.b as well as those of step
4.b: plug all the ǫ expansions in the HODE (16), identify terms with same order of
ǫ and then send ǫ to 0 to get a HODE purely in x of the following form for the first
coefficient Ĩ1(x, ǫ):

a0(x, 0)Ĩ(−l)
1 (x) + · · · + ad(x, 0)dd

xĨ(−l)
1 (x) = β−l(x) (31)

16Compare also [8].

20

where d ≤ m and the ai(x, 0) ∈ K[x] are obtained from linear combinations of the
ǫ-expansion coefficients of the αi(x, ǫ), in the spirit of (25).
Here we can apply directly SolveDE in order to get the homogeneous and particular
solutions of the HODE, given as always that it is first-order factorizable, and using
the initial conditions, we solve completely for Ĩ1,−l(x). The rest of the computation
proceeds in the same way [45], i.e. plug the solution in the initial HODE (16) and
repeat until the required order is reached. Finally, we insert the obtained solution in
the uncoupling equation relating the Ĩj(x, ǫ) to Ĩ1(x, ǫ).

5 Extending the scope of the algorithm

The algorithms presented above allow one to solve efficiently different physical prob-
lems. In particular, the first one has been used to compute the MIs that contribute
to both the color-planar and complete light quark non-singlet three-loop contribu-
tions to the heavy-quark form factors for different currents [10]. The second one has
been for instance applied to compute polarized three-loop anomalous dimensions [13]
as well as heavy fermion contributions of the massive three loop form factors [20].
Nevertheless, there remain several aspects that will constitute our future line of work
to improve the algorithms and their implementation:

• For the first method, we required in subsection 2.1 that in the matrix expansion
M(x, ǫ) =

∑∞
i=0 M(i)(x)ǫi, the determinant of the first coefficient is non-zero.

Otherwise, the uncoupling in step 2 will fail. One of the tasks will consist to
find a way to overcome this shortcoming, possibly by doing some additional
triangularization step/Gaußian elimination and extracting the maximally non-
degenerate matrix to uncouple smaller subsystems.

• In the second note of subsection 3.3, we point out the fact that it might happen
that the HODE is not completely first-order factorizable. Due to the Kovacic
algorithm [31] implementation in the package HarmonicSums [1], SolveDE ac-
tually can find solutions exceeding the class of d’Alembertian solutions, in
particular Liovillian solutions, in case of second-order factors remaining, but
equations with solutions such as the ones presented in the second note of sub-
section 3.3 are still out of scope at the moment. A similar issue exists for the
discrete case, that also needs to be extended. Moreover, it might happen that
even in case such a solution is found for a second-order factor, the remaining
IOH might be quite complex, so it is also necessary to find a way to obtain the
simplest alphabet for the homogeneous solutions.

21

• During the uncoupling step, several algorithms are available – in particular
Zürcher [16, 22, 46], Gauß and Euclid algorithms, that are more or less effi-
cient depending on the system. Moreover, even after triangularization, some
systems are still relatively big (of order ∼ 10) and the uncoupling step with
OreSys can be quite slow. It is thus relevant to write a preprocessing part
that would identify automatically the fastest uncoupling scheme when given a
certain system and to find the best uncoupling by cycling through the system
variables, and if possible to improve the uncoupling algorithms themselves in
a second step.

• Until now, in particular for the first method, several manual inputs, sometimes
at different levels of the processing, are necessary in order to run the algorithms
– we have to input directly the most reduced system after the triangularization
step, and fine-tune the initial conditions by hand. Therefore, it appears neces-
sary to implement a full pre-processing step. Given a certain system and the
order up to which we want to solve it, it should subdivide the system into the
smallest possible subsystems in a triangular form, and return all the relevant
information that the user needs to input directly at once (for instance, order
of expansion of the BIs). In this way, the uncoupling method should work
completely automatically without any further control of the user.

• The advantage of the latter method is that it can be used to implement the large
momentum method [21], implemented in the packages SolveCoupledSystems

[4][3][7][15], which computes the coefficients I1(n, ǫ) appearing in (19) for 1 ≤
n ≤ s, where usually s ∼ 103 − 104. The idea is also to implement the large
moment method that can be called as an alternative when the HODE doesn’t
factor to first or second order factors, so that we can still constrain the consid-
ered MIs.

In general, all the above proposals will be implemented while taking into account
complexity issues in order to enhance and speed up as much as possible the under-
lying algorithms.

Currently, what has already been carried over is the following:

• The first method has been completely implemented and tested for some sys-
tems, coming in particular from [10]. It has also been optimized so that com-
putations are more efficient and are as fast as possible.

22

• A first version of an analysis algorithm has been implemented for a unique sys-
tem17. Cycling through the MIs, it extracts the best uncoupling (with respect
to the order of the HODE) as well as relevant information for the MIs (needed
number of initial conditions) and the BIs (the required expansion in ǫ).

6 Conclusion

In this report, we presented two methods to solve first-order factorisable systems of
differential equations. The first one [10] relies on an ǫ expansion of the original system
and uncoupling of the obtained series of subsystems that need to be solved recursively.
Using in particular the HarmonicSums package [2][11], this method has already been
applied for higher-loop computations in QCD, for instance see [45][5][9][18]. The
second method [45] consists in expanding directly order by order in x (respectively
ǫ) the HODE and solving recursively the subsequently obtained difference equations
using Sigma (respectively, the scalar differential equations using SolveDE). Currently,
in order to circumvent some issues or to expand the scope of the algorithm as seen
in the previous section 5, a completely automatic code is under development.

17It actually also tries first to separate the system into smaller independent clusters before
analysing it.

23

References

[1] J. Ablinger. Computing the Inverse Mellin Transform of Holonomic Sequences
using Kovacic’s Algorithm. 2018. arXiv: 1801.01039 [cs.SC].

[2] J. Ablinger. The package HarmonicSums: Computer Algebra and Analytic as-
pects of Nested Sums. 2014. arXiv: 1407.6180 [cs.SC].

[3] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, and
C. Schneider. “Calculating three loop ladder and V-topologies for massive op-
erator matrix elements by computer algebra”. In: Computer Physics Commu-
nications 202 (May 2016), pp. 33–112. issn: 0010-4655. doi: 10.1016/j.cpc.

2016.01.002.

[4] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, and C. Schneider. Al-
gorithms to solve coupled systems of differential equations in terms of power
series. 2016. arXiv: 1608.05376 [cs.SC].

[5] J. Ablinger, A. Behring, J. Blümlein, G. Falcioni, A. De Freitas, P. Marquard,
N. Rana, and C. Schneider. “Heavy quark form factors at two loops”. In: Phys-
ical Review D 97.9 (May 2018). issn: 2470-0029. doi: 10.1103/physrevd.97.

094022.

[6] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, E. Imamoglu, M. van
Hoeij A. von Manteuffel, C.G. Raab, C.-S. Radu, and C. Schneider. “Iterative
and Iterative-Noniterative Integral Solutions in 3-Loop Massive QCD Calcula-
tions”. In: Proc. of the 13th International Symposium on Radiative Corrections
(Applications of Quantum Field Theory to Phenomenology). Ed. by A. Hoang
and C. Schneider. Vol. PoS (RADCOR2017) 069. arXiv:1711.09742 [hep-ph].
2018, pp. 1–13. url: https://doi.org/10.22323/1.290.0069.

[7] J. Ablinger, J. Blümlein, A. De Freitas, and C. Schneider. A toolbox to solve
coupled systems of differential and difference equations. 2016. arXiv: 1601.

01856 [cs.SC].

[8] J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab,
C.-S. Radu, and C. Schneider. “Iterated Elliptic and Hypergeometric Integrals
for Feynman Diagrams”. In: J. Math. Phys. 59.062305 (2018). arXiv:1706.01299
[hep-th],doi.org/10.1063/1.4986417, pp. 1–55. url: https://arxiv.org/abs/

1706.01299.

24

https://arxiv.org/abs/1801.01039
https://arxiv.org/abs/1407.6180
https://doi.org/10.1016/j.cpc.2016.01.002
https://doi.org/10.1016/j.cpc.2016.01.002
https://arxiv.org/abs/1608.05376
https://doi.org/10.1103/physrevd.97.094022
https://doi.org/10.1103/physrevd.97.094022
https://doi.org/10.22323/1.290.0069
https://arxiv.org/abs/1601.01856
https://arxiv.org/abs/1601.01856
https://arxiv.org/abs/1706.01299
https://arxiv.org/abs/1706.01299

[9] J. Ablinger, J. Blümlein, A. Freitas, A. Hasselhuhn, A. Manteuffel, M. Round,
C. Schneider, and F. Wißbrock. “The transition matrix element Agq(N)Agq(N)
of the variable flavor number scheme at O(α3

s)”. In: Nuclear Physics B 882 (Feb.
2014), pp. 263–288. doi: 10.1016/j.nuclphysb.2014.02.007.

[10] J. Ablinger, J. Blümlein, P. Marquard, N. Rana, and C. Schneider. “Automated
solution of first order factorizable systems of differential equations in one vari-
able”. In: Nuclear Physics B 939 (Dec. 2018). doi: 10.1016/j.nuclphysb.

2018.12.010.

[11] J. Ablinger, J. Blümlein, and C. Schneider. “Analytic and algorithmic aspects
of generalized harmonic sums and polylogarithms”. In: Journal of Mathemat-
ical Physics 54.8 (Aug. 2013), p. 082301. issn: 1089-7658. doi: 10.1063/1.

4811117. url: http://dx.doi.org/10.1063/1.4811117.

[12] S.A. Abramov and M. Petkovšek. “D’Alembertian Solutions of Linear Differ-
ential and Difference Equations”. In: (1994), pp. 169–174.

[13] A. Behring, J. Blümlein, A. De Freitas, A. Goedicke, S. Klein, A. von Manteuf-
fel, C. Schneider, and K. Schönwald. “The polarized three-loop anomalous di-
mensions from on-shell massive operator matrix elements”. In: Nuclear Physics
B 948 (Nov. 2019), p. 114753. issn: 0550-3213. doi: 10.1016/j.nuclphysb.

2019.114753.

[14] J. Blümlein. “Algebraic relations between harmonic sums and associated quan-
tities”. In: Computer Physics Communications 159.1 (May 2004), pp. 19–54.
issn: 0010-4655. doi: 10.1016/j.cpc.2003.12.004.

[15] J. Blümlein, A. De Freitas, and C. Schneider. Recent Symbolic Summation
Methods to Solve Coupled Systems of Differential and Difference Equations.
2014. arXiv: 1407.2537 [cs.SC].

[16] J. Blümlein, A. De Freitas, and C. Schneider. “Recent Symbolic Summation
Methods to Solve Coupled Systems of Differential and Difference Equations”.
In: PoS LL2014 (2014), p. 017. doi: 10.22323/1.211.0017.

[17] J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, P. Marquard, and C.
Schneider. “The ρ parameter at three loops and elliptic integrals”. In: Proceed-
ings of "Loops and Legs in Quantum Field Theory - LL 2018", 29 April - 4 May
2018. Ed. by J. Blümlein and P. Marquard. PoS(LL2018)017. arXiv:1807.05287
[hep-ph]. 2018, pp. 1–14. url: https://doi.org/10.22323/1.303.0017.

25

https://doi.org/10.1016/j.nuclphysb.2014.02.007
https://doi.org/10.1016/j.nuclphysb.2018.12.010
https://doi.org/10.1016/j.nuclphysb.2018.12.010
https://doi.org/10.1063/1.4811117
https://doi.org/10.1063/1.4811117
http://dx.doi.org/10.1063/1.4811117
https://doi.org/10.1016/j.nuclphysb.2019.114753
https://doi.org/10.1016/j.nuclphysb.2019.114753
https://doi.org/10.1016/j.cpc.2003.12.004
https://arxiv.org/abs/1407.2537
https://doi.org/10.22323/1.211.0017
https://doi.org/10.22323/1.303.0017

[18] J. Blümlein, A. Hasselhuhn, S. Klein, and C. Schneider. “The contributions to
the gluonic massive operator matrix elements”. In: Nuclear Physics B 866.2
(Jan. 2013), pp. 196–211. issn: 0550-3213. doi: 10.1016/j.nuclphysb.2012.

09.001.

[19] J. Blümlein, S. Klein, C. Schneider, and F. Stan. “A symbolic summation
approach to Feynman integral calculus”. In: Journal of Symbolic Computation
47.10 (Oct. 2012), pp. 1267–1289. issn: 0747-7171. doi: 10.1016/j.jsc.2011.

12.044.

[20] J. Blümlein, P. Marquard, N. Rana, and C. Schneider. “The heavy fermion
contributions to the massive three loop form factors”. In: Nuclear Physics B
949 (Dec. 2019), p. 114751. issn: 0550-3213. doi: 10.1016/j.nuclphysb.

2019.114751.

[21] J. Blümlein and C. Schneider. “The method of arbitrarily large moments to
calculate single scale processes in quantum field theory”. In: Physics Letters
B 771 (Aug. 2017), pp. 31–36. issn: 0370-2693. doi: 10.1016/j.physletb.

2017.05.001.

[22] A. Bostan, F. Chyzak, and É. de Panafieu. “Complexity Estimates for Two
Uncoupling Algorithms”. In: Boston, Maine, USA: Association for Computing
Machinery, 2013. isbn: 9781450320597. doi: 10.1145/2465506.2465941.

[23] M. Bronstein. “Linear Ordinary Differential Equations: Breaking through the
Order 2 Barrier”. In: Papers from the International Symposium on Symbolic
and Algebraic Computation. ISSAC ’92. Berkeley, California, USA: Association
for Computing Machinery, 1992, pp. 42–48. isbn: 0897914899. doi: 10.1145/

143242.143264.

[24] K.G. Chetyrkin and F.V. Tkachov. “Integration by parts: The algorithm to cal-
culate beta-functions in 4 loops”. In: Nuclear Physics B 192.1 (1981), pp. 159–
204. issn: 0550-3213. doi: 10.1016/0550-3213(81)90199-1.

[25] C.F. Gauss. Theoria attractionis corporum sphaeroidicorum ellipticorum homo-
geneorum methodo nova tractata. Königliche Gesellschaft der Wissenschaften,
1813.

[26] S. Gerhold. “Uncoupling systems of linear operator equations”. PhD thesis.
RISC, J. Kepler University, Linz, Feb. 2002.

[27] G. Green. “Essay on the Mathematical Theory of Electricity and Magnetism”.
In: Essay on the Mathematical Theory of Electricity and Magnetism (1828),
pp. 1–115.

26

https://doi.org/10.1016/j.nuclphysb.2012.09.001
https://doi.org/10.1016/j.nuclphysb.2012.09.001
https://doi.org/10.1016/j.jsc.2011.12.044
https://doi.org/10.1016/j.jsc.2011.12.044
https://doi.org/10.1016/j.nuclphysb.2019.114751
https://doi.org/10.1016/j.nuclphysb.2019.114751
https://doi.org/10.1016/j.physletb.2017.05.001
https://doi.org/10.1016/j.physletb.2017.05.001
https://doi.org/10.1145/2465506.2465941
https://doi.org/10.1145/143242.143264
https://doi.org/10.1145/143242.143264
https://doi.org/10.1016/0550-3213(81)90199-1

[28] J.M. Henn. “Multiloop Integrals in Dimensional Regularization Made Sim-
ple”. In: Phys. Rev. Lett. 110 (25 June 2013), p. 251601. doi: 10 . 1103 /

PhysRevLett.110.251601.

[29] M. Karr. “Summation in Finite Terms”. In: Journal of the ACM (JACM) 28.2
(1981), pp. 305–350.

[30] A.V. Kotikov. “Differential equations method. New technique for massive Feyn-
man diagram calculation”. In: Physics Letters B 254.1 (1991), pp. 158–164.
issn: 0370-2693. doi: https://doi.org/10.1016/0370-2693(91)90413-K.

[31] J.J. Kovacic. “An algorithm for solving second order linear homogeneous dif-
ferential equations”. In: Journal of Symbolic Computation 2.1 (1986), pp. 3–43.
issn: 0747-7171. doi: https://doi.org/10.1016/S0747-7171(86)80010-4.

[32] J. Lagrange. “Nouvelles recherches sur la nature et la propagation du son,
Miscellanea Taurinensis, t. II”. In: Oeuvres t. 1 (1760), p. 263.

[33] S. Laporta. “High-precision calculation of multiloop Feynman integrals by dif-
ference equations”. In: International Journal of Modern Physics A 15.32 (2000),
pp. 5087–5159.

[34] C. Mallinger. “Algorithmic Manipulations and Transformations of Univariate
Holonomic Functions and Sequences”. PhD thesis. RISC, J. Kepler University,
Linz, Aug. 1996.

[35] A. von Manteuffel and C. Studerus. Reduze 2 - Distributed Feynman Integral
Reduction. 2012. arXiv: 1201.4330 [hep-ph].

[36] P. Marquard and D. Seidel. The package Crusher. unpublished.

[37] M. Ostrogradski. In: Mem.Ac.Sci.St.Peters. 6 (1831), pp. 129–133.

[38] M. van der Put and M. Singer. Galois Theory of Linear Differential Equations.
Springer, 2003.

[39] E. Remiddi. “Differential equations for Feynman graph amplitudes”. In: Nuovo
Cim. A 110 (1997), pp. 1435–1452. arXiv: hep-th/9711188.

[40] C. Schneider. “A collection of denominator bounds to solve parameterized lin-
ear difference equations in ΠΣ-extensions”. In: An.Univ.Timişoara Ser.Mat.-
Inform. 42.2 (2004), pp. 163–179.

[41] C. Schneider. “Degree Bounds to Find Polynomial Solutions of Parameterized
Linear Difference Equations in ΠΣ-Fields”. In: Applicable Algebra in Engineer-
ing, Communication and Computing 16.1 (July 2005), pp. 1–32. issn: 1432-
0622. doi: 10.1007/s00200-004-0167-3.

27

https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/https://doi.org/10.1016/S0747-7171(86)80010-4
https://arxiv.org/abs/1201.4330
https://arxiv.org/abs/hep-th/9711188
https://doi.org/10.1007/s00200-004-0167-3

[42] C. Schneider. “Simplifying sums in ΠΣ-extensions”. In: J.Algebra Appl. 6.3
(2007), pp. 415–441.

[43] C. Schneider. “Solving parameterized linear difference equations in terms of
indefinite nested sums and products”. In: Journal of Difference Equations and
Applications 11.9 (2005), pp. 799–821. doi: 10.1080/10236190500138262.

[44] C. Schneider. “Symbolic summation in difference fields”. PhD thesis. JKU Linz,
2001.

[45] C. Schneider, J. Blümlein, and P. Marquard. “A refined machinery to calculate
large moments from coupled systems of linear differential equations”. In: PoS
RADCOR2019 (2019), p. 078. doi: 10.22323/1.375.0078.

[46] B. Zürcher. “Rationale Normalformen von pseudo-linearen Abbildungen”. MA
thesis. ETH Zürich, 1994.

28

https://doi.org/10.1080/10236190500138262
https://doi.org/10.22323/1.375.0078

	Introduction
	Preprocessing the system
	Solving hypotheses
	Triangularization

	Solving iteratively the system
	Defining recursive sub-systems
	Uncoupling the system
	Solving the higher-order differential equation at order k
	Solving the system at order k and iterating

	Solving iteratively the system using the Sigma package
	Uncoupling the system
	Order by order solving
	Solving for the other master integrals and iterating
	Alternative application of the method

	Extending the scope of the algorithm
	Conclusion

