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Abstract. We present a new add-on for the Theorema 2.0 proof assis-
tant, consisting of a reasoning framework in the spirit of (though not
exactly as) the well-known LCF approach to theorem proving: a small,
trusted kernel of basic inferences complemented by an extensive collec-
tion of automatic and interactive proof methods that construct proofs
solely in terms of the basic inferences. We explain why such an approach
is desirable in the first place in Theorema (at least as a possible alter-
native to the existing paradigm), how it fits together with the current
default set-up of the system, and how proof-checking with the inference
kernel of the new framework proceeds. Since all this is heavily inspired by
the Isabelle proof assistant, we in particular also highlight the differences
between Isabelle and our approach.
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1 Introduction

The Theorema project aims at creating a software system that supports the
‘working mathematician’ in his everyday work, be it performing computations,
proving conjectures or implementing algorithms—exploring mathematical theo-
ries, in short. The resulting Theorema1 system [2,3], implemented on top of the
Mathematica computer algebra system,2 achieves this goal by providing a user-
friendly graphical user interface [16], a computation engine seamlessly integrated
into a collection of automated and interactive provers, and a quite unique mech-
anism for automatically turning formal proofs into readable proof documents.
Remarkable research done primarily in Theorema includes the development and
implementation of a novel method for solving linear boundary value problems
[13] and the automated synthesis of Buchberger’s Gröbner bases algorithm by
lazy thinking [1,5].

Still, there is one aspect Theorema has not paid particular attention to yet:
ensuring the logical consistency of formalized theories and the logical correctness
of proof methods (mainly those developed by users). So far, the system only
? The research was funded by the Austrian Science Fund (FWF): P 29498-N31
1 ‘Theorema’ shall always refer to the current version Theorema 2.0 throughout this
paper; http://www.risc.jku.at/research/theorema/software/

2 http://www.wolfram.com/mathematica/
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provides useful tools and functionality for ‘doing mathematics’ to its users, but
it also leaves them with the responsibility to ensure correctness and consistency
of formalizations themselves. 3 This might be feasible for small and isolated
elaborations, but as soon as they increase in size and rest on existing work,
users cannot reasonably take care of these things themselves any more; this,
at least, is one of the findings from our recent formalization of reduction ring
theory in Theorema [9]. In that sense, the new reasoning framework4 presented
in this paper is a first attempt to solve these issues; it is heavily inspired by the
Isabelle system [12,11,14]. The main reason for choosing Isabelle among the large
variety of existing proof assistants of very different flavor is because Isabelle and
Theorema share the ultimate design goal of being flexible systems that do not
impose too many constraints on their users regarding the logic they have to work
in—be it first-order logic, set theory, higher-order logic, etc. A survey of other
approaches and proof assistants in general is given in [15,6].

The rest of this paper is organized as follows: Section 2 outlines the main
design principles underlying our new framework. Sections 3 and 4 describe how
types and terms are formed, and how the consistency of formal theories can be
ensured. Section 5 is the main part of this paper: it describes the logic and infer-
ence kernel of the framework. Section 6 sketches how arbitrary object logics can
be set up and made available to users. The style of presentation intentionally is
on a rather abstract level; only occasionally details of the actual implementation
are revealed.

2 Design Principles of the New Framework

As a mathematical assistant system, Theoremahas its strengths and weaknesses.
One apparent strength is its focus on natural-style mathematics by support-

ing common two-dimensional mathematical notation (with bound variables being
typeset under the respective binders, for instance) both on input and output,
and by putting a lot of effort in the presentation of proofs: after a theorem has
been proved—no matter whether automatically or interactively—the system can
fully automatically generate a nicely formatted proof document that explains ev-
ery step in the proof both formally and informally, in a way human users are
able to comprehend even if they do not know Theorema very well.

Furthermore, Theorema traditionally is a very flexible system in the sense
that it offers its users much freedom in formalizing their mathematics: it does not
impose any conditions on how theories must be structured or how new objects
must be introduced in order to preserve the logical consistency of the respective
theories. Expressions entered into the system are not required to be well-typed,
simply because the language of Theorema is completely untyped. And, finally,
Theorema encourages its users to develop their own proof methods, tailor-made
for the theory they are currently working on, but again without imposing any
3 Preliminary work on ‘lifting’ proved facts to the inference level by reflection, sum-
marized in [7], has not been incorporated into the system so far.

4 http://www.risc.jku.at/people/amaletzk/AddOns.html.
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conditions whatsoever on how these proof methods must behave in order to keep
the reasoning machinery sound. See [2,3] for details.

Our phrasing of the previous paragraph already indicates that these strengths
entail weaknesses, too. Great flexibility is convenient for the user who formalizes
her mathematics, but it perhaps raises problems for the user who wants to build
upon existing formalizations, relying on the correctness of their formal proofs and
the logical consistency of the formalized theories. One has to admit that certain
doubt with regard to these correctness- and consistency questions remains in the
present design of Theorema, and this is now exactly where our new reasoning
framework enters the stage: putting Theorema on solid foundations and thus
eliminating maybe not all, but at least most of said doubt. In order to achieve
this goal, our strategy is to take the well-known and established Isabelle proof
assistant as some sort of ‘role model’ and combine the best features of Theorema
and Isabelle: the strengths of Theorema have already been described above,
and the key ideas behind Isabelle incorporated in our new framework are the
following:

– Requiring all formulas and other expressions appearing anywhere in a formal-
ization to be well-formed and well-typed λ-terms, for ruling out paradoxes
such as Russell’s. [ Section 3]

– Enforcing conservative theory extensions by introducing new constants only
via explicit non-recursive definitions, for preserving the consistency of formal
theories. [ Section 4]

– Restricting the inference machinery to a small kernel of basic inferences all
proofs must go through; if these inferences are trusted to properly describe
the semantics of the constructive minimal meta logic, then all reasoning
steps in every proof conducted in this setting are automatically correct. [ 
Section 5]

– Developing a variety of concrete object logics (like HOL, FOL, ZF, CTT) on
top of the aforementioned minimal meta logic. [ Section 6]

In the rest of this paper we are going to explain how we realized—or plan to
realize—these ideas in the new reasoning framework.

3 Types and Terms

In this section we present the objects we are concerned with. The meta logic
being higher-order logic, these objects are typed higher-order terms, on the one
hand, and types themselves on the other hand.

3.1 Types

Fix countably infinite sets A and B, and an arbitrary set B, such that these three
sets are pairwise disjoint; assume that B contains at least the symbol →.

Types are formed according to the grammar

τ ::= α | γ | γ | τ [τ1, . . . , τn]
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where α is a type variable taken from A, γ is an arbitrary, but fixed (a. b. f.) type
constant taken from B,5 and γ is type constant taken from B.

Note that the head of a type, i. e. τ in the above grammar, can be completely
arbitrary, and also that the number of type arguments n is independent of the
head. This freedom is justified by the fact that for a proper handling of types
in theorem proving it suffices to be able to check whether two type-expressions
denote the same type, and to be able to unify two types by instantiating type
variables. Both tasks can easily be accomplished by testing types for syntactic
identity and by employing first-order syntactic unification, respectively.6 When
introducing new types, however, a more restrictive way of forming types must
be adopted for preserving the consistency of the resulting theory; for instance,
a new type constructor must clearly be an individual fresh constant.7

In the remainder of the paper we will write τ → σ instead of → [τ, σ], as
usual, and assume that → associates to the right.

3.2 Terms

Fix countably infinite sets X , X ∗ and C, as well as some arbitrary set C, such
that these four sets are pairwise disjoint.

Terms are formed according to the grammar

t, s ::= x | v∗ | c | c | t[s] | λx. t | t::τ

where x is a variable taken from X , v∗ is a meta variable taken from X ∗, c is an
a. b. f. term constant taken from C, and c is a term constant taken from C.

As can be seen, application is restricted to one argument only, which means
that functions must be curried to ‘simulate’ higher arity.8 As for abstractions,
our implementation uses the well-known concept of de Bruijn indices to represent
bound variables; their symbolic names are internally stored as well, but only for
pretty-printing. t::τ , finally, is a type annotation which entails that term t is
intended to have type τ .

In order for a term to be accepted by the new reasoning framework it not only
needs to be well-formed, but also well-typed according to the typing discipline of
simply-typed λ-calculus with top-level (or ML-style) parametric polymorphism
[10,4]. To that end, the framework contains a Mathematica-function that decides
whether a given Theorema-term is well-typed or not based on the term’s syn-
tactical structure and on some contextual information, including declarations of
constants in the background theory as well as declarations of a. b. f. constants
5 A. b. f. type- and term constants are needed for proving, see Section 5.
6 Unifying τ [τ1, . . . , τn] and τ ′[τ ′

1, . . . , τ
′
m] amounts to checking n = m and unifying τ

and τ ′, τ1 and τ ′
1, and so on.

7 Otherwise one and the same type constructor could be defined in multiple contra-
dictory ways.

8 We shall still use the uncurried notation f [a1, . . . , an] later on, but it must be under-
stood as an abbreviation for f [a1] . . . [an]. We shall also use infix- or binder notation
for certain constants whose meaning will be clear from the context.
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and meta variables in proofs (c. f. Definitions 1 and 2). Here it must be noted
that constants in C are always fully polymorphic, even when they are declared to
be of a certain type in the theory: such type declarations merely serve as hints
for type inference, allowing the user to omit as many explicit type annotations
as possible. It could be, though, that a constant c is declared to be of type τ ,
but in a concrete term it occurs with type annotation τ ′; then, the explicit type
annotation overrules the declaration, meaning that the type of the annotated
occurrence is indeed τ ′ rather than τ .9 Furthermore, iterated (explicit) type an-
notations, as in (t::τ1)::τ2, merely express that the concrete type instance of t has
type τ1 and type τ2 at the same time, meaning that the term only type-checks
if τ1 and τ2 are unifiable.

All the preceding explanations exclusively refer to the internal representation
of types and terms. It should be clear, though, that there is a lot of syntactic
sugar for displaying terms in an appealing form close to usual textbook notation.
Details can be found in [16].

4 Ensuring Consistency and Integrity of Formal Theories

Theorem provers in the tradition of the Logic for Computable Functions (LCF)
systems [8] reduce the problem of proving formulas in some object logic to the
problem of showing that a certain term has a certain type in the system’s meta
logic. In Isabelle, for instance, a formula can be proved iff it is possible to con-
struct a meta-level object of type thm, the type of theorems, out of it; in such
a case, the way how that object is constructed corresponds to a low-level proof
of the original formula, since the type constructors of thm closely resemble the
usual inference rules of intuitionistic higher-order logic.

We decided to pursue a different approach for our framework which, in part,
is motivated by the fact that Theorema’s meta language, the Mathematica pro-
gramming language, is completely untyped; this means that anyway we cannot
employ static type checking on the meta-level (i. e. in Mathematica) to mimic
Isabelle’s thm-paradigm. Instead we adopt a more ad-hoc principle of theorem
proving, which allows users of the system to state any formulas they want10 as
‘facts’ on the theory level, possibly using them as assumptions in the proofs of
other formulas, but without having to prove these ‘facts’ in the first place (as
long as they are unproved they are just considered axioms). But surely they may
prove them, and in Section 5 we describe how this is accomplished.

Still, despite the quite liberal view toward formalizations expressed in the
previous paragraph we are of course worried about the logical consistency and
integrity of formal theories in Theorema. We clearly do not want to accept
formalizations where half of the main theorems are stated without proof, where
constant definitions possibly introduce inconsistencies, or, worse even, where the
structure of the formalized theory is circular in the sense that the correctness
9 A warning message informs the user about this perhaps unexpected result, though.

10 As long as they are well-typed on the object-level, i. e. according to our own type-
checker for Theorema-terms mentioned in Section 3.2
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of the proof of a theorem depends on the validity of that theorem itself. To
achieve this, we propose the ConsistencyChecker tool as a remedy. This tool
automatically scans formalizations, recording all unproved axioms and checking
whether every proved theorem indeed has a valid proof, whether new constants
are only introduced by means of explicit, non-recursive definitions, and whether
the dependency graph of all formulas in the theory is acyclic. In the end, the
ConsistencyChecker reports whether all those tests succeeded, and in addition
returns the set of all axioms it found. Ultimately, it is still the human users
who then have to decide whether to accept the axioms and trust their being
consistent, or not. 11

So far, only a preliminary version of the ConsistencyChecker exists. It can only
report unproved formulas as axioms and test dependency graphs for acyclicity,
but it cannot check whether existing proofs (originally done interactively) are
valid, nor whether definitions of constants form conservative extensions. More-
over, it was developed for the default set-up of Theorema, where formalizations
are completely free of types; this, of course, drastically complicates the task for
the ConsistencyChecker. We plan to adapt the existing version of the tool to fit
with the new reasoning framework described in this paper, but this is left for fu-
ture work. The interested reader may find further information on the preliminary
version of the ConsistencyChecker in Section 6.4 of [9].

5 The Inference Kernel

The focus of this section exclusively lies on proving individual theorems from
arbitrary sets of assumptions, without worrying about the consistency of these
sets at all. Hence, here the word proving must always be understood as an isolated
task within the formalization of a theory.

The inference kernel of the new reasoning framework, called Core in the actual
implementation and also referred to by this name here, consists of three main
components:

– A function checkProof for checking proofs, which are given as finite sequences
of basic inferences and other proof methods, falling back upon

– a collection of basic inference rules and
– a function for checking well-formedness and well-typedness of terms accord-

ing to Section 3,

Please note that the sole task of Core is to check proofs, not to find them.
How a proof has originally been obtained, be it interactively by the human
user or automatically by specific proof methods, is completely irrelevant for the
kernel. This allows our framework to easily accommodate both interactive and
automated reasoning.

In general, proving in Theorema is inherently backward-oriented: the ini-
tial proof situation, consisting of the formula that shall be proved, is gradually
11 It should be clear that the implementation of the ConsistencyChecker, in Mathemat-

ica, must be trusted as well.
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reduced to lists of ideally simpler proof situations, until no pending proof situa-
tions remain (success) or no further reductions are possible (failure). Reductions
are realized by inference rules, which are functions that take a single proof sit-
uation, as well as some additional parameters, as input, and return a (possibly
empty) list of new proof situations. Thus, Theorema adopts a quite operational
way of looking at inference rules, rather than a declarative one as more common
in mathematical logic and also other proof assistants, including Isabelle: there,
inference rules describe how new facts can be derived from known ones, but they
do not ‘operate’ on anything themselves: resolution is the driving engine behind
proof in Isabelle.

The crucial difference between the default prover set-up of Theorema and
Core lies in the treatment of these inference rules: in the former, inference rules
can be completely arbitrary functions of said signature, implemented by the
developers of the system or by end-users for their personal use; in the latter, the
inference rules are fixed to a collection of 24 concrete elements12 that are specified
once and cannot be modified by users of Theorema afterward. The only thing
users can (and are encouraged to) do is developing their own proof methods. Proof
methods are similar to inference rules, in the sense that they also take a single
proof situation as input, but they differ from inference rules in that they must
not directly return a list of new proof situations, but only a sequence of basic
inferences and/or (other) proof methods that shall be applied next. Therefore,
applying proof methods in a proof in fact amounts to successively unfolding them
down to sequences of basic inferences.13 Only note that how proof methods are
unfolded typically depends heavily on the current proof situation, so they should
not be confused with mere abbreviations of fixed sequences of basic inferences.
Also note that proof methods are the rough analogues of tactics in Isabelle, but
they in fact also subsume tacticals: a proof method that is parametrized over
other proof methods, which it applies in some particular way to the given proof
situation, may be regarded a tactical.

Actually, what has been said so far is not the whole truth about proof meth-
ods in our reasoning framework. For one thing, they may not only return one
sequence of basic inferences or other proof methods, but arbitrarily many of
them that are interpreted as alternatives by the main proof-checking function.
In more concrete terms, checkProof always chooses the first alternative until the
whole proof is either completed or fails (due to a rule/method being not appli-
cable), in which case it backtracks to the most recent choice it made and tries
the next alternative. This concept of realizing proof search through backtracking
is not new, of course; it is implemented in standard Theorema 2.0. checkProof,
however, can even handle infinitely many alternatives that are represented as
lazy lists (also called streams). This is particularly useful in connection with
higher-order resolution, since higher-order unification might result in infinitely
many unifiers any of which could possibly lead to successful proof.

12 The most important of these 24 rules are listed in Section 5.2.
13 Unfolding is not guaranteed to terminate, since proof methods might well unfold to

themselves. In such a case the proof simply cannot be checked.
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In addition, proof methods may even return new proof situations directly, in
spite of what is written above. This is because checkProof in fact distinguishes
between three proof modes: fast, trace and kernel. Only kernel mode imposes
the strict requirements on proof methods that are described above; the other
two modes do not require them at all. Apart from that, fast mode is like kernel
mode, whereas trace mode, as its name suggests, not only checks proofs, but also
records each individual proof step in so-called proof objects. Proof objects, which
are a standard component of Theorema, are used to fully automatically generate
natural-language proof documents, as mentioned at the beginning of Section 2.
Hence, the new reasoning framework still allows the generation of such proof
documents, thus preserving one of the distinctive features of Theorema.

It is the user who decides upon the proof mode a proof shall be checked
w. r. t.: fast mode is typically faster than kernel mode (whence the name), mak-
ing it the proof mode of choice for developing new proofs interactively in an
experimental fashion. kernel mode, on the other hand, is more appropriate for
checking whole formalizations with the ConsistencyChecker, to rule out all doubt
about the correctness of the proofs.

Finally, before delving into more technical aspects of the inference kernel, we
want to point out another feature of checkProof: not only may proofs involve
global facts stated in some background theory, but also a special kind of reg-
istered theorems. On the surface, such theorems do not really differ from other
facts, since they may simply also be used as assumptions in proofs. What really
distinguishes them from other facts is that they may be parametrized, therefore
yielding theorem schemas.

For preserving the correctness of proofs in the presence of such theorem
schemas, checkProof demands every concrete instance of a theorem schema to
come together with its proof.14 All instances that are made use of in a proof, or
in a series of proofs, are recorded, and the proofs of these instances (of which
there can only be finitely many) may then be checked, too.

Example 1. In a nested implication, like A1 −→ A2 −→ . . . −→ An −→ C, the
order of the antecedents A1, . . . , An is irrelevant, since all possible arrangements
yield equivalent formulas (if −→ is interpreted in the usual way). In higher-order
predicate logic, however, this fact cannot be expressed by a single theorem, but
only by a theorem schema of the form

(Ai1 −→ . . . −→ Ain −→ C) −→ (A1 −→ . . . −→ An −→ C)

where i is an arbitrary permutation of {1, . . . , n} and where the Aj and C are
tacitly assumed to be universally quantified. Our new reasoning framework pro-
vides a Mathematica-function that, given a permutation i, returns precisely the
corresponding instance of the theorem schema together with the formal proof of
precisely that instance.

14 In other words: theorem schemas must be proved by proof schemas.
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5.1 Proof Situations

So far we have sketched the overall proof-checking and, to some extent, also
searching procedure in Core. In this subsection we now want to shed some light
on the objects a Core proof actually manipulates: proof situations. The term
‘proof situation’ is non-standard in common literature on mathematical logic
or mechanized reasoning, but it is used in Theorema to refer to objects that
would elsewhere be called subgoals instead. We also use the term ‘subgoals’ in
the remainder of this section, but with a slightly different meaning that will
become clear soon. Also note that, although the proof situations we consider
here are roughly the same as the proof situations in the default prover set-up of
Theorema, there are some differences, too; we do not list them here explicitly,
though.

Before we can define proof situations formally, we need some auxiliary no-
tions.
Definition 1. A type context Γ for a. b. f. constants is a (finite) set of type
annotations c::τ , where c ∈ C is an a. b. f. term constant, τ is a type, and all
such a. b. f. term constants in Γ are distinct.

We shall say that c is contained in Γ if c::τ ∈ Γ , for some τ .

Definition 2. A type- and dependency context Ξ for meta variables is a (finite)
set of pairs (v∗::τ, Γ ), where v∗ ∈ X ∗ is a meta variable, τ is a type, Γ is some
typing context for a. b. f. constants (“an instance of v∗ may only involve the
a. b. f. constants in Γ”), and all such meta variables in Ξ are distinct.

We shall say that v∗ is contained in Ξ if (v∗::τ, Γ ) ∈ Ξ, for some τ and Γ .

Intuitively, the meaning of a. b. f. constants and meta variables should be
clear: the former are introduced in proofs when the proof goal is universally
quantified and, hence, shall be proved for some ‘arbitrary, but fixed’ values, and
the latter typically stem from universally quantified assumptions that shall be
instantiated by some term yet to be synthesized in the course of the proof; the
dependency information then specifies which of the a. b. f. constants the term
may depend upon.15 This will ensure that instances of meta variables may only
involve a. b. f. constants introduced before the respective meta variables, thanks
to inference rule meta presented in Section 5.2.

Definition 3 (Proof situation). A proof situation is characterized by a finite
sequence of subgoals G, a finite sequence of hypotheses H, a type context Γ for
a. b. f. term constants, and a type- and dependency context Ξ for meta variables.
A proof situation is well-formed iff
1. the elements of G and H are well-typed closed terms of type FORM, the type

of Core formulas,16 where Γ and Ξ specify the types of a. b. f. term constants
and meta variables, respectively,

15 Meta variables are analogous to schematic variables in Isabelle, but the dependence
of schematic variables on a. b. f. constants is made explicit in Isabelle by applying
them to the a. b. f. constants they may depend on.

16 Corresponds to prop in Isabelle.

9



2. H is free of meta variables, and
3. the annotated type (in Γ ) of every a. b. f. constant occurring in H is free of

type variables.

Well-formed proof situations are denoted by H `Γ,Ξ G.

Just as for a. b. f. constants and meta variables, the meaning of a proof situ-
ation H `Γ,Ξ G should intuitively be clear: it describes a situation which, in
order to establish the validity of the formula we want to prove originally, must
be closed by showing that the hypotheses in H imply all formulas in G.17 The
types in G, H, Γ and Ξ may depend on a. b. f. type constants γ1, . . . , γi and
type variables α∗1 . . . , α∗j .

The following is not meant to be a precise formal description of the semantics
of proof situations, but it hopefully conveys the idea about the roles of the various
constituents of proof situations: a well-formed proof situation

h1, . . . , hk `{c1::σ1,...,cm::σm},{(v∗
1 ::τ1,Γ1),...,(v∗

n::τn,Γn)} g1, . . . , g`

may be associated with the intuitionistic higher-order predicate logic formula

∀γ ∃α∗,v∗ ∀z,c (∀α∗h1(γ, α∗, z) ∧ . . . ∧ ∀α∗hk(γ, α∗, z))⇒
(g1(γ, α∗, z, c, v∗(Γ )) ∧ . . . ∧ g`(γ, α∗, z, c, v∗(Γ ))) (1)

where the dependence of the hi and gi on the various type- and term constants
and -variables, according to the well-formedness constraints on proof situations,
is made explicit, and where

– γ and α∗ abbreviate the sequence of all a. b. f. type constants and type vari-
ables, respectively (note that type variables are not shared among the hy-
potheses and the subgoals, because they are quantified universally in each
hypothesis),

– z and c partition the a. b. f. constants c1, . . . , cm into two disjoint sequences
such that those contained in z are precisely those whose types do not depend
on any type variables,

– v∗ abbreviates v∗1 , . . . , v∗m, and
– v∗(Γ ) abbreviates v∗1(Γ1), . . . , v∗n(Γn), expressing that the instance of v∗1 may

depend on the a. b. f. constants in Γ1, etc.

At any point in a proof there may be several pending proof situations, since
proving proceeds by reducing one proof situation to a list of other proof sit-
uations, as explained above; hence, all of them have to be closed in order to
complete the proof. Different proof situations are always completely indepen-
dent of each other, in the sense that instantiating term meta variables (or type
variables) in one of them does not affect term meta variables (or type variables)
in others, even if the variables by chance have the same name. Subgoals within
17 In contrast to sequent calculus, where it suffices to show that one of the formulas

on the right-hand-side of the turnstile is a consequence of the hypotheses.
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one single proof situation, on the other hand, do share such variables (and ac-
tually also the hypotheses), hence they are not independent of each other. This,
in fact, is the main reason for distinguishing proof situations and subgoals.

The proof of some formula g starts with one initial proof situation, which
is of the form `∅,∅ g, where g denotes the type specialization of g, i. e. g with
all type variables replaced by fresh a. b. f. type constants. This specialization
ensures that all type instances of the original formula are proved.

5.2 Inference Rules

The inference rules presented below define the semantics of the constructive
higher-order meta logic of the inference kernel. Just like the meta logic of Isabelle,
its language consists of abstraction (λ), implication (−→), universal quantifica-
tion (

∧
) and equality ( ') on the term level, and of a type of formulas (FORM )

and function types (→) on the type level. The inference rules define the se-
mantics of the logic by specifying how proof situations built from terms in the
aforementioned language can be manipulated, which in our case means how they
can be reduced to zero, one or more new proof situations.

What follows is the list of basic inference rules of Core. Note that the rules
have to be read bottom-up: when constructing a proof, proof situations below
the horizontal line are reduced to proof situations above the horizontal line. This
reading also motivates the names of makeExplicit and makeImplicit, which would
be misleading otherwise. In a sequence like h,H in the hypotheses of a proof
situation, h stands for some hypothesis and H for the (possibly empty) sequence
of remaining hypotheses; subgoals are handled analogously.

– close:

H `Γ,Ξ ∅

– makeExplicit:
h,H `Γ,Ξ h′ −→ g,G

h,H `Γ,Ξ g,G

where h′ is the ‘lifted’ version of h, meaning that all type variables in h′ were
renamed to avoid clashes with type variables in {g,G}.

– makeImplicit:
a,H `Γ,Ξ a −→ b

H `Γ,Ξ a −→ b

on the proviso that a does not depend on any meta variables or type vari-
ables.18

– drop:
H `Γ,Ξ b,G

H `Γ,Ξ a −→ b,G

18 Note that a still remains among the explicit assumptions of the first and only subgoal
even after adding it to the hypotheses.
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– split:
H `Γ,Ξ g H `Γ,Ξ G

H `Γ,Ξ g,G

on the proviso that g does not share any term meta variables and type
variables with G.

– cut:
H `Γ,∅ ã a,H `Γ,Ξ G

H `Γ,Ξ G

on the proviso that a type-checks to FORM , that it does not contain any
meta variables, and that all a. b. f. term constants appearing in a are inde-
pendent of type variables. ã is the type specialization of a, i. e. a with all
type variables replaced by fresh a. b. f. type constants.

– meta:
H `Γ,Ξ∪{(v∗::τ,Γ )} G

H `Γ,Ξ G

on the proviso that v∗ is a meta variable not occurring in Ξ and τ is a type.
– inst:

H `Γ,Ξ G(t)
H `Γ,Ξ∪{(v∗::τ,Γ0)} G(v∗)

on the proviso that t type-checks to τ and that all a. b. f. term constants in
t are contained in Γ0.

– instT:
H `Γ (τ),Ξ(τ) G(τ)

H `Γ (α∗),Ξ(α∗) G(α∗)

where α∗ is an arbitrary type variable and τ is a (potentially polymorphic)
type. G(α∗), Γ (α∗) and Ξ(α∗) express that α∗ may occur in G, Γ and Ξ,
and that is has to be instantiated by τ everywhere.

– allE:
H `Γ,Ξ a(t) −→ b,G

H `Γ,Ξ (
∧
x::τ. a(x)) −→ b,G

on the proviso that t type-checks to τ .
– allI:

H `Γ∪{c::τ},Ξ g(c), G
H `Γ,Ξ

∧
x::τ. g(x), G

on the proviso that c is a fresh a. b. f. term constant that does not appear in
Γ .

– impE:19

H `Γ,Ξ [a1 −→ . . . −→ am −→ pi | 1 ≤ i ≤ n], G
H `Γ,Ξ (p1 −→ . . . −→ pn −→ g) −→ a1 −→ . . . −→ am −→ g,G

19 impE backchains a subgoal w. r. t. an implication among the assumptions of that
subgoal: each antecedent pi of the implication gives rise to a new subgoal.
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– refl:
H `Γ,Ξ G

H `Γ,Ξ a 'b,G
if a is α-equivalent to b.20

– replace:
H `Γ,Ξ a 'b −→ g(b), G
H `Γ,Ξ a 'b −→ g(a), G

– alphabetaeta:
H `Γ,Ξ Gp→t
H `Γ,Ξ G

where p is the position of an arbitrary subexpression e of G (possibly con-
taining free variables), t is a term αβη-equivalent to e, and Gp→t denotes G
with e replaced by t.21

– ext:
H `Γ,Ξ

∧
x1::τ1 . . . xn::τn. a[x1, . . . , xn] 'b[x1, . . . , xn], G

H `Γ,Ξ a '(b::τ1 → . . .→ τn → σ), G

Apart from the rules listed above, there are some other rules that merely serve
organizational needs. For instance, there are rules for inserting facts from the
background theory into the hypotheses of a proof situation, and for rearranging
the list of subgoals of a proof situation by moving an arbitrary subgoal to the
front. We do not go into further detail here, since these rules are only of minor
relevance.

The set of inference rules is not the smallest theoretically possible, and even
the rules themselves could in some cases be weakened. For instance, it would
suffice if allE instantiated universal quantifiers by fresh meta variables only; inst
could then be used to instantiate these meta variables by concrete terms. Or,
in ext it would be sufficient if only one function type was considered at a time.
The goal we want to achieve with the particular choice and formulation of the
inference rules above is a reasonable trade-off between simplicity on the one
hand, and efficiency (in terms of the time needed to check proofs) on the other
hand. Indeed, first experiments suggest that performance is really going to be
an issue in larger proofs.

Finally, we want to draw the reader’s attention to the following important
observation: none of the inference rules require higher-order unification. There-
fore, although our new reasoning framework features a general higher-order
pre-unification procedure for automatically finding suitable instances of meta
variables, it is not part of the kernel. This further implies that said procedure—
implemented correctly or not—does not influence the correct behavior of the
20 Using de Bruijn indices in the concrete implementation, α-equivalence tests amount

to checking syntactic identity.
21 alphabetaeta cannot be replaced by a combination of replace and refl, since the for-

mula a 'b in the latter two rules must not contain free variables (as every formula
in a proof situation). alphabetaeta, on the other hand, may convert terms even if
they contain variables bound somewhere outside.
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inference kernel at all, and it further implies that we could safely connect it to
external, highly optimized unification tools in the future.

6 Object Logics

In the preceding section we described the meta logic of Core, but we have not
said anything about any object logic yet. Of course, one could simply formalize
theories in that meta logic, maybe making it classical by introducing the law
of the excluded middle (or anything equivalent to it) as an additional axiom. A
probably more reasonable alternative, however, is to present object logics within
the meta logic through judgments that ‘translate’ statements from the object
logic into the meta logic; this is precisely the approach pursued by Isabelle, for
instance [12]. The semantics of an object logic is then defined entirely by a set
of axioms expressing the characteristic properties of the respective judgments.

The new reasoning framework allows to present object logics in the way
sketched above, thus retaining a good deal of the flexibility of Theorema for the
user who can formalize his mathematics in the logic of his choice. Even more, the
very design of the framework already anticipates the presence of all kinds of ob-
ject logics, with potentially completely different syntax and notation, by setting
up a programmable interface between the GUI of Theorema and the inference
kernel Core. ‘Programmable’ means here simply that after parsing expressions
w. r. t. the default parsing rules of Theorema and Mathematica the results are
passed to a translator function that may apply further transformations—and
this translator function can be implemented by an object logic.

But not only parsing and pretty-printing, but also reasoning can greatly be
influenced by object logics, simply by adding specialized proof methods of all
sorts to the arsenal of proof methods provided by Core by default. For instance,
one of the most important proof methods for logics with equality is a simplifier
that rewrites subgoals w. r. t. known (quantified, conditional) equalities. But
there might also be proof methods that merely apply suitable instances of certain
basic facts as backward rules (c. f. inference impE) to the current proof situation,
saving the user from picking and instantiating the facts herself.

So far our work mainly concentrated on implementing Core and developing
general-purpose Core proof methods that are independent of any object logic.
Setting up classical higher-order logic as the first object logic of our new frame-
work, analogous to Isabelle/HOL, is currently work in progress.

7 Conclusion

We presented a new reasoning framework for Theorema 2.0 whose main objec-
tive is to increase the trust human users can have in the theories formalized
in Theorema. Even though the fundamental components of the framework are
already there, lots of work remains in developing sophisticated proof methods

14



that automate proof search as much as possible, and in formalizing enough el-
ementary concepts of at least one object logic (e. g. HOL) such that one can
reasonably start building ‘more interesting’ formalizations upon them.
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