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Abstract. Recently, Andrews carried out a thorough investigation of integer
partitions in which all parts of a given parity are smaller than those of the op-

posite parity. Further, considering a subset of this set of partitions, he obtains

several interesting arithmetic and combinatorial properties and its connections
to the third order mock theta function ν(q). In fact, he shows the existence of

a Dyson-type crank that explains a mod 5 congruence in this subset. At the
end of his paper, one of the problems he poses is to undertake a more extensive

investigation on the properties of the subset of partitions. Since then there

have been several investigations in various ways, including works of Jennings-
Shaffer and Bringmann (Ann. Comb. 2019), Barman and Ray (2019), and

Uncu (2019). In this paper, we study certain congruences satisfied by the

above set of partitions (and the subset above) along with a certain subset of
partitions (of Andrews’ partitions above) studied by Uncu and also establish

a connection between one of Andrews’ partition function above with p(n), the

number of unrestricted partitions of n. Besides, we provide a combinatorial
description of Uncu’s partition function.

1. Introduction

In a recent work, Andrews [1] investigated integer partitions in which each even
part is less than each odd part. For n ≥ 1, he denotes by EO(n) the number of
such partitions of n. Among several arithmetic results, he shows that the generating
function for EO(n) is: ∑

n≥0

EO(n)qn =
1

(1− q)(q2; q2)∞
.(1.1)

Andrews then delves into a subset of partitions which are enumerated by EO(n).
For n ≥ 1, he denotes by EO(n) the number of partitions counted by EO(n) in which
only the largest part appears an odd number of times. It turns out that EO(n)
satisfies several arithmetic and combinatorial properties and has connections to the
third order mock theta function, ν(q) which is defined by:

ν(q) =
∑
n≥0

qn
2+n

(−q; q2)n+1
,(1.2)

where

(a; q)n := (1− a)(1− aq) · · · (1− aqn−1).(1.3)

In fact, Andrews shows that the generating function for EO(n) is:
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Theorem 1.1. We have∑
n≥0

EO(n)qn =
(q4; q4)∞
(q2; q4)∞

=
(q4; q4)3

∞
(q2; q2)2

∞
.(1.4)

Besides, he proves the following congruence for EO(n), similar in vein to Ra-
manujan’s partition congruence mod 5:

Theorem 1.2.

EO(10n+ 8) ≡ 0 (mod 5).

More so, he proves Theorem 1.2 combinatorially by providing a Dyson-type crank
for partitions enumerated by EO(n). At the end of his paper, Andrews proposes to
undertake a more extensive investigation of EO(n).

Actually, the partition class enumerated by EO(n) above is one of eight different
classes of partitions which Andrews considered in his recent paper [2]. Recently,
Jennings-Shaffer and Bringmann [5] obtained new identities for three of these par-
tition classes. By treating a different subset of EO(n), Uncu [11] has studied several
interesting properties of 4-decorated diagrams. If we denote by EOu(n) the parti-
tion function defined by Uncu, then the generating function is given by∑

n≥0

EOu(n)qn =
1

(q2; q4)2
∞

=
(q4; q4)2

∞
(q2; q2)2

∞
.(1.5)

Recently, among other things, Barman and Ray [4] studied various congruences
satisfied by EO(n). By using the theory of Hecke operators, they proved an infinite
family of congruences satisfied by EO(n). More precisely, they proved the following:

Theorem 1.3. Let k, n be non-negative integers. For each i with 1 ≤ i ≤ k + 1, if
pi ≥ 5 is prime such that pi ≡ 2 (mod 3), then for any integer j ≡ 0 (mod pk+1)

EO
(
p2

1 · · · p2
k+1n+

p2
1 · · · p2

kpk+1(3j + pk+1)− 1

3

)
≡ 0 (mod 2).

For a prime p ≥ 5 with p ≡ 2 (mod 3), by specializing p1 = p2 = · · · = pk+1 = p,
we see from Theorem 1.3 that

EO
(
p2(k+1)n+

p2k+1(3j + p)− 1

3

)
≡ 0 (mod 2).(1.6)

In particular, by choosing p = 5 and k = 0 in (1.6) we obtain

EO(25n+ 5j + 8) ≡ 0 (mod 2).(1.7)

They further prove that Andrews’ congruence in Theorem 1.2 is also true modulo
4, except when n ≡ 0 (mod 5).

Theorem 1.4. Let t ∈ {1, 2, 3, 4}. Then for all n ≥ 0 we have

EO(10(5n+ t) + 8) ≡ 0 (mod 4).

In this paper, we prove several congruences modulo 2 for each of EO(n), EO(n)
and EOu(n). We prove these congruences using tools from modular forms and a
2-dissection formula from Ramanujan’s notebook.

We now give a brief outline of the paper. In Sect. 3 we recall the definition
and some basic results from modular forms and Hecke theory. In Sect. 4 we state
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a 2-dissection formula from Ramanujan’s notebooks [3, Entry 25, p. 40] and also
state a few classical results of Euler and Jacobi. In Sect. 5 we discuss some new
results for Andrews’ EO(n). In Sect. 6 we discuss some new results related to the
parity of EO(n) and also prove infinitely many congruences satisfied by EO(n). In
Sect. 7 we discuss some new results related to the parity of EOu(n) and prove two
results that yield infinitely many congruences satisfied by EOu(n). Finally, in Sect.
8 we discuss a few conjectural congruences that we observed via computation and
the limitations of our method.
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3. Notations and preliminaries

In this section, we recall some basic facts from modular forms and Hecke theory
(see, for example [7, 9] for more details). The full modular group SL2(Z) is defined
by

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

For a positive integer N, we denote the congruence subgroup Γ0(N) of level N of
SL2(Z) as follows.

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

The group GL+
2 (R) =

{(
a b
c d

)
: a.b.c, d ∈ R, ad− bc > 0

}
acts on H via frac-

tional linear transformations, i.e., for γ =

(
a b
c d

)
∈ GL+

2 (R) and τ ∈ H

γ · τ :=
aτ + b

cτ + d
.

Let k ∈ Z and γ =

(
a b
c d

)
. For a complex-valued function f define the slash

operator as follows;

f |k γ(τ) := (cτ + d)−kf(γ · τ).

Definition 3.1 (Modular Forms). Let k be an integer and χ a Dirichlet character
modulo N. A holomorphic function f : H −→ C is said to be a modular form of
weight k, level N and character χ if

(1) f |k γ(τ) = χ(d)f(τ) ∀ γ =

(
a b
c d

)
∈ Γ0(N), i.e,

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ), ∀ γ =

(
a b
c d

)
∈ Γ0(N).

(2) f is holomorphic at all the cusps of Γ0(N).
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Further, we say that f is a cusp form if f vanishes at all the cusps of Γ0(N).

We denote the space of modular forms and the subspace of cusp forms of weight
k and character χ for Γ0(N), by Mk(N,χ) and Sk(N,χ) respectively. If χ is the
trivial character, then we write the spaces as Mk(N) and Sk(N).

A modular form f has Fourier series expansion as follows;

f(τ) =
∑
n≥0

a(n)qn, q := e2πiτ .

We now define certain linear operators called Hecke operators on the space of mod-
ular forms.

Definition 3.2. Let m be a positive integer and f(τ) =
∑
n≥0

a(n)qn ∈ Mk(N,χ).

Then the mth Hecke operator is defined by

(3.1) f(τ)|Tm :=
∑
n≥0

 ∑
d|(n,m)

χ(d)dk−1a
(mn
d2

) qn.

Definition 3.3. A modular form f(τ) =
∑
n≥0

a(n)qn ∈Mk(N,χ) is called a Hecke

eigenform if it is an eigenfunction for all the Hecke operators Tm, m ≥ 2. i.e., for
every m ≥ 2 there exists λ(m) ∈ C such that f(τ)|Tm = λ(m)f(τ).

Let a, q ∈ C and n ∈ N. Throughout we use the following notation defined
below:

(a; q)∞ :=

∞∏
n=1

(1− aqn−1).

We now define the Dedekind η-function which is a modular form of weight 1
2 over

SL2(Z) with a certain character of order 24.

η(τ) = q1/24
∞∏
n=1

(1− qn) = q1/24(q; q)∞.(3.2)

4. Known results

For a positive integer k, we denote by Tk the kth triangular number defined by

Tk :=
k(k + 1)

2
,(4.1)

and by ωk the kth pentagonal number defined by

ωk :=
3k2 + k

2
,(4.2)

so that replacing k by −k we get the pentagonal number ω−k defined by:

ω−k :=
3k2 − k

2
.(4.3)

We next state the following classical results of Euler and Jacobi.
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Theorem 4.1 (Euler). We have

1

(q; q)∞
=

∞∑
n=0

p(n)qn,

where p(n) is the number of unrestricted partitions of n.

Theorem 4.2 (Euler Pentagonal Number theorem). We have

(q; q)∞ =

∞∑
k=−∞

(−1)kqωk .

Theorem 4.3 (Jacobi). We have

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n+ 1)qTn .

Let us define the following theta series:

φ(q) :=

∞∑
n=−∞

qn
2

, ψ(q) :=

∞∑
n=0

qn(n+1)/2.(4.4)

Then by simple application of Jacobi triple product identity (see [3, Entry 25,
p.40]), one obtains:

Lemma 4.4. We have

φ(q) =
(q2; q2)5

∞
(q; q)2

∞(q4; q4)2
∞
, ψ(q) =

(q2; q2)2
∞

(q; q)∞
,

φ(q)− φ(q4) = 2qψ(q8).

Lemma 4.4 yields the following 2-dissection formula, which would be very crucial
in our proofs later.

Lemma 4.5. We have

1

(q; q)2
∞

=
(q8; q8)5

∞
(q2; q2)5

∞(q16; q16)2
∞

+ 2q
(q4; q4)2

∞(q16; q16)2
∞

(q2; q2)5
∞(q8; q8)∞

.(4.5)

5. Some results for EO(n)

In this section, we state and prove some results for EO(n). The following theorem
describes the connection of EO(n) with p(n).

Theorem 5.1. For all n ≥ 0 we have

p(n) = EO(2n)− EO(2n− 1),

where p(n) is the number of unrestricted partitions of n.

The next theorem asserts that the odd and the even parts of the generating
function for EO(n) are exactly same. More precisely

Theorem 5.2. We have∑
n≥0

EO(2n)qn =
∑
n≥0

EO(2n+ 1)qn =
1

(1− q)(q; q)∞
.
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Proof of Theorem 5.1. In (1.1), we multiply both sides by (1−q) and rearrange the
sum on the left-hand side to obtain:

1 +
∑
n≥1

(EO(n)− EO(n− 1))qn =
1

(q2; q2)∞
.(5.1)

Since the right-hand side of (5.1) clearly has all even powers of q when expanded
as a power series, by replacing q 7→ √q we immediately obtain:

1 +
∑
n≥1

(EO(2n)− EO(2n− 1))qn =
1

(q; q)∞
.(5.2)

The result now follows from Theorem 4.1. �

Proof of Theorem 5.2. We again start with (1.1). Multiply and divide the numer-
ator and denominator of the right-hand side of (1.1) by (1 + q) to get∑

n≥0

EO(n)qn =
1 + q

(1− q2)(q2; q2)∞
,

=
1

(1− q2)(q2; q2)∞
+ q

1

(1− q2)(q2; q2)∞
.(5.3)

Note that the first sum in the right-hand side of (5.3) has all the even exponents of
q and the second sum has all the odd exponents of q. Next we split the sum in the
left-hand side of (5.3) into two sums, one involving all the even powers of q and the
other involving all the odd powers of q. Finally, comparing both sides, the result
follows with q 7→ √q. �

As corollaries of Theorems 5.1 and 5.2 we obtain:

Corollary 5.2.1. For all n ≥ 0 we have

EO(2n) = EO(2n+ 1).

Corollary 5.2.2. For all n ≥ 1 we have

p(n) = EO(2n+ 1)− EO(2n− 1) = EO(2n)− EO(2n− 2).

Proofs of Corollaries 5.2.1 and 5.2.2. Corollary 5.2.1 follows from Theorem 5.2 and
Corollary 5.2.2 follows from Theorem 5.1 and Corollary 5.2.1. �

We end this section with the following congruences satisfied by EO(n).

Theorem 5.3. For all n ≥ 1 we have

EO(10n+ 7) ≡ EO(10n+ 8) ≡ EO(10n+ 9) (mod 5),

EO(14n+ 9) ≡ EO(14n+ 10) ≡ EO(14n+ 11) (mod 7),

EO(22n+ 11) ≡ EO(22n+ 12) ≡ EO(22n+ 13) (mod 11).

Proof of Theorem 5.3. We recall Ramanujan’s partition congruences modulo 5, 7
and 11.

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Next invoking Theorem 5.1 and Corollary 5.2.2, the result follows. �



ON THE PARITY OF SOME PARTITION FUNCTIONS 7

6. Some results for EO(n)

Here we discus some congruences for EO(n). To do that we first let d`,6(n)
to denote the number of positive divisors, d of n such that d ≡ ` (mod 6). Also
let r∆,Π(n) be the number of representations of n as a sum of a triangular and a
pentagonal number. Then Hirschhorn [6] proves:

Theorem 6.1. We have

r∆,Π(n) = d1,6(n)− d5,6(n).

We now state our first result below which asserts the even-odd parity of EO(2n).

Theorem 6.2. For every n ≥ 1 we have

EO(2n) ≡
{

1 (mod 2) if d1,6(n) 6≡ d5,6(n) (mod 2),
0 (mod 2) otherwise.

Next, we obtain the following generating functions over certain arithmetic pro-
gressions for EO(n).

Theorem 6.3. We have∑
n≥0

EO(8n+ 2)qn = 2
(q4; q4)7

∞
(q; q)3

∞(q2; q2)∞(q8; q8)2
∞
,

∑
n≥0

EO(8n+ 4)qn = 2
(q2; q2)7

∞(q8; q8)2
∞

(q; q)5
∞(q4; q4)3

∞
,

∑
n≥0

EO(8n+ 6)qn = 4
(q2; q2)∞(q4; q4)∞(q8; q8)2

∞
(q; q)3

∞
.

Proof of Theorem 6.2. Recall from Theorem 1.1 that the product on the right-hand
side of the identity involves only the even powers of q, so that upon replacing
q 7→ √q, we obtain: ∑

n≥0

EO(2n)qn =
(q2; q2)3

∞
(q; q)2

∞
.(6.1)

Modulo 2, (6.1) becomes∑
n≥0

EO(2n)qn ≡ (q; q)4
∞ (mod 2).(6.2)

Write (q; q)4
∞ = (q; q)3

∞ · (q; q)∞ and invoke Theorems 4.2 and 4.3 to obtain:

(q; q)4
∞ =

( ∞∑
m=0

(−1)m(2m+ 1)qTm

)( ∞∑
k=−∞

(−1)kqωk

)
,

=

∞∑
m=0

∞∑
k=−∞

(−1)m+k(2m+ 1)qTm+ωk .

Now, the coefficient of qn in the right-hand side of (6.3) is essentially the sum of
numbers of the form (−1)m+k(2m+ 1) (which is odd) such that such n = Tm + ωk
for some m ∈ N and k ∈ Z. Speaking differently, the coefficient of qn is the sum
of odd numbers of the above form added r∆,Π(n) times. Hence the result follows
from this and (6.2). �
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Proof of Theorem 6.3. Recall from Theorem 1.1 that the product on the right-hand
side of the identity involves only the even powers of q, so that we have∑

n≥0

EO(2n)qn =
(q2; q2)3

∞
(q; q)2

∞
.(6.3)

Next, we apply Lemma 4.5 in (6.3) to obtain∑
n≥0

EO(2n)qn = (q2; q2)3
∞

{
(q8; q8)5

∞
(q2; q2)5

∞(q16; q16)2
∞

+ 2q
(q4; q4)2

∞(q16; q16)2
∞

(q2; q2)5
∞(q8; q8)∞

}
,

=
(q8; q8)5

∞
(q2; q2)2

∞(q16; q16)2
∞

+ 2q
(q4; q4)2

∞(q16; q16)2
∞

(q2; q2)2
∞(q8; q8)∞

.(6.4)

As before, we split the left-hand side of (6.4) into odd and even parts to obtain∑
n≥0

EO(4n)qn =
(q4; q4)5

∞
(q; q)2

∞(q8; q8)2
∞
,(6.5)

∑
n≥0

EO(4n+ 2)qn = 2
(q2; q2)2

∞(q8; q8)2
∞

(q; q)2
∞(q4; q4)∞

.(6.6)

Let us pause for a while and take a closer look at the identities in (6.5) and (6.6).
We see that the right-hand sides of each of these identities have a factor 1/(q; q)2

∞
multiplied and this allows us again to apply the 2-dissection formula of Lemma 4.5
in each of them. This yields∑

n≥0

EO(4n)qn =
(q4; q4)5

∞(q8; q8)3
∞

(q2; q2)5
∞(q16; q16)2

∞
+ 2q

(q4; q4)7
∞(q16; q16)2

∞
(q2; q2)5

∞(q8; q8)3
∞

,

∑
n≥0

EO(4n+ 2)qn = 2
(q8; q8)7

∞
(q2; q2)3

∞(q4; q4)∞(q16; q16)2
∞

+ 4q
(q4; q4)∞(q8; q8)∞(q16; q16)2

∞
(q2; q2)3

∞
.

The result now follows by comparing even and odd parts of the sums on both sides
of the above identities and q 7→ √q. �

Corollary 6.3.1. For all n ≥ 0 we have

EO(4n+ 2) ≡ 0 (mod 2),

EO(8n+ 4) ≡ 0 (mod 2),

EO(8n+ 6) ≡ 0 (mod 4).

Proof of Corollary 6.3.1. The result is immediate from Theorem 6.3 by comparing
coefficients on both sides. �

The next theorem gives us infinitely many congruences for EO(n). It can be
thought of as the odd-prime-power counterpart of Theorem 1.3 in the case k = 0
where instead of a p2n we have a pn on one side and a p3n on the other side of the
congruence.

Theorem 6.4. Let p ≥ 5 be a prime with p ≡ 2 (mod 3). Let r ∈ Z be such that
3r + 2 ≡ 0 (mod p). Then

EO
(
p3n+ pr +

2p− 1

3

)
≡ EO

(
pn+

3r + 2− p
3p

)
(mod 2).
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For (p, r) = (5, 11) and (p, r) = (5, 21) we obtain, for example, the following
congruences from Theorem 6.4 after replacing n 7→ 2n:

EO (250n+ 58) ≡ EO (10n+ 2) (mod 2),(6.7)

EO (250n+ 108) ≡ EO (10n+ 4) (mod 2).(6.8)

Proof of Theorem 6.4. We know that
∞∑
n=0

EO(n)qn =
(q4; q4)3

∞
(q2; q2)2

∞
≡ (q; q)8

∞ (mod 2),(6.9)

which yields upon substituting q 7→ q3

∞∑
n=0

EO(n)q3n+1 ≡ η8(3τ) (mod 2).(6.10)

Now let η8(3τ) =
∞∑
n=0

a(n)qn. Then it is clear that a(n) = 0 unless n ≡ 1 (mod 3).

Thus

EO(n) ≡ a(3n+ 1) (mod 2).(6.11)

By [8, Theorems 1.64 and 1.65, p. 18] we see that η8(3τ) ∈ S4 (9). From [10, Table
I, p. 4852], we know that η8(3τ) is a Hecke eigenform. Therefore, for a prime p we
have

η8(3τ)|Tp =

∞∑
n=0

(
a(pn) + p3a

(
n

p

))
qn = λ(p)

∞∑
n=0

a(n)qn.(6.12)

By comparing coefficents of qn on both sides of (6.12) we see that

a(pn) + p3a

(
n

p

)
= λ(p)a(n).(6.13)

Now choose n = 1 in (6.13) and note that a(1) = 1. This gives

λ(p) = a(p).

Let 5 ≤ p ≡ 2 (mod 3). Thus a(p) = λ(p) = 0 and from (6.13) we get

a(pn) + p3a

(
n

p

)
= 0.(6.14)

Modulo 2, (6.14) becomes

a(pn) ≡ a
(
n

p

)
(mod 2).(6.15)

In (6.15), we set n 7→ (3n+ 2) so that we have

a(3pn+ 2p) ≡ a
(

3n+ 2

p

)
(mod 2).(6.16)

We further set n 7→ p2n+ r such that p|(3r + 2) in (6.16). This yields

a(3p3n+ 3pr + 2p) ≡ a
(

3pn+
3r + 2

p

)
(mod 2).(6.17)

The result now follows from (6.11) and (6.17). We note here that since 5 ≤ p ≡
2 (mod 3) and p|(3r + 2), both (2p− 1)/3 and (3r + 2− p)/3p are integers. �



10 ANKUSH GOSWAMI AND ABHASH KUMAR JHA

7. Some results for EOu(n)

To begin with, we obtain a different interpretation of the function EOu(n), and
for that we start with the following identity:

Theorem 7.1 (Cauchy). For a ∈ C, |q| < 1, |t| < 1 we have

∞∑
n=0

(a; q)n
(q; q)n

tn =
(at; q)∞
(t; q)∞

.

We will now state our first result related to EOu(n) below.

Theorem 7.2. We have∑
n≥0

EOu(n)qn =
∑
n≥0

q2n

[(1− q2·2)(1− q2·4) · · · (1− q2·2n)]2(1− q2(2n+1))(1− q2(2n+2)) · · ·

The combinatorial interpretation of Theorem 7.2 is a follows.

Theorem 7.3. For n ≥ 1, EOu(n) represents the number of vector partitions
(π1, π2, π3) of n with the following properties:

(1) Every part in π1 is even and repeats an even number of times, except the
largest part which repeats an odd number of times.

(2) Every part in π2 is same as in π1 and they repeat an even number of times.
(3) Every part in π3 is bigger than every part of π1 (and hence π2) and they

repeat an even number of times.

Remark 7.4. We remark here that Theorem 7.3 can be combinatorially described
in terms of two vector partitions (π1, π2) where π1 is a certain weighted partition
and π2 is same as π3 in Theorem 7.3.

Proof of Theorem 7.2. We first replace q 7→ q4 in Theorem 7.1 and then put a =
t = q2 to obtain: ∑

n≥0

(q2; q4)n
(q4; q4)n

q2n =
(q4; q4)∞
(q2; q4)∞

,

which yields upon multiplying both sides by (q2; q2)−2
∞ the following:

1

(q2; q2)∞

∑
n≥0

(q2; q4)n
(q4; q4)n

q2n =
(q4; q4)2

∞
(q2; q2)2

∞
=
∑
n≥0

EOu(n)qn.(7.1)

Finally we show that the left-hand side in (7.1) is what we desire in the theorem.
For that we multiply the denominator and numerator of each summand in the
left-hand side of (7.1) by (q4; q4)n to get

1

(q2; q2)∞

∑
n≥0

(q2; q4)n
(q4; q4)n

q2n =
1

(q2; q2)∞

∑
n≥0

(q2; q2)2n

(q4; q4)2
n

q2n

=
∑
n≥0

q2n

(q4; q4)2
n(q2(2n+1); q2)∞

.

�
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Proof of Theorem 7.3. Let π1 and π2 denote all partitions generated as follows:

π1 :
q2n

(1− q2·2)(1− q2·4) · · · (1− q2·2n)
,

π2 :
1

(1− q2·2)(1− q2·4) · · · (1− q2·2n)
,

π3 :
1

(1− q2(2n+1))(1− q2(2n+2)) · · ·
.

Then it is clear that π1 and π2 satisfies the properties stated in Theorem 7.3. �

Finally we state and prove some congruences for EOu(n). We start with the
following theorem:

Theorem 7.5. ∑
n≥0

EOu(4n+ 2)qn = 2
(q2; q2)2

∞(q8; q8)2
∞

(q; q)3
∞(q4; q4)∞

.

Corollary 7.5.1. For all n ≥ 1 we have

EOu(4n+ 2) ≡ 0 (mod 2).

Proof of Theorem 7.5. We start with the generating function in (1.5) and apply the
2-dissection formula with q 7→ q2 of Lemma 4.5 to the far right-hand side of (1.5)
to obtain:∑
n≥0

EOu(n)qn = (q4; q4)2
∞

{
(q16; q16)5

∞
(q4; q4)5

∞(q32; q32)2
∞

+ 2q2 (q8; q8)2
∞(q32; q32)2

∞
(q4; q4)5

∞(q16; q16)∞

}
,

=
(q16; q16)5

∞
(q4; q4)3

∞(q32; q32)2
∞

+ 2q2 (q8; q8)2
∞(q32; q32)2

∞
(q4; q4)3

∞(q16; q16)∞
.(7.2)

Clearly, all the exponents of q in the right-hand side of (7.2) when expanded as
a power series are ≡ 0, 2 (mod 4). We now split the sum on the left-hand side
of (7.2) into four parts, where in each part all the exponents of q are either ≡
0, 1, 2, 3 (mod 4). Next, comparing both sides of (7.2) and changing q 7→ q1/4 we
get ∑

n≥0

EOu(4n)qn =
(q4; q4)5

∞
(q; q)3

∞(q8; q8)2
∞
,

∑
n≥0

EOu(4n+ 2)qn = 2
(q2; q2)2

∞(q8; q8)2
∞

(q; q)3
∞(q4; q4)∞

.(7.3)

Hence the result follows. �

Proof of Corollary 7.5.1. This is immediate from Theorem 7.5 by comparing coef-
ficients on both sides of the identity. �

The next theorem describes the odd parity of EOu(4n).

Theorem 7.6. For all n ≥ 1 we have

EOu(4 · ωn) ≡ EOu(4 · ω−n) ≡ 1 (mod 2).
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Proof of Theorem 7.6. We start with the first identity in (7.3). Modulo 2, the
identity becomes ∑

n≥0

EOu(4n)qn ≡ (q; q)∞ (mod 2).(7.4)

Using Theorem 4.2 in (7.4) we obtain∑
n≥0

EOu(4n)qn ≡ 1 +

∞∑
n=1

(−1)n(qωn + qω−n) (mod 2).(7.5)

The result now follows from (7.5). �

The following theorem yields infinitely many congruences for EOu, and is similar
in vein to Theorem 1.3 of Barman and Ray [4].

Theorem 7.7. For non-negative integers k, n, let for each 1 ≤ i ≤ k+1, pi denote
a prime such that 5 ≤ pi ≡ 5 (mod 6). Then for any integer j 6≡ 0 (mod pk+1) we
have

EOu
(
p2

1 · · · p2
k+1n+

p2
1 · · · p2

kpk+1(6j + pk+1)− 1

6

)
≡ 0 (mod 2).

For a prime p ≥ 5 with p ≡ 5 (mod 6), by specializing p1 = p2 = · · · = pk+1 = p,
we see from Theorem 7.7 that

EOu
(
p2(k+1)n+

p2k+1(6j + p)− 1

6

)
≡ 0 (mod 2).(7.6)

In particular, by choosing p = 5 and k = 0 in (7.6) we obtain

EOu(25n+ 5j + 4) ≡ 0 (mod 2).(7.7)

Proof of Theorem 7.7. We know that
∞∑
n=0

EOu(n)qn =
(q4; q4)2

∞
(q2; q2)2

∞
≡ (q; q)4

∞ (mod 2),(7.8)

which yields upon substituting q 7→ q6

∞∑
n=0

EO(n)q6n+1 ≡ η4(6τ) (mod 2).(7.9)

Now let η4(6τ) =
∞∑
n=0

b(n)qn. Then it is clear that b(n) = 0 unless n ≡ 1 (mod 6).

Thus

EOu(n) ≡ b(6n+ 1) (mod 2).(7.10)

By [8, Theorems 1.64 and 1.65, p. 18] we see that η4(6τ) ∈ S2 (36). From [10,
Table I, p. 4852], we know that η4(6τ) is a Hecke eigenform so that for a prime p
if Tp is the Hecke operator, then

η4(6τ)|Tp =

∞∑
n=0

(
b(pn) + pb

(
n

p

))
qn = λ(p)

∞∑
n=0

b(n)qn.(7.11)

By comparing coefficients of qn on both sides of (7.11) we see that

b(pn) + pb

(
n

p

)
= λ(p)b(n).(7.12)
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Now choose n = 1 in (7.12) and note that b(1) = 1. This gives

λ(p) = b(p).

Let 5 ≤ p ≡ 5 (mod 6). Thus b(p) = λ(p) = 0 and from (7.12) we get

b(pn) + pb

(
n

p

)
= 0.(7.13)

We now set n 7→ pn+ r where (p, r) = 1. Thus (7.13) yields

b(p2n+ pr) = 0,(7.14)

and setting n 7→ pn yields modulo 2

b(p2n) ≡ b(n) (mod 2).(7.15)

Again, substituting n by 6n− pr + 1 in (7.14) and together with (7.10) we get

EOu
(
p2n+

p2 − 1

6
− pr p

2 − 1

6

)
≡ 0 (mod 2),(7.16)

and substituting n by 6n+ 1 in (7.15) and using (7.10) we get

EOu
(
p2n+

p2 − 1

6

)
≡ EOu(n) (mod 2).(7.17)

Since p ≥ 5, it follows that 6|(1 − p2) and ( 1−p2
6 , p) = 1. Hence when r runs

over a residue system excluding multiples of p, so does 1−p2
6 r. Thus (7.16) can be

rewritten as

EOu
(
p2n+

p2 − 1

6
+ pj

)
≡ 0 (mod 2),(7.18)

where (j, p) = 1. Next, for each 1 ≤ i ≤ k let pi ≥ 5 be primes such that
pi ≡ 5 (mod 6). Since

p2
1 · · · p2

kn+
p2

1 · · · p2
k − 1

6
= p2

1

(
p2

2 · · · p2
kn+

p2
2 · · · p2

k − 1

6

)
+
p2

1 − 1

6
,

by repeatedly applying (7.17) we obtain

EOu
(
p2

1 · · · p2
kn+

p2
1 · · · p2

k − 1

6

)
≡ EOu(n) (mod 2).(7.19)

Finally let pk+1 ≥ 5 be a prime and j be such that (j, pk+1) = 1. Then (7.18) and
(7.19) yield the theorem. �

Finally, we state and prove the following counterpart to Theorem 7.7, similar in
vein to Theorem 6.4.

Theorem 7.8. Let p ≥ 5 be any prime such that p ≡ 5 (mod 6). Let r ∈ Z be such
that 6r + 5 ≡ 0 (mod p). Then

EOu
(
p3n+ pr +

5p− 1

6

)
≡ EOu

(
pn+

6r + 5− p
6p

)
(mod 2).
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For (p, r) = (5, 5) and (p, r) = (5, 10) we obtain, for example, the following
congruences from Theorem 7.8 after replacing n 7→ 2n + 1 in the first case and
n 7→ 2n in the second case:

EOu (250n+ 154) ≡ EOu (10n+ 6) (mod 2),(7.20)

EOu (250n+ 54) ≡ EOu (10n+ 2) (mod 2).(7.21)

Proof of Theorem 7.8. We know that
∞∑
n=0

EOu(n)qn =
(q4; q4)2

∞
(q2; q2)2

∞
≡ (q; q)4 (mod 2),(7.22)

which yields upon substituting q 7→ q6

∞∑
n=0

EOu(n)q6n+1 ≡ η4(6τ) (mod 2).(7.23)

Now let η4(6τ) =
∞∑
n=0

b(n)qn. Then it is clear that b(n) = 0 unless n ≡ 1 (mod 6).

Thus

EOu(n) ≡ b(6n+ 1) (mod 2).(7.24)

By [8, Theorems 1.64 and 1.65, p. 18] we see that η4(6τ) ∈ S2 (36). From [10,
Table I, p. 4852], we know that η4(6τ) is a Hecke eigenform. Therefore, for a prime
p we have

η4(6τ)|Tp =

∞∑
n=0

(
b(pn) + pb

(
n

p

))
qn = λ(p)

∞∑
n=0

b(n)qn.(7.25)

By comparing coefficients of qn on both sides of (7.25) we see that

b(pn) + pb

(
n

p

)
= λ(p)b(n).(7.26)

Now choose n = 1 in (7.26) and note that b(1) = 1. This gives

λ(p) = b(p).

Let 5 ≤ p ≡ 5 (mod 6). Thus b(p) = λ(p) = 0 and from (7.26) we get

b(pn) + pb

(
n

p

)
= 0.(7.27)

Modulo 2, (7.27) becomes

b(pn) ≡ b
(
n

p

)
(mod 2).(7.28)

In (7.28), we set n 7→ (6n+ 5) so that we have

b(6pn+ 5p) ≡ b
(

6n+ 5

p

)
(mod 2).(7.29)

We further set n 7→ p2n+ r such that p|(6r + 5) in (7.29). This yields

b(6p3n+ 6pr + 5p) ≡ b
(

6pn+
6r + 5

p

)
(mod 2).(7.30)

The result now follows from (7.24) and (7.30). We note here that since 5 ≤ p ≡
5 (mod 6) and p|(6r + 5), both (5p− 1)/6 and (6r + 5− p)/6p are integers. �
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8. Concluding remarks

Computation suggests the following congruences although we are unable to
prove/disprove them at this point:

EO(10n+ 2) ≡ EO(10n+ 4) ≡ 0 (mod 2).

Similar congruences are suggested for EOu(n) as follows:

EOu(10n+ 2) ≡ EOu(10n+ 6) ≡ 0 (mod 2).

Our inability to prove the above congruences lies in the very fact that certain type
of coefficients in the corresponding powers of η-functions do not necessarily vanish
and the above congruences correspond exactly to those coefficients which do not
necessarily vanish modulo 2.

Our guess is one might use a higher dissection than the 2-dissection we used
here to prove these congruences. In fact, a 5-dissection formula might be needed
to prove the above congruences.
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