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Abstract

In this note we provide further evidence for a conjecture of Gillis,
Reznick, and Zeilberger on the positivity of the diagonal coefficients
of a multivariate rational function. Kauers had proven this conjecture
for up to 6 variables using computer algebra. We present a variation
of his approach that allows us to prove positivity of the coefficients up
to 17 variables using symbolic computation.
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1 Introduction

The problem of deciding whether a given multivariate rational function has
all positive coefficients in its Taylor expansion around the origin has at-
tracted mathematicians of different fields over the past (at least) 80 years.
One of the early results is due to Szegé [17] showing that ((1 — z)(1 —y) +
l-z)(1-2)+(1-y)(1 - z))fﬁ has all positive coefficients for 8 > 1. A
four-variable long-standing open conjecture was known as the Lewy-Askey
problem and concerned the non-negativity of

(1—x—y—x—w+%($y+x2+xw+yz+yw+zw))_l.

This conjecture was settled only in 2014 by Scott and Sokal [14]. More
references can be found, e.g., in Straub and Zudilin’s recent paper on posi-
tivity of rational functions and their diagonals [15]. The family of functions
considered in this paper is also discussed therein.
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Askey and Gasper [2] showed in 1977 that (1 — (z + y + 2) + 4ayz)~?
has positive power series coefficients for 3 > (v/17 — 3)/2. In 1983, Gillis,
Reznick, and Zeilberger [5] gave a short proof of this result using “elementary
methods” . In this very paper, they conjectured that (1 — (z; +x2 + -+ +
xp) + rlag - -xr)*l has positive power series coefficients for » > 4. They
also claimed that positivity of the diagonal coefficients implies positivity
throughout, but “the proof is rather long and we omit it here”. For the
diagonal coefficients they provided a neat formula in terms of a binomial
sum.
In 2007, Kauers [7] showed positivity on the diagonal for r = 4,5, 6 using
symbolic computation and the binomial sum. His approach follows a method
introduced by Gerhold and himself [4] for automatically proving inequalities
for expressions satisfying very general recurrences in a discrete parameter.
He states that he believes “that for any specific value of r it is possible to
obtain a similar proof, but the runtime requirements for the computations
grow drastically and with currently available machines we were not able to
go beyond r = 6 with reasonable effort”.

In this paper, we present a way to circumvent the main computational
bottleneck in Kauers’ computations and are able to prove positivity for
values up to r = 17. We believe that this approach could be followed to
provide evidence for the full conjecture up to higher number of variables.
Independent of this problem, we propose that this or a similar method could
be applied to other open problems in positivity leading to an automatic
proof.

Concerning notation, we follow Kauers [7] (note that the roles of r and
n are reversed compared to Gillis, Reznick, and Zeilberger). We start by
introducing the full problem and collecting some simple observations about
the full rational function, before we turn to the proof for the diagonal in
section 4.

2 The Gillis-Reznick-Zeilberger rational function

The r-variate rational function introduced by Gillis, Reznick, and Zeil-
berger [5] is

1
S l—(zitae ot a) Frlzims . x,

(1)

Ar(x1, 29, ..., 2,)

Note that this function, that we refer to as GRZ-function in the following,
is symmetric. We denote the coefficients in its Taylor series expansion by



Qr, 1.€e.,

Ap(z1,29,..., @) = Z ar(ni,...,ng)xyt -z (2)

N1 yee >0

The motivation to consider this particular family of rational functions goes
back to the Askey-Gasper rational function. A particular case of this result
is that

/(1= (x+y+2) +4xyz)

has only positive power series coeflicients. Gillis, Reznick, and Zeilberger
were interested in deciding for which « the multivariate rational function

/1= (z14+ -+ x) +axy - xp)

is non-negative in this sense. They observed that, since the coefficient of
x1--xpisap(l,...,1) = rl—a, clearly one must have o < r! and conjectured
that for » > 4, a = r!l. The restriction on r is necessary: we have that
Ai(xz1) =1, but then

2 2 2 2
Ag(z1,72) = 1+ 21 + 22 + 27 + 753 — 1175 — T1T2 + .. .,

and for As(x1, 2, x3) the first negative coefficient is a3(2,2,1) = a3(2,1,2) =
as(1,2,2) = —6. In particular, we also have that as(2,2) = —2 and a3(2,2,2) =
—18.

A recurrence relation for the multivariate sequence a,(n1, no,...,n,) can
be obtained by equating (1) and (2), multiplying by the denominator of the
rational function, and comparing coefficients yielding,

ar(ni +1,ne+1,....,n,+1) =ay(n1,no+1,....n, + 1)+ ...
cdar(ni+1ng+1,. .. ,n21+1,n,)

e T!Gr(nlw . -,nr)a

with constant coefficient a,(0,...,0) = 1. Let e, . m, be the vector of
length r with values 1 at positions m; and 0 otherwise. From the recur-
rence (or equivalently from coefficient comparison) it is easy to see that
alems,...m,) = k! for 1 <k <r—1, and that a,(1,...,1) = 0. Furthermore,
any of its coeflicients that is zero in at least one component can be computed
by the recurrence

ar(ni,n2,...,np) = ap(ny—1,n2,...,np) +- - +ap(n1,no, ..., np_1,np — 1),



with a,(...,—1,...) = 0. This can be seen most easily from the coefficient
comparison after clearing denominators. Hence, a,(mq,...,0,...,m;) >0
for m; > 0.

Gillis, Reznick, and Zeilberger state in Proposition 3 that non-negativity
of the diagonal is a sufficient condition for non-negativity of the full GRZ-
function. Note that, rewriting the recurrence relation in the form

ar(ni+1,ne+1,....n,+1)+rla.(ng,...,n.) =
ar(ni,ma+1,...,n,+1)+ - 4+a(n+Lng+1,...,n.—1+ 1,n,),

and using symmetry again, we may quickly conclude that
ar(m,....m) >0 = a(mm+1,....m+1)>0

for m > 0. This is a simple result of positivity on the diagonal extending to
off-diagonal positivity. Besides stating this, we make no attempt on proving
Proposition 3 of [5]. Below, we start from the closed form provided by Gillis,
Reznick, and Zeilberger

“ rn — (r — I(r)k
ar(n) :=ar(n,...,n) = Z(—l)k( (75 — k;')flj"( ) ) (3)

k=0

and show how to prove non-negativity of this binomial sum for » up to 17
using computer algebra.

3 The Gerhold-Kauers method and previous re-
sults

Gerhold and Kauers [4] introduced in 2005 a method to prove positivity of
expressions involving a discrete parameter along which they satisfy some
type of difference equation. The proof proceeds by induction along this dis-
crete parameter and uses Cylindrical Algebraic Decomposition (CAD) on
a generalized induction formula. CAD is a method that was introduced
to solve the problem of quantifier elimination over the theory of real num-
bers [3]. Given a logical formula on polynomial expressions involving quan-
tifiers, CAD computes a logically equivalent, quantifier-free formula. In the
case when there are no free variables, this formula is just one of the logical
constants true or false. Else, it gives a normalized representation of the
given expression in terms of the free variables.

The Gerhold-Kauers method has been applied successfully to several
problems, see, e.g., [1, 10, 8]. There are cases where the original approach



fails to succeed, but with a little variation of the theme, CAD can still be
applied to prove non-trivial, non-polynomial inequalities [6]. In 2007 Kauers
presented a modification [7] that he applied to prove positivity of a,(n) for
r=4,56and n > 0. We present a variant of this approach that allows us
to proceed up to r = 17.

Let ar(n) be the binomial sum defined by (3). Then, it is well known that
for any fixed integer r this sum satisfies a linear recurrence with polynomial
coefficients of some order say d,

co(m)ar(n) + cr(n)ar(n+ 1)+ -+ ca(nar(n+d) = 0. (4)

Such a recurrence can be derived automatically using Zeilberger’s algo-
rithm [19, 18, 20]. In our computations below, we use the Paule-Schorn [9]
implementation in Mathematica, but there exist other packages such as, e.g.,
gfun [13] in Maple.

The original method by Gerhold and Kauers proceeds by inductive proof.
In our case, we would seek to prove that for all n > 0,

ar(n) >0Aa,(n+1)>0A---Na,(n+d—1)>0=a,(n+d) > 0.

The recurrence (4) can be used to relate a,(n + d) to lower shifts with
polynomial coefficients. Still, the task at hand is not yet a polynomial
expression that can be handed over to CAD. For this we build the generalized
induction step formula,

VYo, Y1, Yr—1,2: 2 > 0AYyo > 0Ay1 20N - Ayp—1 >0
Aco(z)yo + - - cr—1(2)yr—1 + cr(2)yr = 0 =y, > 0.

This formula is certainly more general than what we need for the induction
to be proven. It has the advantage, however, that CAD can decide whether
it is true or not. If it is true, then this yields the induction step in the
particular case for a,(n). If the generalized statement is false, this yields
no information on the sequence or whether an inductive proof is possible or
not. In that case, the induction hypothesis is extended by one and the new
generalized induction formula is checked using CAD. In every such step,
another initial value is being checked. If a counterexample is found, the
inequality is disproven. Else, this process may be continued indefinitely -
thus it is rather a method and not an algorithm in the strict sense.

Kauers observed that this approach did not seem to work for showing
positivity of the GRZ-function. Hence he modified it [7]. Instead of proving
positivity of the given sequence, he turned to proving the stronger prop-
erty of increasing monotonically using the original method. Additionally he



introduced a degree of freedom, by considering the sequence S~ "a,(n) for
some positive parameter §. Clearly, if sufficiently many initial values are
positive and S~ "a,(n) is an increasing sequence, positivity of a,(n) follows.
For this new task a generalized induction step formula is built and following
the notation above, this formula looks like

VYo, .- yaVe > 0: (yo > 0Ay1 > Byo A+ AYag—1 > fYi—2
Neo(z)yo + cr(x)yr + -+ + ca(®)ya = 0) = ya > Bya—1.

A CAD computation [16] can determine whether S exists such that the
formula above holds and at the same time compute a range of feasible values.

Kauers [7] results show that for » = 4,5,6 such a proof is possible for
B > Bo with [y ~ 42.04,138.9, and 715.5, respectively. As mentioned in the
introduction, he states that he believes that this approach will work for any
particular value of r, but current computers (back in 2007) do not allow to
go beyond r = 6 in a reasonable way.

Typically for the Gerhold-Kauers method (or variants), the computa-
tional bottleneck is the CAD computation. It is doubly exponential in the
number of variables, depends badly on the polynomial degrees, and shows
this behaviour not only in theory, but often in practice. Our computations
indicate that the most expensive part in the calculations is determining the
range for 8. Once the parameter assumes a particular value, the CAD com-
putations are relatively fast. Hence we separate finding 5y from using it and
choose a cheaper way to determine a sufficient bound for 5.

()

4 Positivity on the diagonal

Recall that the binomial sum (3) we consider is given by

B - (rn — (r — 1)E)!(rDF
ar(n) - };)(_1)k (n — k)”"k' .

For fixed r, the sequence (a,(n))n>0 satisfies a linear recurrence with poly-
nomial coefficients, which can be computed automatically (for any specific
choice of r) using algorithms for symbolic summation. We used creative
telescoping following Zeilberger’s algorithm and computed these recurrences
up to r = 17. From these values we observed that for each r, a,(n) sat-
isfies a fully balanced recurrence of order r with all coefficients of equal
degree d(r) = (}), say

o) () er(ma (1) e (e a4) =0, deges() = (). 6)



Let us define the characteristic polynomial of this recurrence as

xr(z) =1y (co(y) + c1(y)z + -+ cr(y)z”) .

Then, our experiments showed that £y can be chosen as the smallest positive
root of the characteristic polynomial. For smaller values of r (i.e., r =
4,5,6), we find that actually 8 has to be chosen in some closed interval
Bo < B < (1. For instance for = 4 we find that £y is the smallest positive
root of the characteristic polynomial

xa(z) = —322* + 51202° — 11059222 — 17694722 — 10616832, By ~ 42.04,

and B; is the largest positive root of 112% — 120923 + 1358122 + 1004402 +
171072 with approximate value 57 ~ 96.0473. This value is smaller than
the largest positive root of y,(x) which is approximately 129.99. The upper
bound is not a root of the characteristic polynomial, but the range 5o, 51]
appears to be big enough to pick a suitable value for 8 even without its
knowledge. As a simple choice we go with 5 = [5p] which works well in all
cases. It might still be that choosing larger values decreases the computation
time of CAD a bit. Summarizing, our procedure is as follows:

1. Compute a recurrence relation for a,(n);
2. Compute the characteristic polynomial x,(z);
3. Choose f3, as the ceiling of the smallest positive root of ,(x);

4. Prove that 8, "a,(n) is monotonically increasing using Gerhold-Kauers.

Following this approach we are able to prove positivity of the diagnoal co-
efficients up to (at least) r = 17.

Theorem 1. Let a,(n) = ZZZO(—l)kw. Then ar(n) > 0 for
r=4,...,17 and n > 2.
Proof. Apply the procedure described above and use your favourite imple-

mentation of CAD to prove the generalized induction step formula (5) with
the following values for S,

r Br r Br
4 43 11 30853466
) 139 12 362227628
6 716 13 4623407173
7 4586 14 63724202836
8 34565 15 943044296791
9| 297860 16 | 14911669278343
10 | 2880692 17 | 250870733898940



To finish the proof, it remains to check the initial values, i.e., to verify that
ar(n+1) > Bray(n) forn=2,...,r+1and r =4,...,17. The recurrences
for r =4,...,17 are available for download at

http://www.risc.jku.at /people/vpillwei/grz/
O

Note that in section 2 we showed that a,(0) = 1 and a,(1) = 0. Together
with this, Theorem 1 gives non-negativity of a,(n) for all n > 0 and r =
4,...,17.

As r grows, the computation times spent for CAD certainly increases, but
so does also the memory and time consumption for obtaining the recurrence
relations. Up to r = 9, we used the Paule and Schorn-implementation [9]
of Zeilberger’s algorithm to determine the recurrences. The computational
effort for this step grows rapidly, hence after that we employed a Guess-and-
Prove strategy that we outline briefly. Let us denote by

rn — (r — 1)k)!(r)*

_ (
sr(n, k) = (=1)* I

the summand in (3) and recall that Zeilberger’s algorithm proceeds by de-
termining a creative telescoping relation of the form,

co(n)sp(n, k) +ci(n)sp(n+1,k) + ...

ot e (n)sp(n+r k) = Ak (Rr(n, k)sr(n, k), (@)

with polynomial coefficients ¢;j(n) depending only on n and not on the
summation variable k, a rational function R,(n,k) referred to as certifi-
cate, and Ay denoting the forward difference operator in k, i.e., Ag(b(k)) =
b(k + 1) — b(k). Under suitable assumptions, upon summing over (7), the
right hand side telescopes to zero and we are left with a linear recurrence
satisfied by a,(n) with the polynomial coefficients c;(n). Zeilberger’s al-
gorithm need not find the minimal recurrence for a given sequence. Still,
the calculations we performed for » = 4,...,9 provided some insight on the
telescoping recurrences, such as its order and the degree of its coeflicients.
We use this knowledge in guessing to compute a recurrence of order r with
degree (;) In order to verify the guessed recurrence, we only need to com-
pute the certificate R,-(n, k). To do this, we divide the telescoping equation



by s,(n, k) and obtain

sp(n+1,k) sr(n+r—1,k)
co(n) + cl(n)W + -+ cr_1(n) )
sp(n+1k) 0. sr(n,k+1) "
+ CT( ) r(n7 ]{7) R ( k ) sr(n, ]{7) RT( 7k)

The forward shift quotients s,(n+j, k)/sr(n, k) and s,(n,k+1)/s,(n, k) can
be computed explicitely and so can their common denominator. The cases
r =4,...,9 indicate that the certificate is of the form

Ry(n,k) = (=1)" Po(n,k) [ [J(n = k+4)"
=1

for some bivariate polynomial P.(n, k) that is of the form

d d dy do—j+1
P.(n,k) = ZZ i, j)kin? + Z Z (i, 5)k'n?,
7=0 i= j=d+1 =1

with degrees

r

d=d(r)= <2> di =di(r) =71 do=do(r) =3(Br+1)(r—1).

Note that d = dy —d; + 1 and that the number of variables (i, j) is r2(2r? —
r+1)/2. With this ansatz, the certificate can be computed from the guessed
recurrence explicitely (if it exists), thus proving the recurrence.

Gillis, Reznick, and Zeilberger supported their conjecture by computing
ar(n) for r =4 and 1 < n < 220. In this range they noticed that as(n) is
increasing “monotonically and appears to have exponential growth”. From
our observations this seems to hold also for larger values of r with a,(n) ~
a'n("=D/2 as n — oo, with «, the largest positive root of y,(z). Also the
coefficients in the recurrence and the certificate are growing with r, e.g., for
r = 11 there are 14036 coefficients (7, j) with absolute values ranging in
size in the order of 10! to 10272, This results in a characteristic polynomial
with integer coefficients of the form

x11(z) = ot — 2.8487 x 10" 210 4+ 8.7634 x 10'%2° + 1.0494 x 10%°2®
+ 8.3779 x 103227 4 4.6819 x 10%°2° 4 1.8689 x 10%82°
+ 5.3285 x 10%°2* +1.0635 x 105323 + 1.4150 x 107022
+1.1297 x 1077z + 4.0993 x 10%3



with the smallest positive root bounded above by 811 = 30853466. For the
largest positive root in this case we have that [aq1] = 284872278055. Note
that, for inductively showing monotonicity, it is necessary to consider the
sequence a,(n)/B), i.e., to scale the sequence down. Intiuitively one might
expect that the role of the parameter S is to accentuate the monotonicity,
not to dampen it, or that the sequence needs to be normalized to largest
eigenvalue o, = 1. At least for this example, neither is the case.

5 Concluding remarks

We have presented a proof for the positivity of the Gillis-Reznick-Zeilberger
rational function (or at least its diagonal) for r = 4,...,17, thus providing
more evidence for the full conjecture. Besides that, a goal of this work was
to point out a practical improvement of Kauers’ approach by separating the
finding of the parameter 8 from using it in the proof. For this, the initial
approach was to consider the limiting C-finite recurrence

lcy (CO(y)dr(n) +c (y)dr(n + 1) +oeeet Crr(y)dr(n + T)) =0,

where lc, denotes the leading coefficient w.r.t. y. Then we used Kauers’
method applied to the sequence a,(n) to determine a candidate for 3,. Doing
this, we found that in the case of the GRZ-rational function the smallest
positive root of the characteristic polynomial is such a candidate.

We believe that considering the limiting C-finite sequences to determine
parameters is a viable approach at least for balanced recurrences, i.e., recur-
rences where the leading and trailing coefficient have the same polynomial
degree d and all other coefficients degrees at most d. Besides determining pa-
rameters, these sequences could also be used to decide which strategy is op-
timal: the original Gerhold-Kauers approach with increasing the induction
hypothesis if necessary; introducing a parameter and proving monotonicity;
considering shifted subsequences (for details see [11, 12]); or combinations of
these approaches. Many problems are in theory accessible to computer alge-
bra, but fail solely because of the computational complexity being presently
too high. We see these approaches as ways to circumvent this restriction
and prove these problems using symbolic computation.
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