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Abstract. We present a formalization of the computation of Gröbner bases via Macaulay matrices, in the
Isabelle/HOL proof assistant. More precisely, the formalization proves that after row reducing a sufficiently
large matrix constructed from an initial set F of polynomials one can read off a Gröbner basis of F from the
resulting reduced row echelon form. The formal theory closely follows the recent thesis by Manuela Wiesinger-
Widi. To the best of our knowledge, this is the first formalization of its kind in any proof assistant.
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1. Introduction

As is well known, Gröbner bases [Buc65] can be computed by critical-pair/completion algorithms that take
an initial set of polynomials as input and repeatedly add new elements to it until the resulting set is a
Gröbner basis. Although said algorithms terminate in all instances, it is not known a-priori how many
new elements must be added, i. e. how many iterations of the main loop must be carried out. An alternative
approach to computing Gröbner bases proceeds by converting the initial set of polynomials into a big matrix,
the so-called Macaulay matrix, then transforming this matrix into reduced row echelon form by standard
techniques known from linear algebra, and finally reading off a Gröbner basis from the resulting row echelon
form. Thus, the iterative nature of critical-pair/completion algorithms is replaced by an n-step approach,
where n depends on the input but is known a-priori. Manuela Wiesinger-Widi proves in her thesis [WW15]
that said method works indeed correctly, under the provision that the Macaulay matrix constructed at the
beginning is sufficiently large, i. e. contains sufficiently many shifts of the original polynomials. In [WW15]
she also provides upper bounds on the dimensions of the Macaulay matrices, both in the general case of
arbitrary input and in the special case where the input consists of two binomials.

This paper presents the formalization of computing Gröbner bases via Macaulay matrices in the open-
source proof assistant Isabelle/HOL [NPW02, Wen18], closely following [WW15]. More precisely, we formal-
ized Macaulay matrices (i. e. matrices constructed from sets of multivariate polynomials) and then proved
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that the reduced row echelon form of such a matrix can be translated back into a set of polynomials, which
furthermore is the desired Gröbner basis—at least if the Macaulay matrix is large enough, as pointed out
earlier. We also formalized concrete upper bounds on the dimensions of the matrices that are necessary for
turning the whole approach into an executable algorithm, and which are applicable to arbitrary input sets.
And finally, we also discovered, as a side result of our ongoing formalization effort, that the general bounds
presented in [WW15] can be improved by roughly a factor of 2. Details can be found in Section 2.4.

The formalization is freely available on GitHub [Mal19b] for the current development version of Isabelle2

and the Archive of Formal Proofs (AFP)3, but we plan to submit it to the AFP eventually. It builds upon an
existing formalization of Faugére’s F4 algorithm [Fau99, IM16], described in [MI18], which in turn depends
on a formalization of matrices, row reduction and reduced row echelon forms [TY15]; both are contained in
the AFP. To the best of our knowledge, the computation of Gröbner bases via Macaulay matrices has never
been formalized in any proof assistant before.

The paper is divided into two main parts: Section 2 reviews the theoretical background of Gröbner bases,
Macaulay matrices and reduced row echelon forms; this part is included only for the exposition to be self-
contained, but a more detailed presentation of these concepts can also be found in [WW15]. Section 3, then,
presents the actual formalization of the theory in Isabelle/HOL.

This paper is an extended version of the technical report [Mal18b].

1.1. Related Work

To the best of our knowledge, the relation between Gröbner bases and Macaulay matrices as presented in
this paper has not been formalized in any proof assistant before. Gröbner bases themselves, and algorithms
for computing them, have been formalized in various other systems already, including Coq [Thé01, JGF09],
Mizar [Sch06], ACL2 [MBPLRR10], Theorema [Buc04, Cră08, Mal16] and recently also Isabelle/HOL [MI18,
Mal18a]. Interested readers are referred to [Mal16] for a more thorough comparison of the individual for-
malizations. But anyway, despite some more or less significant differences, all these formalizations share one
common approach to computing Gröbner bases: they all consider critical-pair/completion algorithms in the
vein of the originial Buchberger algorithms [Buc65]. In contrast, the methodology whose formalization we
present here is fundamentally different.

Our formalization is concerned with matrices, and fortunately we could build upon an existing formal
development of matrices, row-reduction, etc. in Isabelle/HOL [TY15]. There, matrices are represented as
mappings on the type of natural numbers, with explicit dimensions attached to them. So, a matrix is
isomorphic to a triple (r, c,m), wherem is the characteristic function of the matrix (of type nat⇒ nat⇒ α),
and r and c are the number of rows and columns, respectively (both of type nat).4 Alternatively, Divasón
and Aransay in [DA16] present the formalization of the reduced row echelon form of matrices which are
represented differently: Instead of making the dimensions of the matrix explicit, matrices are simply objects
of type ρ⇒ γ ⇒ α, where ρ and γ are finite types encoding the row- and column indices, respectively. This
representation is, in fact, the standard representation of matrices in the large HOL-Analysis development
of Isabelle/HOL. So, both [TY15] and [DA16] provide all the ingredients we need for our development. The
reason why we chose [TY15] is as follows: If the rows and columns of a matrix are represented by types, it is
not possible to quantify the dimensions of matrices existentially, since in simply-typed higher-order logic it
is not possible to assert the mere existence of certain types with certain properties (in this case types having
precisely n elements, where n is an arbitrary natural number). This, however, is exactly what we need to be
able to do for formulating the main algorithm (Algorithm 2.1) which, given a set F of polynomials, constructs
a matrix whose dimension depends on F . Anyway, building upon [TY15] was fairly easy and straight-forward,
and the slightly more intricate representation of matrices did not pose any major challenges.

2 http://isabelle.in.tum.de/repos/isabelle
3 http://devel.isa-afp.org/
4 By convention, Greek letters are used to denote type variables, and ⇒ denotes the function type.

http://isabelle.in.tum.de/repos/isabelle
http://devel.isa-afp.org/
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2. Theoretical Background

2.1. Preliminaries

Let in the remainder K always be a field and X = {x1, . . . , xn} a set of n indeterminates. [X] denotes the
commutative monoid of power-products in X, i. e. the set of all terms of the form xα1

1 · . . . · xαn
n for αi ∈ N

(1 ≤ i ≤ n) endowed with the usual multiplication of such terms, and K[X] denotes the polynomial ring in X
over K, i. e. all K-linear combinations of power-products in [X] with the usual addition and multiplication.
A polynomial of the form c · t, for c ∈ K\{0} and t ∈ [X], is called a monomial.

Furthermore, we fix an admissible order relation � on [X], which is a well-ordering such that 1 = x0
1 . . . x

0
n

is the least element wrt. � and such that s � t implies s · u � t · u for all s, t, u ∈ [X]. For all p ∈ K[X]
and t ∈ [X], C(p, t) denotes the coefficient of t in p (which may be 0), and supp(p) denotes the support of
p, i. e. the finite set {t ∈ [X] | C(p, t) 6= 0}. If p 6= 0, lp(p) denotes the leading power-product of p, which is
the largest (wrt. �) power-product in supp(p). Finally, lc(p) denotes the leading coefficient of p, defined as
lc(p) := C(p, lp(p)).

2.2. Gröbner Bases and Ideals

We briefly recall the basic properties of Gröbner bases and ideals, to make this paper as self-contained as
possible. Readers not familiar with the theory are referred to any standard textbook on the subject, as for
instance [CLO15].

Let F ⊆ K[X]. Then the ideal generated by F , written 〈F 〉, is the uniquely smallest set satisfying
(i) F ⊆ 〈F 〉, (ii) 〈F 〉 is closed under addition, and (iii) 〈F 〉 is closed under multiplication by arbitrary
polynomials (i. e. p ∈ 〈F 〉 ∧ q ∈ K[X]⇒ q · p ∈ 〈F 〉).

A set G ⊆ K[X] is a Gröbner basis if, and only if, for every p ∈ 〈G〉\{0} there is g ∈ G\{0} such that
lp(g) | lp(p). Although several equivalent characterizations of Gröbner bases exist in the literature, this is
the one we are going to use throughout the paper.

It is not difficult to prove that every ideal of K[X] admits a finite Gröbner basis. It is much more
challenging, though, to decide whether a given set is a Gröbner basis, let alone to explicitly construct one
from an arbitrary finite generating set F of the ideal in question. Fortunately, Buchberger in [Buc65] proved
an alternative characterization of Gröbner bases that can be effectively decided and which, furthermore, can
be transformed into a critical-pair/completion algorithm for computing a Gröbner basis G from F , with the
additional property 〈G〉 = 〈F 〉. The details of this well-known algorithm are not so important for the present
exposition, but interested readers may find them in literally every textbook on Gröbner bases, like [CLO15].

So, the problem solved by Buchberger’s algorithm [Buc65] and by Wiesinger-Widi’s approach [WW15]
(whose formalization in Isabelle/HOL we present in this paper) is as follows:

Problem 2.1. Let F ⊆ K[X] be finite. Find a finite set G ⊆ K[X] such that G is a Gröbner basis and
〈G〉 = 〈F 〉.

Gröbner bases constitute an important and widely used tool in modern computational algebra, allowing
to solve a wide variety of interesting and highly non-trivial problems: deciding ideal membership, solving
systems of algebraic equations, proving geometric theorems, and many more. See any standard textbook
on Gröbner bases, e. g. [CLO15], for further potential applications of Gröbner bases. What is important to
know, however, is the fact that Gröbner bases are in general not unique; indeed, an ideal may even have
infinitely many Gröbner bases. Luckily one can impose stronger conditions on generating sets of ideals that
ensure uniqueness. For instance, a set F ⊆ K[X] is called reduced if (i) lc(f) = 1 for all f ∈ F , and (ii) for
all f, g ∈ F\{0} with f 6= g, and for all t ∈ supp(g), we have lp(f) - t. Reduced Gröbner bases are unique
for every ideal, at least up to the implicitly fixed admissible order relation �:

Theorem 2.1. Let F ⊆ K[X]. Then there exists a unique reduced Gröbner basis G with 〈G〉 = 〈F 〉;
moreover, G is finite.

Proof. See, for instance, Theorem 5 in Chapter 2, § 7, of [CLO15].
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2.3. Macaulay Matrices and Reduced Row Echelon Forms

Let F be a finite list of polynomials and T ⊂ [X] finite; let m be the length of F and ` = |T |. The Macaulay
matrix Mac(F, T ) of F wrt. T is the matrix A ∈ Km×` such that Ai,j = C(Fi, T̂j), where T̂ is the list of
elements of T sorted descending wrt. �. In other words, the (i, j)-th entry of Mac(F, T ) is the coefficient of
the j-th largest power-product in T in the i-th polynomial in F ; of course, such entries could well be 0.

As an abbreviation we also introduce Mac(F ) to denote Mac (F,
⋃m
i=1 supp(Fi)), where T is fixed as the

set of all power-products appearing in at least one polynomial in F with non-zero coefficient. That means,
Mac(F ) does not contain 0-columns, although it may still contain 0-rows.

Let now A ∈ Km×` be an arbitrary matrix and T again an `-element set of power-products. The right-
inverse of function Mac, denoted Mac−1(A, T ), gives the unique list F ′ of polynomials such that Mac(F ′, T ) =
A and such that supp(F ′i ) ⊆ T for all i ≤ m. Thus, we always have Mac(Mac−1(A, T ), T ) = A, but not
necessarily Mac−1(Mac(F, T ), T ) = F ; the latter equality only holds if supp(Fi) ⊆ T for all i ≤ m.
Example 2.1. Let F := [x3

2 − 5x2
1x2 − 2,−4x3

2 + 2x2
2 + x2

1x2, 2x3
2 − x2

2 − x1 + 4] be a 3-element list in
Q[x1, x2], let T :=

⋃3
i=1 supp(Fi) = {x3

2, x
2
2, x

2
1x2, x1, 1}, and let � be the purely lexicographic order relation

with x1 ≺ x2. Then

Mac(F, T ) =


x3

2 x2
2 x2

1x2 x1 1
F1 1 0 −5 0 −2
F2 −4 2 1 0 0
F3 2 −1 0 −1 4

.
As before, let A ∈ Km×` be some matrix. If 1 ≤ i ≤ m, Ai denotes the i-th row of A. If Ai 6= 0, then

pivot(A, i) is defined to be the smallest index 1 ≤ j ≤ ` such that Ai,j 6= 0. We say that A is in reduced
row echelon form (rref) if, and only if, for all non-zero rows Ai, Ai,pivot(A,i) = 1 and Ai′,pivot(A,i) = 0 for all
1 ≤ i′ ≤ m with i′ 6= i (i. e. the pivot element in the i-th row is the only non-zero element in the respective
column). Please note that usually one imposes stronger conditions on rrefs, as for instance the rows being
sorted wrt. their pivot columns, but we do not need them here.

As is well-known, every matrix can be brought into a reduced row echelon form by means of elementary
row operations, which are swapping rows, multiplying one row by a non-zero scalar factor and adding one
row to another. We omit the (quite obvious) details here, but point out that the rref of a matrix in our
setting is unique only up to the order of rows. Finally, we define the function rref(A) to return some rref of
the matrix A.
Example 2.2. Consider Mac(F, T ) from Example 2.1. A rref of this matrix is(1 0 0 −10 38

0 1 0 −19 72
0 0 1 −2 8

)
.

We conclude this section by an important observation concerning the row space rspace(A) of a matrix
A ∈ Km×`, i. e. the vector-subspace of K` spanned by the rows of A:
Theorem 2.2. Let A ∈ Km×`. Then rspace(rref(A)) = rspace(A).
Proof. Obvious, since no elementary row operation changes the row space.

2.4. Computing Gröbner Bases by Macaulay Matrices

As one further preliminary we need the notion of a shift of a polynomial: a shift of p ∈ K[X] is simply
a multiple of p by a power-product t ∈ [X], i. e. t · p. For T ⊆ [X] and F ⊆ K[X], T · F is defined as
T · F := {t · f | t ∈ T, f ∈ F}.

The informal algorithm for computing Gröbner bases by Macaulay matrices proceeds as follows:
Algorithm 2.1 (Computing Gröbner bases by Macaulay matrices).
Input: F ⊆ K[X] finite
Output: Gröbner basis G ⊆ K[X], 〈G〉 = 〈F 〉



Gröbner Bases and Macaulay Matrices in Isabelle/HOL 5

1. Consider some shifts of F , i. e. a finite subset of [X] · F , and collect the elements in a list F ′ (the order
of the elements in the list is irrelevant).

2. Set T :=
⋃
f∈F ′ supp(f).

3. Compute A := rref(Mac(F ′, T )).
4. Set G := Mac−1(A, T ). If sufficiently many shifts have been considered in Step 1, then G is a Gröbner

basis of F .
The intuition why Algorithm 2.1 is indeed correct will hopefully become clear in the proof sketch of Theo-
rem 2.3 below.

But anyway, there is still a problem: G is only a Gröbner basis if sufficiently many shifts are considered in
Step 1 of the algorithm—but what exactly does sufficient mean? So, the key question that must be answered
before being able to effectively compute Gröbner bases by Macaulay matrices is
Which shifts of the polynomials in F are necessary such that the result obtained from Algorithm 2.1 is indeed a Gröbner basis?
The answer to this question is given in [WW15]:
Theorem 2.3 (Theorem 2.3.3 in [WW15]). Let H be a Gröbner basis of F = {f1, . . . , fm} and let
S ⊆ [X] · F finite be such that for all h ∈ H there exist q1, . . . , qm ∈ K[X] with h =

∑m
i=1 qi fi and

supp(qi) · {fi} ⊆ S. Then S is a suitable set of shifts of F for computing a Gröbner basis of F (not
necessarily H) by Algorithm 2.1.
Proof sketch. Let F ′, T , A and G be as in Algorithm 2.1. As one can easily verify, the choice of S ensures
that for all h ∈ H we have

Mac({h}, T ) ∈ rspace(Mac(F ′, T )) = rspace(A)

where the (1 × |T |)-dimensional matrix Mac({h}, T ) is identified with a row vector in K |T |. Hence, every
h can be written as a linear combination of the elements in G, and since for g1, g2 ∈ G with g1 6= g2 we
also have lp(g1) 6= lp(g2) (follows readily from the fact that A is a rref), we can infer that lp(H) ⊆ lp(G).
Furthermore, G ⊆ 〈F ′〉 = 〈H〉 by construction, and so G is a Gröbner basis of 〈F ′〉, because H is.

Theorem 2.3 is a first step towards the final solution, but at first glance it does not really help, because
in order to apply it we must already know a Gröbner basis of F . After a closer look, however, one realizes
that not a Gröbner basis G itself must be known, but only the cofactors qi of the elements of G; and not
even that, because it clearly suffices if only a finite superset of these cofactors is known, characterized by,
say, a certain degree bound. And fortunately, such degree bounds exist; let for this function Duben,d(j) be
defined recursively as

Duben,d(n− 1) := 2d (1)
Duben,d(n− 2) := d2 + 2d (2)

Duben,d(j) := 2 +
(

Duben,d(j + 1)
2

)
+

n−1∑
i=j+3

(
Duben,d(i)
i− j + 1

)
. (3)

Note that Duben,d(j) is defined in terms of Duben,d(k) for larger k. Set furthermore Duben,d := Duben,d(1).
Theorem 2.4 (Theorem 8.2 in [Dub90]). Let F = {f1, . . . , fm} ⊆ K[X] be a set of homogeneous5

polynomials and set d := maxmi=1(deg(fi)). Then, for every admissible ordering � and for all g in the
reduced Gröbner basis of F we have deg(g) ≤ Duben,d, where n = |X| as usual.
Remark 2.1. The bound Duben,d presented here is not the same as the original bound obtained in [Dub90]:
there, it is the nice closed form 2

(
d2/2 + d

)2n−2

, which is shown to bound Duben,d from above. However,
the proof given in [Dub90] contains a small mistake, and although numeric experiments suggest that the
closed form indeed is a valid upper bound, a rigorous, valid proof of this claim must be left for future work.
See [Mal19a, Section 5] for details. Anyway, the recursively defined bound Duben,d works just as well for our
purpose, as can be seen below.

From Theorem 2.4 one can easily infer:

5 A polynomial is called homogeneous if all power-products in its support have the same degree.
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Theorem 2.5 (Corollary 5.4 in [AL09]). Let F = {f1, . . . , fm} ⊆ K[X] be an arbitrary set of polyno-
mials and set d := maxmi=1(deg(fi)). Then, for every admissible ordering �, there exists a Gröbner basis G of
F such that for every g ∈ G there exist q1, . . . , qm ∈ K[X] with g =

∑m
i=1 qi fi and deg(qi fi) ≤ Duben+1,d

for all 1 ≤ i ≤ m.

Together, Theorems 2.3 and 2.5 provide an effective answer to the problem of the shifts:

Theorem 2.6. Let F = {f1, . . . , fm}, d := maxmi=1(deg(fi)) and in Step 1 of Algorithm 2.1 consider the
shifts S :=

⋃m
i=1{t · fi | deg(t · fi) ≤ Duben+1,d} of F . Then the result G returned by the algorithm is a

Gröbner basis of F .

This concludes the description of the algorithm for computing Gröbner bases via Macaulay matrices. A
comparison with [WW15] reveals that the degree-bound we present here, namely Duben+1,d, is much smaller
than the bound presented in the cited work. This is because the author of [WW15] was unaware of [AL09]
and therefore added the general cofactor bound by Hermann [Her26] to Dubé’s Gröbner basis bound in order
to ensure that the degrees of the representations of the Gröbner basis elements stay below the given bound.
In short, the overall bound obtained in [WW15] is Duben+1,d +

∑n−1
j=0 (md)2j , where m is the number of the

input polynomials. Theorem 2.5 illustrates that the second summand is superfluous.

Remark 2.2. The statement of Theorem 2.3.6 in [WW15], in particular the part about reduced Gröbner
bases, is not quite correct: Algorithm 2.1, together with the degree-bound presented in [WW15], does not
always return a reduced Gröbner basis. This is because the Gröbner basis bound Duben+1,d is only valid for
some Gröbner basis, but not necessarily for the reduced Gröbner basis of the ideal in question. (For making
assertions about reduced Gröbner bases, the input must be homogeneous; cf. Theorem 2.4.)

2.5. Comparison to Faugère’s F4 Algorithm

The algorithm presented in Section 2.4 bears several similarities with J.-C. Faugère’s F4 algorithm for
computing Gröbner bases [Fau99]. There, one also constructs Macaulay matrices of sets of polynomials,
computes their rref, and extracts new polynomials from the rref. The main difference between F4 and
Algorithm 2.1 is that the former algorithm performs the Macaulay-computations many times, namely once
in each iteration of the usual critical-pair/completion algorithm; the algorithm presented here, on the other
hand, only constructs one single Macaulay matrix. Typically, the matrices constructed in F4 are much smaller
than the one matrix constructed in Algorithm 2.1, because the bound Theorem 2.5 gives is in most cases
way too large. This implies that F4 usually outperforms Algorithm 2.1 on concrete examples, unless better
bounds than Theorem 2.5 can be proved for the concrete input sets in question.

Note that besides Algorithm 2.1 we also formalized Faugère’s F4 algorithm in Isabelle/HOL [MI18].

3. Formalization in Isabelle/HOL

We formalized the mathematical contents of Section 2.4 in Isabelle/HOL. More precisely, we formalized
Algorithm 2.1 and proved Theorems 2.4, 2.5 and 2.6. In the latter theorem, however, the concrete degree
bound Duben+1,d is replaced by a universally quantified variable which is only assumed to be some feasible
degree bound for the given input. This approach renders the resulting formalized theorem more general and
thus enables us to easily instantiate the theorems by better bounds in special cases of the input set F .

In this section we outline the general structure of our formalization of Algorithm 2.1 and Theorem 2.6,
summarize important definitions, intermediate lemmas and final theorems, and also highlight further inter-
esting features and technicalities. The formalization of the two remaining Theorems 2.4 and 2.5, which is
of interest on its own, is described in detail in our recent proceedings paper [Mal19a] and therefore omitted
here.

The starting point of the formalization are the existing formalizations of multivariate polynomials and
Gröbner bases [IM16] as well as that of matrices and Jordan normal forms [TY15] in Isabelle/HOL. Indeed,
[IM16] already contains everything presented in Sections 2.1 and 2.2 of this paper, in particular the definition
of Gröbner bases and the formal statement and proof of Theorem 2.1. In addition, it also contains the
definitions of Macaulay matrices and reduced row echelon forms (rrefs), which are needed in Faugère’s F4
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algorithm. Although we will not present in this paper how Gröbner bases are formalized in [IM16] (referring
the interested reader to [MI18] instead), we do recall the formalization of Macaulay matrices for making the
paper as self-contained as possible.

The formalization is structured into two Isabelle theories:

• ‘Macaulay-Matrix’, which is in fact part of [IM16], defines Macaulay matrices of lists of polynomials and
proves certain properties about rrefs of such Macaulay matrices. It is described in Section 3.1.

• ‘Groebner-Macaulay’ proves, by building upon results from ‘Macaulay-Matrix’, that the rref of a suffi-
ciently large Macaulay matrix indeed gives a Gröbner basis of the input polynomials. It is described in
Section 3.2

In the remainder of this section, we present these two theories in detail. It must be noted, however, that
we slightly simplify the presentation here compared to the actual formalization, in order to keep things as
simple and comprehensible as possible. Section 3.4 summarizes the most important differences.

3.1. Theory ‘Macaulay-Matrix’

We begin with the formal definitions of Macaulay matrices in Isabelle/HOL right away, assuming familiarity
with Isabelle’s syntax:
definition poly_to_row :: "α list ⇒ (α ⇒0 β) ⇒ β vec"
where "poly_to_row ts p = vec_of_list (map (lookup p) ts)"

definition polys_to_mat :: "α list ⇒ (α ⇒0 β) list ⇒ β mat"
where "polys_to_mat ts ps = mat_of_rows (length ts) (map (poly_to_row ts) ps)"

definition Macaulay_mat :: "(α ⇒0 β) list ⇒ β mat"
where "Macaulay_mat ps = polys_to_mat (Keys_to_list ps) ps"

Several comments on these definitions are in place:

• First of all, the type α ⇒0 β is the type of polynomial mappings from α to β, which are all functions
from α to β with finite support, i. e. where only finitely many arguments are mapped to values different
from 0.

• Throughout the formalization, the type variable α is assumed to be the type of the power-products, and β
the type of the coefficients of polynomials6. Hence, following [MI18], we abstract from any concrete view
on power-products as objects of type, say, χ⇒0 nat, mapping indeterminates of type χ to their exponents.
Instead, the type of power-products must only form a multiplicative cancellative commutative monoid—
at least for the moment; only later, when introducing degree bounds in theory ‘Groebner-Macaulay’, the
abstract view on power-products is replaced by the more concrete χ⇒0 nat.

• Apart from being a cancellative commutative monoid, α must also be ordered by an admissible order
relation �. In the formalization, this is achieved through a locale [Bal10]. So, all definitions, algorithm,
theorems, etc. are automatically parameterized over the admissible ordering � implicitly fixed in the
context of the locale. See [MI18] for more information about how this works in practice.

• In the definition of poly_to_row, lookup is the coefficient-lookup function for polynomial mappings. So,
lookup p t corresponds to C(p, t) defined in Section 2.1.

• Constants vec_of_list and mat_of_rows are functions for constructing vectors and matrices from lists
and rows, respectively. They are defined in [TY15]. Matrices of type β mat are represented as infinite
mappings of type nat⇒ nat⇒ β with explicit dimensions attached to them; so, they are isomorphic to
triples (r, c,m), where r is the number of rows, c is the number of columns, and m is the actual infinite
mapping. Vectors of type β vec are represented analogously.

• Constant Keys_to_list, finally, returns the sorted (descending wrt. �) list of all power-products occurring
in its argument-list with non-zero coefficient. It is defined in terms of keys_to_list (with lower-case “k”),
which does the same for a single polynomial.

6 β is always tacitly assumed to belong at least to sort zero, but typically even to sort field.
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Dually to poly_to_row, polys_to_mat and Macaulay_mat we then define operations for transforming vectors
and matrices into polynomials and lists of polynomials, respectively:
definition list_to_fun :: "α list ⇒ β list ⇒ α ⇒ β"
where "list_to_fun ts cs t = (case map_of (zip ts cs) t of Some c ⇒ c | None ⇒ 0)"

definition list_to_poly :: "α list ⇒ β list ⇒ (α ⇒0 β)"
where "list_to_poly ts cs = Abs_poly_mapping (list_to_fun ts cs)"

definition row_to_poly :: "α list ⇒ β vec ⇒ (α ⇒0 β)"
where "row_to_poly ts r = list_to_poly ts (list_of_vec r)"

definition mat_to_polys :: "α list ⇒ β mat ⇒ (α ⇒0 β) list"
where "mat_to_polys ts A = map (row_to_poly ts) (rows A)"

Here, Abs_poly_mapping converts a function of type α ⇒ β into a polynomial mapping of type α ⇒0 β,
list_of_vec converts a vector into a list, and rows returns the list of rows of the matrix passed as its
argument.

Having now defined all operations for converting between lists of polynomials and matrices, we prove
many simple lemmas about these operations, for instance what the dimensions and the (i, j)-th entry of
polys_to_mat ts ps are, and that polys_to_mat and mat_to_polys are indeed inverses of each other:
lemma dim_row_polys_to_mat: "dim_row (polys_to_mat ts ps) = length ps"

lemma dim_col_polys_to_mat: "dim_col (polys_to_mat ts ps) = length ts"

lemma polys_to_mat_index:
assumes "i < length ps" and "j < length ts"
shows "(polys_to_mat ts ps) $$ (i, j) = lookup (ps ! i) (ts ! j)"

lemma polys_to_mat_to_polys:
assumes "Keys (set ps) ⊆ set ts"
shows "mat_to_polys ts (polys_to_mat ts ps) = ps"

lemma mat_to_polys_to_mat:
assumes "distinct ts" and "length ts = dim_col A"
shows "(polys_to_mat ts (mat_to_polys ts A)) = A"

Here, dim_row and dim_col return the number of rows and columns, respectively, of the given matrix, $$ is
the infix operator for the 0-based access of the entries of a matrix (analogous to ! for lists and $ for vectors),
and Keys gives the set of all power-products occurring in its argument-set with non-zero coefficients.

Next comes the definition of the reduced row echelon form of matrices. Fortunately, this concept has
already been formalized in [TY15], so we can simply reuse the definition there and only slightly adapt it to
fit our needs:
definition row_echelon :: "β mat ⇒ β::field mat"
where "row_echelon A = fst (gauss_jordan A (1m (dim_row A)))"

As can be seen, in [TY15] the corresponding function is called gauss_jordan and not only returns rref(A)
of the given matrix A, but also the invertible matrix P such that rref(A) = P · A. Since we do not need
P , we simply discard it by projecting the result of gauss_jordan onto its first component, which is precisely
rref(A).

The definition of rref in [TY15] uses so-called pivot functions:
definition pivot_fun :: "β mat ⇒ (nat ⇒ nat) ⇒ nat ⇒ bool"
where "pivot_fun A f nc = (let nr = dim_row A in

(∀i<nr. f i ≤ nc ∧
(f i < nc −→ A $$ (i, f i) = 1 ∧

(∀i’<nr. i’ 6= i −→ A $$ (i’,f i) = 0)) ∧
(∀j<f i. A $$ (i, j) = 0) ∧
(Suc i < nr −→ f (Suc i) > f i ∨ f (Suc i) = nc)))"

A matrix A is in rref if, and only if, there exists some pivot function f for A.
Next we transfer theorems proved about gauss_jordan in [TY15] to their counterparts about row_echelon:

lemma dim_row_echelon [simp]:
shows "dim_row (row_echelon A) = dim_row A"
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and "dim_col (row_echelon A) = dim_col A"

lemma row_space_row_echelon [simp]: "row_space (row_echelon A) = row_space A"

lemma row_echelon_pivot_fun:
obtains f where "pivot_fun (row_echelon A) f (dim_col (row_echelon A))"

In particular note that constant row_space gives the row space of its argument, and that Lemma row-space-
row-echelon hence corresponds to Theorem 2.2 in Section 2.3. Lemma row-echelon-pivot-fun states that
row_echelon indeed returns rrefs.

The fact that row_echelon does not change the row space also allows us to conclude that the ideal
generated by the polynomials extracted from the rref of a Macaulay matrix is the same as the ideal generated
by the initial set of polynomials:
lemma ideal_row_echelon:
assumes "Keys (set ps) ⊆ set ts" and "distinct ts"
shows "ideal (set (mat_to_polys ts (row_echelon (polys_to_mat ts ps)))) =

ideal (set ps)"

Besides ideals, we also need linear hulls of sets polynomials: The linear hull of a set B ⊆ K[X] is the
set of all finite linear combinations of elements in B. Hence, it is like an ideal, but the cofactors are only
allowed to be constants from K. In the formalization, the linear hull generated by a set B is denoted by
phull B. The first simple lemma we can prove about the relationship between phull and ideal is that the
former always gives a subset of the latter:
lemma phull_subset_ideal: "phull B ⊆ ideal B"

In addition to that, we also prove a lemma analogous to ideal-row-echelon:
lemma phull_row_echelon:
assumes "Keys (set ps) ⊆ set ts" and "distinct ts"
shows "phull (set (mat_to_polys ts (row_echelon (polys_to_mat ts ps)))) = phull (set ps)"

The importance of phull for our formalization will become clear later.
Finally, the last notion we introduce in this theory is Macaulay_list. It is defined formally as

definition Macaulay_list :: "(α ⇒0 β) list ⇒ (α ⇒0 β) list"
where "Macaulay_list ps = filter (λp. p 6= 0)

(mat_to_polys (Keys_to_list ps) (row_echelon (Macaulay_mat ps)))"

Macaulay_list ps first constructs the Macaulay matrix of the list ps, then transforms it into rref, then
converts the result back into a list of polynomials, and eventually removes all occurrences of 0 from that list.
The crucial properties of Macaulay_list, which will feature a prominent role later on, are as follows:
lemma phull_Macaulay_list: "phull (set (Macaulay_list ps)) = phull (set ps)"

lemma ideal_Macaulay_list: "ideal (set (Macaulay_list ps)) = ideal (set ps)"

lemma Macaulay_list_is_monic_set: "is_monic_set (set (Macaulay_list ps))"

lemma Macaulay_list_distinct_lp:
assumes "p ∈ set (Macaulay_list ps)" and "q ∈ set (Macaulay_list ps)" and "p 6= q"
shows "lp p 6= lp q"

lemma Macaulay_list_lp:
assumes "p ∈ phull (set ps)" and "p 6= 0"
obtains g where "g ∈ set (Macaulay_list ps)" and "g 6= 0" and "lp p = lp g"

The first two lemmas, phull-Macaulay-list and ideal-Macaulay-list, are mere corollaries of phull-row-echelon
and ideal-row-echelon, respectively. The third lemma, Macaulay-list-is-monic-set, expresses that every poly-
nomial in the resulting list is monic, i. e. has leading coefficient 1; this follows readily from the fact that
row_echelon computes rrefs, and that in rrefs the pivot element of each row is 1. The last two lemmas state
properties of the leading power-products of the polynomials in Macaulay_list ps: Macaulay-list-distinct-lp
expresses that different polynomials have different leading power-products, and Macaulay-list-lp expresses
that for every non-zero element in the linear hull generated by the polynomials in ps, there exists a polyno-
mial in Macaulay_list ps with the same leading power-product. Especially the last lemma will be of utmost
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importance for formally proving the main theorems about Gröbner bases and Macaulay matrices presented
informally in Section 2.4 and formally in the upcoming Section 3.2.

We conclude this section with some words on the effective computability of the various functions intro-
duced in the preceding paragraphs. Thanks to the underlying development [TY15], row_echelon is effectively
computable, and so are mat_to_polys and polys_to_mat (and hence also Macaulay_mat and Macaulay_list)
for concrete representations of multivariate polynomials, e g. by associative lists. There is still one drawback,
though: in [TY15], only a dense representation of matrices by immutable arrays is formalized, rendering the
computation of rrefs of big (but sparse) matrices practically impossible. A more sophisticated representa-
tion of the kind of sparse matrices arising in this theory, e. g. a hybrid dense-sparse representation (dense
for rows, sparse for columns) by immutable arrays and associative lists, would be highly desirable and is
possible future work.

3.2. Theory ‘Groebner-Macaulay’

As an immediate consequence of Lemma Macaulay-list-lp we can observe that Macaulay_list ps always
returns a Gröbner basis if there is some Gröbner basis of ps contained in phull ps:
lemma Macaulay_list_is_GB:
assumes "is_Groebner_basis G" and "ideal (set ps) = ideal G" and "G ⊆ phull (set ps)"
shows "is_Groebner_basis (set (Macaulay_list ps))"

Before we can utilize this lemma to formulate and prove Theorem 2.6 we have to formalize the concept
of degree-bounds for computing Gröbner bases, in order to get rid of the Gröbner basis G in the assumptions
of the lemma above. To that end, as briefly mentioned at the beginning of Section 3.1, we now replace the
abstract view on power-products as objects of type α by the more concrete mappings of type χ⇒0 nat. So,
here and henceforth χ plays the role of the type of indeterminates.

We begin by defining constants is_GB_cofactor_bound and is_hom_GB_bound as follows:
definition is_GB_cofactor_bound::"((χ ⇒0 nat) ⇒0 β) set ⇒ nat ⇒ bool"
where "is_GB_cofactor_bound F b ←→

(∃G. is_Groebner_basis G ∧ ideal G = ideal F ∧
(
⋃

g∈G. indets g) ⊆ (
⋃

f∈F. indets f) ∧
(∀g∈G. ∃q. g = (

∑
f∈F. q f * f) ∧ (∀f∈F. poly_deg (q f * f) ≤ b)))"

definition is_hom_GB_bound :: "((χ ⇒0 nat) ⇒0 β) set ⇒ nat ⇒ bool"
where "is_hom_GB_bound F b ←→

((∀f∈F. homogeneous f) −→ (∀g∈reduced_GB G. poly_deg g ≤ b))"

As can probably be guessed from its name, is_GB_cofactor_bound F b expresses that there exists some
Gröbner basis G of F such that every polynomial g ∈ G can be written as g =

∑
f∈F qf f , where the products

qf f satisfy the additional requirement that their degree be not greater than the given bound b. Theorem 2.5
shows that is_GB_cofactor_bound F Duben+1,d always holds, where n and d depend on F and are as in
that theorem. Instead of formalizing and proving Theorem 2.6 for only this bound we opted to generalize it
by allowing the cofactor bound for the given set F to be arbitrary, as long as it is a valid cofactor bound; this
is ensured by adding an assumption of the form is_GB_cofactor_bound F b to the formal statement of
the theorem, as can be seen below. The reason for said approach is simple: although the Dubé-bound holds
for all sets F , it can be drastically improved if additional constraints are imposed on the input sets F . For
instance, Wiesinger-Widi in [WW15] derives much smaller bounds if F consists only of two binomials, and
our setting allows us to easily incorporate these better bounds into our formal theory—at least once they are
formalized, which is still future work. Note that the third conjunct in the definition of is_GB_cofactor_bound
is technical and merely expresses that all indeterminates appearing in the Gröbner basis G must also appear
in F ; in fact, indets is an auxiliary function returning precisely the set of indeterminates appearing in its
argument.

is_hom_GB_bound F b expresses that b is a bound for the degrees of the elements in the reduced
Gröbner basis of F , provided that F consists of homogeneous polynomials. From Theorem 2.4 we know that
is_hom_GB_bound F Duben,d always holds, and the proof of Theorem 2.5 can be generalized to derive
the following stronger statement: If is_hom_GB_bound F ∗ b is true for some b, where F ∗ denotes the
homogenization of F wrt. a fresh indeterminate, then b also satisfies is_GB_cofactor_bound F b. The
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formal statement of this theorem contains some odd technicalities that are difficult to explain on the spot,
and so we decided to omit it here. Actually, is_hom_GB_bound only appears in this theorem, but it will not
play any role later on.

From now on, we fix a finite set X of indeterminates by setting up a local theory context:
context
fixes X :: "χ set"
assumes fin_X: "finite X"

begin

X plays the role of the set of indeterminates which are allowed to appear in the polynomials occurring in
the remainder. Hence, card X corresponds to the number n in Section 2. The explicit finiteness assumption
is necessary because χ, the type of indeterminates, could in principle be infinite; this comes in handy when
the indeterminates shall be represented by natural numbers.

We will additionally use the following auxiliary concepts whose formal definitions we omit here:

• P[X] is the set of all polynomials of type (χ⇒0 nat)⇒0 β in which only indeterminates inX appear (with
non-zero exponents in power-products with non-zero coefficients). In short: p ∈ P[X]←→ indets p ⊆ X.

• deg_le_sect X d, for a natural number d, is the set of all power-products in X whose degree is less
than or equal to d.

deg_le_sect enables us to define function deg_shifts:
definition deg_shifts :: "nat ⇒ ((χ ⇒0 nat) ⇒0 β) list ⇒ ((χ ⇒0 nat) ⇒0 β) list"
where "deg_shifts d fs = concat (map (λf. (map (λt. monom_mult 1 t f)

(pps_to_list (deg_le_sect X (d - poly_deg f))))) fs)"

Without going into the details of its formal definition, deg_shifts d fs returns a list of all shifts of the
polynomials in list fs by power-products in X up to degree d.7

If d is instantiated by a valid degree-bound for the cofactors of a Gröbner basis of set fs, deg_shifts d fs
constructs a list of all shifts of the polynomials in the list fs that are needed to compute a Gröbner basis by
virtue of Theorem 2.6. So, we finally obtain the main theorem we set out to prove:
theorem thm_2_3_6:
assumes "set fs ⊆ P[X]" and "is_GB_cofactor_bound (set fs) b"
shows "is_Groebner_basis (set (Macaulay_list (deg_shifts b fs)))"

Keep in mind that the theorem is stated in the local theory context set up earlier, which in particular means
that X is still a finite set of indeterminates. The only difference between thm-2-3-6 and Theorem 2.6, its
informal counterpart, is the absence of the concrete Dubé-bound in the former, as announced above. Instead,
the theorem holds true for all valid bounds for the given list fs.

3.3. Code Generation and Computations

Since all functions Macaulay_list depends upon are effectively executable (see end of Section 3.1), we now
have a formally verified, executable implementation of Algorithm 2.1 for computing Gröbner bases by com-
puting the rref of Macaulay matrices.8 Combining Macaulay_list with function Dube from the formalization
of Dubé’s bound described in [Mal19a], we can therefore define the final function for computing Gröbner
bases via Macaulay matrices as follows; it is contained in theory ‘Groebner-Macaulay-Examples’ in the formal
sources:
definition GB_Macaulay_Dube :: "((χ ⇒0 nat) ⇒0 β) list ⇒ ((χ ⇒0 nat) ⇒0 β) list"
where "GB_Macaulay_Dube fs =

Macaulay_list (deg_shifts (Indets fs)
(Dube (length (Indets fs) + 1) (max_list (map poly_deg fs))) fs)"

7 Function pps_to_list turns a finite set of power-products into a sorted list; keys_to_list, which is mentioned at the beginning
of Section 3.1, is defined in terms of it.
8 Strictly speaking, function deg_shifts still has to be made executable, but apart from some technicalities this is possible with
moderate effort.
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Indets fs collects all indeterminates appearing in the list of polynomials fs, and function max_list returns
the maximum element of the list passed as its argument (in this case the maximum degree of the polynomials
in fs). So, GB_Macaulay_Dube is indeed the desired implementation of Algorithm 2.1.

GB_Macaulay_Dube is executable in the sense that Isabelle can automatically generate executable SML,
Haskell, OCaml and Scala code from it, by virtue of its code generator [HB18]. Applying the function to
concrete input happens directly in Isabelle and looks, for instance, as follows:
value [code] "GB_Macaulay_Dube_punit DRLEX [X * Y ^ 2 + 3 * X ^ 2 * Y, Y ^ 3 - X ^ 3]"

After roughly 1.5 seconds this command returns a list of 127 elements, which constitute a Gröbner basis of
〈xy2 +3x2y, y3−x3〉 ⊆ Q[x, y] wrt. the degree-reverse-lexicographic order relation with x ≺ y. Auto-reducing
the output, i. e. removing redundant elements, finally gives the reduced Gröbner basis of the ideal in question,
which is the following 4-element list:
[X ^ 5, X ^ 3 * Y - (1 / 9) * X ^ 4, Y ^ 3 - X ^ 3, X * Y ^ 2 + 3 * X ^ 2 * Y]"

Auto-reduction is implemented in the underlying Gröbner bases formalization [IM16], and takes hardly any
additional time in this case.
Remark 3.1. In the command above, GB_Macaulay_Dube has the additional suffix ‘_punit’. This has technical
reasons related to the global interpretation of some locale, which are not so important here. Only note that
the new function is parameterized over one additional argument, DRLEX, which represents the order relation
on the power-products that shall be used in the computation. Other available choices are LEX for the purely
lexicographic ordering, and DLEX for the degree-lexicographic ordering.

Of course, one could now try different Gröbner basis algorithms implemented in Isabelle/HOL on many
examples, and compare their performance to GB_Macaulay_Dube. Because of the remarks at the end of Sec-
tion 3.1, there is no real need to conduct such a thorough quantitative analysis: First of all, the data
structures for storing matrices that are currently available in Isabelle/HOL are not suitable for computing
GB_Macaulay_Dube efficiently. But even if there were better representations of matrices around, the approach
via Macaulay matrices would still require more time and space than other, state-of-the-art algorithms in most
instances. This is due to the fact that huge matrices have to be stored and row-reduced, where furthermore
many rows/columns are in fact redundant (but which exactly is not known a-priori); other algorithms, like so-
called signature-based algorithms [EF17], are famous for avoiding all sorts of redundant operations and thus
outperform the Macaulay-matrix based approach—at least unless much better degree bounds than Dubé’s
are known for the concrete input in question. Just as a quick comparison: the example above takes only a
few milliseconds with our implementation of signature-based algorithms in Isabelle/HOL [Mal18a, Mal18c].

It therefore must be emphasized that, after all, the ultimate purpose of the formalization presented in
this paper was to formally show that Gröbner bases can be computed via Macaulay matrices, and that the
whole procedure can effectively be implemented by a formally verified, executable function in Isabelle/HOL.

3.4. Differences to the Actual Formalization

In order to simplify the presentation, a couple of things have been changed here compared to the actual
formalization in Isabelle/HOL. Below, we briefly summarize the three main differences. Readers not intending
to look at the Isabelle-sources of the formalization may safely skip this section.

First, power-products are written additively rather than multiplicatively in the formalization: 0 takes the
role of 1, + that of ·, etc. This deviation from common mathematical practice has technical reasons and no
further implications for the rest of the formalization.

Second, big parts of the Isabelle-theories deal with modules and submodules, generalizing the traditional
setting of polynomial rings and ideals. In a nutshell, this means that instead of scalar polynomials we
consider vectors of polynomials represented as polynomials mappings from terms to coefficients. A term can
be thought of as the product of a power-product and a canonical basis vector of the module, i. e. a vector
whose components are all zero, except one, which is a power-product. However, just as power-products
are abstracted from by using the type variable α (as described at the beginning of Section 3.1), terms are
also abstracted from in the formalization; in fact, terms are represented by the type variable τ that only
has to satisfy certain abstract properties (encoded in a locale). More information on the formalization of
terms, vectors of polynomials, modules and submodules in Isabelle/HOL can be found in [MI18]. As a side
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result of this approach, constant ideal actually reads as pmdl (standing for ‘polynomial (sub)module’) in
the sources. Only just before defining is_GB_cofactor_bound and is_hom_GB_bound, when the abstract view
of power-products (or, more precisely, terms) is replaced by a concrete one, the module-setting is left for the
traditional one of scalar polynomials and ideals.

Third, function GB_Macaulay_Dube is not defined for polynomials of type (χ ⇒0 nat) ⇒0 β, but of type
(χ, nat) pp ⇒0 β. (χ, nat) pp is isomorphic to χ ⇒0 nat and a mere technical artifact needed for making
the code generation work. However, since the theory is developed for the original χ ⇒0 nat for reasons of
convenience and elegance, some technical lemmas translating between these two types are needed to ensure
that GB_Macaulay_Dube really behaves correctly. We spare the reader the (not very interesting) details.

4. Conclusion and Future Work

We presented the formalization of a method for computing Gröbner bases by transforming Macaulay matrices
into reduced row echelon form, following [WW15]. This formalization is distributed across three theories in
Isabelle/HOL, called ‘Macaulay-Matrix’, ’Groebner-Macaulay’ and ‘Dube-Bound’, the former two of which
are described in this paper. ‘Macaulay-Matrix’ consists of roughly 1200 lines of code, ‘Groebner-Macaulay’
of roughly 500 lines, and ‘Dube-Bound’ of more than 11000 lines. The numbers for the first two theories are
relatively small compared to the number for ‘Dube-Bound’, because we could heavily build upon existing
formalizations of Gröbner bases and matrices in Isabelle/HOL, whereas in ‘Dube-Bound’ we had to formalize
many things from scratch.

The method of computing Gröbner bases via Macaulay matrices depends on degree-bounds for cofactors
of Gröbner bases of finite sets of polynomials, and since the dimensions of the Macaulay matrices in turn
depend on these bounds, the method is only feasible if tight bounds are known; otherwise, the matrices
quickly become far too big to be handled efficiently by any computer implementation. Unfortunately, all
general degree-bounds, like Dubé’s (Theorem 2.4), must be at least double-exponential in the number n
of indeterminates [MM82], meaning that for generic input systems F the method presented here is only
applicable if n is small. For larger n we have to restrict ourselves to sets F that belong to classes of polynomial
systems for which better upper bounds are known. One such class contains all sets consisting of precisely
two binomials; good bounds for this class are derived by Wiesinger-Widi in [WW15].

Although the formalization presented in this paper covers the method for computing Gröbner bases by
Macaulay matrices wrt. Dubé’s general bound, Wiesinger-Widi’s improved bounds for two binomials are
still missing. The proofs given in [WW15] are fairly technical, essentially reducing the original problem to
a combinatorial problem over the distributive lattice Nn, and thus render their formalization in a proof
assistant a challenging task.
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