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In this report three classes of noncommutative rings are investigated with
emphasis on their properties with respect to reduction relations. The
Gröbner basis concepts in these rings, being developed in the literature by
several authors, are considered and it is shown that the reduction relations
corresponding to these Gröbner bases obey the axioms of a general theory
of Gröbner reduction.

1 Introduction
At the ISSAC 2015 conference, the authors have introduced the notion of Gröbner reduc-
tion, a general concept that covers the reduction part of several Gröbner basis techniques
appearing in the literature.

In [FL15] it is proved that reduction concepts which obey the axioms of Gröbner reduction
allow the derivation of the dimension polynomial of finitely generated modules.

In this paper three classes of rings are studied with emphasis on those parts of their struc-
ture which are relevant for designing a reduction concept on finitely generated free modules
over them.

The rings of the first class contain differential operators of some polynomial ring k[x1, . . . , xn]
where k is a field of characteristic 0 (Weyl-algebras). The rings of the second class contain
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linear combinations of formal expressions equipped with a product that reflects the prop-
erties of derivations and automorphisms (difference-differential rings), while the elements
of the rings of the third class are linear combinations of certain formal expressions, and
the multiplication is designed to simulate skew derivations and their endomorphisms (Ore-
polynomials).

The rings of all these classes are free objects in appropriate categories; the Weyl-algebras
due to the behavior of partial derivatives (in characteristic 0), the other ones by design of
their multiplication.

The following figure shows the relation between the three classes together with certain
special types of them.

Ore-Ring O

∆-Σ-Ring

∆-Ring

K[X]

D-Ring

An(K)

σ = id

δ = 0

Σ = ∅

∆ = ∅

ϕ

R = K[X]

Σ = ∅
R = K[X]

σ = id

δ = 0
σ = id

δ = 0, σ = id

In this diagram we meet

• the ring of Ore-polynomials O;

• the ring of difference-differential operators D;
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• the ring D of differential operators with set of derivations ∆;

• the ring of difference operators D;

• the ring of commutative polynomials K[X].

Arrows indicate specialization. For example, the arrow from the node ‘∆− Σ-Ring’ to the
node ‘K[X]’ exposes the polynomial ring K[X] as a ∆Σ-ring D by trivializing all functional
ingredients of D. Similarly, the arrow from ‘Ore-Ring O’ to ‘∆ − Σ-Ring’ accents that a
∆Σ-ring can be obtained as a quotient of some Ore-ring.
The order of appearence of the considered ring classes in the paper follows a path of increas-
ing generality. For each of these three types of rings the reduction concept, condensed from
Gröbner basis techniques that are treated in the literature, is studied under the aspect of
Gröbner reduction and the validity of axioms of Gröbner reduction is analyzed one at a time.

In order to be able to subsume all those rings under this general theory, the concept of
Gröbner reduction, as introduced in [FL15], must be slightly modified. Thus, the authors
introduce a new set of axioms for Gröbner reduction, weaker than the one formulated in
[FL15], so that each of these reduction relations can be seen as a model of the new axioms.

Notation
N is the set of natural numbers ≥ 0. The symbol ≤π denotes the product order in Nn, i.e.,

k ≤π l ⇐⇒ ki ≤ li (1 ≤ i ≤ n).

The length of a tupel k ∈ Nn is |k| = k1 + · · ·+kn, xk denotes the power product xk1
1 · · ·xknn .

If n = n1 + · · · + np is a partition of n (all nj > 0) and k = (k1, . . . , kn) then we write xkj

for the corresponding j-part of xk, i.e.,

xk
j =

∏
n1+···+nj−1<i≤n1+···+nj

xki

The same notation is used in the context of other symbols (e.g., d, δ, ∂).

A ‘ring’ is an associative ring with unity 1. A homomorphism of rings preserves 1. A module
is understood as a left module.

Throughout this paper R denotes an arbitrary (possibly noncommutative) ring containing
a commutative ring K in such a way that R is a free K-module. All rings that will occur
are of this type. We use the letter R in section 2 where we thematize Gröbner reduction
for arbitrary such rings. As, in the text, the rings get more concrete, the letter R changes
to another appropriate symbol: A will denote a Weyl-algebra, D a ∆Σ-ring, and O a ring
of Ore-polynomials.

For elements a, b ∈ K, if b|a then we write a
b for an element x ∈ K with bx = a. Then

a
b · b = a, no matter which such x we had chosen. Of course, when b−1 exists in K then the
element a

b is unique. In any case, writing the symbol ab , it is supposed that b|a.
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2 Gröbner Reduction
We fix a K-basis Λ ⊂ R whose elements are called monomials. Then the monomials of the
free module F = R(E) on the set E are the members of the set

ΛE = {λe : (λ, e) ∈ Λ× E}.

Since R(E) = K(ΛE) this set is a K-basis of F . We write

T(f) = T
(∑

t

ftt
)

= {t ∈ ΛE : ft 6= 0}

for the support of f , i.e. the set of monomials t that appear in f with a non-zero coefficient
ft ∈ K.

There are situations where the ring K contains a field k that is central in R (c.f. Section
3). Then there may be two different monomial concepts:

1. R = K(Λ1) (R is a free K-module with basis Λ1);

2. R = k(Λ2) (R is a vector space over k with basis Λ2).

In certain instances we will need the assumption that K be a field. This will be emphasized
at occurence.

Definition 1. By a p-fold filtration on R we mean a family of additive subgroups Rr ⊆ R,
indexed by r ∈ Np, such that

1. Rr ·Rs ⊆ Rr+s;

2. r ≤π s ⇒ Rr ⊆ Rs;

3. R = ⋃
r∈Np Rr;

4. R0 = K.

R together with such a filtration is called a (p-fold) filtered ring. The filtration is called
monomial, and R a monomially filtered ring, when a ∈ Rr ⇒ T(a) ⊆ Rr for all a ∈ R and
all r ∈ Np.

Definition 2. Let R = ⋃
r∈Np Rr be a filtered ring and M an R-module. A filtration of M

is a family of additive subgroups Mr ⊆M (r ∈ Np) with the properties

1. Rr ·Ms ⊆Mr+s;

2. r ≤π s ⇒ Mr ⊆Ms;

3. M = ⋃
r∈NpMr.

M together with a filtration is called a filtered module over the filtered ring R.
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A free module F = R(E) inherits the filtration

Fr =
⊕
e∈E

Rre

from the filtered ring R, and this filtration is monomial (w.r.t. ΛE) when the original
filtration on R is monomial (w.r.t. Λ). An arbitrary R-module M turns into a filtered
module via a free presentation

0 −→ N −→ F
π−→M −→ 0

setting Mr = π(Fr). Thus, when a set G of generators of the R-module M is determined,
M obtains the filtration

Mr =
∑
g∈G

Rrg.

Let X be a set and ρ ⊆ X × X a binary relation. We write f −→ h to indicate that
(f, h) ∈ ρ, and f −→? h when there is a chain of finite length

f = f0 −→ f1 −→ · · · −→ fk = h (k ∈ N).

We say that f is reducible if ∃h with f −→ h and we write Iρ (or I when ρ is understood)
for the set of ρ-irreducible elements, that is

I = {x ∈ X : 6 ∃y ∈ X such that x −→ y}.

A subset Y ⊆ X is called ρ-stable if y ∈ Y and y −→ z implies that z ∈ Y .

In [FL15], we have formulated the following system of axioms:

Definition 3. Let N be a submodule of a free module F over the filtered ring R. A relation
ρ ⊆ F × F is called a strong reduction for N provided that

I. ρ is noetherian, i.e. every sequence f1 −→ f2 −→ · · · terminates;

II. I is a monomial K-submodule of F , that is, I is a module and

∀f ∈ F (f ∈ I ⇒ T(f) ⊆ I);

III. f −→ h⇒ f ≡ h mod N ;

IV. N ∩ I = 0.

A strong reduction ρ for N is called a strong Gröbner reduction if it satisfies in addition

V. f ∈ Fr ∧ f −→ h =⇒ h ∈ Fr, that is, each filter group Fr is ρ-stable.

We can use the concept ‘strong Gröbner reduction’ to determine the dimension of filter
spaces of finitely generated filtered modules. We recall the main theorem, proved in [FL15].
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Theorem 1. Let K be a field, R = K(Λ) a filtered ring, and M a finitely generated R-
module. Choose a free presentation

0 −→ N −→ F
π−→M −→ 0

and equip M with the filtration Mr = π(Fr). Assume given a Gröbner reduction for N , let
Ur be the set of irreducible monomials in the filter space Fr. Then the sets π(Ur) provide
K-vector space bases for the spaces Mr. In particular

dimKMr = |π(Ur)| = |Ur| (r ∈ Np).

In order to treat the rings that will appear in this paper under these aspects we need to
weaken Axiom II. to

• I is a monomial subset of F .

To make things completely transparent we formulate the modified system of axioms in its
entirety.

Definition 4. Let N be a submodule of a free module F over the filtered ring R. A relation
ρ ⊆ F × F is called a weak reduction for N provided that

1. ρ is noetherian;

2. I is a monomial subset of F , that is

∀f ∈ F (f ∈ I ⇒ T(f) ⊆ I);

3. f −→ h⇒ f ≡ h mod N ;

4. N ∩ I = 0.

A weak reduction ρ for N is called a weak Gröbner reduction if it satisfies in addition

5. f ∈ Fr ∧ f −→ h =⇒ h ∈ Fr.

Plainly every strong Gröbner reduction is also a weak one. Note that Axiom 4 (being present
in both systems) implies that every non-zero element in N is reducible.

In the following sections we will consider several rings R and investigate reduction relations
for submodules of free modules over them. While the rings are equipped with certain
filtrations there is always present a well-ordering ≺ of the monomials ΛE that distinguishes
for all f ∈ F \ 0 a leading term LT(f) and a leading coefficient LC(f). In each of the
examples below we are now concerned with two reduction relations: Let f, g, h ∈ F , g 6= 0.
Then we have

1. full reduction ρ

f g

ρ // h ⇐⇒ ∃λ ∈ Λ
(
LT(λg) ∈ T(f) ∧ h = f −

fLT(λg)
LC(λg)λg ∧ P

)
; (1)
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2. leading term reduction σ

f g
σ // h ⇐⇒ ∃λ ∈ Λ

(
LT(λg) = LT(f) ∧ h = f − LC(f)

LC(λg)λg ∧ P
)
. (2)

The symbol ‘P ’ denotes a predicate P = P (f, g, λ, h) depending on the actual situation.
For a set G ⊆ F one has then in both cases

f
G
// h ⇐⇒ ∃g ∈ G : f g

// h . (3)

These reduction concepts are the core of Gröbner bases.

Definition 5. Consider a submodule N of a free module F = K(ΛE). Assume given a
well-order ≺ on ΛE and a predicate P = P (f, g, λ, h), and let ρ be the full reduction defined
by these data. A subset G ⊆ N is a Gröbner basis for N iff ρ is a weak reduction for N .

Given a filtered ring and the obvious necessary data, we need to check the defining axioms
in order to reveal the relation ρ as a (weak) Gröbner reduction for N = RG. The set G is
then exposed as a Gröbner basis for N and the filter groups are ρ-stable.

So we fix a set G ⊆ F and write ρ and σ for the relations f
ρ

G
// h and f

σ

G
// h

respectively, i.e., f −→ρ h means f
ρ

G
// h and similar for σ. All our examples follow the

pattern along the following lines.

1. Termination. Fix a positive integer q and design an injection ϕ : ΛE −→ Nq. The set
Nq is ordered lexicographically

a < b ⇐⇒ amin{i:ai 6=bi} < bmin{i:ai 6=bi}. (4)

The set of monomials ΛE inherits a well order ≺ by means of this injection. We call
such an order induced by the injection ϕ. The well order ≺ extends to a well
order on the set of all finite subsets of ΛE (this is {T(f) : f ∈ F}):

T(f) ≺ T(g) ⇐⇒ max(T(f)4T(g)) ∈ T(g)

where 4 is the symmetric difference (consider e.g. [BWK93]). It remains to check
that f −→ρ h has T(h) ≺ T(f) as a consequence: For arbitrary g, from f

ρ

g
// h we

see that LT(λg) ∈ T(f) \ T(h) - where λ is a term as mentioned in (1) - whereas for
all terms t with t � LT(λg) we have ht = ft. This demonstrates that T(f) � T(h).

Since σ ⊆ ρ it is clear that Iρ ⊆ Iσ and σ terminates if ρ terminates. Consequently
both relations terminate.

2. The set of irreducible monomials should be a monomial subset of F, i.e.,
f ∈ I ⇒ T(f) ⊆ I. The relation ρ has the property

f is ρ− reducible ⇐⇒ ∃h : f −→ρ h
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⇐⇒ ∃g ∈ G ∃λ ∈ Λ
(
LT(λg) ∈ T(f) ∧ P (f, g, λ, f −

fLT(λg)
LC(λg)λg

)
.

In case that P does not involve h, i.e., P = P (f, g, λ), we obtain

f is ρ− reducible ⇐⇒ ∃g ∈ G ∃λ ∈ Λ (LT(λg) ∈ T(f)∧ LC(λg)|fLT(λg) ∧ P (f, g, λ)).

For Iρ to be monomial it is then enough to verify the monomial irreducibility
condition

∃g ∈ G ∃λ ∈ Λ
(
LT(λg) ∈ T(f) ∧ LC(λg) ∈ K× ∧ P (LT(λg), g, λ)

)
⇒

∃g ∈ G∃λ ∈ Λ
(
LT(λg) ∈ T(f) ∧ LC(λg)|fLT(λg) ∧ P (f, g, λ)

)
. (5)

The monomial irreducibility condition for σ under the assumption P = P (f, g, λ) is

∃g ∈ G ∃λ ∈ Λ
(
LT(λg) ∈ T(f) ∧ LC(λg) ∈ K× ∧ P (LT(λg), g, λ)

)
⇒

∃g ∈ G∃λ ∈ Λ
(
LT(λg) = LT(f) ∧ LC(λg)|LC(f) ∧ P (f, g, λ)

)
. (6)

It is clear that this condition is hard to satisfy. Indeed, Iσ is not monomial in general.

3. Compatibility of reduction with congruence modulo N = RG. This is always
obvious from the shape of (1) and (2).

4. N ∩ I = 0. The validity of this condition must be guaranteed by an appropriate
choice of the generator set G which is achieved by the usual Buchberger completion
procedure.

5. Each filter space should be ρ-stable. In our examples we will consider univari-
ate filtrations (Ft)t∈N that are constructed due to the following schema:

We start with an ‘order-function’ ν : Λ −→ N, where ν(λ) can be read off from λ ∈ Λ,
i.e., ν(λ) is the sum of certain exponents that are present in λ. The function ν extends
to ΛE by setting ν(λe) = ν(λ) (λ ∈ Λ, e ∈ E), and further to entire F (we always use
the same symbol)

ν(f) =
{

max{ν(t) : t ∈ T(f)} . . . f ∈ F \ 0
−∞ . . . f = 0.

(7)

Then ν(f + g) ≤ max{ν(f), ν(g)} (f, g ∈ F ) and ν(c · f) ≤ ν(f) (f ∈ F , c ∈ K).

The univariate filtration induced by ν is then

F νt = {f ∈ F : ν(f) ≤ t} (t ∈ N). (8)

Remark that this defines implicitely the sets Rνt (t ∈ N) since R = R1.

From the properties of ν it is plain that
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• the sets F νt are monomial K-modules;
• s ≤ t⇒ F νs ⊆ F νt ;
• ⋃∞

t=0 F
ν
t = F .

It remains to check that Rs · Ft ⊆ Fs+t (s, t ∈ N), which is then the only property of
filtrations that depends on the actual ring structure of R.

The multivariate filtrations that we consider are constructed from univariate ones by
means of intersection:

Given order functions ν1, . . . , νp and α ∈ Np we set

F ν1,...,νp
α = F ν1

α1 ∩ · · · ∩ F
νp
αp = {f ∈ F : ν1(f) ≤ α1 ∧ · · · ∧ νp(f) ≤ αp}. (9)

The next theorem condenses the preceeding discussion.

Theorem 2. Let G be a subset of the free R-module F = K(ΛE). Assume that

• ≺ is a well order on ΛE;

• P = P (f, g, λ, h) is a predicate F ×G× Λ× F −→ {0, 1};

• ρ is the full reduction defined by (≺, P,G);

• (Rjt )t∈N is defined by an order function νj : Λ −→ N (1 ≤ j ≤ p);

• Rα = R1
α1 ∩ · · · ∩R

p
αp (α ∈ Np);

• Fα = ⊕
e∈E Rα · e.

Under these assumptions, if

1. Rjs ·R
j
t ⊆ R

j
s+t (s, t ∈ N, j = 1, . . . , p),

2. P = P (f, g, λ) and the monomial irreducibility condition (5) holds,

3. f
ρ

g
// h ∧ f ∈ Fα ⇒ h ∈ Fα (∀g ∈ G),

4. N ∩ Iρ = 0,

then (Fα)α∈Np is a monomial filtration on F w.r.t. the monomial filtration (Rα)α∈Np and ρ
is a Gröbner reduction for RG.
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3 The Weyl Algebra An(k)
The theory of the Weyl algebra An(k) in n variables is the study of modules over rings of
differential operators with polynomial coefficients over the field k. In this section we develop
the properties of An(k) that are relevant for Gröbner reduction. In its second part we refer
to work appearing in [DL12] and prove that the theory developed there is an instance of
our concepts.

Let k be a field of characteristic 0 and let di denote the i-th partial derivative of the
polynomial ring k[x1, . . . , xn]. The Weyl algebra An(k) is the k-algebra generated by
k[x1, . . . , xn] ∪ {d1, . . . , dn} as a subalgebra of Endk

(
k[x1, . . . , xn]

)
. The multiplication in

this ring obeys the rules

xixj = xjxi, didj = djdi, dixj = xjdi + δi,j (1 ≤ i, j ≤ n)

(δi,j is the Kronecker symbol).

Let A denote the ring An(k). We may consider A as a free k[x1, . . . , xn]-module with basis
Λ1 = {dl : l ∈ Nn}. Then Λ1 is a monoid isomorphic to Nn and, according to our notational
conventions, K and R specialize to K = k[x1, . . . , xn] and R = K(Λ1).

We will here stress the 2nd approach: A as a k-vector space with distinguished set of mono-
mials Λ2 = {xkdl : (k, l) ∈ Nn×Nn}. In the following we write Λ for Λ2. Note that Λ is not
closed under multiplication.

Explicitly, the product of two monomials in An(k) is

xkdl · xpdq =
∑
v∈Nn

(
l

v

)
xk∂v(xp)d l+q−v (10)

where
( l
v

)
=
( l1
v1

)
· · ·
( ln
vn

)
. To visualize the scope of the sum we may write

xkdl · xpdq =
∑

v≤πlup

l! · p!
v! · (l − v)! · (p− v)!x

k+p−vd l+q−v

l u p denoting the infimum of {l, p} in Nn.

Let A denote the Weyl algebra An(k) and F = A(E) the free A-module with basis E =
{e1, . . . , eq}.

Proposition 1. λ, µ ∈ Λ and t1, t2 ∈ ΛE. Then

1. λ · t1 = λ · t2 ⇒ t1 = t2;

2. λ · t1 = µ · t1 ⇒ λ = µ.

Proof. λ = xkdl, t1 = xpdqe1, t2 = xrdse2.
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1. If λ · t1 = λ · t2 then xkdl · xpdqe1 = xkdl · xrdse2, therefore e1 = e2. We get∑
u≤πlup

bux
k+p−udl+q−u =

∑
v≤πlur

cvx
k+r−vdl+s−v (bu, cv ∈ N).

∃v : xk+pdl+q = cvx
k+r−vdl+s−v ∧ ∃u : xk+rdl+s = bux

k+p−udl+q−u.

It follows that
p = r − v, q = s− v, r = p− u, s = q − u

from which we derive that u = v = 0. Consequently t1 = t2.

2. This is proved similarly.

We consider three natural order functions Λ −→ N. For λ = xkdl ∈ Λ

ν1(λ) = |k| = k1 + · · ·+ kn, ν2(λ) = |l| = l1 + · · ·+ ln, ν0 = ν1 + ν2.

The extensions of the νj to F (j = 0, 1, 2) obey the rules

νj(f + g) ≤ max{νj(f), νj(g)} (f, g ∈ F )
νj(c f) = νj(f) (c ∈ k \ 0). (11)

Note that the extension of ν0 to F is not the sum of the extensions to F from ν1 and ν2.

We define three well orders ≺x, ≺d, ≺0 on ΛE:

≺x comes from the injection

ΛE −→ N2n+3, t = xkdlei 7→ (ν1(t), ν2(t), k1, . . . , kn, l1, . . . , ln, i);

≺d comes from

ΛE −→ N2n+3, t = xkdlei 7→ (ν2(t), ν1(t), l1, . . . , ln, k1, . . . , kn, i);

≺0 comes from

ΛE −→ N2n+2, t = xkdlei 7→ (ν0(t), k1, . . . , kn, l1, . . . , ln, i).

The corresponding leading term and leading coefficient functions are written LTx, LCx,
LTd, LCd and LT0, LC0 respectively.

Lemma 1. Let λ = xkdl ∈ Λ, t = xrdse ∈ ΛE, f ∈ F \ 0. Then

1. ν1(λ · t) = k + r, ν2(λ · t) = l + s, ν0(λ · t) = k + r + l + s = ν1(λ · t) + ν2(λ · t);

2. LTx(λ · t) = LTd(λ · t) = LT0(λ · t) = xk+rdl+se;

3. ν1(f) = ν1(LTx(f)), ν2(f) = ν2(LTd(f)), ν0(f) = ν0(LT0(f));

4. νj(λ · t) = νj(λ) + νj(t) (0 ≤ j ≤ 2).
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Proof.

1. This is obvious from (10).

2. Also evident from (10).

3. Take s ∈ T(f). Then s �x LTx(f), s �d LTd(f) and s �0 LT0(f). Therefore
ν1(s) ≤ ν1(LTx(f)), ν2(s) ≤ ν2(LTd(f)) and ν0(s) ≤ ν0(LT0(f)). Therefore

ν1(f) = max{ν1(s) : s ∈ T(f)} = ν1(LTx(f));
ν2(f) = max{ν2(s) : s ∈ T(f)} = ν2(LTd(f));
ν0(f) = max{ν0(s) : s ∈ T(f)} = ν0(LT0(f)).

4. This is obvious from point 1.

Lemma 2. Let λ, µ ∈ Λ, s, t ∈ ΛE and j ∈ {x, d, 0}.

1. λ ≺j µ⇒ LTj(λt) ≺j LTj(µt);

2. s ≺j t⇒ LTj(λs) ≺j LTj(λt).

Proof. 1.) λ = xkdl, µ = xrds, t = νe = xαdβe, λ ≺x µ. Then

LTx(λt) = xk+αdl+βe and LTx(µt) = xr+αds+βe.

If ν1(λ) < ν1(µ) then

ν1(LTx(λt)) = |k + α| = |k|+ |α| < |r|+ |α| = |r + α| = ν1(LTx(µt)),

and thus LTx(λt) ≺x LTx(µt).

If ν1(λ) = ν1(µ) and ν2(λ) < ν2(µ) then

ν1(LTx(λt)) = |k|+ |α| = |r|+ |α| = ν1(LTx(µt))
ν2(LTx(λt)) = |l|+ |β| < |s|+ |β| = ν2(LTx(µt))

which also means that LTx(λt) ≺x LTx(µt).

If ν1(λ) = ν1(µ) and ν2(λ) = ν2(µ) and k 6= r then let j = min{i : ki 6= ri}. We obtain

(|k + α|, |l + β|, (k + α), (l + β), e) <lex (|r + α|, |s+ β|, (r + α), (s+ β), e).

Once again this means that LTx(λt) ≺x LTx(µt).

If ν1(λ) = ν1(µ) and ν2(λ) = ν2(µ) and k = r then l must be different from s. Let
j = min{i : li 6= si}. Then lj < sj which results again in LTx(λt) ≺x LTx(µt).

2.) λ = xαdβ, s = xkdle1, t = xpdqe2, s ≺x t. The proof works similarly as before. The
only difference is that there is one more case: When xkdl = xpdq then e1 must be smaller
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than e2 and the statement follows.

The proofs of the remainig statements are repetitions of the previous considerations by
changing the subscripts of ≺, LT, LC and the order functions accordingly.

Proposition 2. char(k) = 0, A = An(k), F = A(E) the free A-module on the set E. Let
a ∈ A \ 0, f ∈ F \ 0 and j ∈ {x, d, 0}. Then

LTj(a · f) = LTj

(
LTj(a) · LTj(f)

)
;

LCj(a · f) = LCj(a) · LCj(f). (12)

Proof. Let λ0 = LTx(a), a0 = LCx(a), t0 = LTx(f), f0 = LCx(f). Thus

a = a0λ0 +
∑
λ≺xλ0

aλλ and f = f0t0 +
∑
t≺xt0

ftt.

a · f = a0f0λ0t0︸ ︷︷ ︸
(0)

+
∑
t≺xt0

a0ftλ0t︸ ︷︷ ︸
(1)

+
∑
λ≺xλ0

aλf0λt0︸ ︷︷ ︸
(2)

+
∑
λ≺xλ0

∑
t≺xt0

aλftλt︸ ︷︷ ︸
(3)

.

Pick out a term λ0t of sum (1). Then from Lemma 2 we derive LTx(λ0t) ≺x LTx(λ0t0).
Similar things happen when choosing a term from sum (2) or (3):

LTx(λt0) ≺x LTx(λ0t0) (term chosen from (2)),
LTx(λt) ≺x LTx(λ0t) ≺x LTx(λ0t0) (term chosen from (3)),

Let s ∈ T(a · f). Then ∃λ, t with λ ∈ T(a) and t ∈ T(f) and s ∈ T(λt). It follows that
s �x LTx(λt).

λ = λ0 ∧ t = t0 ⇒ s �x LTx(λ0t0);
λ = λ0 ∧ t 6= t0 ⇒ s �x LTx(λ0t) ≺x LTx(λ0t0);
λ 6= λ0 ∧ t = t0 ⇒ s �x LTx(λt0) ≺x LTx(λ0t0);
λ 6= λ0 ∧ t 6= t0 ⇒ s ≺x LTx(λ0t0).

Consequently

LTx(a · f) = LTx(λ0t0) = LTx
(
LTx(a) · LTx(f)

)
and

LCx(a · f) = a0f0 = LCx(a) · LCx(f).

Again the proof of the remaining statements is a repetition by changing ‘x’ to ‘d’ or ‘0’
respectively.

Corollary 1. j ∈ {x, d, 0}. Then

λ ∈ Λ \ 0 ∧ f ∈ F \ 0⇒ LTj(λf) = LTj(λ · LTj(f)).

Corollary 2. Let a ∈ A, f ∈ F . Then

νj(a · f) = νj(a) + νj(f) (j = 0, 1, 2). (13)

13



Proof. If a = 0 or f = 0 the statements are obvious. So assume a 6= 0 ∧ f 6= 0. Set

λ1 = xkdl = LTx(a) t1 = xαdβe1 = LTx(f)
λ2 = xpdq = LTd(a) t2 = xγdδe2 = LTd(f)
λ3 = xrds = LT0(a) t3 = xεdζe3 = LT0(f).

From Lemma 1 we get

LTx(λ1 · t2) = xk+αdl+βe1, LTd(λ2 · t2) = xp+γdq+δe2, LT0(λ3 · t3) = xr+εds+ζe3.

From (1) and (12):

ν1(a · f) = ν1(LTx(a · f)) = ν1(LTx(LTx(a) · LTx(f))) = ν1(LTx(λ1 · t1))
= ν1(xk+αdl+βe1) = |k + α| = |k|+ |α| = ν1(LTx(a)) + ν1(LTx(f))
= ν1(a) + ν1(f).

ν2(a · f) = ν2(LTd(a · f)) = ν2(LTd(LTd(a) · LTd(f))) = ν2(LTd(λ2 · t2))
= ν2(xp+γdq+δe2) = |q + δ| = |q|+ |δ| = ν2(LTd(a)) + ν2(LTd(f))
= ν2(a) + ν2(f).

ν0(a · f) = ν0(LT0(a · f)) = ν0(LT0(LT0(a) · LT0(f))) = ν0(LT0(λ3 · t3))
= ν0(xr+εds+ζe3) = |r + ε+ s+ ζ| = |r + s|+ |ε+ ζ| = ν0(LT0(a)) + ν0(LT0(f))
= ν0(a) + ν0(f).

For a different proof of the statement involving ν0 see [Cou95], chapter 2. Proposition 1
generalizes to the statement that An(k) is a domain.

Corollary 3. a ∈ A, f ∈ F . Then a · f = 0⇒ a = 0 ∨ f = 0.

Proof. Assume a 6= 0 ∧ f 6= 0. Let ν denote one of ν1, ν2, ν0. Then ν(a) ≥ 0 ∧ ν(f) ≥ 0. It
follows ν(a · f) = ν(a) + ν(f) ≥ 0. Consequently a · f 6= 0.

Definition 6. For r, s ∈ N we set

F 0
r = {f ∈ F : ν0(f) ≤ r};
F 1
r = {f ∈ F : ν1(f) ≤ r};
F 2
r = {f ∈ F : ν2(f) ≤ r};

Fr,s = F 1
r ∩ F 2

s . (14)

We will show that these sets define filtrations on F . Remark that we have defined implicitely
A

(i)
r and Ar,s since we may consider A as the free module A1.

Proposition 3.

1.
(
F ir

)
r∈N

defines a univariate filtration on F (0 ≤ i ≤ 2).

2.
(
Fr,s

)
(r,s)∈N2

defines a bivariate filtration on F .

14



Proof. From (11) it is clear that all the sets F ir - hence also the Fr,s are monomial k-vector
spaces, that is, vector spaces with the property

f ∈ F ir ⇐⇒ T(f) ⊆ F ir (i = 0, 1, 2)

Immediately from Corollary 2 we obtain that Air · F is ⊆ F ir+s (i = 0, 1, 2). Therefore also
Ar,s · Ft,u ⊆ Fr+t,s+u.

Corollary 4. ∀ r ∈ N : F 0
r ⊆ Fr,r ⊆ F 0

2r.

Proof. By monoimiality, if f ∈ F 0
r then T(f) ⊆ F 0. Thus, for arbitrary t ∈ T(f),

ν1(t) + ν2(t) = ν0(t) ≤ r. Therefore also ν1(t) ≤ r and ν2(t) ≤ r, i.e., t ∈ F 1
r ∩ F 2

r = Fr,r.
Thus T(f) ⊆ Fr,r and so f ∈ Fr,r.

Now assume that f ∈ Fr,r. Then T(f) ⊆ Fr,r. Therefore, if t ∈ T(f) then ν0(t) =
ν1(t) + ν2(t) ≤ r + r. Consequently t ∈ F 0

2r. This shows that f ∈ F 0
2r.

(x, ∂)-Gröbner Bases
Dönch and Levin [DL12] introduced the notion of an (x, ∂)-Gröbner basis for free modules
over An(k). We present their concepts here and prove then that the reduction relation
resulting from a (x, ∂)-basis is a Gröbner reduction in our sense.

First they defined a divisibility notion in a non-standard way mimicking commutative mono-
mials

xkd l|xrds ⇐⇒ (k, l) ≤π (r, s).
This notion extends to divisibility of monomials t1 = xkdle1, t2 = xrdse2 of the free A-
module F = A(E) by setting

t1|t2 ⇐⇒ xkdl|xrds ∧ e1 = e2.

In this case the quotient t2
t1

is the element xr−kds−l ∈ Λ.

Lemma 3. Let t1, t2 ∈ ΛE. Then

t1|t2 ⇒
t2
t1
· t1 = t2 +

∑
j

njsj

with all nj ∈ N+ and sj ∈ ΛE such that

ν1(sj) < ν1(t2) ∧ ν2(sj) < ν2(t2).

Proof. t1 = xkdle, t2 = xrdse, k ≤ r, ≤ s. Using formula (10) gives

t2
t1
· t1 = xr−kds−l · xkdle =

∑
v≤πs−l

(
s− l
v

)
xr−k∂v(xk)ds−l+l−ve

=
[(s− l

0

)
xr−k∂0(xk)ds−0 +

∑
06=v≤πs−l

(
s− l
v

)
xr−k∂v(xk)ds−v

]
e
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= xrdse+
∑

06=v≤πs−l

(
s− l
v

)
xr−k∂v(xk)ds−ve = t2 +

∑
j

njsj .

Since the index v in the previous sum is in Nn \ 0 the conditions on the sj are obvious.

Lemma 4. Let t1, t2, w ∈ ΛE. Then

t1 ≺x t2 ∧ t2|w ⇒
(w
t2
t1
)
w

= 0.

Proof. Set t1 = xαdβe1, t2 = xγdδe2, w = xrdse2, γ ≤π r, δ ≤π s. From t1 ≺x t2 we get
ν1(t1) ≤ ν1(t1) whence |α| ≤ |γ|. From (10) we obtain

w

t2
· t1 = xr−γds−δ · xαdβe1 =

∑
u≤πs−δ

(
s− δ
u

)
xr−γ∂u(xα)ds−δ+β−u · e1

=
∑

u≤πs−δ

(
s− δ
u

)
α!

(α− u)!x
r−γ+α−uds−δ+β−u · e1.

To derive a contradiction assume that
(
w
t2
· t1
)
w
6= 0. Then

∃u
(
0 ≤π u ≤π s− δ ∧ xr−γ+α−u ds−δ+β−u · e1 = xrds · e2

)
that is,

e1 = e2 ∧ α = γ + u ∧ β = δ + u ≤π s, i.e., u = β − δ ≥π 0, δ ≤π β.
If u >π 0 then |α| = |γ|+|u| > |γ|, a contradiction. Therefore u = 0, α = γ∧β = δ∧e1 = e2,
i.e., t1 = t2. This contradicts the assumption t1 ≺x t2. Consequently

(
w
t2
t1
)
w

= 0.

Let f, g, h ∈ F , g 6= 0. (x, ∂)-reduction defined in [DL12] amounts to the following

f g

(x,∂) // h ⇐⇒ ∃w ∈ T(f)
(
LTx(g)|w ∧ h = f − fw

LCx(g)
w

LTx(g)g

∧ν2
( w

LTx(g) · LTd(g)
)
≤ ν2

(
LTd(f)

))
. (15)

Lemma 5. Assume that f g

(x,∂) // h and let w be a term mentioned in (15). Then w 6∈ T(h).

Proof. Isolating the x-leader of g gives

h = f − fw
LCx(g)

w

LTx(g)
(
LCx(g)LTx(g) +

∑
t∈ΛE\{LTx(g)}

gtt
)

= f − fw
LCx(g)

w

LTx(g)LCx(g)LTx(g)− fw
LCx(g)

w

LTx(g)
∑

t6=LTx(g)
gtt

= f − fw
w

LTx(g) · LTx(g)−
∑

t6=LTx(g)

fw
LCx(g)

w

LTx(g)gtt

Aplication of Lemma 3 gives

h = f − fw
(
w +

∑
j

njsj
)
−

∑
t≺xLTx(g)

fw
LCx(g)

w

LTx(g)gtt
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= f − fww −
∑
j

njfwsj −
∑

t≺xLTx(g)

fwgt
LCx(g)

w

LTx(g) t (16)

where all nj > 0 and ν1(sj) < ν1(w), ν2(sj) < ν2(w).

Considering (16), the coefficient of w in h is

hw = fw − fw − 0−
∑

t≺xLTx(g)

fwgt
LCx(g)

( w

LTx(g) t
)
w
.

Lemma 4 now immediately provides hw = 0.

It is now possible to relate (x, ∂)-reduction to Gröbner reduction.

Theorem 3. Let P denote the predicate

P (f, g, λ) ⇐⇒ ν2(λ · g) ≤ ν2(f). Then

f g

(x,∂) // h ⇐⇒ ∃λ ∈ Λ
(
LTx(λg) ∈ T(f) ∧ h = f −

fLTx(λg)
LCx(λg)λg ∧ P (f, g, λ)

)
. (17)

Consequently, using notation (1) from section 3, we have

f g

(x,∂) // h ⇐⇒ f g

ρ // h .

Proof. Observe that

P (f, g, λ) ⇐⇒ ν2
(
λ · LTd(g)

)
≤ ν2

(
LTd(f)

)
c.f. [DL12].

Let f g

(x,∂) // h and set λ = w
LTx(g) , where w is a term mentioned in (15). Write LTx(g) =

xkdle, w = xk+rdl+se. Thus λ = xrds.

LTx(λg) = LTx(λ · LTx(g)) = LTx(xrds · xkdle) = xr+kds+le = w and LCx(λg) = LCx(g).

It follows that

h = f − fw
LCx(g)

w

LTx(g)g = f −
fLTx(λg)
LCx(λg)λg and LTx(λg) = w ∈ T(f).

Since f g

(x,∂) // h holds, the predicate P (f, g, λ) is true. Consequently f g

ρ // h .

Conversely, assume that f g

ρ // h . Let λ ∈ Λ be such that LTx(λg) ∈ T(f) and

h = f −
fLTx(λg)
LCx(λg)λg ∧ P (f, g, λ).

Set w = LTx(λg). Then w ∈ T(f). Write λ as λ = xudv and LTx(g) = xkdle. Then

w = LTx(λ · LTx(g)) = LTx(xudv · xkdle) = xu+kdv+le.
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Thus LTx(g)|w and w
LTx(g) = xudv = λ. Since LCx(λg) = 1 · LCx(g) we obtain

h = f − fw
LCx(g)

w

LTx(g)g ∧ ν2
( w

LTx(g) · LTd(g)
)
≤ ν2(LTd(f)).

Consequently f g

(x,∂) // h .

Proposition 4. Iρ is monomial.

Proof. Let LTx(λ · g) ∈ T(f) ∧ P (LTx(λ · g), g, λ). This means that

ν2(λ · g) ≤ ν2(LTx(λ · g)).

Since LTx(λ · g) ∈ T(f) it follows LTx(λ · g) �d LTd(f) and therefore ν2(LTx(λ · g)) ≤
ν2(LTd(f)) = ν2(f). Thus ν2(λ · g) ≤ ν2(f). Consequently LTx(λ · g) ∈ T(f) ∧ P (f, g, λ).
This demonstrates that the monomial irreducibility condition (5) is satisfied.

In [DL12] the authors define Gröbner bases differently. Formulated in our notation:

Definition 7. Let N be a submodule of F = k(ΛE) and G ⊆ N \ 0. G is a (x, ∂)-Gröbner
basis for N iff

∀f ∈ N \ 0 ∃g ∈ G
(
LTx(g)|LTx(f) ∧ ν2(g)− ν2(LTx(g)) ≤ ν2(f)− ν2(LTx(f)).

We position this notion into the frame of our concepts.

Theorem 4. Given G ⊆ N , let σ denote the leading term reduction corresponding to the

relation f
(x,∂)
G
// h , i.e.,

f g
σ // h ⇐⇒ ∃λ ∈ Λ

(
LTx(λg) = LTx(f)∧h = f− LCx(f)

LCx(λg)λg∧ν2(λ·g) ≤ ν2(f)
)
. (18)

Then G is an (x, ∂)-Gröbner basis for N iff Iσ ∩N = 0.

Proof. Let f, g be elements of F \ 0.

f = f0t0 +
∑
t≺xt0

ftt = f ′0t
′
0 +

∑
t≺dt′0

ftt

g = g1t1 +
∑
t≺xt1

gtt = g′1t
′
1 +

∑
t≺dt′1

gtt with

LTx(f) = t0 = xk0dl0e0 LTd(f) = t′0 = xk
′
0dl
′
0e′0

LTx(g) = t1 = xr1ds1e1 LTd(g) = t′1 = xr
′
1ds
′
1e′1.

Assume that G is an (x, ∂)-Gröbner basis for N and f ∈ N \ 0. ∃g ∈ G such that

LTx(g)|LTx(f) ∧ ν2(g)− ν2(LTx(g)) ≤ ν2(f)− ν2(LTx(f).

18



Using the notation from above we get

xr1ds1e1|xk0dl0e0 ∧ s′1 − s1 ≤ l′0 − l0

hence r1 ≤π k0 ∧ s1 ≤π l0 ∧ e1 = e0. Set λ = xk0−r1dl0−s1 . Then

LTx(λ · g) = LTx(xk0−r1dl0−s1 · xr1ds1e1) = xk0dl0e0 = LTx(f).

ν2(λ · g) = ν2(LTd(xk0−r1dl0−s1 · xr′1ds′1e′1)) = l0 − s1 + s′1 ≤ l′0 = ν2(f).

This shows that
f

σ
g
// f − LCx(f)

LCx(λ·g)λ · g

that means, f is σ-reducible. Consequently, each f ∈ N \0 is σ-reducible whence N∩Iσ = 0.

Conversely, assume that N ∩ Iσ = 0 and let f ∈ N \ 0. Then f is σ-reducible, ∃g ∈ G
∃λ ∈ Λ such that

LTx(λ · g) = LTx(f) ∧ h = f − LCx(f)
LCx(λ · g)λ · g ∧ ν2(λ · g) ≤ ν2(f). (19)

Write λ = xadb. From (19) we get

xk0dl0e0 = LTx(f) = LTx(λ · g) = LTx(xadb · xr1ds1e1) hence

k0 = a+ r1 ∧ l0 = b+ s1 ∧ e0 = e1 and so r1 ≤π k0 ∧ s1 ≤π l0 i.e.

LTx(g)|LTx(f). Moreover

ν2(λ · g) = ν2(LTd(λ · g)) = ν2(LTd(xadb · xr
′
1ds
′
1e′1)) = b+ s′1.

From (19) we obtain b+ s′1 ≤ l′0 and so

b+ s1︸ ︷︷ ︸
l0

+s′1 ≤ l′0 + s1. Therefore

ν2(g)− ν2(LTx(g)) = ν2(xr′1ds′1e′1)− ν2(xr1ds1e1) = s′1 − s1
≤ l′0 − l0 = ν2(f)− ν2(LTx(f)).

Therefore G is an (x, ∂)-Gröbner basis for N .

Corollary 5. Let ρ denote (x, ∂)-reduction (15) for N . If G is an (x, ∂)-Gröbner basis for
N then ρ is a weak reduction for N . Thus, an (x, ∂)-Gröbner basis for N is a Gröbner basis
for N w.r.t. ρ.

Proof. Consider an (x, ∂)-Gröbner basis for N . Since Iρ ⊆ Iσ we obtain that Iρ ∩ N = 0.
Together with Proposition 4 this says that ρ is a weak reduction for N .

Even when G is a Gröbner basis, the corresponding reduction relation ρ is in general not a
strong reduction.
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Example 1. Consider A = A1(k), g = xd+ d2 ∈ A. Let ρ be the (x, ∂)-reduction defined
by G = {g}, and N = Ag.

We show that N ∩ Iρ = 0. Let a ∈ A

a = a0x
k0dl0 +

∑
µ≺xxk0dl0

aµµ (a0 6= 0). Then

a · g = a0x
k0dl0(xd+ d2) +

∑
µ≺xxk0dl0

aµµ(xd+ d2)

= a0x
k0dl0 · xd+ a0x

k0dl0 · d2 +
∑

µ≺xxk0dl0

(aµµxd+ aµµd
2).

Set λ = xk0dl0 . Then LTx(λ · g) = LTx(xk0dl0 · xd) = xk0+1dl0+1.

LTx(a · g) = LTx(LTx(a) · LTx(g)) = LTx(xk0dl0 · xd) = xk0+1dl0+1

and thus LTx(λ · g) = LTx(a · g) ∈ T(a · g).

ν2(λ · g) = ν2(LTd(λ · g)) = ν2(LTd(λ · LTd(g))) = ν2(LTd(xk0dl0 · d2)) = l0 + 2

ν2(a · g) = ν2(LTd(a · g)) = ν2
(
LTd(LTd(a) · LTd(g))

)
= ν2(LTd(a) · d2).

Now xk0dl0 �d LTd(a). Applying Lemma 2 gives

LTd(xk0dl0 · d2)︸ ︷︷ ︸
xk0dl0+2

�d LTd(LTd(a) · d2). Therefore

l0 + 2 = ν2(xk0dl0+2) ≤ ν2(LTd(LTd(a) · d2)) = ν2(LTd(a) · d2) and so

ν2(λ · g) ≤ ν2(a · g). All in all

∃λ ∈ Λ
(
LTx(λ · g) = LTx(a · g) ∧ ν2(λ · g) ≤ ν2(a · g)

)
and choosing h appropriately we see that a · g σ

g
// h whence a ·g is σ-reducible. Therefore

N ∩ Iσ = N ∩ Iρ = 0. Consequently ρ is a weak reduction for N = Ag and {g} a Gröbner
basis.

Now consider f1, f2, g ∈ A
f1 = xd, f2 = d2.

Then it is obvious that f1, f2 ∈ Iρ. But f1 + f2 is not:

LTx(1 · g) = xd ∈ T(f) ∧ ν2(1 · g) = 2 ≤ ν2(f1 + f2) this means f1 + f2
ρ

g
// 0

and so f1 + f2 6∈ Iρ. This shows that Iρ is not closed under addition and therefore ρ is not
a strong reduction for N .
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Theorem 5. Let f, g, h ∈ F , g 6= 0. Assume that f g

(x,∂) // h . Then, for arbitrary r, s,∈ N

1. f ∈ F 1
r ⇒ h ∈ F 1

r ;

2. f ∈ F 2
r ⇒ h ∈ F 2

r ;

3. f ∈ Fr,s ⇒ h ∈ Fr,s;

4. f ∈ F 0
r ⇒ h ∈ F 0

2r.

Consequently the full reduction corresponding to an (x, ∂)-Gröbner basis for a submodule
N ⊆ F is a weak Gröbner reduction for N w.r.t. these filtrations.

Proof. By Proposition 3 we may assume that f g

ρ // h , i.e.,

∃λ ∈ Λ
(
LT(λg) ∈ T(f) ∧ h = f −

fLT(λg)
LC(λg)λg ∧ P (f, g, λ)

)
.

1. Assume that f ∈ F 1
r . Then ν1(f) ≤ r whence ∀t ∈ T(f) : ν1(t) ≤ r.

Take t ∈ T(h). If t ∈ T(f) then ν1(t) ≤ r. If t 6∈ T(f) then

0 6= ht = −
fLTx(λg)
LCx(λg)(λg)t.

Thus (λg)t 6= 0, t ∈ T(λg), t �x LTx(λg) ∈ T(f). Therefore ν1(t) ≤ ν1(LTx(λg)) ≤ r.
This means that T(h) ⊆ F 1

r . Consequently h ∈ F 1
r .

2. f ∈ F 2
r . Then T(f) ⊆ F 2

r . Writing out the predicate P we obtain

ν2(λ · LTd(g)) ≤ ν2(LTd(f)).

Take t ∈ T(h). If t ∈ T(f) then t ∈ F 2
r . If t 6∈ T(f) then, with the same argument as in

the previous case, we obtain t ∈ T(λ · g). Therefore t �d LTd(λ · g) = LTd(λ ·LTd(g)).
Then we derive

ν2(t) ≤ ν2(LTd(λ · LTd(g)) = ν2(λ · LTd(g)) ≤ ν2(LTd(f))

whence ν2(t) ≤ r, that is, t ∈ F 2
r . This shows T(h) ⊆ F 2

r . Since the filtersets are
vector spaces we arrive at h ∈ F 2

r .

3. If f ∈ Fr,s then f ∈ F 1
r ∩ F 2

s . Therefore also h ∈ F 1
r ∩ F 2

s = Fr,s.

4. This follows from Corollary 4 and the previous point.

21



4 The Ring of Difference-Differential Operators
Let δ = (δ1, . . . , δm) be a tuple of derivations and σ = (σ1, . . . , σn) a tuple of automorphisms
of the commutative ring K. All these maps are assumed to commute with each other. The
ring D is then constructed as the free K-module on the set of formal expressions

δkσl = δk1
1 · · · δ

km
m σl11 · · ·σ

ln
n , (ki ∈ N, li ∈ Z)

and a product that reflects the properties of derivations and automorphisms. We consider
the elements of the set Λ = {δkσl | (k, l) ∈ Nm × Zn} as the distinguished monomials.
Consequently elements of D are finite K-linear combinations∑

(k,l)∈Nm×Zn
ak,lδ

kσl, (ak,l ∈ K)

and the product is driven by the rules

δi · c = c · δi + δi(c) σj · c = σj(c)σj , (c ∈ K).

We call D a difference-differential ring, or ∆Σ-ring over K.

A left module over D is also called a difference-differential module, or ∆Σ-module over K.1
The concept covers difference modules (∆ = ∅) as well as differential modules (Σ = ∅) as
special instances.

Proposition 5. Consider a field k with char(k) = 0. Let K = k[x1, . . . , xm], ∆ =
{ d
dx1

, . . . , d
dxm
} and Σ = ∅. Then the resulting ∆Σ-ring is the Weyl-algebra Am(k).

Proof. This is due to the fact that partial derivatives have no relations among each other.
Precisely: Let ∆? be the monoid generated (in Endk(K)) by ∆. Then ∆? ∼= Nm and Am(k)
is a free K-module with basis ∆?.

We use the notation

yk = δk(y) and ys = σs(y) (k ∈ Nm, s ∈ Zn).

For the free D-module F = D(E), the product D × F −→ F can then be written explicitly

δkσl · yδrσse =
∑
u≤πk

(
k

u

)
yk−ul δu+rσl+se (k, r ∈ Nm; l, s ∈ Zn; y ∈ K; e ∈ E). (20)

For λ = δkσl ∈ Λ we set

ν1(λ) = |k|, ν2(λ) = |l|, ν0 = ν1 + ν2. (21)

The extensions of these functions induce the univariate filtrations

Dj
t = {a ∈ D : νj(a) ≤ t} (j = 0, 1, 2).

1In the literature the tuples δ and σ are denoted informally as the sets ∆ and Σ, whence the name. Note
though, that the mappings δi need not be distinct. The same is the case with the σj .
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Proposition 6. The family (Dj
t )t∈N is a monomial filtration on D (j = 0, 1, 2). Therefore

(F jt )t∈N is a monomial filtration on F .

Fix an enumeration of the set E and set

t = δkσlei 7→ (νj(t), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1) (j ∈ {0, 1, 2}).

The corresponding well-orders for monomials s = δkσlei, t = δrσsej in ΛE are now

s ≺j t :⇐⇒
(νj(s), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1)
<LEX

(νj(t), j, r1, . . . , rm, |s1|, . . . , |sn|, sgn(s1) + 1, . . . , sgn(sn) + 1)

Then s �j t⇒ νj(s) ≤ νj(t) (j = 0, 1, 2).

These orders single out LTj(f) and LCj(f) for each f ∈ F \ 0. According to (1) we get

f
ρj

g
// h ⇐⇒ ∃λ ∈ Λ

(
LTj(λg) ∈ T(f) ∧ h = f −

fLTj(f)

LCj(λg)λg
)

and for G ⊆ F ρj is

f
ρj

G
// h ⇐⇒ ∃g ∈ G such that f

ρj

g
// h .

Note that the predicate ‘P’ mentioned in (1) is empty here, that is, we may set P = TRUE.

Proposition 7. f
ρj

G
// h and f ∈ F jt ⇒ h ∈ F jt .

Proof. There exists g ∈ G and λ ∈ Λ such that LTj(λg) ∈ T(f). Therefore, from mono-
miality of the filtration, we get LTj(λg) ∈ F jt . Let b ∈ T(λg) be an arbitrary monomial.
Then from b �j LTj(λg) we obtain νj(b) ≤ νj(LTj(λg) ≤ t, that is, b ∈ F jt . Consequently
λg ∈ Ft, and so is h = f − c · λg.

Together with the previous remarks, the last proposition exhibits the relations ρν as Gröb-
ner reductions.

Relative reduction in Zhou/Winkler
In [ZW07] the filtration F 0 is treated by using a variant of the term order ≺0 and its
corresponding reduction. In [ZW08a] the bivariate filtration Dr,s = D1

r ∩ D2
s occurs. For

the purpose of reduction the following two term orders have been used. For monomials
u = δkσlei and v = δrσsej in ΛE, set

u ≺1 v ⇐⇒
(ν2(u), ν1(u), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1)
<LEX

(ν2(v), ν1(v), j, r1, . . . , rm, |s1|, . . . , |sn|, sgn(s1) + 1, . . . , sgn(sn) + 1)

23



respectively

u ≺2 v ⇐⇒
(ν1(u), ν2(u), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1)
<LEX

(ν1(v), ν2(v), j, r1, . . . , rm, |s1|, . . . , |sn|, sgn(s1) + 1, . . . , sgn(sn) + 1).

The appropriate reduction concept - called relative reduction in [ZW08a] - takes into
account both of these orders. Let f, g, h ∈ F . Then f rel−→g h iff

∃λ ∈ Λ
(
LT1(λg) = LT1(f) ∧ LT2(λg) �2 LT2(f) ∧ h = f − LC1(f)

LC1(λg)λg
)
.

Here we meet leading term reduction (2) involving the predicate

P (f, g, λ) ⇐⇒ LT2(λg) �2 LT2(f).

Again, for G ⊆ F relative reduction is

f
rel−→G h ⇐⇒ ∃g ∈ G with f rel−→g h.

Theorem 6. Let Fr,s = ⊕
e∈E Dr,se denote the bivariate filtration on F induced by (Dr,s)(r,s)∈N2.

Then f rel−→g h∧ f ∈ Fr,s =⇒ h ∈ Fr,s. Consequently, the full reduction associated to rel−→G

is a Gröbner reduction.

A proof can be found in [FL15].

In order to solve problems arising from negative exponents, the authors of [ZW08a] intro-
duced in [ZW06] the concept of an orthant decomposition. Their approach treats negative
exponents by covering the set of monomials ΛE with finitely many isomorphic copies of
Nm ×Nn × E.

A detailed discussion can be found in [ZW06, ZW07, ZW08a, ZW08b, Lev12].

5 The ring of Ore polynomials
Given a K-endomorphism σ : K −→ K, a σ-skew derivation is an additive map δ : K −→ K
satisfying

δ(ab) = σ(a)δ(b) + δ(a)b, (a, b ∈ K).

An Ore-variable over K is a pair ∂ = (σ, δ) where σ is an endomorphism and δ is a σ-skew
derivation.

Let ∂i = (σi, δi) be Ore-variables (1 ≤ i ≤ n) such that all mappings σi, δj commute with
each other. Then the Ore algebra O defined by X = (∂1, . . . , ∂n) is the free K-module on
the set of formal expressions ∂k = ∂k1

1 · · · ∂knn with multiplication determined by the rules

∂i · ∂j = ∂j · ∂i and ∂i · x = σi(x)∂i + δi(x) (x ∈ K). (22)
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We set Λ = {∂k : k ∈ Nn} ∼= Nn, as usual its elements are called monomials.

With the convenient notation

xlk = (δl ◦ σk)(x) (k, l ∈ Nn, x ∈ K) (23)

the product in O may be written explicitly

x∂l · y∂q =
∑
v∈Nn

(
l

v

)
xyl−vv ∂ q+v

=
∑
v≤πl

(
l

v

)
xyvl−v∂

l+q−v (24)

where x, y ∈ K and l, q ∈ Nn. In particular

x∂0 · y∂q = xy∂q

demonstrating that K is naturally a subring of O.

Example 2. Let δi be ordinary derivations (1 ≤ i ≤ m) and σj automorphisms (1 ≤ j ≤ n).
Then O defined by the Ore-variables ∂i = (δi, id) (1 ≤ i ≤ m) and ∂′j = (0, σj) (1 ≤ j ≤ n)
is a difference-differential ring where the σj allow positive exponents only. The ∆Σ-ring D
defined by ∆ = {δ1, . . . , δm} and Σ = {σ1, . . . , σn} as defined in the previous section can be
obtained as follows:

Starting from ∆,Σ define Ore-variables

∂i = (δi, id) (1 ≤ i ≤ m)
ηj = (0, σj) (1 ≤ j ≤ n)
φj = (0, σ−1

j ) (1 ≤ i ≤ n)

and let O be the Ore-algebra defined by them. Let I be the 2-sided ideal generated by the
set {ηj · φj − 1 | 1 ≤ j ≤ n}. Then O/I ∼= D.

Levin ([Lev07]) splits the set X of variables into disjoint subsets X = X1 ∪ · · · ∪Xp. This
gives order functions

νj : Λ −→ N, ∂k 7→
∑
∂i∈Xj

ki (1 ≤ j ≤ p)

and the total degree function ν0 = ν1 + · · · + νp that extend to the free module F = O(E)

where E = {e1, . . . , eq}. As usual

νj(∂ke) = νj(∂k), νj(f) =
{

maxt∈T(f) νj(t) . . . f ∈ F \ 0
−∞ . . . f = 0

for all j = 0, 1, . . . , p.

For the remainig part of this section we assume that K be a field.
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Lemma 6. Let x, y ∈ K \ 0, k, l ∈ Nn. Then, for 0 = 1, . . . , p

νj(x∂k · y∂le) = νj(∂k) + νj(∂l). (25)

Proof. Take a term t ∈ T(x∂k · y∂l). From (24) we see that ∃v ≤π k with t = ∂l+ve. Thus,
if 1 ≤ j ≤ p then

νj(t) =
∑
∂i∈Xj

(li + vi) ≤
∑
∂i∈Xj

(li + ki) =
∑
∂i∈Xj

li +
∑
∂i∈Xj

ki = νj(∂l) + νj(∂k) = νj(xyk∂k+l).

Since xyk 6= 0 the assertion follows. The statement for j = 0 is seen by summing up all
j = 1, . . . , p.

The p orders on ΛE considered in [Lev07] are defined by the p injections τj : Λ −→ Nn+p+1

λ = ∂k 7→ (νj(λ), ν0(λ), ν1(λ), . . . , ν̂j(λ), . . . , νp(λ), kj , k1, . . . , k̂j , . . . , kp)

with notation k = (k1, . . . , kn) = (k1, . . . , kp) where ki ∈ N, kj ∈ NCard(Xj), and the
extensions of τj to ΛE

ϕj : ΛE −→ Nn+p+2, t = ∂kei 7→ (τj(∂k), i).

Thus, for terms t1, t2 ∈ ΛE,

t1 ≺j t2 ⇐⇒ ϕj(t1) <LEX ϕj(t2).

Note that νj(∂k) = |kj | (1 ≤ j ≤ p).

Lemma 7. τj(∂k+l) = τj(∂k) + τj(∂l) (1 ≤ j ≤ p).

Proof. Using the notation from above it is plain that (k + l)j = kj + lj . Therefore

νj(∂k+l) = |(k + l)j | = |kj + lj | = |kj |+ |lj | = νj(∂k) + νj(∂l).

From this observation the statement is obvious.

Leading term and leading coefficient functions are written LTj , LCj (1 ≤ j ≤ p). As before
it is plain that

νj(f) = νj(LTj(f)) ∀j.

Proposition 8. Let x, y ∈ K \ 0, k, l ∈ Nn, e ∈ E. Then ∀j = 1, . . . , j

LTj(x∂k · y∂le) = ∂k+le.

Proof. Take a term t ∈ T(x∂k · y∂le) with t 6= ∂k+le. Then ∃v <π k with t = ∂l+ve. Let
i0 = min{i : vi 6= ki}. Then vi0 < ki0 and ∀i < i0 : vi = ki, hence also (l + v)i0 < (k + l)i0
and ∀i < i0 : (l + v)i = (k + l)i. Thus

i0 = min{i : (l + v)i 6= (k + l)i} ∧ (l + v)i0 < (k + l)i0 ∧ ∀i : (l + v)i ≤ (k + l)i.

Therefore
ν0(t) = |l + v| = |l|+ |v| < |l|+ |k| = |k + l| = ν0(∂k+le).

If i0 ∈ Xj then νj(t) < νj(∂k+le) whence t ≺j ∂k+le.
If i0 6∈ Xj then νj(t) ≤ νj(∂k+le) ∧ ν0(t) < ν0(∂k+le), and again t ≺j ∂k+le.
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We may blow up the content of Lemma 7 to the following statement.

Corollary 6. Let a, b, x, y ∈ K \ 0, k, l, r ∈ Nn, e1, e2 ∈ E. Then ∀j = 1, . . . , p

∂k ≺j ∂l ⇒ LTj(x∂k · a∂re1) ≺j LTj(y∂l · b∂re2)
∧ LTj(a∂r · x∂ke1) ≺j LTj(b∂r · y∂le2).

Proof. We have to show that ∂k+re1 ≺j ∂l+re2. From the hypothesis we have τj(∂k) <LEX
τj(∂l). Thus, using Lemma 7

τj(∂k+r) = τj(∂k) + τj(∂r) <LEX τj(∂l) + τj(∂r) = τj(∂l+r).

Therfore also (τj(∂k+r), 1) <LEX (τj(∂l+r), 2).

Proposition 9. Let 1 ≤ j ≤ p. Let a ∈ O \ 0 with LTj(a) = ∂k0 and f ∈ F \ 0. Then

LTj(a · f) = LTj(a) · LTj(f);
LCj(a · f) = LCj(a) · σk0(LCj(f)).

Proof. Set a0 = LCj(a), ∂l0e0 = LTj(f), f0 = LCj(f). Thus

a = a0∂
k0 +

∑
∂k≺j∂k0

ak∂
k and f = f0∂

l0e0 +
∑

∂le≺j∂l0e0

fl,e∂
le.

a·f = a0∂
k0 · f0∂

l0e0︸ ︷︷ ︸
(0)

+
∑

∂le≺j∂l0e0

a0∂
k0 · fl,e∂le

︸ ︷︷ ︸
(1)

+
∑

∂k≺j∂k0

ak∂
k · f0∂

l0e0

︸ ︷︷ ︸
(2)

+
∑

∂k≺j∂k0

∑
∂le≺j∂l0e0

ak∂
k · fl,e∂le

︸ ︷︷ ︸
(3)

.

Pick out a summand of sum (1). If ∂l ≺j ∂l0 then LTj(ao∂k0 ·fl,e∂le) ≺j LTj(a0∂
k0 ·f0∂

l0e0).
If ∂l = ∂l0 then e < e0 and

LTj(ao∂k0 · fl,e∂le) = ∂k0+le ≺j ∂k0+l0e0 = LTj(ak∂k · f0∂
l0e0).

For a summand of sum (2) we obtain LTj(ak∂k · f0∂
l0e0) ≺j LTj(a0∂

k0 · f0∂
l0e0).

As to sum (3), from the scope of the 1st sigma sign we derive LTj(ak∂k · fl,e∂le) ≺j
LTj(a0∂

k0 · f0∂
le0).

If ∂l ≺j ∂l0 then LTj(a0∂
k0 · f0∂

le0) ≺j LTj(a0∂
k0 · f0∂

l0e0).
If ∂l = ∂l0 then LTj(a0∂

k0 · f0∂
le0) = ∂k0+l = ∂k0+l0 = LTj(a0∂

k0 · f0∂
l0e0).

So, in any case, LTj(ak∂k · fl,e∂le) ≺j LTj(a0∂
k0 · f0∂

l0e0).

Let t ∈ T(a · f). Then t must be a term (surviving after cancellation) of one of the sum
expressions (0),(1),(2),(3). Consequently t �j LTj(a0∂

k0 ·f0∂
l0e0) = ∂k0+l0e0 = ∂k0 ·∂l0e0 =

LTj(a) · LTj(f). Moreover we see that the expression ∂k0 · ∂l0e0 does not cancel out. It
follows that LTj(a · f) = LTj(a) · LTj(f).
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From the expansion of expression (0)

a0∂
k0 · f0∂

l0e0 =
∑
v≤π

(
k0
v

)
a0(f0)k0−v

v ∂l0+ve0

we derive LCj(a · f) = a0(f0)k0 = LCj(a) · LCj(f)k0 = LCj(a) · σk0(LCj(f)).

Corollary 7. λ = ∂k ∈ Λ, f ∈ F \ 0. Then ∀j = 1, . . . , p

LTj(λ · f) = λ · LTj(f) and LCj(λ · f) = σk(LCj(f)).

Corollary 8. a ∈ O, f ∈ F . Then ∀j = 0, . . . , p

νj(a · f) = νj(a) + νj(f).

Proof. If a = 0 ∨ f = 0, the statement is true. So assume a 6= 0 ∧ f 6= 0. Let 1 ≤ j ≤ p and
set LTj(a) = ∂k0 , LTj(f) = ∂l0e0. Then

νj(a · f) = νj(LTj(a · f)) = νj(LTj(a) · LTj(f)) = νj(∂k0 · ∂l0e0) = νj(∂k0) + νj(∂l0)
= νj(LTj(a)) + νj(LTj(f)) = νj(a) + νj(f).

The statement for j = 0 follows by summation.

Corollary 9. a ∈ O, f ∈ F . Then a · f = 0⇒ a = 0 ∨ f = 0.
Consequently, O is a domain.

Proof. Let a 6= 0 ∧ f 6= 0 and ν one of ν0, ν1, . . . , νp. Then ν(a) ≥ 0 ∧ ν(f) ≥ 0. Therefore

ν(a · f) = ν(a) + ν(f) ≥ 0

hence a · f 6= 0.

The order functions νj propose a natural filtration concept.

F jt = {f ∈ F : νj(f) ≤ t} (t ∈ N, 0 ≤ j ≤ p). (26)

For α ∈ Np we set

Fα =
p⋂
j=1

F jaj = {f ∈ F : ν1(f) ≤ α1 ∧ · · · ∧ νp(f) ≤ αp}. (27)

Again the sets Oj
t and Oα are implicitely defined (F = O1).

Proposition 10. For all 1 ≤ j ≤ p, the sets F jt define a univariate filtration on F w.r.t.
the univariate filtration Oj

t in O. Consequently Fα is a p-fold filtration w.r.t. Oα.

Proof.

• If f, g ∈ F jt then νj(f + g) ≤ max{νj(f), νj(g)} ≤ t, thus the sets F jt are abelian
groups.

• s ≤ t in N implies F js ⊆ F
j
t and ⋃∞t=0 Ft = F .

• If a ∈ Oj
s ∧ f ∈ O

j
t then νj(a · f) = νj(a) + νj(f) ≤ s+ t, hence Oj

s · F
j
t ⊆ F

j
s+t.
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Levins reduction with respect to several term orders
In [Lev07] the following theory is developed.

Definition 8. f, g ∈ F , g 6= 0. Let k, i1, . . . , ir be distinct elements in {1, . . . , p}, I =
{i1, . . . , ir} and L = (k, I). Then f is L-reduced w.r.t. g iff

¬∃λ ∈ Λ
(
λ · LTk(g) ∈ T(f) ∧ ∀i ∈ I : νi(λ · LTi(g)) ≤ νi(LTi(f))

)
(28)

f is L-reduced w.r.t. G ⊆ F iff f is L-reduced w.r.t. g ∀g ∈ G.

The corresponding reduction concept in [Lev07] is

Definition 9. f, g, h ∈ F , g 6= 0. I and L = (k, I) as before. Then

f g
L // h ⇐⇒ ∃w ∈ T(f)

(
LTk(g)|w ∧ h = f − fw

τ w
LTk(g)

(LCk(g))
w

LTk(g)g

∧ ∀i ∈ I : νi
( w

LTk(g) · LTi(g)
)
≤ νi

(
LTi(f)

))
. (29)

Here for λ ∈ Λ the symbol τλ denotes the exponent of λ - as a power of ∂ - considered as
the corresponding endomorphism of K, precisely, if λ = ∂k and x ∈ K then τλ(x) = σk(x).

Theorem 7. Let f, g, h ∈ F , g 6= 0 and L = (k, I) as before. Let P denote the predicate

P (f, g, λ) ⇐⇒ ∀i ∈ I : νi(λ · g) ≤ νi(f). (30)

Let ρ denote the reduction relation

f g

ρ // h ⇐⇒ ∃λ ∈ Λ
(
LTk(λ · g) ∈ T(f) ∧ h = f −

fLTk(λ·g)
LCk(λ · g)λ · g ∧ P (f, g, λ)

)
. (31)

Then
f g

ρ // h ⇐⇒ f g
L // h .

Proof. Assume that f g
L // h and let w ∈ T(f) as mentioned in (29). Let LTk(g) = ∂le.

Since LTk(g)|w we may write w = ∂l+pe. Set λ = w
LTk(g) = ∂p. Then, by Corollary 7

LTk(λ · g) = λ · LTk(g) = ∂p · ∂le = ∂l+pe = w.

In terms of the τ -notation we obtain

τ w
LTk(g)

(
LCk(g)

)
= τλ(LCk(g)) = σp(LCk(g)) = LCk(λ · g).

Consequently LTk(λ · g) ∈ T(f) and h = f − fLTk(λ·g)
LCk(λ·g)λ · g. Since

νi(λ · g) = νi(LTi(λ · g)) = νi(λ · LTi(g)) = νi
( w

LTk(g) · LTi(g)
)
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the formula P (f, g, λ) is exactly the additional condition in (29), which means that f g

ρ // h .

Conversely, assume that f g

ρ // h . Let λ = ∂p as mentioned in the formula, LTk(g) = ∂le

and set w = LTk(λ · g) = λ · LTk(g) = ∂p · ∂le = ∂p+le. Then LTk(g)|w, w
LTk(g) = ∂p = λ

and LCk(λ · g) = σp(LCk(g)). In τ -notation:

τ w
LTk(g)

(
LCk(g)

)
= τ∂p

(
LCk(g)

)
= σp(LCk(g)) = LCk(λ · g).

Therefore w ∈ T(f) ∧ LTk(g)|w and

h = f − fw
τ w

LTk(g)
(LCk(g))

w

LTk(g)g ∧ P (f, g, λ)

and this means that f g
L // h .

Proposition 11. P satisfies the monomial irreducibility condition (5). Therefore

f ∈ Iρ ⇒ T(f) ⊆ Iρ.

Proof. Assume ∃g ∈ G, ∃λ ∈ Λ such that

LTk(λ · g) ∈ T(f) ∧ LCk(λ · g) ∈ K× ∧ ∀i ∈ I : νi(λ · g) ≤ νi(LTk(λ · g)).

Then νi(λ · g) = νi(LTk(λ · g)). As LTk(λ · g) ∈ T(f) it follows νi(LTk(λ · g)) ≤ νi(f), hence
νi(λ · g) ≤ νi(f). Consequently

∃g ∈ G∃λ ∈ Λ: LTk(λ · g) ∈ T(f) ∧ LCk(λ · g)|fLTk(λ·g) ∧ ∀i ∈ I : νi(λ · g) ≤ νi(f).

6 Conclusion
We have designed the notion of a (weak) Gröbner reduction with the aim of describing several
Gröbner basis concepts for finitely generated free modules over a wide class of noncommu-
tative rings. To examine our system of axioms against known Gröbner basis techniques, we
picked up three classes of such rings from the recent literature on Gröbner bases and dimen-
sion polynomials, and we have shown that the Gröbner basis notions introduced there fit
into our general framework. The algorithmic generation of Gröbner bases in environments
of great generality is subject to further research.
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