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Abstract. In this talk we will report on three useful tools recently im-
plemented in the frame of the Theorema project: a graphical user inter-
face for interactive proof development, a higher-order rewriting mech-
anism, and a tool for automatically analyzing the logical structure of
Theorema-theories. Each of these three tools already proved extremely
useful in the extensive formal exploration of a non-trivial mathemati-
cal theory, namely the theory of Gröbner bases and reduction rings, in
Theorema 2.0.
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1 Introduction

Theorema1 is a so-called mathematical assistant system supporting its users
in all aspects of mathematical theory exploration: inventing new notions and
problems, implementing and experimenting with algorithms, making conjectures,
and finally proving or disproving them. Theorema 2.0 [1] is the latest version of
the system, released roughly two years ago in 2014; as its predecessor, it is still
based on Mathematica.

The present paper reports on three tools we recently developed for mak-
ing working with the system more attractive and efficient: a versatile interactive
proof strategy giving the user full control over proving and complementing the ex-
isting automatic strategies, a powerful rewriting mechanism for translating first-
and higher-order formulas into Mathematica transformation rules for rewriting
other formulas in proofs, and a simple but nonetheless extremely helpful tool for
analyzing the logical structure of Theorema-theories. The development of each of
these three tools was motivated by our extensive formal treatment of the theory
of Gröbner bases and reduction rings in Theorema, see [3] for details.

Please note that the tools have not been integrated into the official version
of Theorema 2.0 yet, but they are expected to be in the near future. Still, they

? This research was funded by the Austrian Science Fund (FWF): grant no. W1214-
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1 http://www.risc.jku.at/research/theorema/software/
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can easily be installed manually, relying on Mathematica’s comfortable package-
system.

Small parts of this paper are also contained in [3].

2 Interactive Proving

The first of the three tools we present in this paper is an interactive proof strat-
egy (IPS) that, as its name suggests, can be used for developing proofs in The-
orema 2.0 fully interactively, in the sense that the human user has full control
over what happens at each stage of a proof. This is in contrast to the automatic,
or, at least, semi-automatic proof strategies typically available in the system.

As can be seen in a concrete example below, the IPS in Theorema 2.0 is not
text-based, as in most other proof assistants, but dialog-oriented. This means
that whenever a user interaction is required, a dialog window displaying the cur-
rent proof situation pops up, asking the user to perform an action (by clicking on
a button, typing in some text, etc.; see Fig. 1). This, in fact, follows the tradition
of interactive proving in Theorema 1, the predecessor version of Theorema 2.0,
where the environment for interactive proving developed in [5] is dialog-oriented
as well. Note that we did not just migrate said environment from Theorema 1
to Theorema 2.0, but really implemented the new IPS completely from scratch;
this seemed to be the more reasonable approach, as the internal architecture of
Theorema 2.0 differs considerably from the one of Theorema 1.

Before explaining how the IPS can be used in practical applications, some
words on its implementation are in place: the IPS is implemented simply as a
Theorema proof strategy, meaning that it essentially is a function taking a proof
situation (characterized by the current proof goal and a list of assumptions) as
input and returning a list of new, ideally simpler proof situations as output; the
logical relation between in- and output obviously is that the validity of the input-
situation follows from the validity of all of the output-situations. The output is
constructed by applying inference rules that are themselves independent of the
IPS and could well be used together with any other (automatic) proof strategy
installed in the system. The main task of the IPS is only to guide the application
of the inference rules, by specifying which rules shall be applied and how they
shall be applied.

2.1 How the Interactive Proof Strategy Works in Practice

Once the IPS is properly installed, it can be selected as the proof strategy of
choice just as any other, pre-defined proof strategy when initiating a proof at-
tempt; no further setup by the user is required. Then, whenever a new proof
situation p arises during the proof search, the IPS proceeds as follows:

– First, it automatically tries to apply an available high-priority inference rule
to p. If this is possible, the respective rule is applied and the proof search
continues.
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– Otherwise, if no high-priority rule is applicable to p, it asks the user how to
proceed by displaying a graphical dialog window.

Every inference rule in Theorema has a priority attached to it. Automatic
proof strategies usually fall back on these priorities for determining the order
they try to apply inference rules in. The IPS takes rule priorities into account
solely for filtering out the high-priority rules, i. e. those rules whose priorities are
above a certain, user-adjustable threshold.2

Assume now that no high-priority rule could be applied to p. The user now
has a range of possibilities how to proceed, including

– choosing another inference rule to apply to p (or, more precisely, to try, since
non-applicable rules are not automatically filtered out),

– choosing a different pending proof situation where to continue,
– adjusting various settings, like the current set of inference rules and even

the proof strategy (making it possible to switch to an automatic strategy at
some point during the proof development),

– inspecting the so-far constructed proof in a nicely-formatted proof document,
– inspecting the internal representation of p as a plain Mathematica expression

for debugging purposes,
– saving the current proof status to an external file, for creating a “secure

point” the proof may be resumed from later, and
– aborting the proof attempt.

Before choosing an inference rule the user may also activate and deactivate
formulas appearing in p by marking check-boxes in the dialog window (see Fig. 1).
This might affect how the chosen rule is applied, e. g. if several cases based on
a disjunction in the knowledge base shall be distinguished, but more than one
disjunctions appear among the assumptions, the user can specify exactly which
one to consider simply by deactivating all others. It must be noted, though,
that the information about whether a formula is activated or not might well be
ignored by the chosen inference rule; this cannot be influenced by the IPS.

2.2 An Example

As an example, let us consider the interactive proof of the well-known drinker
paradox : “In every non-empty pub there is someone such that, if he is drinking,
everyone else is drinking as well.” This is actually no paradox but a theorem in
classical logic and may hence be proved in Theorema.

Figure 1 depicts two dialog windows of the IPS arising in the interactive proof
of the drinker paradox. The first one corresponds to the case where someone who
does not drink is assumed to be in the pub (Formula (A#1)), and where the
next action to be taken, as specified by the user, is to eliminate the existential
quantifier in Formula (A#1) by introducing a new constant that witnesses this
person. The resulting proof situation is displayed in the second window.

2 A typical example of a high-priority rule is the inference rule that proves implications
by assuming their premises and proving their conclusions.
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Fig. 1. Two dialog windows arising in the interactive proof of the drinker paradox.

The interactive dialogs display the current proof situation in the bottom part
of the respective windows, on light-brown background. In each case, the top-most
formula (above the black line) is the current goal, whereas the formulas below
the black line are the assumptions. The check-boxes next to the formulas indicate
whether the respective formulas have been activated or deactivated by the user.
Above the proof situation, the name of inference rule to be applied next, as
chosen by the user, is displayed; it is applied by simply hitting the Enter-key.

3 Higher-Order Rewriting

Rewriting constitutes one of the core components of theorem proving in The-
orema as well as many other proof assistants: assumptions (equalities, equiva-
lences, implications) are transformed into rewrite-rules which may then be used
to rewrite other formulas in the current proof situation. By default, Theorema
can only deal with first-order formulas and rewrite-rules, respectively, in the
sense that the left-hand-side of a rewrite-rule has to match an expression syn-
tactically in order to be applicable; no αβη-equivalence is taken into account.
However, a lot of formulas one frequently encounters in mathematical theories
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are not first- but higher-order (typical examples are induction rules), and should
be treated as such for efficiently working in the respective theories in Theorema.

The higher-order rewriting mechanism we describe in this section serves ex-
actly said purpose: it is able to translate (potentially higher-order) rewrite-rules
ρ : l 7→ r originating from Theorema formulas into Mathematica transfor-
mation rules p :> b that can later be applied by simply calling the standard
rule-application-functions from Mathematica’s algorithm library (ReplaceAll,
ReplaceList, etc.), such that the correctness condition

e′ ∈ ReplaceList[ e, p :> b] ⇒ e→ρ e
′ (1)

is met (where e →ρ e′ means that expression e can be rewritten into e′ by
rule ρ modulo αβη-equivalence). The other direction of (1), though desirable in
principle, is out of reach in general if ρ is a higher-order rule: whether higher-
order matching (which is one of the key ingredients of rewriting) is decidable
or not is still an open problem.3 Hence, if ρ is higher-order, the Mathematica
transformation rule p :> b cannot be expected to fully reflect the higher-order
nature of ρ in any case.

3.1 Main Idea

Sometimes, the strategy to tackle problems related to (possibly) undecidable,
infinitary matching in concrete implementations is to restrict the class of left-
hand-sides of rewrite-rules to so-called higher-order patterns; for instance, the
simplifier in the Isabelle proof assistant by default can only handle rules falling
into this category (see [7], pp. 205–206). The main idea behind our mechanism is
similar but less restrictive: if the compiler (i. e. the function that turns rewrite-
rules into Mathematica transformation rules) can infer that the matching prob-
lem associated to the left-hand-side of a given rule ρ is unitary, because bound
variables appearing among the arguments of free higher-order variables can be
used to uniquely determine the instances of these variables when matching an ex-
pression, then ρ is “accepted” and turned into a transformation rule that exactly
corresponds to ρ. Otherwise, if the compiler cannot infer that the matching prob-
lem is unitary (maybe because it simply is not), some free higher-order variables
have to be treated just like first-order variables that need to match syntactically,
meaning that the resulting transformation rule does not correspond to ρ exactly.

Example 1. The left-hand-side of the rewrite-rule (with P , T and S being free
variables)

∀i=1,...,|T |+|S| P (join(T, S)i) 7→ ∀i=1,...,|T | P (Ti) ∧ ∀i=1,...,|S| P (Si)

is no higher-order pattern, but can still be handled without much ado by our
mechanism because the occurrence of the bound variable i in the argument of

3 Higher-order matching is known to be decidable under certain restrictions on the
types involved [6], as well as for general problems below order five [4].



6 Maletzky

P on the left-hand-side uniquely determines the instance of P when matched
against a concrete expression. In contrast, the free variable P in the (nonsense)
rule

P (0) 7→ ∃xP (x)

must be treated like a first-order variable by the compiler, for otherwise the
instance of P would not be unique in general: matching 0 < 1 could be ac-
complished by instantiating P either by λx 0 < 1 or by λx x < 1, leading to
fundamentally different instances of the right-hand-side.

3.2 Implementation Details

The compiler translates rewrite-rules into ordinary Mathematica transformation
rules. Hence, since Mathematica only supports syntactic matching, all possible
higher-order aspects (αβη-equivalence, automatic instantiation by λ-terms, etc.)
have to be encoded explicitly in the pattern p and the body b of the resulting
transformation rules, e. g. by means of Mathematica’s Condition function.

Example 2. Consider the higher-order rewrite-rule∑
i=1,...,n+1

F (i)−
∑

i=1,...,n

F (i) 7→ F (n+ 1)

Ignoring syntactical details of the internal representation of Theorema expres-
sions and technicalities related to capture-avoiding substitutions, the Mathe-
matica transformation rule automatically generated by the compiler reads as
something like

Sum[ {i1 , 1, n +1}, F1 ] - Sum[ {i2 , 1, n }, F2 ] :>

substFree[ F1, {i1 -> n + 1}] /;

alphaEquiv[ substFree[ F1, {i1 -> i2}], F2]

As can be seen, higher-order variables (like F in the previous example)
are actually never instantiated by concrete λ-terms, but rather the instances
of the right-hand-sides of rules are constructed by directly replacing certain
sub-expressions (like the bound variable i above). This saves expensive (capture-
avoiding) substitutions and explicit β-reductions and, for that reason, is a general
principle the compiler adheres to. Moreover, apparently there is no hard-coded,
general-purpose higher-order matching algorithm that is attached to every trans-
formation rule, but rather every single transformation rule is equipped with its
very own, tailor-made, dynamically generated, optimized algorithm that does not
perform any redundant operations. In the example above, only the α-equivalence
of two expressions has to be checked in addition to the default syntactic match-
ing carried out by Mathematica—a fact the compiler detects and exploits fully
automatically when generating the transformation rule.
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3.3 More Features

Due to the lack of space, the preceding sections could only provide a glimpse of
the higher-order rewriting mechanism, and in particular of the transformation
rule compiler; more detailed information can be found in our forthcoming PhD
thesis [2]. Still, we want to briefly mention two further features also here:

– Conditional rules, n-ary higher-order variables, and sequence variables are
supported as well (to a certain extent). Conditional rules do not cause any
difficulties at all, but the presence of free higher-order variables with arity
> 1 or free sequence variables complicates matters considerably.

– The compiler by default applies a range of optimizations to the rules it
generates for increasing efficiency.

– The condition on matching problems associated to the left-hand-sides of
rules being unitary can be relaxed in some situations.

4 Theory Analysis

The third an last tool presented in this paper, called TheoryAnalyzer, enables the
automatic analysis of the logical structure of one or several Theorema-theories
(i. e. content notebooks together with external proof files). The main idea behind
the TheoryAnalyzer is simple enough: read the proof files, and from each proof
file store the proof goal and the list of assumptions as the nodes of a graph G
that eventually reflects the dependencies between all the formulas thus collected.
Namely, a formula ϕ depends on another formula ψ iff ψ is used as an assumption
in a proof of ϕ; in such a case, G contains a directed edge from ψ to ϕ.

Once G has been constructed, it can easily be analyzed by means of well-
known graph-theoretic functions (like exhaustive search); in particular, it is pos-
sible to

– inspect all direct/indirect assumptions/consequences of a given node (corre-
sponding to a formula in the theory),

– detect cycles in the graph, corresponding to circular arguments in the theory,
– find the logical relation between two nodes/formulas, and
– visualize theory dependency graphs and formula statistics diagrams (the

latter display the numbers of formulas in each theory); see Fig. 2.

The development of the TheoryAnalyzer was mainly triggered by the practi-
cal experience we gained from formalizing Gröbner bases theory in Theorema:
it turned out that quite frequently it becomes necessary to re-structure existing
parts of formalizations, e. g. by slightly modifying formulas that have already
been used as assumptions in proofs. In such situations, the responsibility for
maintaining the coherence the formalization exclusively is with the user of The-
orema; the system itself does not automatically initiate the re-proving of exist-
ing theorems affected by changes in the background theory. Therefore, knowing
which theorems are affected is of utmost importance—and this is exactly where
the TheoryAnalyzer comes into play.
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Fig. 2. The theory dependency graph and formula statistics diagram of the Gröbner
bases formalization, as automatically generated by the TheoryAnalyzer.

5 Conclusion

In the preceding sections we gave account on three new tools for Theorema 2.0
that already proved extremely useful in practice and are expected to be inte-
grated into the official version of the system in the near future.

There are several directions for further improving the tools: for instance,
the dialog-oriented interactive proof strategy could be enhanced by a text-based
interface, making it more attractive for people used to such interfaces.
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