
A Categorical Semantics of
Relational First-Order Logic∗

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

Valerie Novitzká William Steingartner
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice, Slovakia

Valerie.Novitzka@tuke.sk
William.Steingartner@tuke.sk

March 11, 2019

Abstract

We present a categorical formalization of a variant of first-order logic. Unlike other texts
on this topic, the goal of this paper is to give a very transparent and self-contained account
without requiring more background than basic logic and set theory. Our focus is to show
how the semantics of first order formulas can be derived from their usual deduction rules.
For understanding the core ideas, it is not necessary to investigate the internal term structure
of atomic formulas, thus we abstract atomic formulas to (syntactically opaque) relations;
in this sense our variant of first-order logic is “relational”. While the derived semantics
is based on categorical principles, it is nevertheless “constructive” in that it describes
explicit computations of the truth values of formulas. We demonstrate this by modeling the
categorical semantics in the RISCAL (RISC Algorithm Language) system which allows us
to validate the core propositions by automatically checking them in finite models.

∗Supported by the Austrian OEAD WTZ program and the Slovak SRDA agency under the contract SK 14/2018
“SemTech — Semantic Technologies for Computer Science Education” and by the Johannes Kepler University
Linz, Linz Institute of Technology (LIT), Project LOGTECHEDU “Logic Technology for Computer Science
Education”.

1

mailto:Wolfgang.Schreiner@risc.jku.at
mailto:Valerie.Novitzka@tuke.sk
mailto:William.Steingartner@tuke.sk

1 Introduction

Most introductions to first-order logic first define the syntax of formulas, then formalize their
meaning in the form established in the 1930s by Tarski [19] (essentially what we today call
in programming language theory a “denotational semantics” [9]), then introduce a deduction
calculus, and finally show the soundness and completeness of this calculus with respect to the
semantics: if a formula can be derived in the calculus, it is true according to the semantics,
and vice versa. These relationships between truth and derivability have to be established,
because there is no self-evident link between the semantics of a formula and the deduction rules
associated to it. Historically, deduction actually came first; the soundness of a deduction calculus
was established by showing that it could not lead to apparent inconsistencies, i.e., that not a
formula and its negation could be derived. It was Tarski who first gave a meaning to formulas
that was independent of deduction.
However, like it did since the 1940s to many other mathematical areas, category theory [3, 6,

15], the general theory of mathematical structures, can shed an alternative light also to first-order
logic. It does so by considering logical notions as special instances of “universal” constructions,
where a value of interest is determined

• first, by depicting the core property that the value shall satisfy and

• second, by a criterion to choose among all values that satisfy the property a canonical one.

It was eventually recognized that by such universal constructions the semantics of the connectives
of propositional logic could be determined directly from their associated introduction and elimi-
nation rules. However, it took until the late 1960s until Lawvere gained the fundamental insight
that this idea could be also applied to the quantifiers of first-order logic [5], thus establishing a
direct relationship between its semantics and its proof calculus.
However, this insight has not yet got a foothold in basic texts on logic and its basic education.

Amain reason may be that the corresponding material is found mostly in texts on category theory
and its applicationswhere it is dispersed among examples of the application of categorical notions
without a clear central presentation. Furthermore, the general treatment of first-order logic with
terms and variables requires a complex machinery [4] which is much beyond the scope of basic
introductions. Reasonably compact introductions can be found, e.g., in Section 2.1.10 of [1],
in [7], in Section 1.6 of [2] (however, in the context of type theory rather than classical first-order
logic), in Section 9.5 of [3] (the treatment of quantifiers only), and in Section 7.1.12 of [15]
(again only the treatment of quantifiers).
The goal of the present elaboration is to give a compact introduction to a categorical version

of first-order logic that is fully self-contained, only introduces the categorical notions relevant for
the stated purpose, and presents them from the point of view of the intended application. For this
purpose it elaborates a simple but completely formalized syntactic and semantic framework of
first-order logic that represents the background of the discussion, without gaps and inconsistencies
(hopefully). As a deliberate decision, this framework does not address the syntax and semantics
of terms but abstracts atomic formulas to opaque relations; this allows to focus the discussion
on the essentials. However, to really describe a reasonably close relative of first-order logic,
this framework is (in contrast to other presentations) not based on relations of fixed arity, i.e.,

2

with a fixed number of variables; rather we consider relations of infinite arity, i.e., with infinitely
many variables. However, only finitely many variables may influence the truth value of the
relation, which represents the effect that a classical atomic formula can only reference finitely
many variables. The overall result is (as we hope) a slick and elegant presentation.
The remainder of this paper is structured as follows: In Section 2 we define a term-free

variant of first-order logic and give it a semantics in the usual style on the basis of set-theoretic
notions. In Section 3, we introduce those categorical notions that are necessary for understanding
the following elaboration and discuss their relationships. The core of this paper is Section 4
where we elaborate the categorical formulation of the semantics of our variant of first-order
logic. In Section 5 we demonstrate that this semantics is constructive by modeling it in the
RISCAL system [8], which allows us to automatically check the core propositions in finite
models. Section 6 concludes our presentation and gives an outlook on future work.

2 A Relational First-Order Logic

In this section, we introduce a simplified variant of first-order logic that abstracts from the
syntactic structure of atomic formulas and thus copes without the concept of terms, constants,
function symbols, predicate symbols, and all of the associated semantic machinery. Towards this
goal, atomic formulas are replaced by relations over assignments (maps of variables to values)
that are constrained to only depend on a finite number of variables; we will call such relations
“predicates”. Consequently also the semantics of every non-atomic formula is a predicate.
We begin with some standard notions.

Axiom 1 (Variables and Values). Let Var denote an arbitrary infinite and enumerable set; we
call the elements of this set variables. Furthermore, let Val denote an arbitrary non-empty set;
we call the elements of this set values.

Definition 1 (Assignments). We define Ass := Var→ Val as the set of all mappings of variables
to values; we call the elements of this set assignments. Thus for every assignment a ∈ Ass and
every variable x ∈ Var, we have a(x) ∈ Val.

Definition 2 (Updates). Let a ∈ Ass be an assignment, x ∈ Var a variable, and v ∈ Val a value.
We define the update assignment a[x 7→ v] ∈ Ass as follows:

a[x 7→ v](y) :=

{
v if x = y

a[x] otherwise

Consequently, a[x 7→ v] is identical to a except that it maps variable x to value v.

Proposition 1 (Update Properties). Let a ∈ Ass be an assignment, x, y ∈ Var variables, and
v, v1, v2 ∈ Var values. Then we have the following properties:

a[x 7→ a(x)] = a

a[x 7→ v1][x 7→ v2] = a[x 7→ v2]
x , y ⇒ a[x 7→ v1][y 7→ v2] = a[y 7→ v2][x 7→ v1]

3

Proof. Directly from the definitions.

The properties of assignments listed above (and only these) will be of importance in the
subsequent proofs.
Now we turn to the fundamental semantic notions.

Definition 3 (Relations). We define Rel := P (Ass) as the set of all sets of assignments; we call
the elements of this set “relations”. Consequently, a relation is a set of assignments.

Definition 4 (Variable Independence). We state that relation R ∈ Rel is independent of vari-
able x ∈ Var, written as R ⊥⊥ x, if and only if the following holds:

∀a ∈ Ass, v1, v2 ∈ Val. a[x 7→ v1] ∈ R⇔ a[x 7→ v2] ∈ R

Consequently, if R ⊥⊥ x, the value of x in any assignment a does not influence whether a is in R.
We say that R depends on x if R ⊥⊥ x does not hold.

We transfer the central syntactic property of atomic formulas (they can only refer to finitely
many variables) to its semantic counterpart.

Definition 5 (Predicates). A relation R ∈ Rel is a predicate, if it only depends on finitely many
variables. We denote by Pred the set of all predicates and by Predx := {P ∈ Pred | P ⊥⊥ x} the
subset of all predicates that are independent of x.

Now we are ready to introduce the central entities of our discourse.

Definition 6 (Abstract Syntax of Formulas). We define For as that smallest set of abstract syntax
trees in which every element F ∈ For is generated by an application of a rule of the following
context-free grammar (where P ∈ Pred denotes an arbitrary predicate and x ∈ Var denotes an
arbitrary variable):

F ::= P | > | ⊥
| ¬F | F1 ∧ F2 | F1 ∨ F2 | F1 → F2 | F1 ↔ F2

| ∀x. F | ∃x. F

We call the elements of this set formulas.

In this definition, the role of a classic atomic predicate p(t1, . . . , tn) with argument terms
t1, . . . , tk in which n variables x1, . . . , xn occur freely is abstracted to a predicate P that depends
on variables x1, . . . , xn.
Now we establish the relationship between the syntax and semantics of formulas.

4

Definition 7 (Semantics of Formulas). Let F ∈ For be a formula. We define the relation
J F K ∈ Rel, called the semantics of F, by induction on the structure of F:

J P K := {a ∈ Ass | a ∈ P}
J> K := {a ∈ Ass | true}
J⊥ K := {a ∈ Ass | false}

J¬F K := {a ∈ Ass | a < J F K}
J F1 ∧ F2 K := {a ∈ Ass | a ∈ J F1 K and a ∈ J F2 K}
J F1 ∨ F2 K := {a ∈ Ass | a ∈ J F1 K or a ∈ J F2 K}

J F1 → F2 K := {a ∈ Asss | a < J F1 K or a ∈ J F2 K}
J F1 ↔ F2 K := {a ∈ Ass |

(
a ∈ J F1 K and a ∈ J F2 K

)
or

(
a < J F1 K and a < J F2 K

)
}

J∀x. F K := {a ∈ Ass | a[x 7→ v] ∈ J F K, for all v ∈ Val}
J∃x. F K := {a ∈ Ass | a[x 7→ v] ∈ J F K, for some v ∈ Val}

Above definition is well-defined in that clearly every formula denotes a relation. To show that
formulas indeed denote predicates some more work is required.

Proposition 2 (Quantified Formulas and Variable Independence). For every variable x ∈ Var
and formula F ∈ For, we have J∀x. F K ⊥⊥ x and J∃x. F K ⊥⊥ x, i.e., the semantics of quantified
formulas does not depend on x.

Proof. We prove this proposition by reductio ad absurdum.
First assume that J∀x. F K depends on x. Then we have some assignment a ∈ J∀x. F K

and some values v1, v2 ∈ Val such that a[x 7→ v1] ∈ J∀x. F K and a[x 7→ v2] < J∀x. F K.
From a[x 7→ v2] < J∀x. F K we have some v ∈ Val with a[x 7→ v2][x 7→ v] < J F K and thus
a[x 7→ v] < J F K. However, a[x 7→ v1] ∈ J∀x. F K implies a[x 7→ v1][x 7→ v] ∈ J F K and thus
a[x 7→ v] ∈ J F K, which represents a contradiction.
Now assume that J∃x. F K depends on x. Then we have some assignment a ∈ J∃x. F K

and some values v1, v2 ∈ Val such that a[x 7→ v1] ∈ J∃x. F K and a[x 7→ v2] < J∃x. F K.
From a[x 7→ v1] ∈ J∃x. F K we have some v ∈ Val with a[x 7→ v1][x 7→ v] ∈ J F K and thus
a[x 7→ v] ∈ J F K. However, a[x 7→ v2] < J∃x. F K implies a[x 7→ v2][x 7→ v] < J F K and thus
a[x 7→ v] < J F K, which represents a contradiction.

Proposition 3 (Formula Semantics and Predicates). For every formula F ∈ For, we have
J F K ∈ Pred, i.e., the semantics of F is a predicate.

Proof. The proof proceeds by induction over the structure of F.

• If F = P, we have J F K = {a ∈ Ass | a ∈ P} = P ∈ Pred.

• If F ∈ {>,⊥}, there are no x, a, v1, v2 such that a[x 7→ v1] ∈ J F K and a[x 7→ v2] < J F K,
because for F = > the second condition must be false and for F = ⊥ the first one; thus F
does not depend on any variable.

5

• If F = ¬F1, by the induction hypothesis, we may assume that J F1 K depends only on the
variables in some finite variable set X . From the definition of J F K, it is then easy to show
that also J¬F1 K depends only on the variables in X .

• If F ∈ {F1 ∧ F2, F1 ∨ F2, F1 → F2, F1 ↔ F2}, we may assume by the induction hypothesis
that J F1 K depends only on the variables in some finite set X1 while P2 only depends on
the variables in some finite set X2. From the definition of J F K, it is then easy to show that
J F K depends only on the variables in the finite set X1 ∪ X2.

• If F ∈ {∀x. F1, ∃x. F1}, we may assume by the induction hypothesis that J F1 K only
depends on the variables in some finite variable set X . We are now going to show that J F K
only depends on the variables in the finite set X\{x}. Actually we assume that this is not
the case and show a contradiction. From this assumption and Proposition 2, we have a
variable y , x ∧ y < X on which F depends; thus we have an assignment a and values
v1, v2 such that a[y 7→ v1] ∈ J F K and a[y 7→ v2] < J F K.

If F = ∀x. F1, from a[y 7→ v2] < J F K we have a v ∈ Val with a[y 7→ v2][x 7→ v] < J F1 K
and thus (since y , x) a[x 7→ v][y 7→ v2] < J F1 K. From a[y 7→ v1] ∈ J F K we know
a[y 7→ v1][x 7→ v] ∈ J F1 K and thus a[x 7→ v][y 7→ v1] ∈ J F1 K. Thus J F1 K depends on a
variable y < X which contradicts the induction assumption.

If F = ∃x. F1, from a[y 7→ v1] ∈ J F K we have a v ∈ Val with a[y 7→ v1][x 7→ v] ∈ J F1 K
and thus (since y , x) a[x 7→ v][y 7→ v1] ∈ J F1 K. From a[y 7→ v2] < J F K we know
a[y 7→ v2][x 7→ v] < J F1 K and thus a[x 7→ v][y 7→ v2] < J F1 K. Thus J F1 K depends on a
variable y < X which contradicts the induction assumption.

This completes our proof.

In the following we transfer the classical model-theoretic notions to our framework.

Definition 8 (Satisfaction). Let a ∈ Ass be an assignment and F ∈ For be a formula. We define
a |= F (read: a satisfies F) as follows:

a |= F :⇔ a ∈ J F K

Definition 9 (Validity). Let F ∈ For be a formula. We define |= F (read: F is valid) as follows:

|= F :⇔ ∀a ∈ Ass. a |= F

Definition 10 (Logical Consequence). Let F,G ∈ For be formulas. We define F |= G (read: G
is a logical consequence of F) as follows:

F |= G :⇔ ∀a ∈ Ass. a |= F ⇒ a |= G

Definition 11 (Logical Equivalence). Let F,G ∈ For be formulas. We define F ≡ G (read: F
and G are logically equivalent) as follows:

F ≡ G :⇔ ∀a ∈ Ass. a |= F ⇔ a |= G

6

Proposition 4 (Logical Consequence and Logical Equivalence). Let F,G ∈ For be formulas.
Then we have the following equivalences:

• (F |= G) ⇔ (|= F → G)

• (F |= G) ⇔ (J F K ⊆ J G K)

• (F ≡ G) ⇔ (|= F ↔ G)

• (F ≡ G) ⇔ (J F K = J G K)

Proof. Directly from the definitions.

Thus logical consequence on the meta-level coincides with implication on the formula level
and with the subset relation on the semantic level. Furthermore, logical equivalence on the
meta-level coincides with equivalence on the formula level and with the equality relation on the
semantic level.
In the following, we establish a set-theoretic interpretation of the logical operations of our

formula language.

Definition 12 (Complement). We define the complement R ∈ Rel of relation R ∈ Rel as the
relation R := Ass\R. Consequently an assignment is in R if and only if it is not in R.

Proposition 5 (Propositional Semantics as Set Operations). Let F, F1, F2 ∈ For be formulas. We
then have the following equalities:

J P K = P

J> K = Ass
J⊥ K = ∅

J¬F K = J F K
J F1 ∧ F2 K = J F1 K ∩ J F2 K
J F1 ∨ F2 K = J F1 K ∪ J F2 K

J F1 → F2 K = J F1 K ∪ J F2 K

J F1 ↔ F2 K =
(
J F1 K ∩ J F2 K

)
∪

(
J F1 K ∩ J F2 K

)
Proof. Directly from the definition of the semantics.

While above results are quite intuitive, a corresponding set-theoretic interpretation of quantified
formulas is not. In the following we only state the plain result without indication of how it can
be intuitively understood; we will delegate this explanation to Section 4 where the categorical
framework will provide us with the adequate insight.

Proposition 6 (Quantifier Semantics as Set Operations). Let F ∈ For be a formula. We then
have the following equalities:

J∀x. F K =
⋃
{P ∈ Pred | P ⊥⊥ x ∧ P ⊆ J F K}

J∃x. F K =
⋂
{P ∈ Pred | P ⊥⊥ x ∧ J F K ⊆ P}

7

In other words, J∀x. F K is the weakest predicate P (“weakest” in the sense of the largest set)
that is independent of x and that satisfies the property P ⊆ J F K while J∃x. F K is the strongest
predicate P (“strongest” in the sense of the smallest set) that is independent of x and that satisfies
the property J F K ⊆ P.

Proof. First we take arbitrary a ∈ Ass and show

a ∈ J∀x. F K⇔
(∃P ∈ Pred. P ⊥⊥ x ∧ P ⊆ J F K ∧ a ∈ P

)
⇒: We assume a ∈ J∀x. F K and prove for P := J∀x. F K

P ∈ Pred (a)
P ⊥⊥ x (b)
P ⊆ J F K (c)
a ∈ P (d)

From Proposition 3, we have (a). From Proposition 2, we have (b). From a ∈ J∀x. F K we
have (d). To show (c), we take arbitrary assignment a0 ∈ P and show a0 ∈ J F K. From a0 ∈ P,
we know a0[x 7→ v] ∈ J F K for v := a0(x). Since a0[x 7→ a0(x)] = a0, we thus know a0 ∈ J F K.
⇐: We assume for some P ∈ Pred

P ⊥⊥ x (1)
P ⊆ J F K (2)
a ∈ P (3)

and prove a ∈ J∀x. F K. For this we take arbitrary v ∈ Val and prove a[x 7→ v] ∈ J F K. From (2),
it suffices to show a[x 7→ v] ∈ P. From (1), we know

∀v1, v2 ∈ Val. a[x 7→ v1] ∈ P⇔ a[x 7→ v2] ∈ P (4)

From (3) and a = a[x 7→ a(x)], we know a[x 7→ v0] ∈ P for v0 := a(x). Thus with (4) we
know a[x 7→ v] ∈ P.

Now we take arbitrary a ∈ Ass and show

a ∈ J∃x. F K⇔
(∀P ∈ Pred. P ⊥⊥ x ∧ J F K ⊆ P⇒ a ∈ P

)
⇒: We assume a ∈ J∃x. F K and take arbitrary but fixed P ∈ Pred for which we assume

P ⊥⊥ x (5)
J F K ⊆ P (6)

Our goal is to show a ∈ P. From a ∈ J∃x. F K, we know a[x 7→ v] ∈ J F K for some v ∈ Val.
From (6), we thus know a[x 7→ v] ∈ P. From (5), we thus know a[x 7→ a(x)] ∈ P. Since
a[x 7→ a(x)] = a, we thus know a ∈ P.
⇐: We assume

∀P ∈ Pred. P ⊥⊥ x ∧ J F K ⊆ P⇒ a ∈ P (7)

and prove a ∈ J∃x. F K. From (7) instantiated with P := J∃x. F K and Propositions 3 and 2, it
suffices to prove J F K ⊆ J∃x. F K. Take arbitrary assignment a0 ∈ J F K. Since a0[x 7→ a(x)] =
a, we thus have a0[x 7→ v] ∈ J F K for v := a(x) and thus a0 ∈ J∃x. F K.

8

3 Category Theory

In this section we discuss those aspects of category theory that are relevant for the subsequent
categorical formulation of our relational first order logic.

Basic Notions We begin with the basic notions of category theory.

Definition 13 (Category). A category C is is a triple 〈O, A, ◦〉 of the following components:

• A class O of elements called C -objects or just objects.

• A class A of elements called C -arrows or just arrows. Each arrow has a source object and
a target object from O; we write f : a→ b to indicate that f is an arrow with source a and
target b. We write C (a, b) to denote the class of all arrows of A with source a and target b
(called the hom-class of all arrows from a to b). For every object x in O, A contains an
arrow idx : x → x called the identity arrow for x.

• A binary operation ◦ on arrows called composition. For all arrows f : a→ b and g : b→ c
we have (g ◦ f) : a→ c. Furthermore, the composition satisfies the following axioms:

– Associativity: (h◦g)◦ f = h◦(g◦ f), for all arrows f : a→ b, g : b→ c, h : c→ d.
– Identity: idb ◦ f = f = f ◦ ida, for all arrows f : a→ b.

Example 1 (Category of Sets). We introduce the category SET which contains as objects all sets
and every triple 〈 f λ, A, B〉 as arrow f : A→ B where f λ is a (total) function from set A to set B.
The identity arrow idA : A→ A is defined by idλA : A→ A, idλA(x) := x; composition is defined
by (g ◦ f)λ : A→ C, (g ◦ f)λ(x) := g(f (x)) for arrows g : B→ C and f : A→ B.

Example 2 (Category of Subsets). Given a set S we introduce the category SUB(S) which
contains as objects all subsets of S and every tuple 〈A, B〉 as arrow f : A→ B for which A ⊆ B
holds; thus a unique arrow with source A and target B exists if and only if A ⊆ B. The identity
arrow is defined as idA := 〈A, A〉; composition is defined as g ◦ f := 〈A,C〉 for arrows g : B→ C
and f : A→ B.

Categories are often depicted in the form of diagrams where

• every point in the diagram represents an object of the category;

• every arrow between two points in the diagram represents in the category an arrow between
the corresponding two objects.

These diagrams do typically not show the identity arrows and arrows whose existence is implied
by the composition of the depicted arrows. For example, take the following diagram:

b a c

d

f g

h

9

The category depicted by this diagramhas four objects a, b, c, d and nine arrows: the identities ida,
idb, idc, idd, the depicted arrows f : b → a, g : c → a, h : a → d, and the implied arrows
(h ◦ f) : b→ d, (h ◦ g) : c→ d.

Categorical propositions are often depicted in the form of “commutative diagrams” where
every connected “path” of one ore more arrows in the diagram represents in the category the
composition of these arrows; if two paths in the diagram have the same start point and the same
end point, they represent in the category the same arrow (i.e., the compositions denoted by the
paths yield the same result). For example, take the following commutative diagram:

a b c

d e f

f1 f2

g1 g2

h1 h2 h3

This diagram states the propositions h2 ◦ f1 = g1 ◦ h1 and h3 ◦ f2 = g2 ◦ h2 which imply the
proposition h3 ◦ f2 ◦ f1 = g2 ◦ g1 ◦ h1.
Some more fundamental notions follow.

Definition 14 (Isomorphism). Let C be a category and a, b be C -objects a, b. Then we have
a ' b (read: a and b are isomorphic) if there are C -arrows f : a → b and g : b → a, called
isomorphisms, such that g ◦ f = ida and f ◦ g = idb.

Definition 15 (Subcategory). A category C is a subcategory of category D if every C -object is
also a D-object, every C -arrow is also a D-arrow, every identity arrow in C is also an identity
arrow in D, and g ◦C f = g ◦D f for all C -arrows f : a → b and g : b→ c, where ◦C denotes
the composition in C and ◦D denotes the composition in D.

Object Constructions We are now introducing constructions of categorical objects that will
subsequently play an important role in the categorical formulation of relational first-order logic.

Definition 16 (Initial and Final Objects). Let C be a category. A C -object 0 is initial if for every
C -object a there exists exactly one arrow 0a : 0→ a. A C -object 1 is final if for every C -object a
there exists exactly one arrow 1a : a→ 1.

The following diagram illustrates the arrows of an initial object 0 and a final object 1 with
respect to an arbitrary object a:

1

a

0

1a

0a

10

This construction of initial/final objects is “universal” in the sense that it describes a class of
entities (objects and accompanying arrows) that share a common property and picks from this
class an entity whose characterizing property is the existence of exactly one arrow from/to every
entity of this class. This defines the entity uniquely up to isomorphism. Further instances of
such constructions will be given later.

Example 3 (Initial and Final Object). In the category SET of all sets (introduced in Example 1),
the only initial object 0 is the empty set ∅, where arrow 0A : 0→ A is determined by the function
0λ
A

: ∅ → A, 0λ
A

:= ∅ that is not defined on any argument. Every singleton set {e} with arbitrary
element e is final with arrow 1A : A→ 1 determined by the function 1λ

A
: A→ {e}, 1λ

A
(x) := e.

In the category SUB(S) of all subsets of set S (introduced in Example 2), the only initial object 0
is the empty set ∅ with arrow 0A := 〈∅, A〉. The only final element 1 is the set S with arrow
1A := 〈A, S〉.

Definition 17 (Product and Coproduct). Let C be a category. Then the triple 〈a × b, π1, π2〉 is a
product of C -objects a and b if a× b is a C -object, the product object, with arrows π1 : a× b→ a
and π2 : a× b→ b, the projections, such that for every triple 〈c, f , g〉 with C -object c and arrows
f : c→ a and g : c→ b there exists exactly one arrow 〈 f , g〉 : c→ a× b such that the following
diagram commutes:

c

a a × b b

f g

π1 π2

〈 f , g〉

Dually, the triple (a + b, ι1, ι2) is a coproduct of C -objects a and b if a + b is a C -object, the
coproduct object, with arrows ι1 : a → a + b and ι2 : b → a + b, the injections, such that for
every triple 〈c, f , g〉 with C -object c and arrows f : a→ c and g : b→ c there exists exactly one
arrow [f , g] : a + b→ c such that the following diagram commutes:

c

a a + b b

f g

ι1 ι2

[f , g]

The product and the coproduct are thus defined by universal constructions analogous to those
of the final and the initial element, respectively; thus also products and coproducts are uniquely
defined up to isomorphism.

Example 4 (Product and Coproduct). In the category SET of all sets (introduced in Example 1),
a product object A × B is the set of all pairs {〈a, b〉 | a ∈ A ∧ b ∈ B} with the projections
determined by functions πλ1 (〈a, b〉) := a and πλ2 (〈a, b〉) := b. A coproduct object A + B is the
disjoint union {〈a, 1〉 | a ∈ A} ∪ {〈b, 2〉 | b ∈ B} with the injections defined by the functions
ιλ1 (a) := 〈a, 1〉 and ιλ2 (b) := 〈b, 2〉.

11

In the category SUB(S) of all subsets of set S (introduced in Example 2), a product object A×B
is the intersection A∩B with the existence of the projections π1 : A∩B→ A and π2 : A∩B→ A
expressing the facts A ∩ B ⊆ A and A ∩ B ⊆ B, respectively. A coproduct object A + B is the
union A ∪ B with the existence of the injections ι1 : A→ A ∪ B and ι2 : B → A ∪ B expressing
the facts A ⊆ A ∪ B and B ⊆ A ∪ B, respectively.

Definition 18 (Product Arrow). Let C be a category with products 〈a1 × a2, π1, π2〉 and 〈b1 ×
b2, π

′
1, π
′
2〉 and arrows f : a1 → b1 and g : a2 → b2, respectively. Then the product arrow

f × g : a1 × a2 → b1 × b2 is the arrow 〈 f ◦ π1, g ◦ π2〉.
Definition 19 (Exponential). Let C be a category in which for all C -objects there exists a product
object. Then the tuple 〈ba, evala,b〉 is an exponential of C -objects a and b if ba is a C -object, the
exponential object, with arrow evala,b : ba × a → b, the evaluation arrow, such that for every
C -object c with arrow f : c× a→ b there exists exactly one arrow curry f : c→ ba, the currying
arrow, such that the following diagram commutes:

ba × a b

c × a

evala,b

curry f × ida
f

Since also the exponential is defined by a universal construction, it is uniquely defined up to
isomorphism.

Example 5 (Exponential). In the category SET of all sets (introduced in Example 1), for SET-
objects (i.e., sets) A, B, the exponential object BA is the set { f : A→ B} of all functions from A
to B. The evaluation arrow is defined by the function evalλA,B(f , a) := f (a) for f : A→ B and
a ∈ A, the currying arrow by the function curryλ

f
(c) := λa. f (c, a) for f : C × A→ B and c ∈ C.

Thus, given objects c ∈ C, a ∈ A, b ∈ B and function f : c × a→ b, we can construct a function
curryλ

f
(c) such that for arbitrary object a, we have evalλA,B(curryλ

f
(c), a) = f (c, a).

In the category SUB(S) of all subsets of set S (introduced in Example 2), the exponential
object BA is the set A ∪ B = (S\A) ∪ B. The existence of the evaluation arrow evalA,B :=
〈BA ∩ A, B〉 expresses the fact BA ∩ A ⊆ B. The existence of the currying arrow defined as
curry f := 〈C, BA〉 states C ⊆ BA. Thus, given set C and f : C × A→ B, i.e., a derivation goal
C ∩ A ⊆ B, we can construct curry f : C → BA, i.e., the “missing assumption” C ⊆ BA which
allows us to deduce C ∩ A ⊆ B using evalA,B : BA ∩ A → B, i.e., the “universal knowledge”
BA ∩ A ⊆ B. Interpreting sets as propositions, BA as the implication A→ B, the intersection ∩
as the conjunction ∧, and the subset relation ⊆ as the “entails” relation |=, above elaboration
describes in a nutshell the inference rule

curry f : C ` A→ B
f : C ∧ A ` B

where the “universal knowledge”

evalA,B : (A→ B) ∧ A ` B

12

is essentially the modus ponens rule.

Functors and Adjunction Moving on from individual categories, we will now discuss some
concepts that address relationships between categories.

Definition 20 (Functor). Let C and D be categories. A functor F : C → D is a map that takes
every C -object a to a D-object F(a) and every C -arrow f : a → b to a D-arrow F(f) : F(a) →
F(b) such that

• F(ida) = idF(a) for every C -object a, and

• F(g ◦C f) = F(g) ◦D F(f) for all C -arrows f : a→ b and g : b→ c.

Example 6 (Functor). We define the category I whose objects are the integer numbers, whose
arrows denote the “less than equal” relation ≤� over the integers (i.e., a unique arrow f : x → y

exists if and only if x ≤� y) and whose composition denotes the composition of this relation.
Analogously we introduce the category R whose objects are the real numbers, whose arrows
denote the “less than equal” relation ≤� over the reals, and whose composition operation denotes
relational composition.
Consider a functor R : I → R that maps the integers into the reals such that for every I -object i

(i.e., an integer number) R(i) represents an R -object, (i.e., a real number) and every I -arrow
i1 → i2 is mapped to an R -arrow R(i1) → R(i2) (i.e., if i1 ≤� i2, then R(i1) ≤� R(i2)). Thus R
may be any monotonous map from the integers to the reals.

Definition 21 (Adjunction, Left and Right Adjoint). Let C and D be categories with functors
F : C → D and G : D → C . Then we have F a G (read: 〈F,G〉 is an adjunction, F is a left
adjoint of G, G is a right adjoint of F) if for every C -object a and D-object b the arrow classes
D(F(a), b) and C (a,G(b)) are isomorphic, i.e., there exists a bijection between them. This is
equivalent1 to saying that for every C -object a and D-object b there exist two surjective mappings
s1 : D(F(a), b) → C (a,G(b)) and s2 : C (a,G(b)) → D(F(a), b), i.e.,

• for every D-arrow g : F(a) → b we have a C -arrow f : a→ G(b) with s2(f) = g and

• for every C -arrow f : a→ G(b) twe have a D-arrow g : F(a) → b with s1(g) = f .

Example 7. We introduce between the set � of integer numbers respectively the set � of real
numbers the functions

real : �→ �, real(x) := x

ceil : �→ �, ceil(x) := min {y ∈ � | x ≤� real(y)}
floor : �→ �, floor(x) := max {y ∈ � | real(y) ≤� x}

1This equivalence is a consequence of the Cantor–Schröder–Bernstein theorem which states that there exists a
bijective function between sets A and B if there exist injective functions f : A→ B and g : B→ A. This implies
that such a bijective function also exists if there exist surjective functions f ′ : A → B and g′ : B → A because
from these we can define the injective functions f (a) := such b. g′(b) = a and g(b) := such a. f ′(a) = b. While
the theorem has been formulated for sets, it can also be generalized to classes.

13

where real(x) denotes the “embedding” of integer x to real, ceil(x) denotes the least integer
greater equal x, and floor(x) denotes the greatest integer less equal x.
Now consider the categories I and R introduced in Example 6. Above functions induce

corresponding functors over these categories, the “embedding functor” R : I → R , the “ceiling
functor” C : R → I , and the “floor functor” F : R → I , where for every R -object x we have
R(x) = real(x) and for every I -object x we have C(x) = ceil(x) and F(x) = floor(x). Since
function real ismonotonic, Rmaps I -arrows, i.e., inequalities on�, toR -arrows, i.e., inequalities
on �; thus R is indeed a functor. Likewise, since also functions ceil and floor are monotonic,
also C and I are indeed functors.

Above functions satisfy the following properties (we will prove this claim below):

∀x ∈ �, y ∈ �. ceil(x) ≤� y ⇔ x ≤� real(y) (1)
∀x ∈ �, y ∈ �. x ≤� floor(y) ⇔ real(x) ≤� y (2)

As a consequence of property (1), we have for every I -arrow f : C(x) → y (with R -object x and
I -object y) exactly one R -arrow g : x → R(y) and vice versa, i.e., the arrow classes I (C(x), y)
and R (x, R(y)) are isomorphic. As a consequence of property (2), we have for every I -arrow
f : x → F(y) (with I -object x and R -object y) exactly one R -arrow g : R(x) → y and vice
versa, i.e., the arrow classes R (R(x), y) and I (x, F(x)) are isomorphic. Thus we have

C a R ∧ R a F

i.e., the ceiling functor is a left adjoint of the embedding functor and the floor functor is a right
adjoint, respectively.
It remains to prove (1) and (2). The definitions of functions ceil and floor immediately give

us the following properties:

ceil(x) = y ⇔
(
x ≤� real(y) ∧ ∀y′ ∈ � : x ≤� real(y′) ⇒ y ≤� y′

)
(3)

floor(x) = y ⇔
(
real(y) ≤� x ∧ ∀y′ ∈ � : real(y′) ≤� x ⇒ y′ ≤� y

)
(4)

Furthermore we clearly have the following properties:

∀x1, x2, x3 ∈ �. x1 ≤� x2 ∧ x2 ≤� x3 ⇒ x1 ≤� x3 (5)
∀x, x ′ ∈ �. x ≤� x ′⇒ real(x) ≤� real(x ′) (6)

To prove (1), we take arbitrary x ∈ � and y ∈ � and show ceil(x) ≤� y ⇔ x ≤� real(y).
First we assume ceil(x) ≤� y (7) and show x ≤� real(y). From (3) and (7), we know x ≤�
real(ceil(x)); from (6) and (7), we know real(ceil(x)) ≤� real(y); from (5) we thus have the goal.
Next we assume x ≤� real(y) (7) and show ceil(x) ≤� y which follows directly from (3) and (7).

To prove (2), we take arbitrary x ∈ � and y ∈ �. and show x ≤� floor(y) ⇔ real(x) ≤� y.
First we assume x ≤� floor(y) (7) and show real(x) ≤� y. From (6) and (7), we know
real(x) ≤� real(floor(y)); from (4), we know real(floor(y)) ≤� y; from (5), we have the goal.
Next we assume real(x) ≤� y (7) and show x ≤� floor(y) which follows from (4) and (7).

Proposition 7 (Equivalence of Adjunctions and Universals). Let C and D be categories with
functors F : C → D and G : D → C . Then the condition F a G is equivalent to each of the
following two conditions:

14

1. For every C -object a there is a C -arrow u : a→ G(F(a)), the “universal arrow”, such that
for every D-object b and C -arrow f : a→ G(b) there exists a D-arrow gb, f : F(a) → b:

a G(F(a))

G(b)

F(a)

b

u

f
G(gb, f) gb, f

2. For every D-object b there is a C -arrow v : F(G(b)) → b, the “couniversal arrow”, such
that for every C -object a and D-arrow g : F(a) → b there is a C -arrow fa,g : a→ G(b):

b F(G(b))

F(a)

G(b)

a

v

g G(fa,g)fa,g

Proof. See the proof of Propositions 6 and 7 in [2].

Example 8. Consider the categories R and I with functors C : R → I , R : I → R , and
F : R → I introduced in Example 7. For these we have C a R and R a F .
We consider C a R and apply the first part of Proposition 7:

• First, for every R -object a, i.e. a ∈ �, we have u : a→ R(C(a)), i.e., a ≤� real(ceil(a)).

• Second, for every I -object b and R -arrow f : a→ R(b), i.e., b ∈ � with a ≤� real(b), we
have an I -arrow gb, f : C(a) → b, i.e., ceil(a) ≤� b.

In other words, the following proposition holds:

a ≤� real(ceil(a)) ∧ ∀b ∈ �. a ≤� real(b) ⇒ ceil(a) ≤� b

which is equivalent to property (3) in Example 7 and can be stated more succinctly as

ceil(a) = min {b ∈ � | a ≤� real(b)}

which is the defining equation of ceil.
Now we consider R a F and apply the second part of Proposition 7:

• First, for every R -object b, i.e. b ∈ �, we have v : R(F(b)) → b, i.e., real(floor(b)) ≤� b.

• Second, for every I -object a and R -arrow g : R(a) → b, i.e., a ∈ � with real(a) ≤� b, we
have an R -arrow fa,g : b→ F(a), i.e., b ≤� floor(a).

15

In other words, the following proposition holds:

real(floor(b)) ≤� b ∧ ∀a ∈ �. real(a) ≤� b⇒ b ≤� floor(a)

which is equivalent to property (4) in Example 7 and can be stated more succinctly as

floor(b) = max {a ∈ � | real(a) ≤� b}

which is the defining equation of floor.

As Example 8 demonstrates, Proposition 7 states in a nutshell that a left adjoint uniquely
defines a function by taking as its result the “least” element for which the application of the right
adjoint does not yield a value that is “less” than the argument; dually a right adjoint uniquely
defines a function by taking as its result the “greatest” element for which the application of the
left adjoint does not yield a value that is “greater” than the argument.

Object Constructions by Adjunction We conclude this section by demonstrating that the
previously described object conjunctions can be also considered as applications of functors that
are determined as left respectively right adjoints to certain basic functors.

Proposition 8 (Initial and Final Object by Adjunction). Let 1 be the “singleton” category with
a single object ∗ (and consequently a single arrow id∗ : ∗ → ∗); this category is uniquely defined
up to isomorphism. Let C be a category with the constant functor C : C → 1; also this functor
is uniquely defined up to isomorphism. Then the following holds:

• Let C -object 0 be initial and the “initial object functor” I0 : 1→ C be defined by I0(∗) := 0
and I0(id∗) := id0. Then we have I0 a C, i.e., the initial object functor is a left adjoint of
the constant functor.

• Let C -object 1 be final and the “final object functor” F1 : 1→ C be defined by F1(∗) := 1
and F1(id∗) := id1. Then we have C a F1, i.e., the final object functor is a right adjoint of
the constant functor.

Proof. For showing the first statement, we take the initial object 0 with initial object functor I0.
We show I0 a C, i.e., that C (I0(∗), a) and 1(∗,C(a)) are isomorphic, for arbitrary C -object a.
This follows from 1(∗,C(a)) = 1(∗, ∗), C (I0(∗), a) = C (0, a), and the fact that there exists exactly
one 1-arrow id∗ : ∗ → ∗ and, since 0 is initial, exactly one C -arrow f : 0→ a.
For showing the second statement, we take the final object 1 with final functor F1. We show

C a F1, i.e., that 1(C(a), ∗) and C (a, F1(∗)) are isomorphic, for arbitrary C -object a. This follows
from 1(C(a), ∗) = 1(∗, ∗), C (a, F1(∗)) = C (a, 1), and the fact that there exists exactly one 1-arrow
id∗ : ∗ → ∗ and, since 1 is final, exactly one C -arrow f : a→ 1.

Proposition 9 (Product and Coproduct by Adjunction). Let C be a category. Let the “product
category” C × C be the category whose objects (a, b) are pairs of C -objects a and b, whose
arrows (f , g) : (a, c) → (b, d) are pairs of C -arrows f : a→ b and g : c→ d, where the identity
arrows are pairs of identity arrows, and where composition is component-wise composition. Let
the “diagonal functor” ∆ : C → C × C be defined by ∆(a) = (a, a) for every C -object a and
∆(f) = (f , f) for every C -arrow f : a→ b. Then the following holds:

16

• Assume that every pair of C -objects a and b has a product a × b and let the “product
functor” P : C × C → C be defined by P(a, b) := a × b . Then we have ∆ a P, i.e., the
product functor is a right adjoint of the diagonal functor.

• Assume that every pair of C -objects a and b has a coproduct a + b and let the “coproduct
functor” C : C → C × C be defined by C(a, b) := a + b. Then we have C a ∆, i.e., the
coproduct functor is a left adjoint of the diagonal functor.

Proof. For showing the first statement, we take arbitrary category C and functor P satisfying
the stated assumption. We show ∆ a P, i.e., that for arbitrary C -objects p, a, b the arrow classes
(C × C)(∆(p), (a, b)) and C (p, P(a, b)) are isomorphic. Since ∆(p) = (p, p) and P(a, b) = a × b,
it suffices to find surjections s1 : (C × C)((p, p), (a, b)) → C (p, a × b) and s2 : C (p, a × b) →
(C × C)((p, p), (a, b)). First, we define s1(f , g) := 〈 f , g〉 where 〈 f , g〉 : p → a × b is the unique
C -arrow given to us by Definition 17 with property f = π1 ◦ 〈 f , g〉 and g = π2 ◦ 〈 f , g〉. Now we
show that for every C -arrow h : p→ a × b there exist some C -arrows f : p→ a and g : p→ b
with s1(f , g) = h. We take f := π1 ◦ h and g := π2 ◦ h. Due to the uniqueness of 〈 f , g〉, the
equalities f = π1 ◦ h and g = π2 ◦ h imply h = 〈 f , g〉 and thus s1(f , g) = h. Second, we define
s2(h) := (π1 ◦ h, π2 ◦ h). Now we show that for every (C × C)-arrow (f , g) : (p, p) → (a, b),
i.e., for all C -arrows f : p → a and g : p → b, there exists some C -arrow h : p → a × b with
s2(h) = (f , g), i.e., π1 ◦ h = f and π2 ◦ h = g. Definition 17 gives us this h.
For showing the second statement, we take arbitrary category C and functor C satisfying the

stated assumption. We show C a ∆, i.e., that for arbitrary C -objects a, b, c the arrow classes
C (C(a, b), c) and (C × C)((a, b),∆(c)) are isomorphic. Since C(a, b) = a + b and ∆(c) = (c, c), it
suffices to find surjections s1 : C (a+b, c) → (C ×C)((a, b), (c, c)) and s2 : (C ×C)((a, b), (c, c)) →
C (a + b, c). First, we define s1(h) := (h ◦ ι1, h ◦ ι2). Now we show that for every (C × C)-arrow
(f , g) : (a, b) → (c, c), i.e., for all C -arrows f : a → c and g : b→ c, there exists some C -arrow
h : a + b→ c with s1(h) = (f , g), i.e., h ◦ ι1 = f and h ◦ ι2 = g. Definition 17 gives us this h.
Second, we define s2(f , g) := [f , g] where [f , g] : a + b→ c is the unique C -arrow given to us
by Definition 17 with property f = [f , g] ◦ ι1 and g = [f , g] ◦ ι2. Now we show that for every
C -arrow h : a + b → c there exist some C -arrows f : a → c and g : b → c with s2(f , g) = h.
We take f := h ◦ ι1 and g := h ◦ ι2. Due to the uniqueness of [f , g], the equalities f = h ◦ ι1 and
g = h ◦ ι2 imply h = [f , g] and thus s2(f , g) = h.

Proposition 10 (Exponential by Adjunction). Let C be a category in which for every pair of
C -objects a and b there exists a product object b × a and an exponential object ba. For every
C -object a, let the “(unary) product functor” Pa : C → C be defined by Pa(b) := b × a and the
“(unary) exponential functor” Ea : C → C be defined by Ea(b) := ba. Then we have Pa a Ea,
i.e., the exponential functor is a right adjoint of the product functor.

Proof. We take arbitrary category C , C -object a, and functors Pa and Ea satisfying the as-
sumption. We show Pa a Ea, i.e., that for arbitrary C -objects b, c the arrow classes C (Pa(c), b)
and C (c, Ea(b)) are isomorphic. Since Pa(b) = b×a and Ea(b) = ba it suffices to find surjections
s1 : C (c × a, b) → C (c, ba) and s2 : C (c, ba) → C (c × a, b). First, we define s1(f) := curry f .
Now we show that for every C -arrow g : c → ba there exists some C -arrow f : c × a → b with
s1(f) = g, i.e., curry f = g. We define f := evala,b ◦ (g × ida) and show curry f = g. From the

17

true
false

1

and
or

impF

forallx
existsx

∗

SYN

F1 |= F2

TRUE
FALSE

1

AND
OR

IMPP

FORALLx

EXISTSx

∗

SEM

P1 ⊆ P2
J K

SEMxSYN x

Figure 1: A Categorical Semantics of Relational First-Order Logic

definition of f , we know that the C -arrow g : c→ ba satisfies the equality f = evala,b ◦(g× ida).
However, Definition 19 implies that the only such C -arrow is curry f ; thus curry f = g. Second,
we define s2(g) := evala,b ◦ (g × ida). Now we show that for every C -arrow f : c × a → b
there exists some C -arrow g : c → ba with s2(g) = f , i.e., evala,b ◦ (g × ida) = f . We define
g := curry f from which Definition 19 proves the goal.

We are now ready to discuss the central aspects of categorical logic.

4 A Categorical Semantics

Based on the concepts introduced in the previous sections, this section elaborates a categorical
semantics of our relational version of first order logic. We advise the reader to consult Figure 1
to grasp the overall framework and the relationship between its various categories and functors.

Syntactic Category and Formula Functors We start by introducing the “syntactic category”
SYN = 〈For, A, ◦〉 as follows:

• The objects of this category are the formulas in the set For which was introduced in
Definition 6.

• The arrow class A consists of all pairs 〈F1, F2〉 of formulas F1, F2 for which F1 |= F2 holds,
i.e., for which F2 is a logical consequence of F1, as described in Definition 8. The source
object of such an arrow is F1, its target object is F2. The existence of an arrow f : F1 → F2
thus indicates F1 |= F2. The identity idF : F → F indicates the fact F |= F.

• The composition ◦ denotes relational composition: for all arrows f : F1 → F2 and g : F2 →
F3, the existence of the arrow (g ◦ f) : F1 → F3 indicates the transitivity of the relation |=.

18

For every variable x, SYN x is that subcategory of SYN whose objects are formulas whose
semantics is independent of x (see Definition 4).
For reasons explained below, we will exclude from the syntactic category negations and

equivalences, i.e., formulas of form (¬F) and (F1 ↔ F2). We may do so by considering them as
the following syntactic shortcuts:

(¬F) ≡ (F → ⊥)
(F1 ↔ F2) ≡ (F1 → F2) ∧ (F2 → F1)

The validity of these shortcuts can be easily shown by proving the corresponding logical equiva-
lences. Consequently negations and conjunctions need subsequently not be considered any more
and their semantics need not be explicitly defined.
For the other kinds of formulas, we introduce the following (families of) “formula functors”

where 1 is the “singleton” category with a single object ∗ (see Proposition 8):

true : 1→ SYN
false : 1→ SYN
and : SYN × SYN → SYN

or : SYN × SYN → SYN
impF ∈For : SYN → SYN

forallx∈Var : SYN → SYN x

existsx∈Var : SYN → SYN x

These functors map formulas to formulas, and logical consequences to logical consequences.
The formula mappings are naturally defined as follows:

true(∗) := >
false(∗) := ⊥

and(F1, F2) := F1 ∧ F2

or(F1, F2) := F1 ∨ F2

impF1(F2) := F1 → F2

forallx(F) := ∀x. F

existsx(F) := ∃x. F

As for the mapping of consequences, we notice that all functors are covariant in their SYN
arguments2, i.e., we have for all formulas F, F1, F2,G,G1,G2 and every variable x the following

2It is exactly for this reason that negation and equivalence (which do not enjoy covariance in their arguments) are not
modeled as formula functors and that implication (which is only covariant in its second argument) is not modeled
by a binary functor but by a family of unary functors.

19

(easy to prove) properties:

(F1 |= G1) ∧ (F2 |= G2) ⇒ and(F1, F2) |= and(G1,G2)
(F1 |= G1) ∧ (F2 |= G2) ⇒ or(F1, F2) |= or(G1,G2)
(F2 |= G2) ⇒ impF1(F2) |= impF1(G2)
(F |= G) ⇒ forallx(F) |= forallx(G)
(F |= G) ⇒ existsx(F) |= existsx(G)

Therefore the object maps of these functors naturally induce the necessary logical consequences.

Semantic Category and Predicate Functors Next we introduce the “semantic category”
SEM = 〈Pred, B, ◦〉 as follows:

• The objects of this category are the predicates in the set Pred which was introduced in
Definition 5 (thus SEM -objects are relations, i.e., sets).

• The arrow class B consists of all pairs 〈P1, P2〉 of predicates P1, P2 for which P1 ⊆ P2
holds, i.e., for which P1 is a subset of P2. The source object of such an arrow is P1, its
target object is P2. The existence of an arrow f : P1 → P2 thus indicates P1 ⊆ P2. The
identity idP : P→ P indicates the fact P ⊆ P.

• The composition ◦ denotes relational composition: for all arrows f : P1 → P2 and
g : P2 → P3, the existence of the arrow (g ◦ f) : P1 → P3 indicates the transitivity of the
relation ⊆.

For every variable x, SEM x is that subcategory of SEM whose objects are predicates that are
independent of x (see Definition 4).
Corresponding to the various kinds of formula constructions, we will have the following

“predicate functors” (respectively families of functors):

TRUE : 1→ SEM
FALSE : 1→ SEM

AND : SEM × SEM → SEM
OR : SEM × SEM → SEM

IMPP∈Pred : SEM → SEM
FORALLx∈Var : SEM → SEM x

EXISTSx∈Var : SEM → SEM x

These functors map predicates to predicates and subset relations to subset relations (their detailed
definitions will be given later). As we will see, these functors are covariant in their SEM -
arguments, i.e., we have for all predicates P, P1, P2,Q,Q1,Q2 and every variable x the following

20

properties:

(P1 ⊆ Q1) ∧ (P2 ⊆ Q2) ⇒ AND(P1, P2) ⊆ AND(Q1,Q2)
(P1 ⊆ Q1) ∧ (P2 ⊆ Q2) ⇒ OR(P1, P2) ⊆ OR(Q1,Q2)
(P2 ⊆ Q2) ⇒ IMPP1(P2) ⊆ IMPP1(Q2)
(P ⊆ Q) ⇒ FORALLx(P) ⊆ FORALLx(Q)
(P ⊆ Q) ⇒ EXISTSx(P) ⊆ EXISTSx(Q)

Therefore the object maps of these functors (defined by the respective predicate operations)
naturally induce appropriate arrow maps (the corresponding subset relations).

The Semantic Functor Now we introduce the “semantic functor” J K : SYN → SEM defined
as follows:

• For every SYN -object F, i.e., formula F, J F K denotes the semantics of F as defined in
Definition 7, which according to Proposition 3 is a predicate, i.e., indeed a SEM -object.

• For every SYN -arrow f : F1 → F2, i.e., every pair of formulas F1 and F2 with F1 |= F2,
we have the SEM -arrow J f K : J F1 K → J F2 K, i.e., the fact J F1 K ⊆ J F2 K, which is a
direct consequence of Definition 10 which introduces the |= relation.

This semantic functor establishes the relationship between the previously introduced formula
functors and predicate functors by the following identities on SEM -objects, i.e., predicate
identities, that will hold for all formulas F, F1, F2 and every variable x:

J true(∗) K = TRUE(∗)
J false(∗) K = FALSE(∗)
J and(F1, F2) K = AND(J F1 K, J F2 K)
J or(F1, F2) K = OR(J F1 K, J F2 K)
J impF1(F2) K = IMPJF1 K(J F2 K)
J forallx(F) K = FORALLx(J F K)
J existsx(F) K = EXISTSx(J F K)

We are now going to elaborate in detail the semantic functors from which all of above can be
shown; this elaboration is inspired from and indeed directly derived from the well-known logical
inference rules of first order logic. The resulting definitions are based on the categorical notions
introduced in Section 3, i.e., final and initial objects, products and coproducts, exponentials,
and left and right adjoints, respectively. This gives us for every logical operation a “universal”
definition of its semantics. Nevertheless this semantics is also “constructive” in the sense that it
is explicitly defined from well-known set-theoretic operations.

21

Logical Constants The role of the logical constants in reasoning is exhibited by the following
two “rules” which follow directly from Definition 8 (these rules are propositions that are valid
for every formula F; they mimic the corresponding inference rules of first order logic):

F |= > ⊥ |= F

In other words, > is a logical consequence of every formula F, i.e., > is the “weakest” formula.
Dually, every formula F is a logical consequence of ⊥, i.e., ⊥ is the “strongest” formula. This
implies that true(∗) = > is the final object of category SYN and false(∗) = ⊥ is its initial one
(see Definition 16). Then Proposition 8 implies CSYN a true and false a CSYN , i.e., functor true
is the right adjoint of the constant functor CSYN : SYN → 1 while functor false is its left one.
Correspondingly TRUE(∗) is the final object of category SEM (the “weakest” predicate, i.e.,

the predicate which is a superset of every predicate) and FALSE(∗) is its initial object (the
“strongest” predicate, i.e., the predicate which is a subset of every predicate). By Proposition 8
we then have CSEM a TRUE and FALSE a CSEM , i.e., functor TRUE is the right adjoint of the
constant functor CSEM : SEM → 1 while functor FALSE is its left one.

Therefore, corresponding to above rules for formulas, we have the following rules for every
predicate P:

P ⊆ TRUE(∗) FALSE(∗) ⊆ P

Since final and initial objects are unique, these rules actually represent implicit but unique
definitions of TRUE(∗) and FALSE(∗) which can be explicitly written as

TRUE(∗) :=
⋃
{P | P ∈ Pred} FALSE(∗) :=

⋂
{P | P ∈ Pred}

i.e., TRUE(∗) is the union of all predicates and FALSE(∗) is their intersection. Thus we have
derived alternative characterizations J> K = TRUE(∗) and J⊥ K = FALSE(∗) that are both
constructive and universal (Property 5 gives us J> K = Ass and J⊥ K = ∅ from which it is easy
to verify these equalities).

Conjunction and Disjunction The role of conjunction in reasoning is exhibited by the follow-
ing rules for arbitrary formulas F1, F2, F (the first two ones mimic the logical inference rules of
“elimination”, the last one mimics the inference rule of “introduction”):

F1 ∧ F2 |= F1
F1 ∧ F2 |= F2

(F |= F1) ∧ (F |= F2) ⇒ (F |= F1 ∧ F2)

Dually we have the following rules for disjunction:

F1 |= F1 ∨ F2
F2 |= F1 ∨ F2

(F1 |= F) ∧ (F2 |= F) ⇒ (F1 ∨ F2 |= F)

These rules (whose soundness can be established with the help of Definition 8) state that (F1∧F2)
is the “weakest” formula F for which both (F |= F1) and (F |= F2) hold and that (F1 ∨ F2) is the

22

“strongest” formula F for which both (F1 |= F) and (F2 |= F) hold. Thus and(F1, F2) = (F1∧F2)
is the product of the SYN -objects F1 and F2 and or(F1, F2) = (F1 ∨ F2) is their coproduct
(see Definition 17). Furthermore, by Proposition 9, we have ∆SYN a and and or a ∆SYN i.e.,
functor and is the right adjoint of the diagonal functor ∆SYN : SYN → SYN × SYN while
functor or is its left one.
Correspondingly AND(P1, P2) is the product of the SEM -objects P1 and P2 (the “weakest”

predicate P for which both (P ⊆ P1) and (P ⊆ P2) hold) and OR(P1, P2) is their coproduct (the
“strongest” predicate P for which (P1 ⊆ P) and (P2 ⊆ P) hold). By Proposition 9, we then
have ∆SEM a AND and OR a ∆SEM i.e., functor AND is the right adjoint of the diagonal functor
∆SEM : SEM → SEM × SEM while functor OR is its left one.

Thus we have, corresponding to the rules for formulas, the following rules for all predi-
cates P1, P2, P:

AND(P1, P2) ⊆ P1
AND(P1, P2) ⊆ P2

(P ⊆ P1) ∧ (P ⊆ P2) ⇒ (P ⊆ AND(P1, P2))
Dually we have

P1 ⊆ OR(P1, P2)
P2 ⊆ OR(P1, P2)

(P1 ⊆ P) ∧ (P2 ⊆ P) ⇒ (OR(P1, P2) ⊆ P)
Since products and coproducts are uniquely defined, these rules actually represent implicit but
unique definitions of AND(P1, P2) and OR(P1, P2) which can be explicitly written as follows:

AND(P1, P2) :=
⋃
{P ∈ Pred | P ⊆ P1 ∧ P ⊆ P2}

OR(P1, P2) :=
⋂
{P ∈ Pred | P1 ⊆ P ∧ P2 ⊆ P}

This gives us alternative characterizations J F1 ∧ F2 K = AND(J F1 K, J F2 K) and J F1 ∨ F2 K =
J F1 K ∪ J F2 K = OR(J F1 K, J F2 K) that are both constructive and universal (Proposition 5 implies
J F1 ∧ F2 K = J F1 K∩ J F2 K and J F1 ∨ F2 K = J F1 K∪ J F2 K from which it is not difficult to verify
these equalities).

Implication The role of implication in reasoning is exhibited by the following rules for arbitrary
formulas F1, F2, F (the first rule mimics the logical inference rules of “implication elimination”
or “modus ponens”, the last one mimics the inference rule of “implication introduction”):

(F1 → F2) ∧ F1 |= F2
(F ∧ F1 |= F2) ⇒ (F |= F1 → F2)

These rules (whose soundness can be established with the help of Definition 8) state that (F1 →
F2) is the “weakest” formula F for which (F ∧ F1 |= F2) holds. Thus impF1(F2) = (F1 → F2)
is the exponential of the SYN -objects F1 and F2 (see Definition 19). Proposition 10 then
gives us andF1 : impF1 , i.e., functor impF1 is the right adjoint of the unary conjunction functor
andF1 : SYN → SYN × SYN with object map andF1(F2) := and(F1, F2) = F1 ∧ F2.

Correspondingly IMPP1(P2) is the product of the SEM -objects P1 and P2 (the “weakest”
predicate P for which (P ∩ P1 ⊆ P2) holds; Proposition 10 then gives us ANDP1 a IMPP1 , i.e.,

23

functor IMPP1 is the right adjoint of the unary functor ANDP1 : SEM → SEM × SEM with
object map ANDP1(P2) := AND(P1, P2) = P1 ∪ P2.

Thus, corresponding to above rules for formulas, we have the following rules for all predi-
cates P1, P2, P:

IMPP1(P2) ∩ P1 ⊆ P2
(P ∩ P1 ⊆ P2) ⇒ (P ⊆ IMPP1(P2))

Since exponentials are uniquely defined, these rules represent an implicit but unique definition
of IMPP1(P2) which can be explicitly written as follows:

IMPP1(P2) :=
⋃
{P ∈ Pred | P ∩ P1 ⊆ P2}

This gives us an alternative characterization J F1 → F2 K = IMPJF1 K(J F2 K) that is both construc-
tive and universal (Proposition 5 implies J F1 ∧ F2 K = J F1 K ∪ J F2 K from which it is possible to
verify this equality).

Universal and Existential Quantification The role of universal quantification in reasoning
is exhibited by the following rules for arbitrary formulas F,G provided that the semantics J G K
of G does not depend on x (see Definition 4):

∀x. F |= F
(G |= F) ⇒ (G |= ∀x. F)

The first rule mimics the logical inference rule of “universal elimination”, the second one mimics
the inference rule of “universal introduction” (except that our version of first-order logic does not
involve terms and variables and thus copes without variable substitutions). This pair of rules in
a nutshell says that (∀x. F) is the “weakest” formula G from which F is a logical consequence
and whose semantics does not depend on x. Dually we have for existential quantification the
following pair of rules:

F |= ∃x. F
(F |= G) ⇒ (∃x. F |= G)

These rules state that (∃x. F) is the “strongest” formula G that is a logical consequence of F and
whose semantics J G K does not depend on x.

We are now going to derive appropriate categorical characterizations of the corresponding
functors forallx∈Var : SYN → SYN x and existsx∈Var : SYN → SYN x from the category SYN
of all formulas to the subcategory SYN x of all those formulas whose semantics does not depend
on x. For this we may notice that above rules the relations (G |= F) and (F |= G) involve two
kinds of relations, a more general relation F that may depend on x and a more special relation G
that is independent of x. In order to bring all relations to the “same level”, we introduce a
syntactic “injection” functor Ix : SYN x → SYN whose maps are just identities, i.e., Ix(G) = G
and Ix(f : F → G) = f : F → G. This allows us to express above rules as

Ix(forallx(F)) |= F
(Ix(G) |= F) ⇒ (G |= forallx(F))

24

and dually
F |= Ix(existsx(F))

(F |= Ix(G)) ⇒ (existsx(F) |= G)
Now the first set of rules matches the assumptions of the second part of Proposition 7 for F := Ix
and G := forallx (considering that the satisfaction relation |= denotes the existence of an arrow
in categories SYN respectively SYN x); thus we have Ix a forallx . Likewise, the second set of
rules matches the assumptions of the first part of that proposition for F := existsx and G := Ix;
thus we have existsx a Ix . Summarizing, the universal functor forallx is the right adjoint of the
injection functor Ix while the existential functor existsx is its left adjoint.

These considerations can be easily transferred to categorical characterizations of the corres-
ponding functors FORALLx∈Var : SEM → SEM x and EXISTSx∈Var : SEM → SEM x from the
category SEM of all predicates to the subcategory SEM x of all those predicates that do not
depend on x with the semantic “injection” functor Jx : SEM x → SEM whose maps are just
identities, i.e., Jx(Q) = Q and Jx(f : P→ Q) = f : P→ Q. We then have

Jx(FORALLx(P)) ⊆ P
(Jx(Q) ⊆ P) ⇒ (Q ⊆ FORALLx(P))

and dually
P ⊆ Jx(EXISTSx(P))

(P ⊆ Jx(Q)) ⇒ (EXISTSx(P) ⊆ Q)
Now the first set of rules matches the assumptions of the second part of Proposition 7 for F := Jx
and G := FORALLx (considering that the subset relation ⊆ denotes the existence of an arrow in
categories SEM respectively SEM x); thus we have Jx a FORALLx . Likewise, the second set of
rules matches the assumptions of the first part of that proposition for F := EXISTSx and G := Jx;
thus we have EXISTSx a Jx . Summarizing, the universal functor FORALLx is the right adjoint
of the injection functor Jx while the existential functor EXISTSx is its left adjoint.
Above rules say that FORALLx(P) is the weakest predicate Q that does not depend on x for

which (Jx(Q) ⊆ Q) holds while EXISTSx(P) is the strongest predicate Q that does not depend
on x for which (Q ⊆ Jx(Q)) holds. Since left and right adjoints are uniquely defined, these
rules represent implicit but unique definitions of FORALLx(P) and EXISTSx(P) which can be
explicitly written as follows:

FORALLx(P) :=
⋃
{Q ∈ Predx | Jx(Q) ⊆ P}

EXISTSx(P) :=
⋂
{Q ∈ Predx | P ⊆ Jx(Q)}

From Jx(Q) = Q and Q ∈ Predx ⇔ Q ∈ Pred ∧ Q ⊥⊥ x (see Definition 5), this can be also
written as follows:

FORALLx(P) :=
⋃
{Q ∈ Pred | Q ⊥⊥ x ∧Q ⊆ P}

EXISTSx(P) :=
⋂
{Q ∈ Pred | Q ⊥⊥ x ∧ P ⊆ Q}

Thus we have derived alternative characterizations J∀x. F K = FORALLx(J F K) and J∃x. F K =
EXISTSx(J F K) that are both constructive and universal. Actually, this is exactly the characteri-
zation whose correctness we have proved in Proposition 6.

25

Summary We summarize the categorical semantics of our relational version of first-order logic
by giving for each logical operation (logical constant, connective, and quantifier)

• the original set-theoretic definition of its semantics,

• an equivalent formulation by the application of a predicate functor,

• the logical “rules” associated to the operation,

• the corresponding rules for the predicate functor,

• the categorical semantics of the functor derived from the rule, and

• the characterization of the functor as a left or right adjoint of one of the following functors:

CSEM : SEM → 1, CSEM (P) := ∗
∆SEM : SEM → SEM × SEM , ∆SEM (P) := (P, P)

ANDP1∈Pred : SEM → SEM , ANDP1(P2) := P1 ∩ P2

Jx∈Var : SEM x → SEM , Jx(F) := F

J> K = Ass = TRUE(∗)

F |= >
P ⊆ TRUE(∗)

TRUE(∗) =
⋃
{P | P ∈ Pred}

CSEM a TRUE

J> K = ∅ = FALSE(∗)

⊥ |= F

FALSE(∗) ⊆ P

FALSE(∗) =
⋂
{P | P ∈ Pred}

FALSE a CSEM

J F1 ∧ F2 K = J F1 K ∩ J F2 K = AND(J F1 K, J F2 K)

F1 ∧ F2 |= F1
F1 ∧ F2 |= F2

(F |= F1) ∧ (F |= F2) ⇒ (F |= F1 ∧ F2)

AND(P1, P2) ⊆ P1
AND(P1, P2) ⊆ P2

(P ⊆ P1) ∧ (P ⊆ P2) ⇒ (P ⊆ AND(P1, P2))

AND(P1, P2) =
⋃
{P ∈ Pred | P ⊆ P1 ∧ P ⊆ P2}
∆SEM a AND

26

J F1 ∨ F2 K = J F1 K ∪ J F2 K = OR(J F1 K, J F2 K)

F1 |= F1 ∨ F2
F2 |= F1 ∨ F2

(F1 |= F) ∧ (F2 |= F) ⇒ (F1 ∨ F2 |= F)

P1 ⊆ OR(P1, P2)
P2 ⊆ OR(P1, P2)

(P1 ⊆ P) ∧ (P2 ⊆ P) ⇒ (OR(P1, P2) ⊆ P)

OR(P1, P2) =
⋂
{P ∈ Pred | P1 ⊆ P ∧ P2 ⊆ P}

OR a ∆SEM

J F1 → F2 K = J F1 K ∪ J F2 K = IMPJ F1 K(J F2 K)

(F1 → F2) ∧ F1 |= F2
(F ∧ F1 |= F2) ⇒ (F |= F1 → F2)

IMPP1(P2) ∩ P1 ⊆ P2
(P ∩ P1 ⊆ P2) ⇒ (P ⊆ IMPP1(P2))

IMPP1(P2) =
⋃
{P ∈ Pred | P ∩ P1 ⊆ P2}

ANDP1 a IMPP1

J∀x. F K = {a ∈ Ass | a[x 7→ v] ∈ J F K, for all v ∈ Val} = FORALLx(J F K)

∀x. F |= F
(G |= F) ⇒ (G |= ∀x. F)

FORALLx(P) ⊆ P
(Q ⊆ P) ⇒ (Q ⊆ FORALLx(P))

FORALLx(P) =
⋃
{Q ∈ Pred | Q ⊥⊥ x ∧Q ⊆ P}

Jx a FORALLx

J∃x. F K = {a ∈ Ass | a[x 7→ v] ∈ J F K, for some v ∈ Val} = EXISTSx(J F K)

F |= ∃x. F
(F |= G) ⇒ (∃x. F |= G)

P ⊆ EXISTSx(P)
(P ⊆ Q) ⇒ (EXISTSx(P) ⊆ Q)

EXISTSx(P) =
⋂
{Q ∈ Pred | Q ⊥⊥ x ∧ P ⊆ Q}

EXISTSx a Jx

27

Figure 2: The RISCAL Software

5 An Implementation of the Categorical Semantics

In this section we describe how the constructions that we have theoretically modeled in Section 2
can be actually implemented. For this purpose we use RISCAL, the RISC Algorithm Lan-
guage [10, 8], a language and associated software system for modeling mathematical theories
and algorithms in a specification language based on first order logic and set theory. Since the
domains of RISCAL models have (parameterized but) finite size, the validity of all theorems and
the correctness of all algorithms can be fully automatically checked; the system has been mainly
employed in educational scenarios [12, 11]. Figure 2 gives a screenshot of the software with the
RISCAL model that is going to be discussed below.
Figures 3 and 4 list a RISCAL model of the categorical semantics over a domain of N + 1

variables (identified with the natural numbers 0, . . . , N) with M + 1 values, for arbitrary model
parameters N, M ∈ �; all theorems over these domains are decidable and can be checked by
RISCAL. The RISCAL definition of domains, functions, predicates closely correspond to those
given in this paper; in particular we have a domain Pred of predicates (since the number of
variables is finite, by definition all relations are predicates) and predicate functions TRUE, FALSE,
AND, OR, IMP, FORALL, EXISTS. Different from the categorical formulation IMP is a binary
function, not a family of unary functions; likewise FORALL and EXISTS are binary functions
whose first argument is a variable. Furthermore, we introduce functions NOT and EQUIV for the
semantics of negation and conjunction and show by theorems Not and Equiv that they can be
reduced to the other functions.

28

// --
// The Categorical Semantics of a First Order Relational Logic
// (c) 2019, SemTech, http://www.risc.jku.at/projects/SemTech/
// --

// the model parameters (check with e.g. N=2, M=1 or N=1, M=2)
val N:�; // variablex x0,...,xN
val M:�; // values 0,...,M

// the types
type Var = �[N]; // a variable
type Val = �[M]; // a value
type Ass = Map[Var,Val]; // an assignment of variables to values
type Pred = Set[Ass]; // a predicate as a set of assignments

// the set of all assignments
val Ass = { a | a:Ass };

fun TRUE(): Pred = Ass;
theorem True1() ⇔

∀P:Pred. P = TRUE() ⇔ ∀Q:Pred. Q ⊆ P;
theorem True2() ⇔
TRUE() =

⋃
{ P | P:Pred };

fun FALSE(): Pred = ∅[Ass];
theorem False1() ⇔

∀P:Pred. P = FALSE() ⇔ ∀Q:Pred. P ⊆ Q;
theorem False2() ⇔
FALSE() =

⋂
{ P | P:Pred };

fun AND(P1:Pred, P2:Pred):Pred = P1 ∩ P2;
theorem And1(P1:Pred, P2:Pred) ⇔

∀P:Pred. P = AND(P1,P2) ⇔
P ⊆ P1 ∧ P ⊆ P2 ∧ ∀Q:Pred. Q ⊆ P1 ∧ Q ⊆ P2 ⇒ Q ⊆ P;

theorem And2(P1:Pred, P2:Pred) ⇔
AND(P1,P2) =

⋃
{ P | P:Pred with P ⊆ P1 ∧ P ⊆ P2 };

fun OR(P1:Pred, P2:Pred):Pred = P1 ∪ P2;
theorem Or1(P1:Pred, P2:Pred) ⇔

∀P:Pred. P = OR(P1,P2) ⇔
P1 ⊆ P ∧ P2 ⊆ P ∧ ∀Q:Pred. P1 ⊆ Q ∧ P2 ⊆ Q ⇒ P ⊆ Q;

theorem Or2(P1:Pred, P2:Pred) ⇔
OR(P1,P2) =

⋂
{ P | P:Pred with P1 ⊆ P ∧ P2 ⊆ P };

fun IMP(P1:Pred, P2:Pred):Pred = (Ass\P1) ∪ P2;
theorem Imp1(P1:Pred, P2:Pred) ⇔

∀P:Pred. P = IMP(P1,P2) ⇔
P ∩ P1 ⊆ P2 ∧ ∀Q:Pred. Q ∩ P1 ⊆ P2 ⇒ Q ⊆ P;

theorem Imp2(P1:Pred, P2:Pred) ⇔
IMP(P1,P2) =

⋃
{ P | P:Pred with P ∩ P1 ⊆ P2 };

...

Figure 3: A RISCAL Model of the Categorical Semantics (Part 1)

29

...

fun NOT(P:Pred): Pred = Ass\P;
theorem Not(P:Pred) ⇔ NOT(P) = IMP(P,FALSE());

fun EQUIV(P1:Pred, P2:Pred): Pred =
((Ass\P1)∪P2) ∩ ((Ass\P2)∪P1);

theorem Equiv(P1:Pred, P2:Pred) ⇔
EQUIV(P1,P2) = AND(IMP(P1,P2),IMP(P2,P1));

pred independent(P:Pred, x:Var) ⇔
∀a:Ass, v1:Val, v2:Val.
(a with [x] = v1) ∈ P ⇔ (a with [x] = v2) ∈ P;

fun FORALL(x:Var, P:Pred):Pred =
{ a | a:Ass with ∀v:Val. (a with [x] = v) ∈ P } ;

theorem Forall1(x:Var, P:Pred) ⇔
∀Q:Pred with independent(Q,x). Q = FORALL(x,P) ⇔
Q ⊆ P ∧ ∀Q0:Pred with independent(Q0,x). Q0 ⊆ P ⇒ Q0 ⊆ Q;

theorem Forall2(x:Var, P:Pred) ⇔
FORALL(x,P) =

⋃
{ Q | Q:Pred with independent(Q,x) ∧ Q ⊆ P };

fun EXISTS(x:Var, P:Pred):Pred =
{ a | a:Ass with ∃v:Val. (a with [x] = v) ∈ P } ;

theorem Exists1(x:Var, P:Pred) ⇔
∀Q:Pred with independent(Q,x). Q = EXISTS(x,P) ⇔
P ⊆ Q ∧ ∀Q0:Pred with independent(Q0,x). P ⊆ Q0 ⇒ Q ⊆ Q0;

theorem Exists2(x:Var, P:Pred) ⇔
EXISTS(x,P) =

⋂
{ Q | Q:Pred with independent(Q,x) ∧ P ⊆ Q };

// --
// end of file
// --

Figure 4: A RISCAL Model of the Categorical Semantics (Part 2)

30

All other logical operations are first defined in their usual set theoretic form. Subsequently
we describe their categorical semantics by a pair of theorems: the first theorem claims that the
set theoretic semantics is equivalent to an implicit definition of the categorical semantics while
the second theorem claims equivalence to the corresponding constructive definition. Choosing
small parameter values N = 2 and M = 1 (i.e., relations with variables x0, x1, x2 and values 0, 1),
RISCAL can easily check the validity of all claims, as demonstrated by the following output:

RISC Algorithm Language 2.6.4 (December 10, 2018)
http://www.risc.jku.at/research/formal/software/RISCAL
(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options.

Reading file /usr2/schreine/papers/CategoricalLogic2019/catlogic.txt
Using N=2.
Using M=1.
Computing the value of Ass...
Computing the value of TRUE...
Computing the value of FALSE...
Type checking and translation completed.
Executing True1().
Execution completed (3 ms).
Executing True2().
Execution completed (1 ms).
Executing False1().
Execution completed (0 ms).
Executing False2().
Execution completed (1 ms).
Executing And1(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
...
Execution completed for ALL inputs (18373 ms, 65536 checked, 0 inadmissible).
Executing And2(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
46273 inputs (36446 checked, 0 inadmissible, 0 ignored, 9827 open)...
Execution completed for ALL inputs (3576 ms, 65536 checked, 0 inadmissible).
Executing Or1(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
...
Execution completed for ALL inputs (26889 ms, 65536 checked, 0 inadmissible).
Executing Or2(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
42676 inputs (32887 checked, 0 inadmissible, 0 ignored, 9789 open)...
Execution completed for ALL inputs (3907 ms, 65536 checked, 0 inadmissible).
Executing Imp1(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
...
Execution completed for ALL inputs (48592 ms, 65536 checked, 0 inadmissible).
Executing Imp2(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
...
Execution completed for ALL inputs (9462 ms, 65536 checked, 0 inadmissible).
Executing Not(Set[Array[�]]) with all 256 inputs.
PARALLEL execution with 4 threads (output disabled).
Execution completed for ALL inputs (28 ms, 256 checked, 0 inadmissible).
Executing Equiv(Set[Array[�]],Set[Array[�]]) with all 65536 inputs.
PARALLEL execution with 4 threads (output disabled).
Execution completed for ALL inputs (354 ms, 65536 checked, 0 inadmissible).
Executing Forall1(�,Set[Array[�]]) with all 768 inputs.
PARALLEL execution with 4 threads (output disabled).

31

Execution completed for ALL inputs (1315 ms, 768 checked, 0 inadmissible).
Executing Forall2(�,Set[Array[�]]) with all 768 inputs.
PARALLEL execution with 4 threads (output disabled).
Execution completed for ALL inputs (512 ms, 768 checked, 0 inadmissible).
Executing Exists1(�,Set[Array[�]]) with all 768 inputs.
PARALLEL execution with 4 threads (output disabled).
Execution completed for ALL inputs (1299 ms, 768 checked, 0 inadmissible).
Executing Exists2(�,Set[Array[�]]) with all 768 inputs.
PARALLEL execution with 4 threads (output disabled).
Execution completed for ALL inputs (461 ms, 768 checked, 0 inadmissible).

These values are, however, the largest ones with which model checking is realistically feasible;
choosing for example N = 3 and M = 2 gives for checking theorem And1 about 4 · 109 possible
inputs whose checking on a single processor core would take RISCAL more than two decades.

6 Conclusions

We hope that this paper, by its self-contained nature and by focusing on the core principles of
categorical logic rather than attempting an exhaustive treatment, contributes to a more wide-
spread dissemination of categorical ideas to students and researchers of logic, its applications,
and its automation; in particular it may provide an alternative view on the semantics of first-order
logic by complementing the classical formulation and thus help to gain deeper insights.
It remains to be shown, however, whether and how this view can be indeed helpful and

illuminating in educational scenarios, i.e., in courses on logic and its applications. In previous
work [16, 18, 17, 13], we have strived to improve the understanding of the formal semantics
of programming languages by developing corresponding tools with appropriate visualization
techniques, partially also based on categorical principles. Other work of ours [14] has extended
this work towards the visualization of the semantics of first-order formulas by pruned evaluation
trees, however, based on the classical formulation. Future work of us will investigate how the
categorical principles outlined on this paper can be transferred to corresponding novel tools and
visualization techniques for education in semantics and logic.

References

[1] Samson Abramsky. “Logic and Categories As Tools For Building Theories”. In: Journal
of Indian Council of Philosophical Research, Issue on Logic and Philosophy Today 27.1
(2010), pp. 277–304. url: https://arxiv.org/abs/1201.5342.

[2] Samson Abramsky and Nikos Tzevelekos. “Introduction to Categories and Categorical
Logic”. In: New Structures for Physics. Ed. by Bob Coecke. Vol. 813. Lecture Notes in
Physics. Berlin, Germany: Springer, 2010, pp. 3–94. doi: 10.1007/978-3-642-12821-
9_1.

[3] Steve Awodey. Category Theory. Second Edition. Okford, UK: Oxford University Press,
2010.

32

https://arxiv.org/abs/1201.5342
https://doi.org/10.1007/978-3-642-12821-9_1
https://doi.org/10.1007/978-3-642-12821-9_1

[4] Bart Jacobs. Categorical Logic and Type Theory. Vol. 141. Studies in Logic and the
Foundations of Mathematics. Amsterdam, The Netherlands: North Holland, Elsevier,
1999.

[5] F. William Lawvere. “Adjointness in Foundations”. In: Dialectica 23.3/4 (1969). Reprint
available from http://www.tac.mta.ca/tac/reprints/articles/16/tr16.pdf.
url: https://www.jstor.org/stable/42969800.

[6] Benjamin C. Pierce. Basic Category for Computer Scientists. Cambridge, MA, USA: MIT
Press, 1991.

[7] Axel Poigné. “Category Theory and Logic”. In:Category Theory and Computer Program-
ming: Tutorial and Workshop. Vol. 240. Lecture Notes in Computer Science. Guildford,
UK, September 16-–20: Springer, Berlin, Germany, 1985, pp. 103–142. doi: 10.1007/3-
540-17162-2_119.

[8] RISCAL. The RISC Algorithm Language (RISCAL). Jan. 2018. url: https://www.
risc.jku.at/research/formal/software/RISCAL.

[9] David A. Schmidt.Denotational Semantics— AMethodology for Language Development.
Boston, MA, USA: Allyn and Bacon, 1986. url: http://people.cis.ksu.edu/
~schmidt/text/densem.html.

[10] Wolfgang Schreiner. The RISC Algorithm Language (RISCAL) — Tutorial and Reference
Manual (Version 1.0). Technical Report. Available at [8]. Johannes Kepler University,
Linz, Austria: RISC, Mar. 2017.

[11] Wolfgang Schreiner. “Validating Mathematical Theories and Algorithms with RISCAL”.
In: CICM 2018, 11th Conference on Intelligent Computer Mathematics, Hagenberg, Aus-
tria, August 13–17. Ed. by F. Rabe, W. Farmer, G. Passmore, and A. Youssef. Vol. 11006.
Lecture Notes in Computer Science/Lecture Notes in Artificial Intelligence. Springer,
Berlin, 2018, pp. 248–254. doi: 10.1007/978-3-319-96812-4_21.

[12] Wolfgang Schreiner, Alexander Brunhuemer, and Christoph Fürst. “Teaching the Formal-
ization of Mathematical Theories and Algorithms via the Automatic Checking of Finite
Models”. In: Post-Proceedings ThEdu’17, Theorem proving components for Educational
software, Gothenburg, Sweden, August 6, 2017. Ed. by Pedro Quaresma and Walther
Neuper. Vol. 267. EPTCS. 2018, pp. 120–139. doi: 10.4204/EPTCS.267.8.

[13] Wolfgang Schreiner and William Steingartner. Visualizing Execution Traces in RISCAL.
Technical Report. Available at [8]. Johannes Kepler University, Linz, Austria: RISC, Mar.
2018.

[14] Wolfgang Schreiner and William Steingartner. Visualizing Logic Formula Evaluation in
RISCAL. Technical Report. Available at [8]. Johannes Kepler University, Linz, Austria:
RISC, July 2018.

[15] David I. Spiwak. Category Theory for the Sciences. Cambridge, MA, USA: MIT Press,
2014.

33

http://www.tac.mta.ca/tac/reprints/articles/16/tr16.pdf
https://www.jstor.org/stable/42969800
https://doi.org/10.1007/3-540-17162-2_119
https://doi.org/10.1007/3-540-17162-2_119
https://www.risc.jku.at/research/formal/software/RISCAL
https://www.risc.jku.at/research/formal/software/RISCAL
http://people.cis.ksu.edu/~schmidt/text/densem.html
http://people.cis.ksu.edu/~schmidt/text/densem.html
https://doi.org/10.1007/978-3-319-96812-4_21
https://doi.org/10.4204/EPTCS.267.8

[16] William Steingartner, Mohamed Ali M. Eldojali, Davorka Radaković, and Jiří Dostál.
“Software support for course in Semantics of programming languages”. In: IEEE 14th
International Scientific Conference on Informatics. Poprad, Slovakia, November 14–
16, 2017, pp. 359–364. url: https://www.researchgate.net/publication/
321341571_Software_support_for_course_in_Semantics_of_programming_
languages.

[17] William Steingartner and Valerie Novitzká. “Categorical Semantics of Programming Lan-
gages”. In: Selected Topics in Contemporary Mathematical Modeling. Ed. by Andrzej Z.
Grzybowski. Vol. 331. Monographs. Czestochowa University of Technology. Chap. 11,
pp. 167–192. url: https://doi.org/10.17512/STiCMM2017.11.

[18] William Steingartner and Valerie Novitzká. “Learning tools in course on semantics of
programming languages”. In: MMFT 2017 — Mathematical Modelling in Physics and
Engineering. Czestochowa, Poland, September 18–21, 2017, pp. 137–142. url: http:
//im.pcz.pl/konferencja/get.php?doc=MMFT2017_streszczenia_wykladow.
pdf.

[19] Alfred Tarski. “The Semantic Conception of Truth: and the Foundations of Semantics”.
In: Philosophy and Phenomenological Research 4.3 (1944), pp. 341–376. url: https:
//doi.org/10.2307/2102968.

34

https://www.researchgate.net/publication/321341571_Software_support_for_course_in_Semantics_of_programming_languages
https://www.researchgate.net/publication/321341571_Software_support_for_course_in_Semantics_of_programming_languages
https://www.researchgate.net/publication/321341571_Software_support_for_course_in_Semantics_of_programming_languages
https://doi.org/10.17512/STiCMM2017.11
http://im.pcz.pl/konferencja/get.php?doc=MMFT2017_streszczenia_wykladow.pdf
http://im.pcz.pl/konferencja/get.php?doc=MMFT2017_streszczenia_wykladow.pdf
http://im.pcz.pl/konferencja/get.php?doc=MMFT2017_streszczenia_wykladow.pdf
https://doi.org/10.2307/2102968
https://doi.org/10.2307/2102968

	Introduction
	A Relational First-Order Logic
	Category Theory
	A Categorical Semantics
	An Implementation of the Categorical Semantics
	Conclusions

