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Abstract. We review classical concepts of resultants of algebraic polynomials,
and we adapt some of these concepts to objects in differential algebra, such as
linear differential operators and differential polynomials.

1 Introduction

There are interesting notions of a differential polynomial resultant in the literature. Chardin
[3] presented an elegant treatment of resultants and subresultants of (noncommutative) or-
dinary differential operators. Carra’-Ferro (see for example [1, 2]) published several works
on differential resultants of various kinds, with firm algebraic foundations, but the relations
to Zwillinger’s [18] suggested notion of a differential resultant of a systems of two coupled
algebraic ordinary differential equations (AODEs) and also to Chardin’s theory might not be
immediately clear from glancing through these works. Rueda and Sendra [14] define a linear
complete differential resultant and investigate its application to the implicitization problem of
systems of differential polynomial parametric equations. Zhang et al. [17] construct a matrix
whose determinant contains the resultant of two generic ordinary differential polynomials as
a factor.

Here we investigate the relation between the theories of Chardin and Carra’-Ferro. In fact
we will see that these approaches are intimately related. It would appear that the common
source for the essential basic notion of differential resultant can be traced to work of Ritt [13]
in the 1930s. After reviewing relevant background material on elimination theory and differ-
ential algebra, in Sections 2 and 3, we will present in Section 4 the concepts of resultant for
linear differential operators, for linear homogeneous differential polynomials, and finally for
arbitrary differential polynomials. This could be viewed as a simpler and more streamlined
account of Carra’-Ferro’s theory. The problem posed by Zwillinger seems to be treatable by
such methods; but this needs to be worked out in more detail.

Background material and more proof details may be found in [12].

2 Basics of elimination theory

In this section we briefly review basic facts from polynomial elimination theory and differen-
tial algebra.

∗e-mail: scott.mccallum@mq.edu.au
∗∗e-mail: franz.winkler@risc.jku.at



Let R be an integral domain (commutative ring with identity element 1, and no zero
divisors), with quotient field K . By K we denote the algebraic closure of K .

First we review the basic theory of the Sylvester resultant for algebraic polyomials, with
an emphasis on the necessary requirements for the underlying coefficient domain. Let

f (x) =

m∑
i=0

aixi, g(x) =

n∑
j=0

b jx j

be polynomials of positive degrees m and n, respectively, in R[x]. If f and g have a common
factor d(x) of positive degree, then they have a common root in the algebraic closureK ofK ;
so the system of equations

f (x) = g(x) = 0 (1)

has a solution in K .
On the other hand, if α ∈ K is a common root of f and g, then normK(α):K (x − α) is a
common divisor of f and g in K[x]. So, by Gauss’ Lemma (for which we need R to be a
unique factorization domain) on primitive polynomials there is a similar (only differing by a
factor inK) common factor of f and g in R[x]. We summarize these observations as follows:

Proposition 1. Let R be a unique factorization domain (UFD) with quotient field K . For
polynomials f (x), g(x) ∈ R[x] the following are equivalent:

(i) f and g have a common solution in K , the algebraic closure of K ,

(ii)f and g have a common factor of positive degree in R[x].

So now we want to determine a necessary condition for f and g to have a common divisor
of positive degree in R[x]. Suppose that f and g indeed have a common divisor d(x) of
positive degree in R[x]; i.e.,

f (x) = d(x) f (x), g(x) = d(x)g(x). (2)

Then for p(x) := g(x), q(x) := − f (x) we have

p(x) f (x) + q(x)g(x) = 0. (3)

So there are non-zero polynomials p and q with deg p < deg g, deg q < deg f , satisfying
equation (3). This leads to the linear system

(
pn−1 · · · p0 qm−1 · · · q0

)
·

 A
· · ·

B

 = 0 , (4)

where the n × (m + n) matrix A contains the coefficients of f (x) (amam−1 . . . a00 . . . 0)
in the first row, which are shifted to the right by (i − 1) positions in the i-th row
(0 . . . 0amam−1 . . . a00 . . . 0); the m × (m + n) matrix B is constructed analogously with the
coefficients of g(x). Under the given conditions, the system (4) has a non-trivial solution.
The matrix of this system (4) is called the Sylvester matrix of f and g. Thus, the determinant
of the Sylvester matrix of f and g is 0. The resultant of f and g, res( f , g), is this determinant,
and it is clear that the resultant is a polynomial expression of the coefficients of f and g, and
therefore an element of the integral domain R. This does not require R to be a UFD.

We summarize this in the following proposition.



Proposition 2. Let f , g ∈ R[x], for R an integral domain.
res( f , g) = 0 is a necessary condition for f and g to have a common factor of positive degree;
and therefore a common solution in K .

If we identify a polynomial of degree d with the vector of its coefficients of length d + 1,
we may also express this in terms of the linear map

S : Km+n −→ Km+n

(pn−1, . . . , p0, qm−1, . . . , q0) 7→ coefficients of p f + qg

The existence of a non-trivial linear combination (3) is equivalent to S having a non-trivial
kernel, and therefore to S having determinant 0.

A proof of the following may be found, for instance, in [4].
Proposition 3. The resultant is a constant in the ideal generated by f and g in R[x]; i.e. we
can write

res( f , g) = u(x) f (x) + v(x)g(x), (5)

with u, v ∈ R[x]. Moreover, these cofactors satisfy the degree bounds deg(u) < deg(g),
deg(v) < deg( f ).

Another variation on defining the Sylvester resultant of two polynomials with coefficients
in a UFD (unique factorization domain) D is to start instead with two homogeneous polyno-
mials

F(x, y) =

m∑
i=0

aixiym−i , G(x, y) =
∑
j=0

b jx jyn− j .

Let us similarly regard the coefficients ai and b j as indeterminates. Then the resultant of F
and G is defined as res(F,G) = res( f , g), where f (x) = F(x, 1) and g(x) = G(x, 1). Then the
relation between the vanishing of the resultant and the existence of a common zero may be
expressed as follows.
Proposition 4. After assigning values to the coefficients from a UFD D, res(F,G) = 0 is a
necessary and sufficient condition for F(x, y) and G(x, y) to have a common factor of positive
degree over D, hence for a common zero to exist over an extension of the quotient field of
D.

The concept of resultant can be extended from 2 polynomials in 1 variable (or 2 homo-
geneous polynomials in 2 variables) to n homogeneous polynomials in n variables. This
multipolynomial resultant is known as Macaulay’s resultant. For n generic homogeneous
polynomials F1, . . . Fn in the n variables x1, . . . , xn, of positive (total) degrees di, there exists
a multipolynomial resultant R, which is a polynomial in the indeterminate coefficients of the
Fi, with the following property. If the coefficients of the Fi are assigned values from a field
K, then the vanishing of R is necessary and sufficient for a nontrivial common zero of the
Fi to exist in some extension of K. Here we will only give a very brief survey, referring the
reader to more comprehensive sources such as [5, 6, 10, 15, 16] for the full story. We will
primarily follow the treatment of this topic in [16].

Given r homogeneous polynomials F1, . . . , Fr in x1, . . . , xn, with indeterminate coeffi-
cients comprising a set A, an integral polynomial T in these indeterminates (that is, T ∈ Z[A])
is called an inertia form for F1, . . . , Fr if xτi T ∈ (F1, . . . , Fr), for suitable i and τ.

Van der Waerden observes that the inertia forms comprise an ideal I of Z[A], and he
shows further that I is a prime ideal of this ring. It follows from these observations that
we may take the ideal I of inertia forms to be a resultant system for the given F1, . . . , Fr

in the sense that for special values of the coefficients in K , the vanishing of all elements of



the resultant system is necessary and sufficient for there to exist a nontrivial solution to the
system F1 = 0, . . . , Fr = 0 in some extension of K .

Now consider the case in which we have n homogeneous polynomials in the same number
n of variables. Let F1, . . . , Fn be n generic homogeneous forms in x1, . . . , xn of positive total
degrees d1, . . . , dn. That is, every possible coefficient of each Fi is a distinct indeterminate,
and the set of all such indeterminate coefficients is denoted by A. Let I denote the ideal of
inertia forms for F1, . . . , Fn. Proofs of the following two propositions my be found in [12].

Proposition 5. I is a nonzero principal ideal of Z[A]: I = (R), for some R , 0.

R is uniquely determined up to sign. We call R the (generic multipolynomial) resultant of
F1, . . . , Fn.

Proposition 6. The vanishing of R for particular F1, . . . , Fn with coefficients in a field K is
necessary and sufficient for the existence of a nontrivial zero of the system F1 = 0, . . . , Fn = 0
in some extension of K .

The above considerations also lead to the notion of a resultant of n non-nonhomogeneous
polynomials in n− 1 variables. For a given non-homogeneous f (x1, . . . , xn−1) overK of total
degree d, we may write f = Hd + Hd−1 + · · · + H0, where the H j are homogeneous of degree
j. Then Hd is known as the leading form of f . Recall that the homogenization F(x1, . . . , xn)
of f is defined by F = Hd + Hd−1xn + · · · + H0xd

n.
Let f1, . . . , fn be particular non-homogeneous polynomials in x1, . . . , xn−1 over K of pos-

itive total degrees di, and with leading forms Hi,di . We put

res( f1, . . . , fn) = res(F1, . . . , Fn) ,

where Fi is the homogenization of fi. Then we have (see proof in [11]):

Proposition 7. The vanishing of res( f1, . . . , fn) is necessary and sufficient for either the forms
Hi,di to have a common nontrivial zero over an extension of K , or the polynomials fi to have
a common zero over an extension of K .

Observe that the common zeros of the fi correspond to the affine solutions of the sys-
tem, whereas the nontrivial common zeros of the leading forms correspond to the projective
solutions on the hyperplane at infinity.

3 Basics of differential algebra

Now let us review some basic differential algebra. For this it is enough to assume R to be a
commutative ring with 1. A derivation on R is a mapping ∂ : R → R such that ∂(a + b) =

∂(a) + ∂(b) and ∂(ab) = ∂(a)b + a∂(b) for all a, b ∈ R. That ∂(0) = 0 and ∂(1) = 0 follow
readily from these axioms. We sometimes denote the derivative of a ∂(a) by a′. Such a ring
(or integral domain or field) R together with a derivation on R is called a differential ring
(or integral domain or field, respectively). In such a ring R elements r such that r′ = 0 are
known as constants and the set C of constants comprises a subring of R. If R is a field, C is
a subfield of R. An ideal I of such a ring R is known as a differential ideal if r ∈ I implies
r′ ∈ I. If r1, . . . , rn ∈ R we denote by [r1, . . . , rn] the differential ideal generated by r1, . . . , rn,
that is, the ideal generated by the ri and all their derivatives.

Example 1. (a) The familiar rings such as Z, Q, R and C are differential rings if we set
∂(a) = 0 for all elements a.
(b) Let K be a field and t an indeterminate over K . Then K[t], equipped with the derivation
∂ = d/dt, is a differential integral domain and its quotient field K(t) is a differential field,



again with standard differentiation as its derivation. K is the ring (field) of constants ofK[t]
(K(t)).

Let (R, ∂) be a differential ring. Let x = x(0), x(1), x(2), . . . be distinct indeterminates over
R. Put ∂(x(i)) = x(i+1) for all i ≥ 0. Then ∂ can be extended to a derivation on the polynomial
ring R{x} := R[x(0), x(1), . . .] in a natural way, and we denote this extension also by ∂. The
ring R{x} together with this extended ∂ is a differential ring, called the ring of differential
polynomials in the differential indeterminate x over R. An element f (x) =

∑m
i=0 aix(i) of R{x}

with am , 0 has order m and leading coefficient am.

It may be helpful to think of elements of R and of x, x(1), . . . as functions of an indeter-
minate t, and to regard ∂ as differentiation with respect to t.) If (K , ∂) is a differential field
thenK{x} is a differential integral domain, and its derivation extends uniquely to the quotient
field. We write K〈x〉 for this quotient field; its elements are differential rational functions of
x over K . We similarly denote by K〈η〉 the differential extension of K by η, where η lies in
some differential field containing K .

We consider the ring of linear differential operators R[∂], where the application of A =∑m
i=0 ai∂

i to r ∈ R is defined as

A(r) =

m∑
i=0

air(i) .

Here r(i) denotes the i-fold application of ∂ (that is, ′) to r. If am , 0, the order of A is m and
am is the leading coefficient of A. Now the application of A can naturally be extended to K ,
and to any extension of K . If A(η) = 0, with η in R, K or any extension of K , we call η a
root of the linear differential operator A.

The ring R[∂] is non-commutative, satisfying the relation

∂r = r∂ + r′ .

From a linear homogeneous ODE p(x) = 0, with p(x) ∈ R{x},

p(x) = p0(t)x + p1(t)x′ + · · · + pn(t)x(n) = 0 ,

we can extract a linear differential operator

O(p) = A =

n∑
i=0

pi∂
i ,

such that the given ODE can be written as A(x) = 0, in which x is regarded as an unknown
element of R, K or some extension of K . Such a linear homogeneous ODE always has the
trivial solution x = 0; so a linear differential operator always has the trivial root 0. The ring
K[∂] is left-Euclidean (see [3]), so every left-ideal K I of the form K I = (A, B) is principal,
and is generated by the right-gcd of A and B. As remarked in [3] with reference to [7], under
suitable assumptions on K , any linear differential operator of positive order has a root in
some extension of K . We state this result precisely.

Theorem 1 (Ritt-Kolchin). Assume that the differential field K has characteristic 0 and that
its field C of constants is algebraically closed. Then, for any linear differential operator A over
K of positive order n, there exist n roots η1, . . . , ηn in a suitable extension of K , such that the
ηi are linearly independent over C. Moreover, the field K〈η1, . . . , ηn〉 (= K〈η1〉 . . . 〈ηn〉)
contains no constant not in C.



This result is stated and proved in [9] using results from [8] and [13]. The field
K〈η1, . . . , ηn〉 associated with A is known as a Picard-Vessiot extension of K (for A). Hence-
forth assume the hypotheses of the Ritt-Kolchin Theorem.

It follows from the Ritt-Kolchin Theorem that if the operators A, B ∈ K[∂] have a com-
mon factor F of positive order on the right, i.e.,

A = A · F, and B = B · F, (6)

then they have a non-trivial common root in a suitable extension of K . On the other hand,
if A and B have a non-trivial common root η in a suitable extension of K , we see from the
properties of a left-Euclidean ring, that they have a common right factor of positive order in
K[∂]. We summarize this in the following proposition.

Proposition 8. Assume that K has characteristic 0 and that its field of constants is alge-
braically closed. Let A, B be differential operators of positive orders in K[∂]. Then the
following are equivalent:

(i) A and B have a common non-trivial root in an extension of K ,

(ii)A and B have a common factor of positive order on the right in K[∂].

The existence of a non-trivial factor (6) is equivalent to the existence of a non-trivial
order-bounded linear combination

CA + DB = 0 , (7)

with order(C) < order(B) and order(D) < order(A), and (C,D) , (0, 0).
For given A, B ∈ K[∂], with m = order(A), n = order(B), consider the linear map

S : Km+n −→ Km+n

(cn−1, . . . , c0, dm−1, . . . , d0) 7→ coefficients of CA + DB (8)

Obviously the existence of a non-trivial linear combination (7) is equivalent to S having a
non-trivial kernel, and therefore to S having determinant 0. Indeed we have the following
result.

Proposition 9. det(S ) = 0 if and only if A and B have a common factor (on the right) inK[∂]
of positive order.

4 The differential Sylvester resultant

4.1 Resultant of two linear differential operators

So let us see which linear conditions on the coefficients of A and B we get by requiring that
(7) has a non-trivial solution of bounded order, i.e.,

order(C) < order(B) and order(D) < order(A).

Example 2. We consider a differential operator A of order 2 and another operator B of order
3. We try to find an operator C of order 2 and an operator D of order 1 s.t. C · A + D · B = 0.
We make an ansatz and compare coefficients of order 4 down to order 0.

(c2∂
2 + c1∂ + c0)(a2∂

2 + a1∂ + a0) + (d1∂ + d0)(b3∂
3 + b2∂

2 + b1∂ + b0)



order 4:
c2∂

2a2∂
2 + d1∂b3∂

3 = 0

a2c2∂
4 + 2a′2c2∂

3 + a′′2 c2∂
2 + b3d1∂

4 + b′3d1∂
3 = 0

order 3:

(2a′2c2∂
3 + a′′2 c2∂

2 from above) + c2∂
2a1∂ + c1∂a2∂

2 + (b′3d1∂
3 from above) + d1∂b2∂

2 + d0b3∂
3 = 0

2a′2c2∂
3 + a1c2∂

3 + a2c1∂
3 + a′′2 c2∂

2 + 2a′1c2∂
2 + a′′1 c2∂ + b′3d1∂

3 + b2d1∂
3 + b3d0∂

3 + b′2d1∂
2 = 0

order 2:

(a′′2 c2∂
2 + 2a′1c2∂

2 + a′′1 c2∂ + a′2c1∂
2 from above) + c2∂

2a0 + c1∂a1∂ + c0a2∂
2

+(b′2d1∂
2 from above) + d1∂b1∂ + d0b2∂

2 = 0

a′′2 c2∂
2 + 2a′1c2∂

2 + a′′1 c2∂ + a′2c1∂
2 + a0c2∂

2 + 2a′0c2∂ + a′′0 c2 + a1c1∂
2 + a′1c1∂ + a2c0∂

2

+b′2d1∂
2 + b1d1∂

2 + b′1d1∂ + b2d0∂
2 = 0

order 1:

(a′′1 c2∂+ 2a′0c2∂+ a′′0 c2 + a′1c1∂ from above) + c1∂a0 + c0a1∂+ (b′1d1∂ from above) + d1∂b0 + d0b1∂ = 0

a′′1 c2∂ + 2a′0c2∂ + a′1c1∂ + a0c1∂ + a′0c1 + a1c0∂ + a′′0 c2 + b′1d1∂ + b0d1∂ + b′0d1 + b1d0∂ = 0

order 0:
(a′0c1 + a′′0 c2 from above) + a0c0 + (b′0d1 from above) + b0d0 = 0.

So, finally

(
c2 c1 c0 d1 d0

)
·


a2 a1 + 2a′2 a0 + 2a′1 + a′′2 2a′0 + a′′1 a′′0
0 a2 a1 + a′2 a0 + a′1 a′0
0 0 a2 a1 a0

b3 b2 + b′3 b1 + b′2 b0 + b′1 b′0
0 b3 b2 b1 b0

 =
(
0 · · · 0

)
.

Observe, that the rows of this matrix consist of the coefficients of

∂2A, ∂A, A, ∂B, B .

Theorem 2. The linear map S in (8) corresponding to (7) is given by the matrix whose rows
are ∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B.

Definition 1. Let A, B be linear differential operators in R[∂] of order(A) = m, order(B) = n,
with m, n > 0.
By ∂syl(A, B) we denote the (differential) Sylvester matrix; i.e., the (m + n) × (m + n)-matrix
whose rows contain the coefficients of

∂n−1A, . . . , ∂A, A, ∂m−1B, . . . , ∂B, B .

The (differential Sylvester) resultant of A and B, ∂res(A, B), is the determinant of ∂syl(A, B).

From Propositions 8 and 9 the following analogue of Proposition 2 is immediate.
Theorem 3. Assume thatK has characteristic 0 and that its field of constants is algebraically
closed. Let A, B be linear differential operators over R of positive orders. Then the condition
∂res(A, B) = 0 is both necessary and sufficient for there to exist a common non-trivial root of
A and B in an extension of K .

We close this subsection by stating an analogue of Proposition 3.
Theorem 4. Let A, B ∈ R[∂]. The resultant of A and B is contained in (A, B), the ideal
generated by A and B in R[∂]. Moreover, ∂res(A, B) can be written as a linear combination
∂res(A, B) = CA + DB, with order(C) < order(B), and order(D) < order(A).



4.2 Resultant of two linear homogeneous differential polynomials

The results for differential resultants which we have derived for linear differential operators
can also be stated in terms of linear homogeneous differential polynomials. Such a treatment
facilitates the generalization to the non-linear algebraic differential case.

Let (R, ∂) be a differential domain with quotient field K . Then elements of R{x} can be
interpreted as algebraic ordinary differential equations (AODEs). For instance, the differential
polynomial

3 x x(1) + 2t x(2) ∈ C(t){x}

corresponds to the AODE
3x(t)x′(t) + 2tx′′(t) = 0 .

The next proposition says that linear differential operators correspond to linear homogeneous
differential polynomials RLH{x} in a natural way. R[∂] and RLH{x} are isomporphic as left
R-modules and K[∂] and KLH{x} are isomporphic as left vector spaces over K .

Definition 2. Let f (x) and g(x) be elements ofRLH{x} of positive orders m and n, respectively.
Then the (differential) Sylvester matrix of f (x) and g(x), denoted by ∂syl( f , g), is ∂syl(A, B),
where A = O( f ) and B = O(g). The (differential Sylvester) resultant of f (x) and g(x), denoted
by ∂res( f , g), is ∂res(A, B).

We may observe that the m + n rows of ∂syl( f , g) contain the coefficients of

f (n−1)(x), . . . , f (1)(x), f (x), g(m−1)(x), . . . , g(1)(x), g(x).

The following analogue and slight reformulation of Theorem 3 is immediate.
Theorem 5. Assume thatK has characteristic 0 and that its field of constants is algebraically
closed. Let f (x), g(x) be linear homogeneous differential polynomials of positive orders over
R. Then the condition ∂res( f , g) = 0 is both necessary and sufficient for there to exist a
common non-trivial solution of f (x) = 0 and g(x) = 0 in an extension of K .

We have also an analogue and slight reformulation of Theorem 4:
Theorem 6. Let f (x), g(x) ∈ RLH{x}. Then x∂res( f , g) is contained in the differential ideal
[ f , g].

4.3 Resultant of two arbitrary differential polynomials

Finally we consider two arbitrary differential polynomials and we review Carra-Ferro’s adap-
tation of the multipolynomial resultant to a pair of algebraic ordinary differential equations
(AODEs) [2]. Such AODEs can be described by differential polynomials. We will deal with
both homogeneous and non-homogeneous AODEs.

Suppose first we are given 2 homogeneous AODEs in the form of 2 homogeneous differ-
ential polynomial equations over a differential field K . Observe that a homogeneous AODE
of positive order always has the solution 0. So we are interested in determining whether
such a pair of homogeneous AODEs has a non-trivial common solution. Denote the given
homogeneous AODEs by:

F(x) = 0, of order m ,
G(x) = 0, of order n . (9)

So the differential polynomial F(x) ∈ K{x} is of the form F(x, x(1), . . . , x(m)); and G(x) ∈ K{x}
is of analogous form.



The system (9) has the same solution set as the system

F(n−1)(x) = · · · = F(1) = F(x) = 0, n equations,
G(m−1)(x) = · · · = G(1) = G(x) = 0, m equations. (10)

This system (10) contains the variables x, x(1), . . . , x(m+n−1). So it is a system of m + n ho-
mogeneous equations in m + n variables. Considered as a system of homogeneous algebraic
equations (with the x(i) considered as unrelated indeterminates), it has a multipolynomial re-
sultant res(F(n−1), . . . , F,G(m−1), . . . ,G) (defined in Subsection 4.4) whose vanishing gives a
necessary and sufficient condition for the existence of a non-trivial solution over an extension
of K .

Definition 3. For such homogeneous differential polynomials F(x),G(x), we
define the (differential) resultant ∂res(F,G) to be the multipolynomial resultant
res(F(n−1), . . . , F,G(m−1), . . . ,G).

But, whereas a solution to the differential problem is also a solution to the algebraic
problem, the converse is not true. So we do not expect the vanishing of this resultant to be a
sufficient condition for the existence of a nontrivial solution to (9).

Example 3. Consider Example 4 in [2], p. 554.

F(x) = xx(1) − x2 = 0 ,
G(x) = xx(1) = 0 .

The corresponding system (10) would be the same in this case. Whereas the differential
problem only has the trivial solution x = x(1) = 0, the corresponding algebraic problem has
also the non-trivial solutions (0, a), for a in K .

Indeed, in this case the differential resultant coincides with the Sylvester resultant:
∂res(F,G) = res(F,G) = 0. This reflects the fact that there are non-trivial algebraic solu-
tions. But x = 0 does not lead to a non-trivial differential solution.

The following theorem follows from Proposition 6.
Theorem 7. For such homogeneous differential polynomials F(x),G(x), the vanishing of
∂res(F,G) is a necessary condition for the existence of a non-trivial common solution of the
system F(x) = 0,G(x) = 0 in an extension of K .

Next we consider the more general case of a pair of non-homogeneous AODEs f (x) =

0, g(x) = 0 over K , of orders m and n, respectively. This system has the same solution set as
the system

f (n)(x) = · · · = f (1) = f (x) = 0, n + 1 equations,
g(m)(x) = · · · = g(1) = g(x) = 0, m + 1 equations. (11)

This system contains the variables x, x(1), . . . , x(m+n). So it is a system of m + n + 2 non-
homogeneous equations in m + n + 1 variables. Considered as a system of non-homogeneous
algebraic equations (with the x(i) considered as unrelated indeterminates), it has a multipoly-
nomial resultant res( f (n), . . . , f , g(m), . . . , g) (defined in Section 2) whose vanishing gives a
necessary condition for the existence of a common solution to the system in an extension of
K .

Definition 4. For such differential polynomials f (x), g(x), we define the (differential) resul-
tant ∂res( f , g) to be the multipolynomial resultant res( f (n), . . . , f , g(m), . . . , g).

The following theorem follows from Proposition 7.



Theorem 8. For such differential polynomials f (x), g(x), the vanishing of ∂res( f , g) is a
necessary condition for the existence of a common solution of the system f (x) = 0, g(x) = 0
in an extension of K .

In the comprehensive resource [18] by Zwillinger on differential equations there appears
a short section entitled “Differential Resultants”. The concept of differential resultants is
briefly introduced and an example of two coupled differential equations in two differential
variables x and z is given, for which a differential resultant in only z is determined. However,
no precise definition of the concept is given. Carra’-Ferro in [1] treats the same problem and
arrives at the same answer. The treatment in both these papers is consistent with our Theorem
8.

5 Conclusion

We have reviewed formulations of different notions of resultants, for differential operators
and differential polynomials. We have extended the definition of a resultant for linear ho-
mogeneous differential polynomials to the case of arbitrary differential polynomials. With
this generalization, the formulations of Chardin and Carra’-Ferro are seen to be intimately
related. The application of these ideas to the problem of Zwillinger for a system of coupled
differential equations remains to be further investigated.
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