
A sequence of polynomials generated

by a Kapteyn series of the second kind

Diego Dominici Veronika Pillwein

DK-Report No. 2019-05 05 2019

A–4040 LINZ, ALTENBERGERSTRASSE 69, AUSTRIA

Supported by

Austrian Science Fund (FWF) Upper Austria



Editorial Board: Bruno Buchberger
Evelyn Buckwar
Bert Jüttler
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A sequence of polynomials generated

by a Kapteyn series of the second kind

Diego Dominici∗ Veronika Pillwein†

Abstract

In this paper, we find an explicit representation for a Kapteyn series of the second kind
in terms of a family of polynomials Pn(x). We also use symbolic computation methods
to find a recurrence relation that allows fast calculation of the coefficients of Pn(x).

1 Introduction

Series of the form
∞∑
n=0

ανnJν+n [(ν + n) z] , (1)

and
∞∑
n=0

αµ,νn Jµ+n [(µ+ ν + 2n) z] Jν+n [(µ+ ν + 2n) z] , (2)

where µ, ν ∈ C and Jn (z) is the Bessel function of the first kind [18, 10.2.2]

Jν (z) =
∞∑
n=0

(−1)n

Γ (ν + n+ 1)n!

(z
2

)ν+2n
,

are called Kapteyn series of the first kind and Kapteyn series of the second kind respectively.
The first researcher to investigate such series in a systematic way was Willem Kapteyn

(not to be confused with his brother Jacobus Cornelius Kapteyn) in the articles [8] and [9].
Most of the early work on Kapteyn series can be found in the books by Niels Nielsen [16,
Chapter XXII] and George Neville Watson [21, Chapter 17]. For additional properties, see
[3], [4], [19], [20], and especially the very recent book [1].

Applications of Kapteyn series to problems in physics can be found in [6], [13], [14], and
[15].

In [5], we considered the functions gn (z) defined by

∞∑
k=0

k2n J2k (2kz) = gn (z) =

∞∑
k=0

bn,k z
2k, n ∈ N0, (3)

∗e-mail: diego.dominici@dk-compmath.jku.at, Johannes Kepler University Linz, Doktoratskolleg “Com-
putational Mathematics”, Altenberger Straße 69, 4040 Linz, Austria; Permanent address: Department of
Mathematics, State University of New York at New Paltz, 1 Hawk Dr., New Paltz, NY 12561-2443, USA
†e-mail: veronika.pillwein@risc.jku.at, RISC, JKU Linz, Altenberger Straße 69, 4040 Linz, Austria
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where N denotes the set of natural numbers and

N0 = N ∪ {0} = {0, 1, 2, . . .} .

We computed the first few gn (z) and obtained

g0 (z) =
1

2
+

1

2
√

1− 4z2
, g1 (z) =

z2
(
1 + z2

)
(1− 4z2)

7
2

,

g2 (z) =
z2
(
1 + 37z2 + 118z4 + 27z6

)
(1− 4z2)

13
2

,

g3 (z) =
z2
(
1 + 217z2 + 5036z4 + 23630z6 + 22910z8 + 2250z10

)
(1− 4z2)

19
2

,

which seemed to suggest that gn (z) should be of the form

gn (z) =
Pn
(
z2
)

(1− 4z2)3n+
1
2

+
1

2
δn,0, n ∈ N0, (4)

where Pn (x) ∈ R [x], deg (Pn) = 2n, and δn,k is Kronecker’s delta, defined by

δn,k =

{
1, n = k
0, n 6= k

.

The purpose of this paper is to show that this conjecture is true.

2 The coefficients bn,k

The Bessel functions of the first kind have the hypergeometric representation [18, 10.16.9]

Jν (z) =
1

Γ (ν + 1)

(z
2

)ν
0F1

(
−

ν + 1
;−z

2

4

)
,

where pFq denotes the generalized hypergeometric function defined by [18, 16.2.1]

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
,

and (x)n is the Pochhammer symbol (also called shifted or rising factorial) defined by [18,
5.2(iii)] (x)0 = 1 and

(x)n = x (x+ 1) · · · (x+ n− 1) , n ∈ N,

or as the ratio of two Gamma functions

(x)n =
Γ (x+ n)

Γ (x)
, − (x+ n) /∈ N0.

To begin, we find some representations of the coefficients bn,k appearing in the Taylor
series (3).
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Proposition 1 Let bn,k be defined by

∞∑
k=0

k2nJ2k (2kz) =
∞∑
k=0

bn,k z
2k, |z| < 1

2
.

Then,

bn,k =

(
2k

k

) k∑
j=0

(−1)k−j

(k + j)! (k − j)!
j2k+2n, n, k ∈ N0. (5)

Proof. If we use the identity [18, 16.12.1]

0F1

(
−
a

; z

)
0F1

(
−
b

; z

)
= 2F3

(
a+b
2 , a+b−12

a, b, a+ b− 1
; 4z

)
,

we see that

J2ν (z) =
1

Γ2 (ν + 1)

(z
2

)2ν
2F3

(
ν + 1, ν + 1

2
ν + 1, ν + 1, 2ν + 1

;−z2
)

=
1

Γ2 (ν + 1)

(z
2

)2ν
1F2

(
ν + 1

2
ν + 1, 2ν + 1

;−z2
)
.

Therefore, we have

gn (z) =
∞∑
k=0

k2k+2n z2k

(k!)2
1F2

(
k + 1

2
k + 1, 2k + 1

;−4k2z2
)

=

∞∑
k=0

k2k+2n z2k

(k!)2

∞∑
l=0

(
k + 1

2

)
l

(k + 1)l (2k + 1)l

(
−4k2z2

)l
l!

=

∞∑
k=0

∞∑
l=0

z2(k+l)
(
k + 1

2

)
l

(k!)2 (k + 1)l (2k + 1)l

(−4)l

l!
k2(k+l+n).

Setting k + l = j, we get

gn (z) =

∞∑
k=0

z2k
k∑
j=0

1

(j!)2

(
j + 1

2

)
k−j

(j + 1)k−j (2j + 1)k−j

(−4)k−j

(k − j)!
j2k+2n

Thus,

bn,k =

k∑
j=0

1

(j!)2

(
j + 1

2

)
k−j

(j + 1)k−j (2j + 1)k−j

(−4)k−j

(k − j)!
j2k+2n.

To simplify the expression, let’s write

w (j) =
1

(j!)2

(
j + 1

2

)
k−j

(j + 1)k−j (2j + 1)k−j

(−4)k−j

(k − j)!
.

Then,

w(0) =

(
1
2

)
k

(4)k

(k!)2
,
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and
w (j + 1)

w (j)
=

(j + 1)2

k + j + 1
.

Using the identity [18, 5.2.8]

(x)2n = 4n
(x

2

)
n

(
x+ 1

2

)
n

,

with x = 1, we obtain (
1
2

)
k

(4)k

(k!)2
=

1

(k!)2
(1)2k
(1)k

=
(2k)!

(k!)3
=

(
2k

k

)
1

k!
.

We conclude that

w (j) =

(
2k

k

)
1

k!

j−1∏
i=0

(i+ 1)2

k + i+ 1
=

(
2k

k

)
(j!)2

(k + j)!
,

and the result follows.

Remark 2 Note that
bn,0 = 02n = δn,0.

Proposition 3 Let bn,k be defined by (5). Then,

bn,k =
1

2

(
2k

k

) 2k∑
j=0

(−1)2k−j

j! (2k − j)!
(k − j)2k+2n +

1

2
δn+k,0. (6)

Proof. We have

k∑
j=0

(−1)k−j

(k + j)! (k − j)!
j2k+2n =

k∑
j=0

(−1)j

(2k − j)!j!
(k − j)2k+2n , j → k − j.

Also,
k∑
j=0

(−1)k−j

(k + j)! (k − j)!
j2k+2n =

2k∑
j=k

(−1)2k−j

j! (2k − j)!
(j − k)2k+2n .

Thus,

2
k∑
j=0

(−1)k−j

(k + j)! (k − j)!
j2k+2n =

2k∑
j=0

(−1)j

(2k − j)!j!
(k − j)2k+2n +

(−1)k

(k!)2
02(k+n),

and we obtain

bn,k =
1

2

(
2k

k

) 2k∑
j=0

(−1)j

(2k − j)!j!
(k − j)2k+2n +

1

2
δn+k,0.

Next, we analyze the summand in the representation (6).
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Lemma 4 Let the functions qn (k) be defined by

qn (k) =
2k∑
j=0

(−1)2k−j

j! (2k − j)!
(k − j)2k+2n , n, k ∈ N0. (7)

Then, we can write qn (k) as the forward difference of a polynomial

qn (k) =
1

(2k)!
∆2k
x

[
(x− k)2k+2n

]
x=0

. (8)

Proof. The forward difference operator (with respect to x) ∆x is defined by

∆xf (x) = f (x+ 1)− f (x) . (9)

Iterating (9), one obtains an expression for the m-th order forward difference of a function

∆m
x f (x) =

m∑
j=0

(
m

j

)
(−1)m−j f (x+ j) . (10)

Comparing (7) with (10), the result follows.

The Stirling numbers of the second kind are defined by [18, 26.8.6]{
n

k

}
=

1

k!

k∑
j=0

(
k

j

)
(−1)k−j jn =

1

k!

[
∆k
xx

n
]
x=0

.

They have many amazing properties, including:
1) The exponential generating function [18, 26.8.12]

∞∑
n=0

{
n

k

}
tn

n!
=

(
et − 1

)k
k!

.

Since
{
n
k

}
= 0, for k > n, we can write

∞∑
n=0

{
n

k

}
tn

n!
=
∞∑
n=k

{
n

k

}
tn

n!
=
∞∑
n=0

{
n+ k

k

}
tn+k

(n+ k)!
,

and therefore
∞∑
n=0

{
n+ k

k

}
tn

(n+ k)!
=

1

k!

(
et − 1

t

)k
. (11)

2) The difference-differential transformation [18, 26.8.37]

1

k!
∆k
x =

∞∑
n=0

{
n

k

}
1

n!

dn

dxn
. (12)
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Remark 5 In the next results, we will need some material from the theory of generating
functions (see [22] for additional information).

1) Given a generating function

F (z) =
∞∑
n=0

anz
n, (13)

we define [zn]F (z) to be the coefficient of zn in the Maclaurin series of F (z) , i.e.,

[zn]F (z) = an. (14)

2) The even part of the generating function (13) is given by

F (z) + F (−z)
2

=
∞∑
n=0

a2nz
2n. (15)

3) Given two sequences defined by their generating functions

F (z) =
∞∑
n=0

anz
n, G (z) =

∞∑
n=0

bnz
n,

the Cauchy product of the sequences is defined by(aj ∗ bj)n =

n∑
j=0

ajbn−j . The generating func-

tion of the Cauchy product of two sequences is the product of their generating functions,

∞∑
n=0

(aj ∗ bj)n zn = F (z)G (z) . (16)

We have now all the elements to get new representations of the functions qn (k) .

Proposition 6 Let qn (k) be defined by (7). Then,

qn (k) =
2n∑
j=0

{
j + 2k

2k

}(
2n+ 2k

2n− j

)
(−k)2n−j . (17)

Proof. Using (12) in (8), we have

qn (k) =
∞∑
j=0

{
j

2k

}
1

j!

[
dj

dxj
(x− k)2k+2n

]
x=0

.

But

1

j!

[
dj

dxj
(x− k)2k+2n

]
x=0

=
[
xj
]

(x− k)2k+2n

=
[
xj
] 2k+2n∑

j=0

(
2k + 2n

j

)
xj (−k)2k+2n−j =

(
2k + 2n

j

)
(−k)2k+2n−j ,

6



where
[
xj
]

was defined in (14).
Therefore,

qn (k) =
∞∑
j=0

{
j

2k

}
1

j!

(
2k + 2n

j

)
(−k)2k+2n−j .

However, since {
j

2k

}(
2k + 2n

j

)
= 0, j > 2k + 2n,

we have

qn (k) =
2k+2n∑
j=2k

{
j

2k

}
1

j!

(
2k + 2n

j

)
(−k)2k+2n−j =

2n∑
j=0

{
j + 2k

2k

}(
2n+ 2k

j + 2k

)
(−k)2n−j ,

and the result follows from the identity [18, 26.3.1](
n

k

)
=

(
n

n− k

)
.

Corollary 7 Let qn (k) be defined by (7). Then, qn (k) = (2k + 1)2n rn (k) , where rn (k) is
defined by

rn (k) =
2n∑
j=0

{
2k + j

2k

}
(2k)!

(2k + j)!

(−k)2n−j

(2n− j)!
. (18)

In particular, the first few rn (k) are given by,

r0 (k) = 1, r1 (k) =
k

12
, r2 (k) =

k (5k − 1)

360
. (19)

Proof. Since(
2n+ 2k

2n− j

)
=

Γ (2n+ 2k + 1)

(2k + j)! (2n− j)!
= (2k + 1)2n

Γ (2k + 1)

(2k + j)! (2n− j)!
,

the result follows from (17).

Next, we find a generating function for the sequence rn (k) .

Proposition 8 Let rn (k) be defined by (18). Then, rn (k) has the ordinary generating func-
tion

∞∑
n=0

rn (k) t2n =

[
2

t
sinh

(
t

2

)]2k
. (20)

Proof. Let

Rk (t) =

∞∑
n=0

rn (k) t2n.

7



From (18), we see that we can write rn (k) as a Cauchy product

rn (k) = (2k)!

({
2k + j

2k

}
1

(2k + j)!
∗ (−k)j

j!

)
2n

.

Using (15), we get

1

(2k)!
Rk (t) =

∞∑
n=0

t2n

({
2k + j

2k

}
1

(2k + j)!
∗ (−k)j

j!

)
2n

=
Gk (t) +Gk (−t)

2
,

where

Gk (t) =

∞∑
n=0

tn

({
2k + j

2k

}
1

(2k + j)!
∗ (−k)j

j!

)
n

=

 ∞∑
j=0

{
2k + j

2k

}
tj

(2k + j)!

 ∞∑
j=0

(−k)j

j!
tj

 ,
after using (16).

From (11), we have

∞∑
n=0

{
n+ 2k

2k

}
tn

(n+ 2k)!
=

1

(2k)!

(
et − 1

t

)2k

,

and clearly
∞∑
j=0

(−k)j

j!
tj = e−kt.

Thus,

(2k)!Gk (t) =

(
et − 1

t

)2k

e−kt =

(
et − 1

t

)2k

e−2k
t
2 =

(
e

t
2 − e−

t
2

t

)2k

,

and we conclude that

Gk (t) =
1

(2k)!

[
2

t
sinh

(
t

2

)]2k
.

Since 2
t sinh

(
t
2

)
is an even function, we get

Rk (t) = (2k)!
Gk (t) +Gk (−t)

2
=

[
2

t
sinh

(
t

2

)]2k
.

Corollary 9 Let rn (k) be defined by (18). Then, rn ∈ Q [k] and deg (rn) = n.

Proof. From (20), we have

∞∑
n=0

rn (x+ y) t2n =

[
2

t
sinh

(
t

2

)]2(x+y)
=

[
2

t
sinh

(
t

2

)]2x [2

t
sinh

(
t

2

)]2y
,

8



and using (16) we get

rn (x+ y) =
n∑
j=0

rj (x) rn−j (y) . (21)

In particular, setting y = 1

∆xrn (x) = rn (x+ 1)− rn (x) =

n−1∑
j=0

rn−j (1) rj (x) ,

where we have used (19). Using induction, the result follows.

To summarize, in this section, we have shown that

bn,k =
1

2

(
2k

k

)
qn (k) +

1

2
δn+k,0

and
qn (k) = (2k + 1)2n rn (k) ,

where rn ∈ Q [k] and deg (rn) = n.

3 Main result

In this section, we use our previous results to prove (4). We start with a few formulas that
we will need in the sequel.

Lemma 10 For all j, k, n ∈ N0, we have(
3n+ 1

2

k − j

)
(−4)k−j

(
2j

j

)
(2j + 1)2n (22)

=
4n+k

k!

(
1

2

)
3n+1

(
k

j

)
(−1)k−j

(
j − k + 3n+

3

2

)
k−2n−1

(j + 1)n .

Proof. We have(
3n+ 1

2

k − j

)
(−4)k−j

(
2j

j

)
(2j + 1)2n = (−4)k−j

Γ
(
3n+ 3

2

)
Γ (2j + 2n+ 1)

j! (k − j)!Γ
(
3n+ 3

2 − k + j
)

Γ (j + 1)

and

4n+k

k!

(
1

2

)
3n+1

(
k

j

)
(−1)k−j

(
j − k + 3n+

3

2

)
k−2n−1

(j + 1)n

= (−1)k−j 4n+k
Γ
(
3n+ 3

2

)
Γ
(
j + n+ 1

2

)
Γ (j + n+ 1)

j! (k − j)!Γ
(
1
2

)
Γ
(
j − k + 3n+ 3

2

)
Γ (j + 1)

.

Hence, we need to show that

4−jΓ (2j + 2n+ 1) = 4n
Γ
(
j + n+ 1

2

)
Γ (j + n+ 1)

Γ
(
1
2

) .

9



But this is a direct consequence of the duplication formula for the Gamma function [18, 5.5.5]

Γ (2z) =
22z−1

Γ
(
1
2

)Γ (z) Γ

(
z +

1

2

)
. (23)

Proposition 11 For all j ∈ N0 we have

∞∑
k=0

(
2k

k

)(
k

j

)
zk =

(
2j

j

)
zj

(1− 4z)j+
1
2

, |4z| < 1. (24)

Proof. Since
(
k
j

)
= 0 for k < j, we can write

∞∑
k=0

(
2k

k

)(
k

j

)
zk =

∞∑
k=j

(
2k

k

)(
k

j

)
zk

=

∞∑
k=0

(
2k + 2j

k + j

)(
k + j

j

)
zk+j =

zj

j!

∞∑
k=0

Γ (2k + 2j + 1)

Γ (k + j + 1)

zk

k!
.

From (23), we get

Γ (2k + 2j + 1)

Γ (k + j + 1)
= 4k+j

Γ
(
k + j + 1

2

)
Γ
(
1
2

) = 4k+j
(

1

2

)
k+j

. (25)

Using the identity [17, 18:5:12]

(x)m+n = (x)m (x+m)n

we have (
1

2

)
k+j

=

(
j +

1

2

)
k

(
1

2

)
j

and therefore [17, 18:3:4]

∞∑
k=0

(
2k

k

)(
k

j

)
zk = zj

(4)j

j!

(
1

2

)
j

∞∑
k=0

(
j +

1

2

)
k

(4z)k

k!
= zj

(4)j

j!

(
1

2

)
j

(1− 4z)j+
1
2 .

But if we read (25) as

(k + j + 1)k+j = 4k+j
(

1

2

)
k+j

,

we get
(4)j

j!

(
1

2

)
j

=
(j + 1)j

j!
=

(
2j

j

)
and the result follows.
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Corollary 12 Let um (k) be a polynomial in k of degree m. Then,

∞∑
k=0

(
2k

k

)
um (k) zk =

Um (z)

(1− 4z)m+ 1
2

,

where Um (z) is a polynomial in z with deg (Um) ≤ m.

Proof. Let’s write um (k) in the basis of binomial polynomials.

um (k) =

m∑
j=0

am,j

(
k

j

)
.

Using (24), we get

∞∑
k=0

(
2k

k

)
um (k) zk =

m∑
j=0

am,j

(
2j

j

)
zj

(1− 4z)j+
1
2

=
1

(1− 4z)m+ 1
2

m∑
j=0

am,j

(
2j

j

)
zj (1− 4z)m−j ,

and we conclude that

Um (z) =
m∑
j=0

am,j

(
2j

j

)
zj (1− 4z)m−j .

We can now prove our main result.

Theorem 13 Let rn (k) be a polynomial in k of degree n and Pn (z) be defined by

Pn (z) = (1− 4z)3n+
1
2

∞∑
k=0

(
2k

k

)
(2k + 1)2n rn (k) zk.

Then, Pn (z) is a polynomial in z of degree 2n.

Proof. We know from Corollary 12 that Pn (z) is a polynomial with deg (Pn) ≤ 3n. Thus,
we write

Pn (z) =

3n∑
j=0

cn,j z
j .

Using the Cauchy product between power series, we have

cn,k =

k∑
j=0

(
3n+ 1

2

k − j

)
(−4)k−j

(
2j

j

)
(2j + 1)2n rn (j) .

From (22), we get

cn,k =
4n+k

k!

(
1

2

)
3n+1

k∑
j=0

(
k

j

)
(−1)k−j

(
j − k + 3n+

3

2

)
k−2n−1

(j + 1)n rn (j) ,

11



which we can write as the finite difference

cn,k =
4n+k

k!

(
1

2

)
3n+1

[
∆k
xCn,k (x)

]
x=0

,

where

Cn,k (x) =

(
x− k + 3n+

3

2

)
k−2n−1

(x+ 1)n rn (x) .

Cn,k (x) is a polynomial of degree k − 1 for k ≥ 2n+ 1 and therefore

∆k
xCn,k (x) = 0, k ≥ 2n+ 1.

We conclude that cn,k = 0 for k > 2n, and the result is proved.

4 Symbolic Computation

In this section we apply computer algebra methods to derive furter results about the coefficient
sequence cn,k. Using algorithms for symbolic summation, it is possible to discover and prove
a recurrence relation for fast computation of these coefficients. As a side result, we obtain a
simple closed form for the leading coefficients that would otherwise not be easily discoverd.

Holonomic functions form a class of functions for which a wide variety of algorithms
is available to discover and prove non-trivial identities. In one variable, they are functions
satisfying a linear difference or differential equation with polynomial coefficients. The classical
(continuous) orthogonal polynomials are honolomic both in the degree n (satisfying a three
term recurrence) and in the variable x (satisfying a second ordinary differential equation)
and also holonomic as multivariate functions in n and x. For a non-expert introduction to
holonomic functions in one and several variables as well as some algorithms for them, see [11].

Stirling numbers are an example for a sequence that is just outside the class of holo-
nomic functions. They also satisfy recurrence relations, but of a different type. Methods
like automated guessing of recurrence based on given data can certainly also be applied to
Stirling-type sequences, however tools for symbolic summation will not work the same way.
There has been work on extending these algorithms [2] and these methods are also imple-
mented in the Mathematica package HolonomicFunctions [12] by Christoph Koutschan. The
sequence bn,k defined in (3) is of this Stirling-type and below we use automated guessing and
a variation of Zeilberger’s algorithm [23] to derive recurrence relations for it. The Mathe-
matica notebook containing all computations carried out in this notebook can be found at
https://www3.risc.jku.at/people/vpillwei/kapteyn/.

As a first step, we compute a recurrence relation for bn,k using HolonomicFunctions. There
are different ways to write the sequence and it does make a difference for the algorithm. We
use the definition (5),

bn,k =

(
2k

k

) k∑
j=0

(−1)k−j

(k + j)! (k − j)!
j2k+2n, n, k ∈ N0,

instead of one involving Stirling numbers. Using the command

Annihilator[b[n, k], {S[n], S[k]}]

12



in HolonomicFunctions gives the recurrence,

(−k − 1)SnSk + 2(2k + 1)Sn + (k + 1)3Sk = 0.

The output is in operator form, where Sm denotes the forward shift in the variable m. The
recurrence then reads as stated in the following lemma. To avoid the case distinction with the
Kronecker delta for the case of both n and k being zero, in the following we always assume
that k ≥ 1. Note that bn,0 = 0 for n ≥ 1. Hence, we may even consider n, k ≥ 1.

Lemma 14 Let the sequence bn,k be defined by (5). Then,

(k + 1)bn+1,k+1 = 2(2k + 1)bn+1,k + (k + 1)3bn,k+1, n ≥ 0, k ≥ 1,

with initial values

bn,1 = 1, b0,k =
1

2

(
2k

k

)
.

Proof. The recurrence can be derived as shown above and the initial values bn,1 are trivially

verified for k ≥ 1. It remains to show that b0,k = 1
2

(
2k
k

)
. For this first observe that for n = 0

and k ≥ 1 we can rewrite

k∑
j=0

(−1)k−j

(k + j)! (k − j)!
j2k+2n =

1

2

1

(2k)!

2k∑
j=0

(
2k

k

)
(−1)j(k − j)2k.

Here we first reverse the order of summation and then using the fact that k ≥ 1 extend the
summation symmetrically to go up to j = 2k. Note that for j = k the summand vanishes if
k ≥ 1. Using [7, (5.42)]

m∑
j

(
m

j

)
(−1)j(a0 + a1j + · · ·+ amj

m) = (−1)mm!am,

the result follows with m = 2k and a2k = 1.

The objects we are actually interested in are the polynomials Pn(z) in the numerator of
gn(z). Recall that they were defined as

Pn(z) = (1− 4z)3n+1/2
∑
k≥1

bn,kz
k =

∑
k≥1

cn,kz
k,

with

cn,k =

k∑
j=1

(−3n− 1
2)k−j

(k − j)!
4k−jbn,j =

k∑
j=1

an,k−jbn,j . (26)

In order to derive a recurrence relation for the coefficient sequence cn,k we employ creative
telescoping [24]. The basic principle is as follows: given the summand

f(n, k, j) = an,k−jbn,j ,

an operator of the form
A+ (Sj − 1)D

13



is determined that annihilates the input, i.e., when applied to the summand f(n, k, j) gives
zero. Moreover, A has coefficients depending only on n and k and not on the summation
variable j and uses only shifts of f in n and k, i.e.,

A =
∑
a,b

γa,b(n, k)SanS
b
k.

Because of the nature of this operator and the factor ∆j = Sj−1 in front of the second operator
D, one can sum over the equation and the delta-part can be evaluated using telescoping. In
the ideal case, the summand has natural boundaries and the delta-part telescopes to zero. In
this case the final recurrence for the sum is just A · cn,k = 0. But even in a less lucky case, at
least an inhomogeneous recurrence can be determined that possibly can be simplified further.
Indeed, this is the case in our application.

The method of creative telescoping is implemented in the package HolonomicFunctions,
even for the non-holonomic case. However, the size of the input for cn,k is too large and the
computations are very expensive. However, it is possible to guess a recurrence for cn,k first
and use the support of the guessed recurrence as an input for creative telescoping. This speeds
up the process considerably as the ansatz becomes much smaller. Of course the procedure is
still rigorous - if there would not be an operator of this form, HolonomicFunctions will return
the empty set.

For guessing we use the Mathematica implementation of Manuel Kauers [10] and find that

(k + 3)cn+1,k+3 − (k + 3)3cn,k+3 − 4(k − 3n− 1)cn+1,k+2

+ 2
(
6k3 − 18k2n+ 33k2 − 90kn+ 57k − 114n+ 29

)
cn,k+2

− 4
(
12k3 − 72k2n+ 24k2 + 108kn2 − 144kn+ 9k + 216n2 − 24n+ 2

)
cn,k+1

+ 8(2k − 6n− 1)3cn,k = 0, n, k ≥ 1.

(27)

From this we obtain an input for the support of the shifts in n and k in the method Cre-
ativeTelescoping of HolonomicFunctions. Once more note that a notebook with all these
calculations can be downloaded and checked.

Given the summand as an,k−jbn,k in terms of their defining annihilators and the support

{1, S(k), S(k)2, S(k)3, S(k)2S(n), S(k)3S(n)}

as an input, CreativeTelescoping returns the two following operators

A = (k + 3)S3
k Sn − (k + 3)3S3

k − 4(k − 3n− 1)S2
k Sn

+ 2
(
6k3 − 18k2n+ 33k2 − 90kn+ 57k − 114n+ 29

)
S2
k

− 4
(
12k3 − 72k2n+ 24k2 + 108kn2 − 144kn+ 9k + 216n2 − 24n+ 2

)
Sk

+ 8(2k − 6n− 1)3,

which is the operator form of recurrence (26) above, and

D =
8j(2j − 2k + 6n+ 3)(2j − 2k + 6n+ 5)(2j − 2k + 6n+ 7)

(j − k − 3)(j − k − 2)(j − k − 1)
Sn

− 24j3(2n+ 1)(6n+ 5)(6n+ 7)

(j − k − 3)(j − k − 2)(j − k − 1)

14



n

k

Figure 1: Recurrence for cn,k.

for the delta part. In this case, we run into two difficulties. First, the summand cn,k does not
have natural bounds for summation, i.e., it does not vanish outside the range of summation.
On the other hand, we cannot sum j up to k+ 3 as we run into poles. Hence, we proceed by
summing from j = 1 to k − 1 over the equation

A · (an,k−jbn,j) + (Sj − 1)D · (an,k−jbn,j) = 0.

In order to obtain a recurrence for cn,k we have to add and subtract the missing summands in

the first part
∑k−1

j=1 A · (an,k−jbn,j). As bn,k is given as a sum itself, it is easier to plug in only
an,k−j explicitely and use the recurrence satisfied by bn,k to simplify the equations. All this
can be executed automatically in HolonomicFunctions. However all steps can also be easily
veryfied using paper and pencil.

Theorem 15 Let cn,k be defined by (26), then for n, k ≥ 1, the sequence satisfies the recur-
rence (26) with initial values

cn,1 = 1, cn,2 = 22n+2 − 3(4n+ 1), cn,2n = 24n−1
(1/2)3n
n!

, cn,k = 0, k ≥ 1.

Proof. The recurrence can be computed as described above with computational details in the
accompanying Mathematica notebook available at https://www3.risc.jku.at/people/vpillwei/kapteyn/.
The initial values cn,1 and cn,2 follow easily by plugging in the formula (26). In order to com-
pute cn,2n, first we plug in k = 2n in the recurrence relation (26) and obtain

0 = −8
(
12n3 + 12n2 − 3n+ 1

)
cn,2n+1 − 2

(
24n3 + 48n2 − 29

)
cn,2n+2

− 8(2n+ 1)3cn,2n − (2n+ 3)3cn,2n+3 + 4(n+ 1)cn+1,2n+2 + (2n+ 3)cn+1,2n+3.

Next, observe that cm,k = 0 for k ≥ 2m+ 1 by Theorem 13. Hence, cn,2n+1, cn,2n+2, cn,2n+3,
and cn+1,2n+3 are all zero and the relation above simplifies to

4(n+ 1)cn+1,2n+2 − 8(2n+ 1)3cn,2n = 0.

This recurrence can easily be solved and with c1,2 = 1 we obtain the result above.

Note that this recurrence with the given initial values can actually be used to compute
the sequence cn,k. In Fig. 1 the support of the recurrence is indicated by circles around the

15



dots in the lattice, the dark gray area are the indices for which cn,k = 0 and the light gray
area depicts the non-zero initial values. The lattice is centered at (1, 1). The first value to
compute is c2,3 and from there one always continues first along the (n, 2n− 1)-line and then
downwards (n, i) for 2n − 2 ≥ i ≥ 3. This way all values of the sequences can be computed
recursively.

Remark 16 It is worth remarking that the closed form cn,2n is not easily proven without the
recurrence relation and really gives the double sum evaluation

2n∑
j=1

(−3n− 1
2)2n−j

(2n− j)!
42n−j

(
2j
j

) j∑
i=0

(−1)j−i

(j + i)! (j − i)!
i2j+2n = 24n−1

(12)3n
n!

.

5 Conclusions

We have proved that the Kapteyn series of the second kind

gn (z) =
∞∑
k=0

k2n J2k (2kz)

can be represented as

gn (z) =
Pn
(
z2
)

(1− 4z2)3n+
1
2

+
1

2
δn,0, n ∈ N0,

where Pn (x) is a polynomial of degree 2n.
Writing

Pn(z) = (1− 4z)3n+
1
2

∞∑
k=1

bn,kz
k =

∞∑
k=1

cn,kz
k,

we have obtained several properties of the coefficients bn,k, and a recurrence for the coefficients
cn,k.

Numerical evidence suggests that all coefficients cn,k should be nonnegative integers, but
so far we haven’t been able to prove this. Note that even for the closed form of the leading
coefficients cn,2n positivity is obvious, but not that they are integers. Thus, we propose the
following conjecture.

Conjecture 17 Let the polynomials Pn(z) be defined by

∞∑
k=0

k2n J2k (2kz) =
Pn
(
z2
)

(1− 4z2)3n+
1
2

, n ∈ N.

Then, Pn (x) ∈ N0 [x] .
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(3), 10:91–122, 1893.

[9] W. Kapteyn. On an expansion of an arbitrary function in a series of Bessel functions.
Messenger of Math., 35:122–125, 1906.

[10] M. Kauers. Guessing Handbook. RISC Report Series 09-07, Research Institute for
Symbolic Computation (RISC), Johannes Kepler University Linz, Schloss Hagenberg,
4232 Hagenberg, Austria, 2009.

[11] M. Kauers. The Holonomic Toolkit. In J. Blümlein and C. Schneider, editors, Computer
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