
Theorema-HOL:

Classical Higher-Order Logic in Theorema

Alexander Maletzky∗

RISC, Johannes Kepler Universität Linz, Austria,
alexander.maletzky@risc.jku.at

Abstract

We present Theorema-HOL, an add-on package for the Theorema 2.0
proof assistant which enables users to formalize their mathematical theo-
ries in classical higher-order logic. Besides the logical axioms, definitions,
theorems, etc. needed for that purpose, Theorema-HOL also comes with
an intuitive and easy-to-use theory- and proof language, inspired by Is-
abelle/Isar, for proving theorems interactively. Furthermore, Theorema-
HOL, and its underlying framework Theorema-Core, force formalizations
to conform to certain well-defined standards as a means to establishing
their logical correctness and consistency.

1 Introduction

Theorema 2.0 [4] is a mathematical assistant system based on Mathematica [23],
meant to support mathematicians, logicians and computer scientists in many
areas of their everyday work. It is similar to other projects of that kind, like
Isabelle [16], Coq [3], Mizar [2], and others, but it differs from these systems
in two important aspects: (i) Theorema focuses on natural style mathematics
that should be accessible to mathematicians who are no experts in the use of
proof assistants in general and Theorema in particular, and (ii) Theorema is
a very flexible system that imposes as few constraints, regarding the way how
mathematics is to be presented, on its users as possible. While both these
features are certainly desirable, the second bears some potential dangers, too,
as one of the main objectives of proof assistants is to enforce the formalization
of mathematics in a well-defined, consistent manner, such that users can fully
rely on the correctness and consistency of existing formal theories when building
upon them.

To that end, we developed Theorema-Core [13] as an add-on package for The-
orema which addresses precisely the aforementioned shortcoming: Theorema-
Core implements a small logical kernel of constructive, simply-typed higher-
order logic that ensures the integrity (wrt. this well-defined logic) of theories
formalized in it. “Integrity” in this context does not mean that each formalized
theory indeed has a model – after all users may still state arbitrary, possibly
contradictory axioms – but at least the system tries to detect and rule out as

∗The research was funded by the Austrian Science Fund (FWF): P 29498-N31

1



many sources of inconsistency as possible; this, above all, concerns extensions
of theories by explicit definitions of new types and constants. More information
on Theorema-Core can be found in Section 3.1.

Due to the constructive nature of Theorema-Core and the fact that most of
modern-day mathematics is formulated in a classical setting, we recently also
developed Theorema-HOL as the classical analogue of Theorema-Core; more
precisely, Theorema-HOL is classical higher-order logic formulated in the logic
of Theorema-Core. In short, Theorema-Core is the meta-logic of Theorema-
HOL, and the precise relationship between Theorema-HOL and Theorema-Core
is discussed in Section 3.2. Readers familiar with Isabelle will realize that the
situation here parallels that of Isabelle/Pure [18] vs. Isabelle/HOL [16] in many
respects. In fact, various ideas incorporated into Theorema-Core and Theorema-
HOL were originally borrowed from Isabelle.

The report is organized as follows: Section 2 gives an impression of how
mathematical theories can be formalized in the framework of Theorema-HOL,
without explaining any underlying technicalities. Section 3 details the theoret-
ical background of both Theorema-Core and Theorema-HOL, and their precise
relationship. Section 4 compares Theorema-HOL to standard-Theorema, and
Section 5 compares it to Isabelle/HOL; these two sections assume some famil-
iarity with the respective systems and may hence be skipped by readers only
interested in Theorema-HOL itself. Section 6, finally, concludes the report.

2 Formalizing Mathematics in Theorema-HOL

This section aims at giving an informative overview about how Theorema-HOL
can effectively be used to formalize mathematical theories. The sample for-
malization presented below, elementary set theory, is available online as part
of the ‘Core+HOL+Interactive’ add-on package for Theorema 2.0:1 notebook
‘CoreTheories/HOL/Sets.nb’. Note, however, that compared to the actual for-
malization we simplify certain technicalities in this exposition for the sake of
better readability; for instance, we use object-level logical quantifiers and con-
nectives throughout, even where in reality their meta-level analogues occur.

Remark 1. Further sample notebooks about using Theorema-HOL can be found
in the ‘Documentation/’ subfolder of the ‘Core+HOL+Interactive’ package.

2.1 Introducing New Types

All starts with introducing the right types for the concepts one wishes to for-
malize. In the case of set theory, the objects of interest are, of course, sets, so
we employ Theorema-HOL’s type definition mechanism for creating a type of
sets. Indeed, since a set of elements of some type α can be thought of a unary
predicate of type α → BOOL that, for every given element decides whether
it is included in the set, the type of sets is nothing else than an isomorphic
copy of the existing type α → BOOL.2 In Theorema-HOL, this desired copy is
constructed by issuing the command

1www.risc.jku.at/projects/tetra-gb/AddOns.html
2The type system underlying Theorema-HOL only supports so-called top-level polymor-

phism, meaning that all elements of a set must have the same type.

2

www.risc.jku.at/projects/tetra-gb/AddOns.html


typedef ‘SET[α ]’ := ‘α → BOOL’ (morphisms ‘Collect’ ‘Contains’)

which introduces the new unary type constructor SET and registers the abstraction-
and representation morphisms Collect and Contains, respectively.

Before we can explain more thoroughly what the above command does, some
syntactical details must be clarified:

• In Theorema-Core commands, types and terms have to be written inside
single quotation marks to distinguish them from elements of the command
language.

• Type variables are indicated by an underscore-suffix, to distinguish them
from type constructors. We take the liberty to omit this suffix in informal
text, when it is clear that a certain identifier (usually a Greek letter)
denotes a type variable.

• Following usual Mathematica syntax, function application is denoted by
square brackets. This also applies to applications of type constructors.

After issuing the above command, Theorema-HOL knows that SET is a
unary type constructor that can henceforth be used in definitions of other types,
constant definitions, theorem statements, etc. But in addition to that, the
system also knows its exact relationship with the type α → BOOL via the
two type morphisms Collect and Contains: Collect is a constant of type (α →
BOOL) → SET[α] that converts predicates into the sets they represent, and
Contains is a constant of type SET[α] → α → BOOL that converts sets into
the predicates by which they are represented. Hence, Collect and Contains are
inverses of each other, which is expressed by the two automatically generated
characteristic axioms

∀
A

Collect[Contains[A]] = A (Contains inverse)

∀
P

Contains[Collect[P ]] = P (Collect inverse)

based on which a couple of theorems about the morphisms (e. g. injectivity) are
automatically proved, too.3

So much about the definition of the type of sets. Before we show how new
constants, e. g. the membership relation ∈, can be introduced, we want to
emphasize that it is not only possible to introduce new types as isomorphic
copies of existing types, but also as non-empty subsets of existing types. For
instance, assume we have already defined a predicate isFinite that determines
whether its argument is finite. Then the type of finite sets would be defined by
the command

typedef ‘FSET[α ]’ ' ‘isFinite :: (SET[α ]→ BOOL)’

where one must in particular note that compared to the command above, in-
stead of “:=” there is “'” and that on the right-hand-side of “'” there is a
(type-annotated) predicate rather than a type. The semantics of the command
should be clear: introduce a new type constructor FSET such that FSET[α] is
isomorphic to the class of finite sets of type SET[α]. As for the morphisms

3They are not important for the present case of sets, so we omit them here.

3



converting between FSET and SET, we could again have specified their names
explicitly, but since we omitted the optional morphisms-clause their names
default to FSET`abs and FSET`rep, respectively.4

However, in higher-order logic all types must be inhabited, which means
that when defining FSET as above, one must also prove that there exists a finite
set, i. e. a set satisfying isFinite. So, when evaluating the command, Theorema
automatically adds a new formula (unless it is already present) to the theory
notebook that expresses precisely said fact; in the current case it obviously is

∃
A

isFinite[A] (FSET not empty)

At the beginning, (FSET not empty) is a mere axiom, but of course we may
at any time prove it and therefore turn it into a theorem; how theorems can be
proved in Theorema-HOL is explained in Section 2.3. Note that SET does not
require any such non-emptiness assertion, because SET[α] is a full copy of an
existing type, which is already known to be inhabited.

Finally, the characteristic axioms of FSET`abs and FSET`rep are

∀
A

isFinite[FSET`rep[A]] (FSET`rep)

∀
A

FSET`abs[FSET`rep[A]] = A (FSET`rep inverse)

∀
A

isFinite[A]⇒ FSET`rep[FSET`abs[A]] = A (FSET`abs inverse)

2.2 Introducing New Constants

Having SET and its corresponding morphisms Collect and Contains, it is straight-
forward to define the membership relation for sets. Namely, Contains is already
almost exactly what we need: it takes a set and an element and determines
whether the element is in the set; only the order of arguments is wrong. There-
fore, our definition of Element (infix ∈) is simply the formula

∀
a,A

Element[a,A] :⇔ Contains[A, a] (Element def )

So, definitions of constants are not achieved through commands (as are type def-
initions), but by stating the definitions as ordinary Theorema formulas, which
must be (universally quantified) equalities/equivalences, where, however, the
main relation symbol must be := (or :⇔) instead of = (or ⇔) – only then the
formulas are really detected to be definitions and not just arbitrary axioms or
theorems. Of course, from the purely logical point of view, a definition is an
axiom, but on the other hand it is also clear that a definition represents a differ-
ent kind of axiom. Intuitively, definitions are mere abbreviations that could, in
principle, be eliminated altogether. This in particular implies that a definition
– if done properly – will never add an inconsistency to the logic, and therefore
the system should check whether definitions are done properly. The precise
meaning of proper in this context is technical, but intuitively it means that def-
initions should neither be overlapping (two definitions for the same constant)
nor circular (definition of constant depends on that constant). As experience

4Underscores have a special meaning in Mathematica, so ` is used instead to construct
compound identifiers.

4



in Isabelle/HOL shows [11], ensuring these two crucial properties of definitional
theory extensions is by far not as easy as it seems at first glance, especially
when allowing constant overloading (i. e. providing different definitions for dif-
ferent type instances of a constant, which is possible both in Isabelle/HOL and
in Theorema-HOL, see below). The decision algorithm we implemented in our
system is basically the same as the one in Isabelle/HOL, described in detail
in [12].

The fact that a ∈ A is the usual infix notation for Element[a,A] (both for
parsing and pretty-printing) comes for free, because it is “hard-wired” in the
underlying Mathematica system. Unfortunately, this also means that neither
can built-in infix notations be switched off, nor can new infix notations be added
easily – one basically has to live with what Mathematica provides by default
(which is in most cases fairly reasonable). What can be customized easily,
however, is the way how sequences of binary operators, like ∈, are interpreted.
For instance, in mathematics it is common to write a ∈ A ∈ A as a shortcut for
a ∈ A ∧ A ∈ A. In Theorema-HOL, introducing such a shortcut is as easy as
can be: it is achieved by the command

notation ‘Element’: binary ‘And’

which informs Theorema-HOL that sequences of ∈ shall be combined (during
parsing) using the logical connective ∧. Arbitrary other combinators may be
given instead of ∧, as long as their types fit. Furthermore, notations can not
only be specified for terms, but analogously also for types; we omit the details
here.

Next, one might think of introducing the negation of set membership, /∈,
as the obvious abbreviation for ¬ ∈. To that end, we could proceed as before
and define NotElement (which is the long name of /∈ in Mathematica) as a new
constant. But in this case it is more reasonable to regard /∈ as mere extra-
logical syntactic sugar the reasoning system never gets to see internally, i. e. an
abbreviation that is always unfolded to ¬ ∈ already during parsing. Theorema-
HOL enables this by means of the abbreviation command:

abbreviation ‘NotElement’ 
 ‘ λ
a,A
¬a ∈ A’

adds corresponding parsing- and pretty-printing rules that transform occur-
rences of /∈ into ¬ ∈ and back again. Similar as notation, abbreviation also
works for types. If 
 is replaced by ⇀, the abbreviation is only unfolded during
parsing, but not folded back during pretty-printing; with ↽ it is just the other
way round.

Remark 2. The reason why abbreviations are not introduced in formulas, like
definitions, is that then the symbols 
, ⇀ and ↽ would already have a prede-
fined meaning in the term language, i. e. could not be used otherwise any more.
In the current setup, they only have a meaning in the command language.

Apart from definitions and abbreviations, constants can be introduced ax-
iomatically as well: first declare them and then state their characteristic prop-
erties as axioms. In fact, precisely this happens for the type morphisms (cf.
Section 2.1): Collect, for instance, is neither introduced by a definition nor an ab-
breviation, but solely by means of its characteristic properties (Collect inverse)
and (Contains inverse). Since axiomatizations have the potential to add in-
consistencies to the theory, users should be very careful when using them, or

5



avoid them altogether. But anyway, declaring a constant without defining it is
accomplished by a command like

decl ‘SquareIntersection :: (α → α → α )’

i. e. the keyword decl followed by one or more type-annotated constants that
have not been declared yet; note here that definitions à la (Element def ) also
automatically declare the constants to be defined unless they have been declared
already. Continuing the example of SquareIntersection (infix u), we could now
specify its meaning axiomatically as indicated above, but we could also still de-
fine the constant – and even give different definitions for different type instances,
i. e. overload it! Typically, u is used for the “meet” operation in lattices, and
since both BOOL and SET[α] are lattices, we can define u for these two types
by stating the two definitions

∀
P,Q

P uQ :⇔ P ∧Q (u BOOL def )

∀
A,B

A uB := Collect[λ
x
x ∈ A ∧ x ∈ B] (u SET def )

Theorema-HOL accepts overloaded definitions, as long as the types of the
respective type instances of the constants are not unifiable after renaming type
variables apart; see again [12] for details. Note that in the two definitions of u
it is not necessary to explicitly type-annotate the bound variables or the occur-
rences of u, because the right types can be inferred by the system automatically.

Remark 3. It is possible to lock constants: a locked constant cannot be defined.
This is particularly useful when specifying constants axiomatically, because then
it should not be possible any more to also give definitions for them. Type
morphisms are always locked.

2.3 Proving Theorems

The main task of a proof assistant is, of course, to prove theorems. Or at
least to support the user in proving theorems by checking the correctness of
user-generated proofs on the spot and automating as many aspects of the proof
search as possible. Historically, Theorema has always put the emphasis on fully
automatic “push-button” proving: the user only needs to specify which formula
to prove and which knowledge to use in the proof, and the system then either
manages to find a proof automatically or fails entirely. In Theorema-Core and
Theorema-HOL, however, we decided to focus on interactive theorem proving:
the user has to compose the proof in a particular formal language, and the
system checks whether the given proof is indeed valid, i. e. conforms with the
very logic of the reasoning system. Besides, the system still provides powerful
proof methods that are able to prove at least some (sufficiently simple) subgoals
automatically; see below for a concrete example.

The proof language of Theorema-Core closely resembles Isabelle/Isar [20]:
the main proof commands of Isar, like proof, fix, assume, have etc., are also
present in Theorema-HOL and have a similar syntax and semantics there, as
can be seen below. The intention behind the close resemblance of Isar and
Theorema-Core’s proof language is twofold:

• Isar is generally well-thought. It does not make sense to come up with a
completely different proof language only for the sake of being different.

6



• Many people are familiar with Isabelle, and in particular with Isar, and
they can thus get acquainted with the proof language of Theorema-Core
easily.

Let us now look at a concrete example: we illustrate the process of interactive
proving in Theorema-HOL by means of the well-known Cantor paradox which
states that there is no surjective function from a set to its power-set:5

@
f ::(α →SET[α ])

∀
A
∃
x
A = f [x] (Cantor’s paradox )

As can be seen, our version of the paradox states that there is no surjective
function from a type α to the type of sets over α.

Proofs in Theorema-HOL typically begin with the proof command for ap-
plying a suitable introduction- or elimination rule to the current goal through
backchaining. In the case of (Cantor’s paradox ) a suitable rule is negation
introduction: assume the positive part of the negated formula and derive a con-
tradiction. Hence, the next step in the proof consists of assuming that there
exists a surjective function from α to SET[α]:

assume ‘∃
f
∀
A
∃
x
A = f [x]’

Now, since this assumption is an existentially quantified formula, we may intro-
duce a Skolem constant f that witnesses it:

then obtain ‘f :: (α → SET[α ])’ where “1”: ‘∀
A
∃
x
A = f [x]’ by rule

The name of the Skolem constant is completely arbitrary; in principle, it has
nothing to do with the name of the bound variable. We assign the label “1”
to the new formula, where the bound variable f is replaced by f , for being
able to refer to it afterward. In the end, however, we have to prove that “1”
is indeed a consequence of the known existential formula, which we accomplish
by the single command ‘by rule’: similar as proof, this command applies a
suitable introduction- or elimination rule (via backchaining) to the current sub-
goal, which is existential elimination here. The then at the beginning of this
line merely indicates that for proving “1” we need the previously obtained fact,
namely the existential assumption.

Now comes the ingenious part of the proof: the construction of a set which
violates “1”. As is well known, we simply have to take the set of all x such
that x /∈ f [x], i. e. the set Collect[λ

x
x /∈ f [x]]. Since we are going to use this set

several times in the remainder of the proof, we introduce a syntactic abbreviation
for it:

let X̃ be ‘Collect[λ
x
x /∈ f [x]]’

This command registers an abbreviation for the syntactic variable X̃ which is
unfolded already during parsing. Hence, from now on X̃ is a mere shortcut for
Collect[λ

x
x /∈ f [x]].

Having X̃, we can now instantiate the universally quantified formula “1” by
it:

5We deliberately choose a “simple” example that can be formulated in terms of elementary
set theory.

7



from “1” have ‘∃
x
X̃ = f [x]’ ..

have sets up a new subgoal, which in this case is “1” instantiated by X̃. from
expresses that the subsequent formulas, in this case “1”, are needed to prove the
subgoal; the proof is again a single application of backchaining wrt. a suitable
rule (this time universal elimination), invoked by ‘..’. In fact, ‘..’ is just a
shortcut for ‘by rule’.

We are again left with an existentially quantified formula in our knowledge
base, so as before we replace the bound variable by a fresh Skolem constant:

then obtain x where ‘X̃ = f [x]’ ..

Note that as before the new subgoal can be proved by backchaining, invoked by
‘..’.

From the formula we have just proved, X̃ = f [x], we now want to obtain
the symmetric variant, i. e. the equality with the two sides exchanged:

hence “eq”: ‘f [x] = X̃’ by (rule “= sym”)

hence is just a shortcut for ‘then have’. The new subgoal is once again
proved by backchaining, but this time we specify the appropriate rule explicitly
by passing it as an argument to ‘rule’: it is “= sym”, the formula expressing
symmetry of equality, which is by default available in Theorema-HOL. As can
be seen, we assign the label “eq” to the new formula.

Finally, we can derive the desired contradiction by proving that x is con-
tained in f [x] iff it is not contained in that set. So, we set up a new subgoal
expressing precisely this fact:

have ‘x ∈ f [x]⇔ x /∈ f [x]’

This time, however, the new subgoal cannot be proved by a simple invocation
of a pre-defined proof method like backchaining, but we have to develop the
proof manually. Therefore, just as at the very beginning of this whole proof,
we begin a new subproof by issuing the command proof, which again applies
a suitable introduction rule to the current subgoal. Since the subgoal is an
equivalence, the introduction rule applied is equivalence introduction, meaning
that we must prove both directions of the equivalence separately. The order in
which we attack these two new subgoals is arbitrary; we start with the direction
from left to right, i. e. we first assume the left-hand-side of the equivalence:

assume ‘x ∈ f [x]’

Knowing x ∈ f [x], we also know that x is contained in X̃ by virtue of “eq”:

hence ‘x ∈ X̃’ by (simp only: “eq”)

Here we make use of simplification, invoked by ‘simp’: rewrite the current sub-
goal and all explicitly noted facts (i. e. knowledge passed along by then or
hence) wrt. the given equalities (in this case only “eq”). More information
about simplification can be found below.

Next, we expand the definition of ∈:

hence ‘Contains[X̃, x]’ unfolding “Element def” .

As can be seen, we do not use simplification but the unfolding command:
unfolding behaves similarly as general simplification, in the sense that it also

8



rewrites the current subgoal and all explicitly noted facts wrt. the given equali-
ties (this time (Element def )), but it is less powerful in the sense that it cannot
handle conditional equalities. After expanding the definition of ∈, the goal is
identical to the explicitly noted fact, so the proof is finished by assumption
(shortcut ‘.’).

Now, all that is left to be done in order to infer the right-hand-side of the
original equivalence, x /∈ f [x], is again simplification wrt. one of the charac-
teristic properties of Contains and Collect, namely the fact that Contains is a
right-inverse of Collect, expressed by formula (Collect inverse) (recall that X̃ is
of the form Collect[. . .]):

then show ‘x /∈ f [x]’ by (simp add: “Collect inverse”)

show is like have but does not set up a new subgoal, but instead informs
Theorema to prove the current subgoal (typically originating from the previ-
ous invocation of proof) now. This finishes the ⇒-part of the proof of the
equivalence.

The other direction proceeds analogously, so we present the full proof at
once. Only note that the final thus is a mere shortcut for ‘then show’:

assume ‘x /∈ f [x]’
hence ‘x /∈ X̃’ by (simp only: “eq”)
thus ‘x ∈ f [x]’ by (simp add: “Element def” “Collect inverse”)

This, finally, completes the proof of x ∈ f [x] ⇔ x /∈ f [x]. The proof of
(Cantor’s paradox ) is finished by using this equivalence and deriving a con-
tradiction by simplification:

thus ‘False’ by simp

The whole proof is summarized in Figure 2.3. The presentation of the proof
suffers from the limitations of a black-and-white paper. In Theorema, for in-
stance, a b. f. constants such as f and x are typeset in a different font and
different color, and so are syntactic variables like X̃. Furthermore, when de-
veloping the proof interactively, Theorema sets up a proof status window which
always displays the proof situation (consisting of subgoals and available knowl-
edge) corresponding to the current position of the insertion point in the proof
notebook; this behavior was modeled after proof-development in Isabelle/jEdit.

Apart from x ∈ f [x] ⇔ x /∈ f [x], all subgoals arising in the proof are
proved by applying a single proof method through by: either by simplification
(“simp”) or by backchaining (“rule”). These two proof methods are described
more thoroughly below.

proof and by are similar in that they apply a given proof method to the
current subgoal (if no proof method is passed to proof, as above, it defaults
to “rule”, i. e. backchaining). Actually, the only difference between proof and
by is that the latter attempts to prove the subgoal entirely and fails if this is
not possible, whereas the former only fails if the given proof method cannot be
applied at all. If the proof method can be applied in several ways, which happens
frequently with backchaining, by automatically backtracks over all possibilities
until one leads to success.

One of the most frequently used proof commands is missing in the above
proof: fix for introducing abf. constants originating from universally quantified

9



proof
assume ‘∃

f
∀
A
∃
x
A = f [x]’

then obtain ‘f :: (α → SET[α ])’ where “1”: ‘∀
A
∃
x
A = f [x]’ by rule

let X̃ be ‘Collect[λ
x
x /∈ f [x]]’

from “1” have ‘∃
x
X̃ = f [x]’ ..

then obtain x where ‘X̃ = f [x]’ ..
hence “eq”: ‘f [x] = X̃’ by (rule “= sym”)
have ‘x ∈ f [x]⇔ x /∈ f [x]’
proof

assume ‘x ∈ f [x]’
hence ‘x ∈ X̃’ by (simp only: “eq”)
hence ‘Contains[X̃, x]’ unfolding “Element def” .
then show ‘x /∈ f [x]’ by (simp add: “Collect inverse”)

(*next*)
assume ‘x /∈ f [x]’
hence ‘x /∈ X̃’ by (simp only: “eq”)
thus ‘x ∈ f [x]’ by (simp add: “Element def” “Collect inverse”)

(*qed*)
thus ‘False’ by simp

Figure 1: Proof of (Cantor’s paradox ) in Theorema-HOL. Note that (*next*)
and (*qed*) are mere comments without any formal meaning.

goals. For example, if the formula to be proved is

∀
x,y

P [x, y]

its proof would typically begin with

proof
fix a y
show ‘P [a, y]’ 〈proof〉

Of course, the names of the abf. constants introduced by fix are completely
arbitrary; they do not have to agree with the names of the bound variables.

We now give a more thorough account on the two proof methods used in the
proof of (Cantor’s paradox ). At the moment, a couple of other proof methods
are also implemented in Theorema-HOL, but they are rather specialized and
not of such general interest. Implementing further powerful, general-purpose
proof methods is future work. Here one must note that proof methods have no
effect on the logical correctness of the reasoning system, as they only construct
“candidate” proofs which must pass through Theorema-Core’s fixed logical ker-
nel.

Simplification. Simplification, or equational rewriting, repeatedly rewrites
all subterms of the current subgoal wrt. (universally quantified, conditional)
equalities given as arguments to the proof method or appearing among the cur-
rently selected knowledge. Equalities are solely used for rewriting from left to

10



right, i. e. instances of the left-hand-side are replaced by the corresponding
instances of the right-hand-side. Conditions of equalities are proved by sim-
plification recursively; this distinguishes general simplification from unfolding,
which can only handle unconditional equalities. Theorema hardly6 attempts
to detect potentially non-terminating or non-confluent sets of rewrite-rules, but
leaves this task exclusively to the user.

Simplification is invoked by the “simp” keyword passed as an argument to
by or proof. By default, a (user-extensible) set of standard simplification rules
is used for rewriting, but it is possible to overwrite this set by specifying the
rules to be used explicitly (“only: . . . ”), by adding further rules (“add: . . . ”),
or by removing rules (“rem: . . . ”). The default rule-set contains, for instance,
many simplification rules for propositional- and predicate logic.

Backchaining. Backchaining means replacing the current subgoal by zero or
more other, hopefully “simpler”, subgoals by virtue of a (universally quantified)
implication: the consequent of the implication is tried to be unified with the
current subgoal, and if a unifier is found, the subgoal is replaced by the corre-
sponding instances of the premises of the implication. If there are no premises
(i. e. the “implication” is strictly speaking no implication), no new subgoals
emerge and the proof is finished. Since unification in a higher-order setting is of
unification type 0, i. e. a unification problem might have infinitely many unifiers
none of which is most general, backtracking strategies are employed to iterate
over different results; this, in fact, is being taken care of by by. As a tech-
nical detail please note that the unification procedures currently implemented
in the system are higher-order pre-unification [10] and, as a special subcase,
higher-order pattern unification [15].

Backchaining is invoked by the “rule” keyword passed as an argument to
by or proof. Similar to simplification, there is a (user-extensible) default set of
backchaining rules that is applied to the current subgoal, containing all the usual
introduction- and elimination rules of propositional- and predicate calculus. But
in contrast to simplification it is not possible to add further rules, but only to
specify the rules to be used explicitly by passing them as additional parameters
(as happened with “= sym” in the proof of (Cantor’s paradox )).

Remark 4. Both simplification and backchaining can only handle rules in Core-
format, i. e. with meta-level universal quantifiers, implications and equalities.
Simplification, however, automatically converts object-level rules into this for-
mat, if necessary.

Remark 5. The current implementation of proving in Theorema-HOL provides
the basic infrastructure for automatically generating natural-language proof
documents from proofs given by the user in Theorema-HOL’s proof language.
This makes the mathematical theories formalized in the system accessible to
non-experts who are not familiar with the intricacies of the proof language, but
who do know how to read mathematical proofs in general (in textbooks, for
example). Although the basic infrastructure is available, the actual generation
of proof documents has not been implemented yet; this is future work.

6Rules that are obviously non-terminating, because their RHS is an instance of their LHS,
are detected and only applied under certain circumstances.

11



2.4 Creating Theory Archives

After formalizing a theory, it is desirable to be able to make use of its definitions,
lemmas, etc. in other formalizations. In Theorema-HOL this can be achieved
easily through the import theory command:

import “Sets”

imports the formalization of elementary set theory, stored in the Theorema note-
book “Sets.nb” in a directory where Theorema-HOL can find it, by evaluating
all of its Theorema-relevant cells (theory commands, formulas, proofs) unless it
has been imported already. After this process is finished, all concepts formalized
in “Sets” are available in the current theory, and furthermore the dependency
of the current theory on “Sets” is recorded internally. Of course, all theories
“Sets” itself depends upon are imported as well.

Importing a theory as sketched above, by evaluating all cells in the corre-
sponding notebook, can be very time-consuming, especially if several theories
are to be imported. Thus, it is possible to create so-called theory images: an
image of a theory is just a file containing all formalized concepts of that the-
ory and all its ancestors that can be loaded efficiently by Theorema. import
always searches for theory images, and in case it finds one, automatically loads
the image instead of evaluating the notebook the image originates from. The
only drawback of theory images is that, in the current implementation, at most
one image can be loaded into a session of Theorema-HOL; once an image has
been loaded, all further theories are imported in the “slow” way. The reason
for this shortcoming is that otherwise it is difficult (though possible) to rule out
contradictory definitions of the same constant in different images. Improving
this is future work.

3 Theoretical Background

We now explain the theoretical background of Theorema-Core and Theorema-
HOL, and their precise relationship.

3.1 Theorema-Core: The Meta-Logic

Theorema-Core is the meta-logic of Theorema-HOL, in the sense that Theorema-
HOL is formulated in the language of Theorema-Core. It implements construc-
tive simply-typed higher-order logic with top-level (or “ml-style”) polymor-
phism [14, 5] by providing a fixed set of primitive inference rules that define
the semantics of the two basic type constructors FORM (the truth type) and →
(the function type) and the four basic concepts λ (abstraction), '(extensional
equality, of type α→ α→ FORM), −→ (entailment, of type FORM→ FORM→
FORM) and

∧
(universal quantification, of type (α→ FORM)→ FORM). In ad-

dition, it also implements a mechanism for ensuring that mathematical theories
are developed in a sound and consistent manner, namely either by definitional
theory extensions (which are guaranteed to be conservative), or by formally
proved theorems, or by arbitrary axioms (which might not be conservative, but
are clearly marked so that users who want to build upon a theory can inspect
them easily). Hence, Theorema-Core ensures that if the (clearly marked) ax-
ioms of a theory are consistent, then the whole theory is consistent, too, and

12



all proved theorems are indeed logical consequences (w. r. t. the inference rules
of Theorema-Core) of the axioms; users have no chance to “cheat” but must
formalize theories according to the strict rules imposed by Theorema-Core.

As we have noted above, the semantics of λ, ', −→ and
∧

is defined ex-
clusively in terms of the primitive inference rules of Theorema-Core. In the
design of these rules we strove for a good trade-off between simplicity and effi-
ciency : simplicity, because users of the system must trust the soundness of the
inferences and the fact that they adequately reflect the intended meaning of λ
etc., and efficiency because checking proof candidates wrt. the inferences should
be doable in reasonable time. Hence, neither is the resulting set in any sense
“minimal”, nor are the individual rules formulated in the “simplest” possible
way. Instead of listing the rules here, we refer to [13].

Based on this small, trusted kernel of primitive inferences, arbitrary proof
methods can be developed: a proof method is a function that takes as input
a proof situation P (i. e. a structure consisting, basically, of a goal formula, a
list of local assumptions, and some additional (type-) context) and constructs
a sequence of primitive inferences and other proof methods which are deemed
suitable to make progress in proving P . Since all proof methods ultimately
boil down to sequences of primitive inferences, they may be regarded as mere
abbreviations of such sequences, and hence their implementation does not affect
the soundness of the inference kernel at all. This implies that users of the system
may safely develop their own proof methods and add them to the existing arsenal
of predefined proof methods that come in conjunction with Theorema-Core, like
the powerful simplification- and backchaining methods mentioned in Section 2.3,
at any time.

What holds for the interplay between primitive inferences and proof meth-
ods also holds for the basic mechanisms for theory extensions and sophisticated
tools built upon them. For instance, according to the rules of Theorema-Core,
new constants may only be introduced by means of explicit, non-recursive def-
initions. Based on that, however, it is possible to devise tools that allow users
to introduce new constants in quite different ways, e. g. inductively or as recur-
sive functions, by automatically converting their characterizations into proper
definitions demanded by Theorema-Core. For example, the characterization
of an inductive predicate through its introduction rules can be replaced by a
proper definition by virtue of the Knaster-Tarski fixpoint theorem in complete
lattices [19]. In a similar vein, though less sophisticated, the definition of the
type of sets as an isomorphic copy of the type of boolean-valued functions in
Section 2.1 can be accomplished without giving a non-emptiness proof only
because there is an internal tool which constructs such non-emptiness proofs
automatically when copying whole types. The very basic mechanism for type
definitions in Theorema-Core always requires a non-emptiness proof.

Summarizing, Theorema-Core consists of two main components:

• a fixed, trusted kernel of primitive inference rules and mechanisms for the-
ory extensions, which jointly ensure sound and consistent formal theories,
and

• an extensible, growing collection of proof methods and “theory tools”,
which enable the effective and efficient use of Theorema-Core (or an object-
logic like Theorema-HOL) for actual formalizations.

13



Based on these two main components, object-logics like Theorema-HOL can be
developed easily in the framework of Theorema-Core, as described in the next
subsection.

Remark 6. Theorema-Core closely resembles Isabelle/Pure [18], although its im-
plementation in Mathematica differs from the implementation of Isabelle/Pure
in ml quite a lot; see [13] and Section 5 for details.

3.2 Logical Foundations of Theorema-HOL

Theorema-HOL constitutes the classical counterpart to the constructive logic
of Theorema-Core: it is simply-typed classical higher-order logic with exten-
sional equality, Hilbert-choice and top-level polymorphism, formulated within
Theorema-Core and hence an object logic of it. We now describe in detail how
Theorema-HOL is defined (and how other object logics may be defined in the
future). The actual formalization is also part of the ‘Core+HOL+Interactive’
add-on package (see footnote 1): notebook ‘CoreTheories/HOL/HOL.nb’.

All begins with the introduction of the object-level truth type BOOLas the
type of formulas of Theorema-HOL, in contrast to the existing meta-level truth
type FORM of formulas of Theorema-Core:

typedecl ‘BOOL’

registers the new type BOOL without attaching any meaning to it; in particular,
at this time BOOL might still contain an arbitrary number of elements (but at
least one), although later axioms will ensure that it contains exactly the two
elements True and False.

Next, we axiomatically introduce a truth judgment, i. e. a function of type
BOOL → FORM which maps formulas of the object logic to formulas of the
meta logic, in order to embed the object logic into the meta logic for being able
to reason about the former within the latter. This is achieved by

judgment ‘TrueQ::(BOOL→ FORM)’

which declares the new constant TrueQ to be a function of the given type, and
additionally informs the type inference mechanism that from now on, whenever a
term of type FORM is expected but a term of type BOOL is found, it shall tacitly
insert the coercion TrueQ to ensure well-typedness. In particular, formulas
entered by the user into the system as axioms or theorems may now have type
BOOL instead of FORM. Moreover, the pretty-printer suppresses all occurrences
of TrueQ when printing formulas for the sake of better readability.

Besides the truth judgment, a handful of other constants needs to be intro-
duced axiomatically, too. This time, however, we use the standard decl and
abbreviation commands for declaring fresh constants:

decl ‘Equal::(α → α → BOOL)’
decl ‘Implies::(BOOL→ BOOL→ BOOL)’
decl ‘Some::((α → BOOL)→ α )’
abbreviation ‘Iff’ 
 ‘Equal::(BOOL→ BOOL→ BOOL)’

Equal (infix =) and Implies (infix⇒) should be self-explanatory, Some represents
Hilbert’s choice operator, and Iff (infix ⇔) is a mere abbreviation for equality

14



on type BOOL. The precise meaning of these four constants is specified through
the following four axioms, one for each constant:7∧

s,t::α

TrueQ[s = t] '(s 't) (= reflect)

∧
P,Q

TrueQ[P ⇒ Q] '(P −→ Q) (⇒ reflect)

∧
P,Q

(P −→ Q) −→ (Q −→ P ) −→ P ⇔ Q (⇔I )

∧
P ::(α →BOOL),x

P [x] −→ P [Some[P ]] (SomeI )

Axioms (= reflect) and (⇒ reflect) express that = and⇒ are the precise object-
level analogues of their meta-level counterparts 'and −→, respectively, in the
sense that s = t holds iff s 't is provable and that P ⇒ Q holds iff Q
is provable from P . Note that these two axioms explicitly feature the truth
judgment TrueQ for the sake of clarity, although the type inference mechanism
could automatically insert it if missing, as explained above. The third axiom,
(⇔I ), states that two terms of type BOOL are equivalent if one follows from
the other. The last axiom, (SomeI ), simply expresses that Some[P ] gives some
x such that P [x] holds, provided that such an x exists; otherwise, it gives a
random, unspecified element of the respective type.

Finally, we can introduce the remaining usual logical connectives and quan-
tifiers by means of ordinary definitions:

True :⇔
(

λ
x::BOOL

x = λ
x
x

)
(True def )

∧
P,Q

Forall[P,Q] :⇔
(
λ
x

(P [x]⇒ Q[x]) = λ
x

True
)

(∀ def )

∧
P,Q

Exists[P,Q] :⇔
(
∀
R

(
∀
P [x]

Q[x]⇒ R

)
⇒ R

)
(∃ def )

False :⇔
(
∀
P
P
)

(False def )∧
P

Not[P ] :⇔ (P ⇒ False) (¬ def )

∧
P,Q

And[P,Q] :⇔
(
∀
R

(P ⇒ Q⇒ R)⇒ R
)

(∧ def )

∧
P,Q

Or[P,Q] :⇔
(
∀
R

(P ⇒ R)⇒ (Q⇒ R)⇒ R
)

(∨ def )

∧
P,x,y

If[P, x, y] := Some[λ
z

(P ⇒ z = x) ∧ (¬P ⇒ z = y)] (If def )

Some remarks about these definitions are in order:

7Recall from Section 3.1 that
∧

is the meta-level universal quantifier.

15



• By default, Forall, Exists, Not, And and Or are automatically assigned
their common mathematical syntax ∀, ∃, ¬, ∧ and ∨, respectively. This
is because of the very names of these constants, to which Theorema (and
Mathematica) associates that special syntax.

• ∀ and ∃ have two arguments, because Theorema typically distinguishes
between the condition and the main part of a quantified formula. For
instance, it is common to write something like ∀

x∈A
x > 2 where x is

the bound variable, x ∈ A is the condition and x > 2 is the main
part of the quantified formula. Internally, this expression translates into
Forall[λ

x
x ∈ A, λ

x
x > 2]. Obviously, it is up to the human user to split a

quantified formula into condition and main part just as he or she pleases.
Furthermore, it is also possible to omit the condition altogether on input,
in which case it defaults to λ

x
True.

Remark 7. Theorema-Core only allows definitions of new constants of the form
c '. . ., but the above definitions clearly do not match this pattern. Instead,
there are meta-universally quantified variables, the left-hand-sides are constants
applied to arguments, and the main relation symbols are not 'but :⇔. Still,
Theorema-Core accepts the definitions, because Theorema-HOL is equipped
with a tool that automatically and tacitly converts definitions of the above
kind into definitions following the required c '. . . pattern. This is accom-
plished by replacing :⇔ and := by ', and by adding new λ-abstractions on the
right-hand-side for each of the universally quantified variables. For instance,

(¬ def ) then becomes Not '(λ
P
P ⇒ False

)
. In fact, the same also happens

with (Element def ) in Section 2.2.

From the above axioms and definitions it is possible to derive all the well-
known properties of the various logical constants, including the usual introduction-
and elimination rules, simplification rules (e. g. the De Morgan’s laws), etc., and
further concepts, like unique existence and the description operator, can easily
be defined in terms of the existing ones.

Remark 8. The logic of Theorema-HOL is classical, although this is not enforced
by a dedicated axiom. Instead, the law of the excluded middle follows from the
Axiom of Choice (which is (SomeI ) in our setting, since it asserts the existence
of a choice function for every type) by Diaconescu’s Theorem [7].

We conclude this section by sketching an alternative approach to formalizing
higher-order logic, and why we did not follow it. Namely, instead of embed-
ding classical higher-order logic as an object logic into the constructive logic of
Theorema-Core by introducing a separate truth type (BOOL) and a correspond-
ing truth judgment (TrueQ), we could instead have extended Theorema-Core
itself by the law of the excluded middle to make its logic classical. Then, the
truth type would still be FORM, and there would be no need for neither a truth
judgment nor for object-level equality, implication and universal quantification.
The reason why we did not pursue this seemingly simpler approach is predica-
tivity : the law of the excluded middle (or any axiom equivalent to it) would
refer to all formulas of type FORM then – and be a formula of this type itself,
meaning that it would refer to itself. For reasons well known, self-reference in
axiomatizations is not desirable, since it might easily lead to inconsistency of the

16



theory, and therefore we (once again) followed the example of Isabelle/HOL and
formalized classical higher-order logic in the way outlined in this section. Pred-
icativity is achieved since none of the axioms quantifies variables whose types
involve FORM.8 See also page 33 of [17] for a short discussion of predicativity
in the context of the Isabelle proof assistant.

4 Comparison to Standard-Theorema

In this section we summarize and comment on the main similarities and differ-
ences between Theorema-HOL and standard Theorema 2.0 [4].

4.1 Similarities

The common ground of Theorema-HOL and standard-Theorema is the under-
lying Mathematica system and, in particular, the sophisticated graphical user
interface built upon it [22]. Indeed, although internally Theorema-HOL and
standard-Theorema are implemented quite differently (see Section 4.2), on the
outside these differences are scarcely visible: formulas are input and output
in the same way,9 with all kinds of two-dimensional syntax and notation, and
the so-called Theorema commander window [22] is used in both incarnations
of Theorema to interact with the system in an intuitive and user-friendly man-
ner. Furthermore, both systems provide a mechanism for automatically creating
human-readable proof documents from (automatically or interactively gener-
ated) proofs.

Besides that, there are not many further similarities – although Theorema-
Core (and thus Theorema-HOL) is an add-on package for Theorema 2.0. This
is because Theorema-Core only uses the graphical user interface provided by
standard-Theorema, but implements most functionality concerned with reason-
ing and theory exploration itself.

4.2 Differences

Most differences between Theorema-HOL and standard-Theorema have been
mentioned in the previous sections already; we summarize them here again for
the sake of completeness:

• Theorema-Core (and thus Theorema-HOL) enforce a clear separation be-
tween the fixed logical kernel on the one hand, and extensible, user-
definable proof methods on the other hand. Standard-Theorema is much
more flexible in this regard, allowing users to implement their own primi-
tive rules of inference.

• In Theorema-HOL theories may only be developed by certain well-defined
means for achieving consistency. For instance, new constants can only be
introduced by non-overlapping non-recursive definitions (and other, more
sophisticated tools which internally, however, rely on such definitions as

8Even the type variables appearing in these axioms are not allowed to be instantiated by
types involving FORM.

9There are some minor differences, like type annotations, though.

17



well). Although arbitrary (and hence potentially inconsistent) axiomati-
zations are allowed, too, they are explicitly marked as such and can easily
be inspected by users of the respective theories, without having to search
the whole theories manually for axioms.

• Theorema-Core and Theorema-HOL are typed logics for ruling out para-
doxes such as Russell’s. Standard-Theorema, on the other hand, is com-
pletely untyped.

• Theorema-HOL relies on the concept of theory commands for users to
interact with the system; examples are decl for declaring fresh constants
and typedef for defining new types (see Section 2). Standard-Theorema
does not utilize theory commands at all.

• Theorema-HOL focuses on interactive proving rather than automatic proof
search, as standard-Theorema does and has been doing from its very
origins. This, however, is not inherent to Theorema-HOL, but merely
an intentional, pragmatic design decision, since automatic proof search
in higher-order logic is an utmost difficult problem in practice and, of
course, even undecidable in theory. Nevertheless, Theorema-HOL provides
a range of sophisticated proof methods that are able to prove sufficiently
simple goals automatically; as an example recall the simplifier presented
in Section 2.3.

There is another important difference between Theorema-Core and standard-
Theorema that has not been mentioned so far: the internal representation of
terms and formulas. Standard-Theorema adopts a very flexible representation
of formulas, allowing symbols of arbitrary arity (even flexible arity), Currying,
and several kinds of variable binders; furthermore, it stores bound variables
nominally. Theorema-Core on the other hand, is much more restrictive: every
function symbol is applied to at most one argument and λ is the only binder-
construct; Currying is used to model application of functions to more than one
arguments, as in, say, f [x1][x2], and de Bruijn indices [6] are used to efficiently
store bound variables.10

Remark 9. The internal representation of terms and formulas in Theorema-
Core does not affect their input and output at all. For instance, it is still
perfectly fine to enter terms like f [x1, x2, x3], which are automatically converted
into f [x1][x2][x3] during parsing and converted back into their un-Curried form
during pretty-printing.

5 Comparison to Isabelle

In the previous sections we have already pointed out various similarities be-
tween Theorema-HOL and Isabelle/HOL, which we summarize in this section.
Additionally, we also list the main differences between our system and Isabelle.
We assume some familiarity with Isabelle here.

10But of course the original names of bound variables are also stored for pretty-printing.

18



5.1 Summary of Similarities

The main similarities between Theorema-HOL (and Theorema-Core) and Is-
abelle are the following:

• The meta logic of Theorema-HOL, i. e. Theorema-Core, is simply-typed
constructive higher-order logic with top-level polymorphism and exten-
sional equality. This parallels the situation in Isabelle.

• Theorema-HOL is an object logic of Theorema-Core and equipped with
its own truth type, connectives and quantifiers, just as Isabelle/HOL is an
object logic of Isabelle/Pure.

• Theorema-Core has a fixed, small logical kernel implementing the prim-
itive rules of inference, and a collection of sophisticated user-extensible
proof methods and theory tools built upon it. This design ensures both
the soundness of reasoning and the consistency of formal theories.

• The proof- and theory languages of Theorema-HOL bear a close resem-
blance to Isabelle/Isar, after which they were modeled.

5.2 Different Features

Type Classes and Context Management. Isabelle/HOL supports type
classes [9] and sophisticated context management through so-called locales [1].
In a nutshell, type classes are an elegant means to build up hierarchies of math-
ematical domains in a structured manner, similar to functors that have been
proposed for Theorema [21]. In fact, a type class is just a collection of types,
each defining a fixed set of operations (a “signature”) and satisfying a fixed
set of axioms; for instance, Isabelle/HOL provides type classes for orderings,
additive- and multiplicative groups, rings, fields, any many more. Locales, on
the other hand, allow the user to set up local theory contexts characterized by
local parameters and assumptions, in which new constants may be introduced
and theorems may be stated; all such constants and theorems are tacitly pa-
rameterized over the parameters of the locale, and all theorems are additionally
constrained by the assumptions of the locale.

As of yet, Theorema-HOL lacks mechanisms for effective context manage-
ment like type classes and locales, but instead asks the user to take care of a
systematic build-up of his theories himself.

Type Definitions. Type definitions in Theorema-HOL differ from those in
Isabelle/HOL in that they are are based on predicates rather than sets. Indeed,
looking at the definition of the type FSET[α] of finite sets in Section 2.1 one
sees that the type is characterized by the predicate isFinite. Type definitions in
Isabelle/HOL, however, expect sets as the characterization of new types, as, for
instance, {x. isFinite[x]}.

Of course, the parallels of predicates and sets being obvious and well-known,
there is scarcely any difference between the two kinds of type definitions in
Theorema-HOL and Isabelle/HOL from the practical point of view. But Is-
abelle/HOL requiring sets in type definitions implies that the type of sets itself
cannot be introduced through a type definition there! Instead, the type of sets

19



must be introduced manually by means of declarations of the type and the re-
spective type morphisms and axioms describing the characteristic properties of
said morphisms. In Theorema-HOL, on the other hand, the type SET[α] of
sets can easily and conveniently be introduced by a simple type definition, as
illustrated in Section 2.1.

Interactive Proving. Although the proof language of Theorema-HOL was
modeled after Isabelle/Isar and, hence, features the same commands and key-
words with similar meanings, there are three commands whose behavior in
Theorema-HOL slightly deviates from the behavior of their analogues in Is-
abelle/Isar: fix, assume and show. In Isabelle, these commands are passive,
in the sense that they do not directly manipulate the current proof situation,
but rather construct an implicit theorem which afterwards is employed to prove
the current goal. For example, if the current proof situation contains the goal
G and the local assumptions A and B, then it is perfectly fine to prove it by
writing something like

assume B
show G 〈proof〉

because the goal A =⇒ B =⇒ G is indeed a simple consequence of the implicitly
constructed theorem B =⇒ G. This offers the human author of proofs quite
some flexibility, since unused assumptions (like A in the above example) can be
omitted entirely in proofs, and furthermore is the order in which assumptions
(assume) and constants (fix) are introduced by the user completely indepen-
dent of their order in the current proof situation. Unfortunately, this flexibility
has some negative side effects, too. Namely, whether a theorem constructed by
a sequence of fix, assume and show is indeed suitable for proving the current
goal can be decided only at the very end (when issuing the final show). So,
it may happen to users who make some assumptions using assume and prove
some intermediate results using have, to be in the end informed by Isabelle
that their assumptions are too strong to prove the current goal – and this can
be fairly annoying.

In Theorema-HOL, said three commands actively participate in the reduc-
tion of the current proof situation. assume, for instance, instantly checks
whether the given assumptions are indeed premises of the current goal, in which
case these premises are stripped off and stored as local facts of the proof context
instead; if they are no premises of the goal, the user is informed about this fact
immediately and the application of the proof command fails. The downside of
this setup is that authors of proofs are not as flexible in omitting unused as-
sumptions and regarding the order in which a. b. f. constants are introduced as
they are in Isabelle/Isar.

User Interface. Last, but not least, one of the most distinctive features of
Theorema (not only of our add-ons Theorema-HOL and Theorema-Core) is its
appealing and intuitive graphical user interface based on Mathematica: formu-
las can be input and are displayed in conventional notation and two-dimensional
syntax (variables under binders, fractions whose numerator is displayed above
the denominator, matrix-like arrangements, etc.), formal content can be deco-
rated with informal explanatory text, figures and diagrams, and proofs can be

20



presented in a form intelligible not only to expert users of the system but even
to ordinary mathematicians ignorant of any particular formal proof language.11

Since a lot has been written about Theorema’s capabilities in this respect, we
refer the interested reader for more information to the literature, e., g. [22, 4].

Isabelle, on the other hand, keeps a clear separation between the develop-
ment of formal theories in an editor (like jEdit, which is a text editor capable of
some very restricted form of two-dimensional syntax) and their dissemination
as TEX documents or HTML pages (which can be generated automatically).
Hence, Isabelle lacks the seamless integration of development and dissemination
Theorema has ever since laid its focus on.

5.3 Differences in the Implementation

Primitive Rules of Inference. The primitive rules of inference of Theorema-
Core differ from those of Isabelle/Pure in two respects. First and foremost,
there are more rules, and more powerful ones, in Theorema-Core than in Is-
abelle/Pure, although they give rise to the same deducibility relation. This is
because in Theorema-Core we strove for a good trade-off between simplicity and
efficiency of the inference kernel: simplicity meaning that the rules, though not
as simple and few in number as theoretically possible, should nevertheless be
easy to comprehend by humans to gain trust in their adequately characterizing
the logic of Theorema-Core, and efficiency meaning that the rules can be used
efficiently by Theorema for checking proofs.

Second, the inference rules are implemented quite differently in our system
compared to Isabelle. In Isabelle, following the well-established LCF approach
to theorem proving [8], the primitive rules of inference are implemented as con-
structors of a dedicated type thm for theorems in ml. Then, ml’s static type-
checking mechanism ensures that every term of type thm was constructed only
using its constructors (i. e. the inference rules) and hence is indeed a valid
theorem. So, checking the validity of propositions in Isabelle is reduced to type-
checking in Isabelle’s implementation language ml. In Theorema-Core, we had
to pursue a different approach, since the implementation language of Theorema,
i. e. Mathematica, lacks type-checking mechanisms altogether. Instead, we man-
ually implemented a function for checking proofs wrt. the inference rules, which
resides in the trusted kernel of the system, too. We refer to [13] for a more
detailed description of the implementation of Theorema-Core’s proof-checking
functionality.

Higher-Order Unification. The driving force behind Isabelle’s reasoning
machinery is higher-order (pre-)unification: several inference rules in the trusted
kernel rely on it, and it therefore must be implemented in the trusted kernel, too.
Higher-order unification, however, is a difficult problem, and efficient implemen-
tations of procedures for solving this problem are fairly difficult to comprehend
by non-experts who want to convince themselves of their correctness—and their
correctness is crucial for the soundness of the entire logical kernel of Isabelle!

Matters are different in Theorema-Core: there, higher-order unification is
not part of the trusted kernel, but implemented in a separate component whose
correctness does not affect the soundness of the deduction system at all. This

11But keep in mind Remark 5.

21



is because no single primitive inference rule relies on higher-order unification
whatsoever; instead, higher-order unification is only used by certain high-level
proof methods (e. g. backchaining) for creating suitable instances of universally
quantified formulas.

Axiomatization of Theorema-HOL. The axiomatization of Theorema-HOL
presented in Section 3.2, consisting of the three axioms (= reflect), (⇒ reflect)
and (SomeI ), differs from the axiomatization of Isabelle/HOL. There, only
(SomeI ) is an axiom, but the other two formulas are theorems derived from
other axioms characterizing the semantics of equality and implication. The rea-
son for our deviating from Isabelle/HOL’s axiomatization is that we strove for
a system of axioms as small and as concise as possible. For comparison, Is-
abelle/HOL has ten axioms in total (not counting the Axiom of Infinity). But
of course both axiomatizations are equivalent to each other.

6 Conclusion

Theorema-HOL is a relatively young effort, and so there are still many things
to do before it can effectively be used in large-scale formalizations of mathe-
matics. This does not only concern the development of further basic theories,
like numbers, lists, algebraic structures, etc., but also the implementation of
more sophisticated and powerful proof methods and (semi-)automatic means
for augmenting theories, e. g. by inductive definitions, algebraic data types and
recursive functions.

References

[1] Clemens Ballarin. Tutorial to Locales and Locale Interpretation. In
Laureano Lambán, Ana Romero, and Julio Rubio, editors, Contribu-
ciones Cient́ıficas en Honor de Mirian Andrés Gómez, pages 123–
140. Servicio de Publicaciones de la Universidad de La Rioja, 2010.
Part of the Isabelle documentation, https://isabelle.in.tum.de/dist/
Isabelle2016/doc/locales.pdf.

[2] Grzegorz Bancerek, Czeslaw Byliński, Adam Grabowski, Artur Ko-
rni lowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef
Urban. Mizar: State-of-the-art and Beyond. In Manfred Kerber, Jacques
Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intel-
ligent Computer Mathematics (Proceedings of CICM’15), volume 9150 of
LNAI, pages 261–279. Springer, 2015.

[3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development – Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

[4] Bruno Buchberger, Tudor Jebelean, Temur Kutsia, Alexander Maletzky,
and Wolfgang Windsteiger. Theorema 2.0: Computer-Assisted Natural-
Style Mathematics. Journal of Formalized Reasoning, 9(1):149–185, 2016.

22

https://isabelle.in.tum.de/dist/Isabelle2016/doc/locales.pdf
https://isabelle.in.tum.de/dist/Isabelle2016/doc/locales.pdf


[5] Luca Cardelli. Basic Polymorphic Typechecking. Science of Computer
Programming, 8(2):147–172, 1987.

[6] Nicolaas G. de Bruijn. Lambda Calculus Notation with Nameless Dum-
mies: A Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem. Indagationes Mathematicae, 34:381–392, 1972.

[7] Radu Diaconescu. Axiom of Choice and Complementation. Proceedings of
the American Mathematical Society, 51:176–178, 1975.

[8] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Ed-
inburgh LCF: A Mechanised Logic of Computation, volume 78 of LNCS.
Springer, 1979.

[9] Florian Haftmann. Haskell-style Type Classes with Isabelle/Isar, 2017.
Part of the Isabelle documentation, https://isabelle.in.tum.de/dist/
Isabelle2017/doc/classes.pdf.

[10] Gérard Huet. Résolution d’équations dans les langages d’ordre 1, 2, . . . , ω,
1976. Thèse d’état, Université Paris 7, Paris, France.

[11] Ondřej Kunc̆ar and Andrei Popescu. Comprehending Isabelle/HOL’s Con-
sistency. In H. Yang, editor, Programming Languages and Systems (ESOP
2017), volume 10201 of LNCS, pages 724–749. Springer, 2017.

[12] Ondřej Kunčar. Correctness of Isabelle’s Cyclicity Checker: Implementabil-
ity of Overloading in Proof Assistants. In Proceedings of the 2015 Confer-
ence on Certified Programs and Proofs, pages 85–94. ACM, 2015.

[13] Alexander Maletzky. A New Reasoning Framework for Theorema 2.0.
Technical report, RISC, Johannes Kepler University Linz, 2017. http://

www.risc.jku.at/publications/download/risc_5461/Paper.pdf, pre-
sented as work in progress at CICM’2017 (Edinburgh, UK, July 17–21).

[14] Robin Milner. A Theory of Type Polymorphism in Programming. J. Com-
puter and System Sciences, 17(3):348–375, 1978.

[15] Tobias Nipkow. Functional Unification of Higher-Order Patterns. In Moshe
Vardi, editor, Eighth Annual Symposium on Logic in Computer Science,
pages 64–74. IEEE Computer Society Press, 1993.

[16] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL—
A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[17] Lawrence C. Paulson. The Foundation of a Generic Theorem Prover. Tech-
nical Report UCAM-CL-TR-130, University of Cambridge, 1988. http:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-130.pdf.

[18] Lawrence C. Paulson. Isabelle: The next 700 Theorem Provers. In Pier-
giorgio Odifreddi, editor, Logic and Computer Science, pages 361–386. Aca-
demic Press, 1990.

[19] Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions. Pacific Journal of Mathematics, 5(2):285–309, 1955.

23

https://isabelle.in.tum.de/dist/Isabelle2017/doc/classes.pdf
https://isabelle.in.tum.de/dist/Isabelle2017/doc/classes.pdf
http://www.risc.jku.at/publications/download/risc_5461/Paper.pdf
http://www.risc.jku.at/publications/download/risc_5461/Paper.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-130.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-130.pdf


[20] Makarius Wenzel. The Isabelle/Isar Reference Manual, 2017. Part
of the Isabelle documentation, https://isabelle.in.tum.de/dist/

Isabelle2017/doc/isar-ref.pdf.

[21] Wolfgang Windsteiger. Building Up Hierarchical Mathematical Domains
Using Functors in THEOREMA. In Alessandro Armando and Tudor Je-
belean, editors, Proceedings of Calculemus’99, Trento, Italy, volume 23 of
Electronic Notes in Theoretical Computer Science, pages 401–419. Elsevier,
1999.

[22] Wolfgang Windsteiger. Theorema 2.0: A Graphical User Interface for a
Mathematical Assistant System. In Cezary Kaliszyk and Christoph Lueth,
editors, UITP’2012, volume 118 of EPTCS, pages 72–82. Open Publishing
Association, 2012.

[23] Wolfram Research, Inc. Mathematica. http://www.wolfram.com/

mathematica/.

24

https://isabelle.in.tum.de/dist/Isabelle2017/doc/isar-ref.pdf
https://isabelle.in.tum.de/dist/Isabelle2017/doc/isar-ref.pdf
http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/

	Introduction
	Formalizing Mathematics in Theorema-HOL
	Introducing New Types
	Introducing New Constants
	Proving Theorems
	Creating Theory Archives

	Theoretical Background
	Theorema-Core: The Meta-Logic
	Logical Foundations of Theorema-HOL

	Comparison to Standard-Theorema
	Similarities
	Differences

	Comparison to Isabelle
	Summary of Similarities
	Different Features
	Differences in the Implementation

	Conclusion

