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Abstract. We present an Isabelle/HOL formalization of certain upper
bounds on the degrees of Gröbner bases in multivariate polynomial rings
over fields, due to Dubé. These bounds are not only of theoretical inter-
est, but can also be used for computing Gröbner bases by row-reducing
Macaulay matrices.
The formalization covers the whole theory developed by Dubé for ob-
taining the bounds, building upon an extensive existing library of multi-
variate polynomials and Gröbner bases in Isabelle/HOL. To the best of
our knowledge, this is the first thorough formalization of degree bounds
for Gröbner bases in any proof assistant.

1 Introduction

Gröbner bases [3,1] are one of the most powerful and most widely used tools
in modern computer algebra, as they allow to effectively solve many problems
related to ideals of multivariate polynomial rings. More precisely, Gröbner bases
are generating sets of ideals with certain additional properties; Buchberger, in
his doctoral thesis [3], proved that every ideal has a finite Gröbner basis and
even provided an algorithm for computing one. Later, Dubé in [4] derived general
upper bounds on the degrees of polynomials in Gröbner bases, which only depend
on the number of indeterminates and the maximum degree of the polynomials
in some generating set on the ideal under consideration.

Upper bounds for the degrees of Gröbner bases are not only of theoretical
interest, but also have practical relevance. For instance, Wiesinger-Widi in [14]
shows that Gröbner bases can be computed by row-reducing a certain Macaulay
matrix corresponding to the input set. The Macaulay matrix of a set of poly-
nomials is just a huge matrix whose entries are the coefficients of the given
polynomials. The caveat of this approach is, however, that upper bounds on the
degrees of the resulting Gröbner bases must be known a-priori – and thanks to
Dubé such bounds can be easily computed for every input set.

In this paper we describe a recent formalization of Dubé’s bounds in the
Isabelle/HOL proof assistant [11,13]; to the best of our knowledge, it is the
first-ever formal treatment of said bounds in any proof assistant. In a nutshell,
? The research was funded by the Austrian Science Fund (FWF): P 29498-N31



the formalization introduces the constant Duben,d depending on n, d ∈ N0 such
that, for every finite set F of multivariate polynomials in n indeterminates hav-
ing maximum degree d, there exists a Gröbner basis G of F the degrees of whose
elements are at most Duben+1,d (cf. Corollary 2). Although this statement might
look innocent, the machinery needed to prove it is fairly extensive: one needs
to define so-called cone decompositions of the polynomial ring, establish their
relationship to the Hilbert function, and finally do a series of algebraic manipu-
lations and estimations involving sums over generalized binomial coefficients. In
the upcoming sections we not only show the formalized definitions and theorems
in Isabelle/HOL, but also present their informal counterparts and therefore try
to make the paper as self-contained as possible; still, due to the lack of space,
we cannot include all the details (let alone proofs), so the interested reader is
referred to [4] instead.

The formalization is freely available online as a GitHub repository [8, theory
‘Dube_Bound’] and is compatible with the development versions of Isabelle1 and
the Archive of Formal Proofs2. We plan to submit it to the Archive of Formal
Proofs eventually.

The remainder of this paper is organized as follows: In Section 2 we briefly
recall the necessary mathematical background of multivariate polynomials and
Gröbner bases, and also present the foundations in Isabelle/HOL our formal-
ization builds upon. Section 3 is all about cone decompositions, the key tool to
obtaining Dubé’s bounds. Section 4, then, briefly sketches how the final bounds
can eventually be obtained and also lists the main theorems. Section 5 concludes
the paper.

2 Preliminaries

2.1 Mathematical Background

We briefly review the most important mathematical concepts appearing in our
formalization. Clearly, since our main goal is to prove degree bounds on Gröbner
bases, we have to begin by explaining the rough idea behind Gröbner bases.

First of all, we fix a fieldK and a finite set of indeterminatesX = {x1, . . . , xn};
K[X], then, denotes the multivariate polynomial ring over K, i. e. the set of all
finite sums of the form c1t1 + . . .+ cmtm, where the ci are non-zero coefficients
in K and the ti are power-products of the form xe1

1 · · ·xen
n (ej ∈ N0). The set

of all power-products appearing in a polynomial p with non-zero coefficient is
called the support of p, denoted by supp(p). The set of all power-products over
X will be denoted by [X].

We now fix an admissible order relation � on [X], that is, � is a well-order
on [X] additionally satisfying (i) 1 � t for all t ∈ [X], and (ii) s � t ⇒ us � ut
for all s, t, u ∈ [X]. Note that there are infinitely many such admissible order
relations if n > 1.
1 http://isabelle.in.tum.de/repos/isabelle
2 http://devel.isa-afp.org/
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With respect to �, every polynomial p 6= 0 possesses a leading power-product
lpp(p): this is the unique largest (w. r. t. �) power-product in supp(p).

Finally, we recall the definition of an ideal: in a commutative ring R with unit,
and ideal is a subset of R that is closed under addition and under multiplication
by arbitrary elements of R. The ideal generated by a set B ⊆ R, denoted by
〈B〉, is the (unique) smallest ideal containing B.

Now, we have all the ingredients for defining Gröbner bases [3,1]: a Gröbner
basis G ⊆ K[X]\{0} is a finite set of polynomials such that, for all p ∈ 〈G〉\{0},
there exists a g ∈ G such that lpp(g) | lpp(p) (where ‘|’ is the usual divisibility
relation on [X]). Gröbner bases have a lot of interesting properties, of which we
summarize the most important ones here:

– Every ideal in K[X] has Gröbner basis, i. e. for every F ⊆ K[X] there exists
some G ⊆ K[X] that is a Gröbner basis and satisfies 〈G〉 = 〈F 〉. For the
sake of simplicity, G is also called a Gröbner basis of F (not just 〈F 〉).

– By imposing additional constraints on Gröbner bases, one can even make
them unique for every ideal. This leads to the concept of reduced Gröbner
bases: every ideal in K[X] has a unique reduced Gröbner basis.3

– If G is a Gröbner basis, then for every p ∈ K[X] there exists a unique
q ∈ K[X] such that (i) lpp(g) - t for all t ∈ supp(q) and g ∈ G, and
(ii) p− q ∈ 〈G〉. Hence, if F ⊆ K[X] is arbitrary, we can define the normal
form (w. r. t. F ) of any polynomial p to be the unique q satisfying the above
two properties for the reduced Gröbner basis of F . We will denote the normal
form of p w. r. t. F by nfF (p). Note that nfF (p) = 0 if, and only if, p ∈ 〈F 〉.

– (Reduced) Gröbner bases and normal forms are effectively computable, but
the details are not so important here.

Besides Gröbner bases, we need a couple of other notions related to polyno-
mials which we briefly introduce/recall:

– For F ⊆ K[X], the set NF ⊆ K[X] contains precisely the polynomials that
are in normal form w. r. t. F , i. e. those p satisfying nfF (p) = p. Apparently
〈F 〉 ∩NF = {0}.

– For z ∈ N0 and p ∈ K[X], the homogeneous component of p at z is the sub-
polynomial of p all of whose power-products have degree z. Hence, p can be
written as p =

∑∞
z=0 pz. If T ⊆ K[X], then Tz is the set of the homogeneous

components of the elements of T at z.
– A polynomial is homogeneous if, and only if, it has at most one non-zero

homogeneous component, i. e. all power-products in its support have the
same degree. A set T ⊆ K[X] is called homogeneous if it is a K-vector
space and, for every p ∈ T and z ∈ N0, pz ∈ T as well. Obviously, if T
is homogeneous, then Tz constitutes a K-vector space for all z. Also, it is
well-known that an ideal is homogeneous if, and only if, it can be generated
by a set of homogeneous polynomials. NF is always homogeneous.

3 Reduced Gröbner bases are unique for every admissible order relation, but different
orders may yield different reduced Gröbner bases for the same ideal.
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– If T ⊆ K[X] is homogeneous, then the Hilbert function of T , denoted by
ϕT (z), maps every z ∈ N0 to the dimension of Tz as a K-vector space.

– Let T ⊆ K[X] and S1, . . . , Sm ⊆ T . Then the Si form a direct decomposition
of T , written T = S1⊕ · · ·⊕Sm, if every p ∈ T can be uniquely expressed as
a sum of the form p =

∑m
i=1 si with si ∈ Si for all 1 ≤ i ≤ m. If furthermore

each of the Si is homogeneous, then ϕT (z) =
∑m

i=1 ϕSi
(z). Also, it is easy

to see that K[X] = 〈F 〉 ⊕NF for all F ⊆ K[X], hence(
z + n− 1
n− 1

)
= ϕK[X](z) = ϕ〈F 〉(z) + ϕNF

(z) (1)

if F contains only homogeneous polynomials.

2.2 Isabelle/HOL

Due to space limitations we have to presuppose from the reader basic knowledge
of the (mostly self-explanatory) syntax of Isabelle/HOL. We only slightly deviate
from the usual Isabelle/HOL syntax in that the image of a set A under a function
f will be denoted by f •A here, to ease readability. So, for instance (∗) x •A is
a compact representation of the set {x ∗ a | a ∈ A}.

Multivariate polynomials and Gröbner bases have already been formalized in
Isabelle/HOL in [12,6]. We only recall the most important aspects of these for-
malizations here, to make the paper as self-contained as possible. The fundamen-
tal concept underlying polynomials are so-called polynomial mappings, which are
functions from some type α to some other type β :: zero, such that only finitely
many arguments are mapped to non-zero values. The type of such polynomial
mappings is α⇒0 β. So, a multivariate polynomial with indeterminates of type
χ and coefficients of type α is simply a term of type (χ⇒0 nat)⇒0 α: χ⇒0 nat

is the type of power-products, where every indeterminate is mapped to some ex-
ponent, and in terms of type (χ⇒0 nat)⇒0 α every power-product is mapped
to some coefficient. Throughout the paper, the type χ⇒0 nat is abbreviated by
χ pp, the type χ pp ⇒0 α is abbreviated by (χ, α) poly, the type variable χ
always represents the type of indeterminates, and α always represents the type
of coefficients (usually tacitly assumed to belong to sort field).

For a set X of indeterminates of type χ, .[X] is the formalization of the set
of power-products in X (i. e. [X], but in the formal sources we had to add a dot
to distinguish it from a singleton list), and P[X] is the formalization of the set
of polynomials with power-products in .[X] (roughly corresponds to K[X], but
we chose the letter ‘P’ because ‘K’ would suggest the coefficients be in a field,
whereas P[X] does not impose any restrictions on the coefficients). P[X] and
.[X] are needed, because often we have to consider subsets of the whole types
(χ, α) poly and χ pp, respectively, where only indeterminates in X occur.

The following are the formalizations of the basic concepts related to poly-
nomials and Gröbner bases that are mentioned in Section 2.1: reduced_GB F is
the reduced Gröbner basis of F (w. r. t. the admissible order relation � which
is implicitly fixed in a locale); ideal F corresponds to 〈F 〉; normal_form F p
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corresponds to nfF (p), and hence normal_form F • UNIV corresponds to NF (if
the indeterminates shall be restricted to X it is normal_form F • P[X]); deg_pm t
and poly_deg p refer to the degree of a power-product and of a polynomial,
respectively4; homogeneous p expresses that p is a homogeneous polynomial;
direct_decomp T ss states that the list of sets ss constitutes a direct decom-
position of the set T ; and Hilbert_fun T z, finally, is the Hilbert function of T .
Since there is nothing interesting about the formal definitions of these concepts
in Isabelle/HOL, we omit them here, but interested readers might want to have
a look at [9].

Remark 1. This remark is only relevant for readers intending to look at the
actual Isabelle sources of the formalization. There, power-products are written
additively rather than multiplicatively, for technical reasons. This means that 0
is used in the place of 1 and + in the place of ·. In this paper we use the standard
multiplicative notation for the sake of clarity, though.

3 Cone Decompositions

3.1 Basics

The key to obtaining Dubé’s degree bounds is decomposing the ring K[X] into
so-called cones, which are subsets of K[X] whose Hilbert functions can be de-
scribed easily.

Definition 1. Let h ∈ K[X]\{0}, and let U ⊆ X. Then the cone of h and U ,
denoted by cone(h, U), is the set {gh | g ∈ K[U ]}.

A cone decomposition of a set T ⊆ K[X] is a finite set {(h1, U1), . . . , (hr, Ur)}
of pairs such that T = cone(h1, U1) ⊕ · · · ⊕ cone(hr, Ur). If the hi are homoge-
neous, we call the cone decomposition homogeneous, and if the hi are monic
monomials we call the cone decomposition a monomial cone decomposition.

To gain some intuition about cones, the interested reader is referred to [4].
Roughly, a cone cone(h, U) corresponds to a principal ideal, where multipli-
cation is only allowed by polynomials in K[U ] rather than K[X], though. Note,
however, that h is still a polynomial in K[X], and may therefore contain inde-
terminates in X\U .

Definition 2. Let P be a cone decomposition of some set T and k ∈ N0. P is
called k-standard if, and only if, for all (h, U) ∈ P with U 6= ∅ it holds that
(i) deg(h) ≥ k, and (ii) for every k ≤ d ≤ deg(h) there exists (g, V ) ∈ P with
deg(g) = d and |V | ≥ |U |.

Formalizing the above definitions in Isabelle/HOL is absolutely straight-
forward, building upon the library of multivariate polynomials sketched in Sec-
tion 2.2. Before, however, we fix a finite set X of indeterminates (of type χ) in
a local theory context:
4 poly_deg 0 is defined to be 0.
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context

fixes X :: "χ set"

assumes "finite X"

begin

So, all subsequent definitions and lemmas are implicitly parameterized over the
finite set X. The reason for fixing X in this way is that the type χ is not
necessarily finite; indeed, it is very convenient to be able to instantiate χ by
type nat if one wishes to have an infinite supply of indeterminates. However,
most results we are going to formalize are only valid in polynomial rings with
finitely many indeterminates, meaning that very often we have to add explicit
assumptions of the form p ∈ P[X] or F ⊆ P[X], as will be seen below.

These are now the definitions of cones and cone decompositions, respectively:
definition cone :: "(((χ, α) poly × χ set) ⇒ ((χ, α) poly) set"

where "cone hU = (*) (fst hU) • P[snd hU]"

definition cone_decomp :: "((χ, α) poly) set ⇒
((χ, α) poly × χ set) list ⇒ bool"

where "cone_decomp T ps = direct_decomp T (map cone ps)"

There are a few things to note:

– In the formalization, constant cone is defined for pairs of arguments rather
than two individual arguments, i. e. it is uncurried. This turned out more
convenient for our purpose.

– Also, cone (h, U) does not check whether h ∈ K[X]\{0} and whether U ⊆ X.
Instead, we introduced the predicate valid_decomp which, for a given cone
decomposition, performs that check on all pairs in it explicitly.

– Cone decompositions are defined for lists of pairs rather than sets of pairs.
This is mainly because direct_decomp is also defined for lists, and it also
allows us to avoid many explicit finiteness checks we would have to make
otherwise (which would be feasible but inconvenient).

Besides cone, cone_decomp and valid_decomp there are also hom_decomp ps,
monomial_decomp ps and standard_decomp k ps, which express that ps is a homo-
geneous, monomial or k-standard cone decomposition, respectively.

Here comes the first important property of k-standard cone decompositions:
lemma standard_decomp_geE:

assumes "valid_decomp X ps" "cone_decomp T ps" "standard_decomp k ps" "k ≤ d"

obtains qs where "valid_decomp X qs" "cone_decomp T qs" "standard_decomp d qs"

"monomial_decomp ps =⇒ monomial_decomp qs" "hom_decomp ps =⇒ hom_decomp qs"

This lemma states that for any k-standard cone decomposition P of T , and for
all d ≥ k, there exists a d-standard cone decomposition Q of T ; furthermore, if
P is a homogeneous or monomial cone decomposition, then so is Q. The proof
of standard-decomp-geE is based on the fact that for any h ∈ K[X]\{0} and
U = {xi1 , . . . , xim

} ⊆ X, the set

{(h, ∅)} ∪ {(xijh, {xij , . . . , xim}) | 1 ≤ j ≤ m}
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constitutes a (deg(h) + 1)-standard cone decomposition of cone(h, U).

Remark 2. Apparently, Lemma standard-decomp-geE only asserts the existence
of the desired d-standard cone decomposition Q, but does not provide an al-
gorithm for actually computing it – despite the fact that its proof is actually
constructive. This reveals a general principle we adhered to throughout the for-
malization: many lemmas only stipulate the existence of certain cone decomposi-
tions, without showing how to construct them. The reason for this inconstructive
approach is simple: cone decompositions merely constitute a theoretical artifact
needed for obtaining the desired degree bounds, but they do not appear in these
bounds at all. The final degree bounds are effectively computable, of course.

3.2 Cone Decompositions of 〈F 〉 and NF

Our next goal is to construct cone decompositions with certain special properties
of both 〈F 〉 and NF , where F ⊆ K[X]. More precisely, we formally prove the
following two theorems:

Theorem 1 (Theorem 4.11. in [4]). Let F ⊆ K[X]. Then there exists a 0-
standard cone decomposition Q of NF . Moreover, if the polynomials in F are
homogeneous, then deg(g) ≤ d for all g in the reduced Gröbner basis of F , where
d = 1 + max{deg(h) | (h, U) ∈ Q}.

Theorem 2 (Corollary 5.2. in [4]). Let F ⊆ K[X] be finite, let f ∈ F ,
and assume that f has maximal degree among all polynomials in F . Then there
exist T ⊆ K[X] and a deg(f)-standard cone decomposition P of T such that
〈F 〉 = 〈f〉 ⊕ T . Moreover, if the polynomials in F are homogeneous, then P is a
homogeneous cone decomposition.

As can be seen, Theorem 1 already provides some sort of degree bound for the
reduced Gröbner basis of a set F , depending, however, on a cone decomposition of
NF . How it is possible to get rid of that cone decomposition, and what Theorem 2
is needed for, will be illustrated in Sections 3.3 and 4. But first let us have a
look at the formalizations of the two theorems in Isabelle/HOL.

As a starting point, we need to introduce the following auxiliary concept:
definition splits_wrt ::

"(((χ, α) poly × χ set) list × ((χ, α) poly × χ set) list) ⇒
(χ, α) poly set ⇒ (χ, α) poly set ⇒ bool"

where "splits_wrt pqs T F = (let ps = fst pqs; qs = snd pqs in

cone_decomp T (ps @ qs) ∧
(∀hU∈set ps. cone hU ⊆ ideal F) ∧
(∀(h, U)∈set qs. cone (h, U) ∩ ideal F = {0}))"

Informally, splits_wrt (P,Q) T F asserts that (i) P ∪Q is a cone decomposition
of T , (ii) cone(h, U) ⊆ 〈F 〉 for all (h, U) ∈ P , and (iii) cone(h, U) ∩ 〈F 〉 = {0}
for all (h, U) ∈ Q.5

5 Of course, splits_wrt is defined for lists ps, qs instead of sets P , Q, but informally
it is easier to think of sets.
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One can prove that, under the assumption splits_wrt (P,Q) T F , P and Q
are cone decompositions of certain sets:
lemma splits_wrt_cone_decomp_1:

assumes "splits_wrt (ps, qs) T F" "monomial_decomp qs" "is_monomial_set F"

shows "cone_decomp (T ∩ ideal F) ps"

lemma splits_wrt_cone_decomp_2:

assumes "splits_wrt (ps, qs) T F" "monomial_decomp qs" "is_monomial_set F"

"F ⊆ P[X]"

shows "cone_decomp (T ∩ normal_form F • P[X]) qs"

This already looks promising, because if T is sufficiently large (e. g. the whole
ring K[X]), these two lemmas assert that P and Q are cone decompositions of
〈F 〉 and NF , respectively – at least if F only consists of monomials. So, it would
be great if we could prove that (under some restrictions on T and F ) there
always exist P and Q satisfying splits_wrt (P,Q) T F . And indeed, such P and
Q do exist, because they can be constructed by the recursive function split:
function split :: "χ pp ⇒ χ set ⇒ χ pp set ⇒

((((χ, α) poly × (χ set)) list) × (((χ, α) poly × (χ set)) list))"

where

"split t U S =

(if 1 ∈ S then

([(monomial 1 t, U)], [])

else if S ∩ .[U] = {} then

([], [(monomial 1 t, U)])

else

let x = (SOME x’. x’ ∈ U - (max_subset U (λV. S ∩ .[V] = {})));

(ps0, qs0) = split t (U - {x}) S;

(ps1, qs1) = split (single x 1 * t) U ((λs. s / single x 1) • S) in

(ps0 @ ps1, qs0 @ qs1))"

Some remarks on the above Isabelle/HOL code are in place:

– split t U S consists of three branches: the first two branches correspond to
the base cases without any recursive calls, where ps and qs (i. e. P and Q)
can be determined readily. In the third branch, split is applied recursively
twice, producing ps0, qs0, ps1 and qs1, whose concatenations are eventually
returned.

– max_subset U (λV. S ∩ .[V ] = {}) returns a maximal V ⊆ U satisfying
S ∩ [V ] = ∅. x is then chosen as some element in U\V , which is not empty
by case assumption.

– monomial 1 t represents the monomial whose coefficient is 1 and whose sole
power-product is t; likewise, single x 1 represents the power-product in
which the exponent of x is 1 and all other exponents are 0.

– Termination of split is not entirely obvious, but under some mild assump-
tions on its input the function does indeed terminate.

– We did not take the effort to make function split executable, because of the
arguments put forward in Remark 2. In principle, this would be possible,
though.
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The fact that the result returned by function split really splits a set w. r. t.
another set, as claimed above, is stated in the next lemma:

lemma split_splits_wrt:

assumes "U ⊆ X" "finite S" "t ∈ .[X]" "ideal F ÷ t = ideal (monomial 1 • S)"

shows "splits_wrt (split t U S) (cone (monomial 1 t, U)) F"

So, the set T that is split w. r. t. F is actually the cone cone(t, U). This suf-
fices for our purpose, because for t = 1 and U = X we apparently have
cone(t, U) = K[X], and therefore the output of split 1 X F really consti-
tutes a cone decomposition of 〈F 〉 and NF , respectively, just as desired. In the
assumption of Lemma split-splits-wrt, 〈F 〉 ÷ t denotes the quotient ideal of 〈F 〉
w. r. t. t, i. e. the ideal {p ∈ K[X] | t p ∈ 〈F 〉}. So, that assumption basically
demands that 〈F 〉 ÷ t be generated by a finite set S of monomials.

Before we can prove Theorem 1, we need another crucial property of function
split that guarantees the existence of cones of a certain shape in its second
return value:

lemma lem_4_8:

assumes "finite S" "S ⊆ .[X]" "1 /∈ S" "g ∈ reduced_GB (monomial 1 • S)"

obtains t U where "U ⊆ X" "(monomial 1 t, U) ∈ set (snd (split 1 X S))"

"poly_deg g = deg_pm t + 1"

Together with Lemma split-splits-wrt, lem-4-8 is the key to proving Theo-
rem 1, because the desired cone decomposition Q can be shown to be precisely
the second return value of split when applied to the appropriate input. The
formalization of Theorem 1, hence, looks like this:

theorem standard_cone_decomp_snd_split:

assumes "F ⊆ P[X]"

defines "qs = snd (split 1 X (lpp • reduced_GB F))"

defines "d = 1 + Max (poly_deg • fst • set qs)"

shows "standard_decomp 0 qs" "cone_decomp (normal_form F • P[X]) qs"

"(∀f∈F. homogeneous f) =⇒ g ∈ reduced_GB F =⇒ poly_deg g ≤ d"

This theorem connects the second return value of function split to a cone
decomposition of NF , and as the attentive reader can probably guess, the first
return value of split can be utilized to obtain the desired direct decomposition
〈F 〉 = 〈f〉 ⊕ T , where T has a deg(f)-standard cone decomposition P . Unfor-
tunately, however, the first return value of split cannot be directly used for
that purpose, but has to be slightly adjusted (especially for making it deg(f)-
standard). The details are a bit technical and can be found in [4, Section 5];
here, we only show the final formal statement of Theorem 2:

theorem ideal_decompE:

assumes "finite F" "F ⊆ P[X]" "f ∈ F" "∀f’∈F. poly_deg f’ ≤ poly_deg f"

obtains T ps where "valid_decomp ps" "standard_decomp (poly_deg f) ps"

"cone_decomp T ps" "direct_decomp (ideal F ∩ P[X]) [ideal {f} ∩ P[X], T]"

"(∀f’∈F. homogeneous f’) =⇒ hom_decomp ps"
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Please note that we cannot simply write ideal F and ideal {f}, but we explicitly
have to restrict these sets to polynomials in P[X], since the ideal operator allows
multiplication by polynomials in arbitrary indeterminates of type χ.

3.3 Exact Cone Decompositions

We begin by summarizing the main definitions and results of this subsection
informally:

Definition 3. Let Q be a cone decomposition. Q is called exact if, and only if,
for all pairs (h, U), (g, V ) ∈ Q, if U 6= ∅, V 6= ∅ and deg(h) = deg(g), then
(h, U) = (g, V ).

Definition 4. Let Q be a cone decomposition. Then aQ is the smallest k ∈ N0
such that Q is k-standard, or 0 if Q is not k-standard for any k.

Also, the sequence bQ,i for i ∈ N0 is defined as

bQ,i := min{d ≥ aQ | ∀(h, U) ∈ Q : |U | ≥ i =⇒ deg(h) < d}.

Similar to the previous section, the main result of this section ensures the
existence of certain cone decompositions, in this case exact ones:

Theorem 3 (Lemma 6.3. in [4]). Let Q be a k-standard cone decomposition
of some set T . Then there also exists an exact k-standard cone decomposition
Q′ of T such that max{deg(h) | (h, U) ∈ Q} ≤ max{deg(h) | (h, U) ∈ Q′}. Fur-
thermore, if Q is a homogeneous or monomial decomposition, then so is Q′.

Theorems 1 and 3, together with the definition of b, immediately imply the
following:

Corollary 1. Let F ⊆ K[X]. Then there exists an exact 0-standard monomial
cone decomposition Q of NF . Moreover, if the polynomials in F are homogeneous,
then deg(g) ≤ bQ,0 for all g in the reduced Gröbner basis of F .

The importance of exact cone decompositions stems from the fact that the
Hilbert function of sets with an exact cone decomposition Q can be easily de-
scribed in terms of the constants bQ,i, for 1 ≤ i ≤ n+1. This in turn enables us to
obtain an upper bound for bQ,0, which, by virtue of Corollary 1, is also an upper
bound for the degrees of reduced Gröbner bases. Details follow in Section 4.

There is nothing special about the formal definitions of exact cone decompo-
sitions (constant exact_decomp), a or b, hence we omit them here. Instead, we
list some simple facts about b:

lemma b_decreasing: "i ≤ j =⇒ b qs j ≤ b qs i"

lemma b_zero: "qs 6= [] =⇒ Max (poly_deg • fst • set qs) < b qs 0"

lemma b_card_X: "card X < i =⇒ b qs i = a qs"
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The first lemma, b-decreasing, states that the sequence (bQ,i)i≥0 is decreasing,
b-zero states that bQ,0 is an upper bound for the degrees of the tips h of pairs
(h, U) ∈ Q, and b-card-X states that bQ,i stabilizes to aQ for sufficiently large i.

With respect to the proof of Theorem 3, the situation here parallels Sec-
tion 3.2: there is an algorithm for transforming an arbitrary k-standard cone
decomposition into an exact one, and this algorithm is implemented in function
exact in the formalization. However, since the implementation of exact is more
complicated than the one of split shown in Section 3.2, we omit it here. Using
exact, the formal statement of Theorem 3 is distributed across several lemmas:
lemma exact:

assumes "valid_decomp qs" "standard_decomp k qs"

shows "valid_decomp (exact k qs)" "standard_decomp k (exact k qs)"

"exact_decomp (exact k qs)"

lemma cone_decomp_exact:

assumes "valid_decomp qs" "standard_decomp k qs" "cone_decomp T qs"

shows "cone_decomp T (exact k qs)"

lemma Max_exact_ge:

assumes "valid_decomp qs" and "standard_decomp k qs"

shows "Max (poly_deg • fst • set qs) ≤ Max (poly_deg • fst • set (exact k qs))"

Note that exact not only takes a cone decomposition Q as input, but also a k
for which Q is k-standard; if Q is not k-standard, nothing can be said about the
cone decomposition returned by exact.

Finally, Corollary 1 is formalized as:
lemma normal_form_exact_decompE:

assumes "F ⊆ P[X]"

obtains qs where "valid_decomp qs" "standard_decomp 0 qs" "monomial_decomp qs"

"cone_decomp (normal_form F • P[X]) qs" "exact_decomp qs"

"
∧
g. (∀f∈F. homogeneous f) =⇒ g ∈ reduced_GB F =⇒ poly_deg g ≤ b qs 0"

4 Obtaining the Degree Bound

We have almost all prerequisites to obtain the final degree bound. But still, we
need one more definition:

Definition 5. Let b = (b1, . . . , bn+1) be a tuple of natural numbers, where as
usual n = |X|. Then the Hilbert polynomial in b, denoted by ϕb(z), is defined
as

ϕb(z) :=
(
z − bn+1 + n

n

)
− 1−

n∑
i=1

(
z − bi + i− 1

i

)
.

Since the upper entries of the binomial coefficients can be arbitrary numbers, the
binomial coefficients are generalized bin. coeffs.: ( a

n ) := a(a−1)(a−2)...(a−(n−1))
n! .

Abusing notation, we will abbreviate ϕbP
(z) simply by ϕP (z) if P is a cone

decomposition.
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Theorem 4 (see Section 7 in [4]). Let P be an exact k-standard homogeneous
cone decomposition of T . Then, if z ≥ bP,0, the Hilbert function of T equals the
Hilbert polynomial of P , i. e. ϕT (z) = ϕP (z).

The proof of Theorem 4 is based on the fact that the Hilbert function of T
is just the sum of the Hilbert functions of the cones in a homogeneous cone
decomposition P of T , and that this sum can be fully characterized by the bP,i

if P is exact and k-standard. The rest is mere rewriting of (sums of) binomial
coefficients by well-known binomial identities.

Now, let F ⊆ K[X] be a finite set of homogeneous polynomials, and let f ∈ F
whose degree d is maximal among the degrees of the polynomials in F . Let Q
be the exact 0-standard monomial cone decomposition of NF whose existence is
guaranteed by Corollary 1; since Q is 0-standard, we also know bQ,n+1 = aQ = 0.
Let T ⊆ K[X] and P be an exact d-standard homogeneous cone decomposition
of T such that 〈F 〉 = 〈f〉 ⊕ T , whose existence is guaranteed by Theorem 2
(strictly speaking, the cone decomposition from that theorem still has to be
made exact using Theorem 3); similarly to bQ,n+1, we know bP,n+1 = d. So, by
Theorem 4 we obtain the following two identities for sufficiently large z:

ϕNF
(z) = ϕQ(z) =

(
z + n
n

)
− 1−

n∑
i=1

(
z − bQ,i + i− 1

i

)
, (2)

ϕ〈F 〉(z) = ϕ{(f,X)}(z) + ϕP (z)

=
(
z − d+ n− 1

n− 1

)
+
(
z + d− n

n

)
− 1−

n∑
i=1

(
z − bP,i + i− 1

i

)
. (3)

Together with (1) from Section 2.1 we therefore obtain the key identity(
z + n− 1
n− 1

)
=
(
z − d+ n− 1

n− 1

)
+
(
z − d+ n

n

)
+
(
z + n
n

)
− 2

−
n∑

i=1

((
z − bP,i + i− 1

i

)
+
(
z − bQ,i + i− 1

i

))
(4)

which holds for all sufficiently large z; but, since both sides of the equality
are polynomials in z, and two polynomials agree everywhere if they agree on
infinitely many arguments, we can conclude that the above identity actually
holds for all z.

After a lengthy chain of simplifications and estimations of (4), which are in
detail explained in [4], one can prove that bP,j and bQ,j satisfy bP,j + bQ,j ≤
Duben,d(j) for 0 < j ≤ n− 1, where Duben,d(j) is defined recursively as

Duben,d(n− 1) = 2d (5)
Duben,d(n− 2) = d2 + 2d (6)

Duben,d(j) = 2 +
(

Duben,d(j + 1)
2

)
+

n−1∑
i=j+3

(
Duben,d(i)
i− j + 1

)
. (7)
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Note that Duben,d(j) is defined in terms of Duben,d(k) for larger k. In particular,
bP,1 + bQ,1 ≤ Duben,d(1) =: Duben,d, and since also bQ,0 ≤ max{bP,1, bQ,1} can
be proved, Duben,d is an upper bound for bQ,0, too. Therefore, thanks to Corol-
lary 1, Duben,d is the desired upper bound for the degrees of the polynomials in
the reduced Gröbner basis of F .

Theorem 5 (Variant of Theorem 8.2. in [4]). Let F ⊆ K[X] be a finite set
of homogeneous polynomials, and let d be the maximum degree of the polynomials
in F . Then every g in the reduced Gröbner basis of F satisfies deg(g) ≤ Duben,d.

Remark 3. Some of the steps in the derivation above only hold if d > 0 and
n > 1. The remaining cases of d = 0 and n ≤ 1 can easily be handled separately,
though: it is easy to see that d is a valid degree bound in these cases.

But even if the ideal under consideration is not homogeneous a result similar
to Theorem 5 holds; in fact, it is even stronger, because it gives a bound on the
representation of the Gröbner basis elements in terms of the polynomials in F :

Corollary 2 (Variant of Corollary 5.4. in [2]). Let F ⊆ K[X] be finite
and let d be the maximum degree of the polynomials in F . Then there exists a
Gröbner basis G of F such that every g ∈ G can be written as g =

∑
f∈F qff

for some polynomials qf , such that deg(qff) ≤ Duben+1,d for all f ∈ F . In
particular, g also satisfies deg(g) ≤ Duben+1,d.

This corollary can be obtained easily from Theorem 5 by first homogenizing F ,
then computing the reduced Gröbner basis of the homogenized set, and even-
tually dehomogenizing this Gröbner basis. Only note that in the bound we get
n+ 1 instead of n, and that the bound holds for some Gröbner basis of F , not
necessarily the reduced one.

Let us now turn to the formalization of the concepts and results presented
above, starting with the Hilbert polynomial:
definition Hilbert_poly :: "(nat ⇒ nat) ⇒ int ⇒ int"

where "Hilbert_poly b z = (let n = card X in

((z - b (n + 1) + n) gchoose n) - 1 -

(
∑

i=1..n. (z - b i + i - 1) gchoose i))"

Note that Hilbert_poly is defined for, and returns, integers. Working with in-
tegers proved tremendously more convenient in the upcoming derivation than
working with natural numbers. The infix operator gchoose, contained in the
standard library of Isabelle/HOL, represents generalized binomial coefficients.
Note that in a term like z − b (n + 1) + n, where z has type int and the other
summands have type nat, the other summands are automatically coerced to type
int by Isabelle/HOL.

So, in the formal development Theorem 4 corresponds to:
theorem Hilbert_fun_eq_Hilbert_poly:

assumes "X 6= {}" "valid_decomp ps" "hom_decomp ps" "cone_decomp T ps"

"standard_decomp k ps" "exact_decomp ps" "b ps 0 ≤ z"

shows "int (Hilbert_fun T z) = Hilbert_poly (b ps) z"
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We spare the reader the formalization of the lengthy derivation of the de-
gree bound, and only show the formal definition of Duben,d and the ultimate
theorems:
function Dube_aux :: "nat ⇒ nat ⇒ nat ⇒ nat" where

"Dube_aux n d j = (if j + 2 < n then

2 + ((Dube_aux n d (j + 1)) choose 2) +

(
∑

i=j+3..n-1. (Dube_aux n d i) choose (i - j + 1))

else if j + 2 = n then

d2 + 2 * d

else 2 * d)"

definition Dube :: "nat ⇒ nat ⇒ nat"

where "Dube n d = (if n ≤ 1 ∨ d = 0 then d else Dube_aux n d 1)"

theorem Dube:

assumes "finite F" "F ⊆ P[X]" "∀f∈F. homogeneous f" "g ∈ reduced_GB F"

shows "poly_deg g ≤ Dube (card X) (maxdeg F)"

corollary Dube_is_GB_cofactor_bound_explicit:

assumes "finite F" "F ⊆ P[X]"

obtains G where "is_Groebner_basis G" "ideal G = ideal F" "G ⊆ P[X]"

"
∧
g. g ∈ G =⇒ ∃q. g = (

∑
f∈F. q f * f) ∧

(∀f. poly_deg (q f * f) ≤ Dube (card X + 1) (maxdeg F))"

As can be seen, the statement of the formal Theorems Dube and Dube-is-GB-
cofactor-bound-explicit correspond exactly to the statements of Theorem 5 and
Corollary 2, respectively. Also, functions Dube and Dube_aux are effectively com-
putable by means of Isabelle’s code generator [5], meaning that for a concrete
set F of polynomials one can compute an upper bound for the maximum degree
of a Gröbner basis of F by a formally verified algorithm.

5 Conclusion

In the preceding sections we presented our Isabelle/HOL formalization of a de-
gree bound for reduced Gröbner bases of homogeneous ideals, closely follow-
ing [4]. In fact, the only substantial deviation from [4] is that there the constant
Duben,d is further bounded from above by a nice closed form:

Duben,d ≤ 2
(
d2

2 + d

)2n−2

for all n ≥ 2. However, the proof of this inequality ([4, Lemma 8.1.]) con-
tains two little mistakes: first, the recursive description of Duben,d(j) (cf. (7))
lacks the summand 2, and second, the author wrongly assumes that the sum∑n−1

i=j+3
2i−j

(i−j+1)! is never greater than 1/2; this is not true, e. g., for n = 7, d = 2
and j = 1, where that sum is 23/45. To the best of our knowledge, these mistakes
have remained unnoticed until now. Nevertheless, experiments indicate that the
closed form is a valid upper bound, typically even much larger than the value of
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Duben,d for concrete n and d,6 but a rigorous proof of this claim must be left as
future work. For our purpose the recursively defined function Duben,d is abso-
lutely sufficient anyway: it is (easily) computable and, as said before, typically
gives much better bounds.

Formalizing the results presented in this paper was not entirely trivial, despite
the fact that Dubé’s original paper is written very well and explains every step
of the proof in detail. The reason is that during the formalization process we had
to backtrack a design choice we made at the beginning: at first, we wanted to
simplify matters and therefore did not base the development on polynomials and
their leading power-products, but on power-products directly; this is reflected,
for instance, in function split, which only takes power-products as input and
originally returned power-products rather than polynomials, too. Later it turned
out, however, that some theorems simply cannot be proved without any reference
to polynomials and ideals thereof, not even after adjusting their statements to fit
into the ‘power-products-only’ framework; Theorem 2 serves as a good example.
Fortunately the wrong design choice could be corrected with only moderate
effort and did not cost too much time in the end. This also owes to the large
arsenal of sophisticated proof methods offered by the underlying Isabelle system,
which enabled us to construct rather abstract proofs that remained valid even
after replacing power-products by polynomials (think of auto, for instance). In
general, it was not necessary to develop any new proof methods or other tools
for completing the formalization.

The total number of lines of proof of the formalization is more than 11000,
which is quite significant. Note that [8] also contains other material this paper
is not concerned with and which is therefore not counted in the lines of proof; in
particular, it contains a formalization of the Macaulay-matrix-based approach
to Gröbner bases mentioned in the introduction (theory ‘Groebner_Macaulay’),
described in [7]. Formalizing the theory took roughly 270 working hours.

Having settled the general case of arbitrary input sets F , one could now try to
look at special cases that admit tighter degree bounds. For instance, Wiesinger-
Widi in [14] restricts herself to sets F consisting only of two binomials and
derives significantly better bounds there. Formalizing her results is a challenging
task, though, especially since her proofs make use of fairly different techniques
than Dubé’s proof presented here.

Acknowledgments. I thank the anonymous referees for their valuable comments.
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