Three Examples of Gröbner Reduction over Noncommutative Rings

Christoph Fürst*
Christoph.Fuerst@risc.jku.at
Günter Landsmann
Guenter.Landsmann@risc.jku.at
Research Institute for Symbolic Computation - RISC Linz, Altenberger Straße 69, 4040 Linz, Austria

(Dated: October 13, 2015)

Abstract

In this report three classes of noncommutative rings are investigated with emphasis on their properties with respect to reduction relations. The Gröbner basis concepts in these rings, being developed in the literature by several authors, are considered and it is shown that the reduction relations corresponding to these Gröbner bases obey the axioms of a general theory of Gröbner reduction.

1 Introduction

At the ISSAC 2015 conference, the authors have introduced the notion of Gröbner reduction, a general concept that covers the reduction part of several Gröbner basis techniques appearing in the literature.

In [FL15] it is proved that reduction concepts which obey the axioms of Gröbner reduction allow the derivation of the dimension polynomial of finitely generated modules.

In this paper three classes of rings are studied with emphasis on those parts of their structure which are relevant for designing a reduction concept on finitely generated free modules over them.

The rings of the first class contain differential operators of some polynomial ring $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ where \mathbf{k} is a field of characteristic 0 (Weyl-algebras). The rings of the second class contain

[^0]linear combinations of formal expressions equipped with a product that reflects the properties of derivations and automorphisms (difference-differential rings), while the elements of the rings of the third class are linear combinations of certain formal expressions, and the multiplication is designed to simulate skew derivations and their endomorphisms (Orepolynomials).

The rings of all these classes are free objects in appropriate categories; the Weyl-algebras due to the behavior of partial derivatives (in characteristic 0), the other ones by design of their multiplication.

The following figure shows the relation between the three classes together with certain special types of them.

In this diagram we meet

- the ring of Ore-polynomials \mathbb{D};
- the ring of difference-differential operators D;
- the ring D of differential operators with set of derivations Δ;
- the ring of difference operators \mathcal{D};
- the ring of commutative polynomials $K[X]$.

Arrows indicate specialization. For example, the arrow from the node ' $\Delta-\Sigma$-Ring' to the node ' $K[X]$ ' exposes the polynomial ring $K[X]$ as a $\Delta \Sigma$-ring D by trivializing all functional ingredients of D. Similarly, the arrow from 'Ore-Ring \mathbb{D} ' to ' $\Delta-\Sigma$-Ring' accents that a $\Delta \Sigma$-ring can be obtained as a quotient of some Ore-ring.
The order of appearence of the considered ring classes in the paper follows a path of increasing generality. For each of these three types of rings the reduction concept, condensed from Gröbner basis techniques that are treated in the literature, is studied under the aspect of Gröbner reduction and the validity of axioms of Gröbner reduction is analyzed one at a time.

In order to be able to subsume all those rings under this general theory, the concept of Gröbner reduction, as introduced in [FL15], must be slightly modified. Thus, the authors introduce a new set of axioms for Gröbner reduction, weaker than the one formulated in [FL15], so that each of these reduction relations can be seen as a model of the new axioms.

Notation

\mathbb{N} is the set of natural numbers ≥ 0. The symbol \leq_{π} denotes the product order in \mathbb{N}^{n}, i.e.,

$$
k \leq_{\pi} l \Longleftrightarrow k_{i} \leq l_{i}(1 \leq i \leq n) .
$$

The length of a tupel $k \in \mathbb{N}^{n}$ is $|k|=k_{1}+\cdots+k_{n}, x^{k}$ denotes the power product $x_{1}^{k_{1}} \cdots x_{n}^{k_{n}}$. If $n=n_{1}+\cdots+n_{p}$ is a partition of n (all $n_{j}>0$) and $k=\left(k_{1}, \ldots, k_{n}\right)$ then we write $x^{k^{j}}$ for the corresponding j-part of x^{k}, i.e.,

$$
x^{k^{j}}=\prod_{n_{1}+\cdots+n_{j-1}<i \leq n_{1}+\cdots+n_{j}} x^{k_{i}}
$$

The same notation is used in the context of other symbols (e.g., d, δ, ∂).
A 'ring' is an associative ring with unity 1. A homomorphism of rings preserves 1. A module is understood as a left module.

Throughout this paper R denotes an arbitrary (possibly noncommutative) ring containing a commutative ring K in such a way that R is a free K-module. All rings that will occur are of this type. We use the letter R in section 2 where we thematize Gröbner reduction for arbitrary such rings. As, in the text, the rings get more concrete, the letter R changes to another appropriate symbol: A will denote a Weyl-algebra, D a $\Delta \Sigma$-ring, and \mathbb{D} a ring of Ore-polynomials.

For elements $a, b \in K$, if $b \mid a$ then we write $\frac{a}{b}$ for an element $x \in K$ with $b x=a$. Then $\frac{a}{b} \cdot b=a$, no matter which such x we had chosen. Of course, when b^{-1} exists in K then the element $\frac{a}{b}$ is unique. In any case, writing the symbol $\frac{a}{b}$, it is supposed that $b \mid a$.

2 Gröbner Reduction

We fix a K-basis $\Lambda \subset R$ whose elements are called monomials. Then the monomials of the free module $F=R^{(E)}$ on the set E are the members of the set

$$
\Lambda E=\{\lambda e:(\lambda, e) \in \Lambda \times E\}
$$

Since $R^{(E)}=K^{(\Lambda E)}$ this set is a K-basis of F. We write

$$
\mathrm{T}(f)=\mathrm{T}\left(\sum_{t} f_{t} t\right)=\left\{t \in \Lambda E: f_{t} \neq 0\right\}
$$

for the support of f, i.e. the set of monomials t that appear in f with a non-zero coefficient $f_{t} \in K$.

There are situations where the ring K contains a field \mathbf{k} that is central in R (c.f. Section $3)$. Then there may be two different monomial concepts:

1. $R=K^{\left(\Lambda_{1}\right)}$ (R is a free K-module with basis Λ_{1});
2. $R=\mathbf{k}^{\left(\Lambda_{2}\right)}\left(R\right.$ is a vector space over \mathbf{k} with basis $\left.\Lambda_{2}\right)$.

In certain instances we will need the assumption that K be a field. This will be emphasized at occurence.

Definition 1. By a p-fold filtration on R we mean a family of additive subgroups $R_{r} \subseteq R$, indexed by $r \in \mathbb{N}^{p}$, such that

1. $R_{r} \cdot R_{s} \subseteq R_{r+s}$;
2. $r \leq_{\pi} s \Rightarrow R_{r} \subseteq R_{s}$;
3. $R=\bigcup_{r \in \mathbb{N}^{p}} R_{r}$;
4. $R_{0}=K$.
R together with such a filtration is called a (p-fold) filtered ring. The filtration is called monomial, and R a monomially filtered ring, when $a \in R_{r} \Rightarrow \mathrm{~T}(a) \subseteq R_{r}$ for all $a \in R$ and all $r \in \mathbb{N}^{p}$.

Definition 2. Let $R=\bigcup_{r \in \mathbb{N}^{p}} R_{r}$ be a filtered ring and M an R-module. A filtration of M is a family of additive subgroups $M_{r} \subseteq M\left(r \in \mathbb{N}^{p}\right)$ with the properties

1. $R_{r} \cdot M_{s} \subseteq M_{r+s}$;
2. $r \leq_{\pi} s \Rightarrow M_{r} \subseteq M_{s}$;
3. $M=\bigcup_{r \in \mathbb{N}^{p}} M_{r}$.
M together with a filtration is called a filtered module over the filtered ring R.

A free module $F=R^{(E)}$ inherits the filtration

$$
F_{r}=\bigoplus_{e \in E} R_{r} e
$$

from the filtered ring R, and this filtration is monomial (w.r.t. ΛE) when the original filtration on R is monomial (w.r.t. Λ). An arbitrary R-module M turns into a filtered module via a free presentation

$$
0 \longrightarrow N \longrightarrow F \xrightarrow{\pi} M \longrightarrow 0
$$

setting $M_{r}=\pi\left(F_{r}\right)$. Thus, when a set G of generators of the R-module M is determined, M obtains the filtration

$$
M_{r}=\sum_{g \in G} R_{r} g
$$

Let X be a set and $\rho \subseteq X \times X$ a binary relation. We write $f \longrightarrow h$ to indicate that $(f, h) \in \rho$, and $f \longrightarrow^{\star} h$ when there is a chain of finite length

$$
f=f_{0} \longrightarrow f_{1} \longrightarrow \cdots \longrightarrow f_{k}=h \quad(k \in \mathbb{N})
$$

We say that f is reducible if $\exists h$ with $f \longrightarrow h$ and we write I_{ρ} (or I when ρ is understood) for the set of ρ-irreducible elements, that is

$$
I=\{x \in X: \nexists y \in X \text { such that } x \longrightarrow y\}
$$

A subset $Y \subseteq X$ is called ρ-stable if $y \in Y$ and $y \longrightarrow z$ implies that $z \in Y$.
In [FL15], we have formulated the following system of axioms:
Definition 3. Let N be a submodule of a free module F over the filtered ring R. A relation $\rho \subseteq F \times F$ is called a strong reduction for N provided that
I. ρ is noetherian, i.e. every sequence $f_{1} \longrightarrow f_{2} \longrightarrow \cdots$ terminates;
II. I is a monomial K-submodule of F, that is, I is a module and

$$
\forall f \in F(f \in I \Rightarrow \mathrm{~T}(f) \subseteq I)
$$

III. $f \longrightarrow h \Rightarrow f \equiv h \bmod N$;
IV. $N \cap I=0$.
A strong reduction ρ for N is called a strong Gröbner reduction if it satisfies in addition
V. $f \in F_{r} \wedge f \longrightarrow h \Longrightarrow h \in F_{r}$, that is, each filter group F_{r} is ρ-stable.

We can use the concept 'strong Gröbner reduction' to determine the dimension of filter spaces of finitely generated filtered modules. We recall the main theorem, proved in [FL15].

Theorem 1. Let K be a field, $R=K^{(\Lambda)}$ a filtered ring, and M a finitely generated R module. Choose a free presentation

$$
0 \longrightarrow N \longrightarrow F \xrightarrow{\pi} M \longrightarrow 0
$$

and equip M with the filtration $M_{r}=\pi\left(F_{r}\right)$. Assume given a Gröbner reduction for N, let U_{r} be the set of irreducible monomials in the filter space F_{r}. Then the sets $\pi\left(U_{r}\right)$ provide K-vector space bases for the spaces M_{r}. In particular

$$
\operatorname{dim}_{K} M_{r}=\left|\pi\left(U_{r}\right)\right|=\left|U_{r}\right| \quad\left(r \in \mathbb{N}^{p}\right)
$$

In order to treat the rings that will appear in this paper under these aspects we need to weaken Axiom II. to

- I is a monomial subset of F.

To make things completely transparent we formulate the modified system of axioms in its entirety.

Definition 4. Let N be a submodule of a free module F over the filtered ring R. A relation $\rho \subseteq F \times F$ is called a weak reduction for N provided that

1. ρ is noetherian;
2. I is a monomial subset of F, that is

$$
\forall f \in F(f \in I \Rightarrow \mathrm{~T}(f) \subseteq I)
$$

3. $f \longrightarrow h \Rightarrow f \equiv h \bmod N$;
4. $N \cap I=0$.

A weak reduction ρ for N is called a weak Gröbner reduction if it satisfies in addition
5. $f \in F_{r} \wedge f \longrightarrow h \Longrightarrow h \in F_{r}$.

Plainly every strong Gröbner reduction is also a weak one. Note that Axiom 4 (being present in both systems) implies that every non-zero element in N is reducible.

In the following sections we will consider several rings R and investigate reduction relations for submodules of free modules over them. While the rings are equipped with certain filtrations there is always present a well-ordering \prec of the monomials ΛE that distinguishes for all $f \in F \backslash 0$ a leading term $\operatorname{LT}(f)$ and a leading coefficient $\mathrm{LC}(f)$. In each of the examples below we are now concerned with two reduction relations: Let $f, g, h \in F, g \neq 0$. Then we have

1. full reduction ρ

$$
\begin{equation*}
f \xrightarrow[g]{\rho} h \Longleftrightarrow \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge h=f-\frac{f_{\mathrm{LT}(\lambda g)}}{\mathrm{LC}(\lambda g)} \lambda g \wedge P\right) \tag{1}
\end{equation*}
$$

2. leading term reduction σ

$$
\begin{equation*}
f \stackrel{\sigma}{g}>h \Longleftrightarrow \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g)=\mathrm{LT}(f) \wedge h=f-\frac{\mathrm{LC}(f)}{\mathrm{LC}(\lambda g)} \lambda g \wedge P\right) \tag{2}
\end{equation*}
$$

The symbol ' P ' denotes a predicate $P=P(f, g, \lambda, h)$ depending on the actual situation. For a set $G \subseteq F$ one has then in both cases

$$
\begin{equation*}
f \underset{G}{\longrightarrow} h \Longleftrightarrow \exists g \in G: f \xrightarrow[g]{\longrightarrow} h . \tag{3}
\end{equation*}
$$

These reduction concepts are the core of Gröbner bases.
Definition 5. Consider a submodule N of a free module $F=K^{(\Lambda E)}$. Assume given a well-order \prec on ΛE and a predicate $P=P(f, g, \lambda, h)$, and let ρ be the full reduction defined by these data. A subset $G \subseteq N$ is a Gröbner basis for N iff ρ is a weak reduction for N.

Given a filtered ring and the obvious necessary data, we need to check the defining axioms in order to reveal the relation ρ as a (weak) Gröbner reduction for $N=R G$. The set G is then exposed as a Gröbner basis for N and the filter groups are ρ-stable.

So we fix a set $G \subseteq F$ and write ρ and σ for the relations $f \xrightarrow[G]{\rho} h$ and $f \xrightarrow[G]{\sigma} h$ respectively, i.e., $f \longrightarrow_{\rho} h$ means $f \underset{G}{\rho} h$ and similar for σ. All our examples follow the pattern along the following lines.

1. Termination. Fix a positive integer q and design an injection $\varphi: \Lambda E \longrightarrow \mathbb{N}^{q}$. The set \mathbb{N}^{q} is ordered lexicographically

$$
\begin{equation*}
a<b \Longleftrightarrow a_{\min \left\{i: a_{i} \neq b_{i}\right\}}<b_{\min \left\{i: a_{i} \neq b_{i}\right\}} \tag{4}
\end{equation*}
$$

The set of monomials ΛE inherits a well order \prec by means of this injection. We call such an order induced by the injection φ. The well order \prec extends to a well order on the set of all finite subsets of ΛE (this is $\{\mathrm{T}(f): f \in F\}$):

$$
\mathrm{T}(f) \prec \mathrm{T}(g) \Longleftrightarrow \max (\mathrm{T}(f) \triangle \mathrm{T}(g)) \in \mathrm{T}(g)
$$

where \triangle is the symmetric difference (consider e.g. [BWK93]). It remains to check that $f \longrightarrow_{\rho} h$ has $\mathrm{T}(h) \prec \mathrm{T}(f)$ as a consequence: For arbitrary g, from $f \frac{\rho}{g} h$ we see that $\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \backslash \mathrm{T}(h)$ - where λ is a term as mentioned in (1) - whereas for all terms t with $t \succ \mathrm{LT}(\lambda g)$ we have $h_{t}=f_{t}$. This demonstrates that $\mathrm{T}(f) \succ \mathrm{T}(h)$.

Since $\sigma \subseteq \rho$ it is clear that $I_{\rho} \subseteq I_{\sigma}$ and σ terminates if ρ terminates. Consequently both relations terminate.
2. The set of irreducible monomials should be a monomial subset of F, i.e., $f \in I \Rightarrow \mathrm{~T}(f) \subseteq I$. The relation ρ has the property
f is ρ-reducible $\Longleftrightarrow \exists h: f \longrightarrow_{\rho} h$

$$
\Longleftrightarrow \quad \exists g \in G \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge P\left(f, g, \lambda, f-\frac{f_{\mathrm{LT}(\lambda g)}}{\mathrm{LC}(\lambda g)} \lambda g\right)\right.
$$

In case that P does not involve h, i.e., $P=P(f, g, \lambda)$, we obtain
f is ρ - reducible $\Longleftrightarrow \exists g \in G \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge \mathrm{LC}(\lambda g) \mid f_{\mathrm{LT}(\lambda g)} \wedge P(f, g, \lambda)\right)$.
For I_{ρ} to be monomial it is then enough to verify the monomial irreducibility condition

$$
\begin{array}{r}
\exists g \in G \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge \mathrm{LC}(\lambda g) \in K^{\times} \wedge P(\mathrm{LT}(\lambda g), g, \lambda)\right) \Rightarrow \\
\exists g \in G \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge \mathrm{LC}(\lambda g) \mid f_{\mathrm{LT}(\lambda g)} \wedge P(f, g, \lambda)\right) \tag{5}
\end{array}
$$

The monomial irreducibility condition for σ under the assumption $P=P(f, g, \lambda)$ is

$$
\begin{array}{r}
\exists g \in G \exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge \mathrm{LC}(\lambda g) \in K^{\times} \wedge P(\mathrm{LT}(\lambda g), g, \lambda)\right) \Rightarrow \\
\exists g \in G \exists \lambda \in \Lambda(\mathrm{LT}(\lambda g)=\mathrm{LT}(f) \wedge \mathrm{LC}(\lambda g) \mid \mathrm{LC}(f) \wedge P(f, g, \lambda)) \tag{6}
\end{array}
$$

It is clear that this condition is hard to satisfy. Indeed, I_{σ} is not monomial in general.
3. Compatibility of reduction with congruence modulo $N=R G$. This is always obvious from the shape of (1) and (2).
4. $N \cap I=0$. The validity of this condition must be guaranteed by an appropriate choice of the generator set G which is achieved by the usual Buchberger completion procedure.
5. Each filter space should be ρ-stable. In our examples we will consider univariate filtrations $\left(F_{t}\right)_{t \in \mathbb{N}}$ that are constructed due to the following schema:

We start with an 'order-function' $\nu: \Lambda \longrightarrow \mathbb{N}$, where $\nu(\lambda)$ can be read off from $\lambda \in \Lambda$, i.e., $\nu(\lambda)$ is the sum of certain exponents that are present in λ. The function ν extends to ΛE by setting $\nu(\lambda e)=\nu(\lambda)(\lambda \in \Lambda, e \in E)$, and further to entire F (we always use the same symbol)

$$
\nu(f)= \begin{cases}\max \{\nu(t): t \in \mathrm{~T}(f)\} & \ldots f \in F \backslash 0 \tag{7}\\ -\infty & \ldots f=0\end{cases}
$$

Then $\nu(f+g) \leq \max \{\nu(f), \nu(g)\}(f, g \in F)$ and $\nu(c \cdot f) \leq \nu(f)(f \in F, c \in K)$.

The univariate filtration induced by ν is then

$$
\begin{equation*}
F_{t}^{\nu}=\{f \in F: \nu(f) \leq t\}(t \in \mathbb{N}) \tag{8}
\end{equation*}
$$

Remark that this defines implicitely the sets $R_{t}^{\nu}(t \in \mathbb{N})$ since $R=R^{1}$.

From the properties of ν it is plain that

- the sets F_{t}^{ν} are monomial K-modules;
- $s \leq t \Rightarrow F_{s}^{\nu} \subseteq F_{t}^{\nu}$;
- $\bigcup_{t=0}^{\infty} F_{t}^{\nu}=F$.

It remains to check that $R_{s} \cdot F_{t} \subseteq F_{s+t}(s, t \in \mathbb{N})$, which is then the only property of filtrations that depends on the actual ring structure of R.

The multivariate filtrations that we consider are constructed from univariate ones by means of intersection:

Given order functions ν_{1}, \ldots, ν_{p} and $\alpha \in \mathbb{N}^{p}$ we set

$$
\begin{equation*}
F_{\alpha}^{\nu_{1}, \ldots, \nu_{p}}=F_{\alpha_{1}}^{\nu_{1}} \cap \cdots \cap F_{\alpha_{p}}^{\nu_{p}}=\left\{f \in F: \nu_{1}(f) \leq \alpha_{1} \wedge \cdots \wedge \nu_{p}(f) \leq \alpha_{p}\right\} \tag{9}
\end{equation*}
$$

The next theorem condenses the preceeding discussion.
Theorem 2. Let G be a subset of the free R-module $F=K^{(\Lambda E)}$. Assume that

- \prec is a well order on ΛE;
- $P=P(f, g, \lambda, h)$ is a predicate $F \times G \times \Lambda \times F \longrightarrow\{0,1\}$;
- ρ is the full reduction defined by (\prec, P, G);
- $\left(R_{t}^{j}\right)_{t \in \mathbb{N}}$ is defined by an order function $\nu_{j}: \Lambda \longrightarrow \mathbb{N}(1 \leq j \leq p)$;
- $R_{\alpha}=R_{\alpha_{1}}^{1} \cap \cdots \cap R_{\alpha_{p}}^{p}\left(\alpha \in \mathbb{N}^{p}\right)$;
- $F_{\alpha}=\bigoplus_{e \in E} R_{\alpha} \cdot e$.

Under these assumptions, if

1. $R_{s}^{j} \cdot R_{t}^{j} \subseteq R_{s+t}^{j}(s, t \in \mathbb{N}, j=1, \ldots, p)$,
2. $P=P(f, g, \lambda)$ and the monomial irreducibility condition (5) holds,
3. $f \xrightarrow[g]{\stackrel{\rho}{g}} h \wedge f \in F_{\alpha} \Rightarrow h \in F_{\alpha}(\forall g \in G)$,
4. $N \cap I_{\rho}=0$,
then $\left(F_{\alpha}\right)_{\alpha \in \mathbb{N}^{p}}$ is a monomial filtration on F w.r.t. the monomial filtration $\left(R_{\alpha}\right)_{\alpha \in \mathbb{N}^{p}}$ and ρ is a Gröbner reduction for $R G$.

3 The Weyl Algebra $\mathrm{A}_{n}(\mathbf{k})$

The theory of the Weyl algebra $\mathrm{A}_{n}(\mathbf{k})$ in n variables is the study of modules over rings of differential operators with polynomial coefficients over the field \mathbf{k}. In this section we develop the properties of $A_{n}(\mathbf{k})$ that are relevant for Gröbner reduction. In its second part we refer to work appearing in [DL12] and prove that the theory developed there is an instance of our concepts.

Let \mathbf{k} be a field of characteristic 0 and let d_{i} denote the i-th partial derivative of the polynomial ring $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$. The Weyl algebra $A_{n}(\mathbf{k})$ is the \mathbf{k}-algebra generated by $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right] \cup\left\{d_{1}, \ldots, d_{n}\right\}$ as a subalgebra of $\operatorname{End}_{\mathbf{k}}\left(\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]\right)$. The multiplication in this ring obeys the rules

$$
x_{i} x_{j}=x_{j} x_{i}, \quad d_{i} d_{j}=d_{j} d_{i}, \quad d_{i} x_{j}=x_{j} d_{i}+\delta_{i, j} \quad(1 \leq i, j \leq n)
$$

($\delta_{i, j}$ is the Kronecker symbol).
Let A denote the $\operatorname{ring} A_{n}(\mathbf{k})$. We may consider A as a free $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$-module with basis $\Lambda_{1}=\left\{d^{l}: l \in \mathbb{N}^{n}\right\}$. Then Λ_{1} is a monoid isomorphic to \mathbb{N}^{n} and, according to our notational conventions, K and R specialize to $K=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ and $R=K^{\left(\Lambda_{1}\right)}$.

We will here stress the $2^{\text {nd }}$ approach: A as a \mathbf{k}-vector space with distinguished set of monomials $\Lambda_{2}=\left\{x^{k} d^{l}:(k, l) \in \mathbb{N}^{n} \times \mathbb{N}^{n}\right\}$. In the following we write Λ for Λ_{2}. Note that Λ is not closed under multiplication.

Explicitly, the product of two monomials in $A_{n}(\mathrm{k})$ is

$$
\begin{equation*}
x^{k} d^{l} \cdot x^{p} d^{q}=\sum_{v \in \mathbb{N}^{n}}\binom{l}{v} x^{k} \partial^{v}\left(x^{p}\right) d^{l+q-v} \tag{10}
\end{equation*}
$$

where $\binom{l}{v}=\binom{l_{1}}{v_{1}} \cdots\binom{l_{n}}{v_{n}}$. To visualize the scope of the sum we may write

$$
x^{k} d^{l} \cdot x^{p} d^{q}=\sum_{v \leq \pi l \sqcap p} \frac{l!\cdot p!}{v!\cdot(l-v)!\cdot(p-v)!} x^{k+p-v} d^{l+q-v}
$$

$l \sqcap p$ denoting the infimum of $\{l, p\}$ in \mathbb{N}^{n}.
Let A denote the Weyl algebra $A_{n}(\mathbf{k})$ and $F=A^{(E)}$ the free A-module with basis $E=$ $\left\{e_{1}, \ldots, e_{q}\right\}$.

Proposition 1. $\lambda, \mu \in \Lambda$ and $t_{1}, t_{2} \in \Lambda E$. Then

1. $\lambda \cdot t_{1}=\lambda \cdot t_{2} \Rightarrow t_{1}=t_{2} ;$
2. $\lambda \cdot t_{1}=\mu \cdot t_{1} \Rightarrow \lambda=\mu$.

Proof. $\lambda=x^{k} d^{l}, t_{1}=x^{p} d^{q} e_{1}, t_{2}=x^{r} d^{s} e_{2}$.

1. If $\lambda \cdot t_{1}=\lambda \cdot t_{2}$ then $x^{k} d^{l} \cdot x^{p} d^{q} e_{1}=x^{k} d^{l} \cdot x^{r} d^{s} e_{2}$, therefore $e_{1}=e_{2}$. We get

$$
\begin{gathered}
\sum_{u \leq \pi l \sqcap p} b_{u} x^{k+p-u} d^{l+q-u}=\sum_{v \leq \pi l \Pi r} c_{v} x^{k+r-v} d^{l+s-v} \quad\left(b_{u}, c_{v} \in \mathbb{N}\right) . \\
\exists v: x^{k+p} d^{l+q}=c_{v} x^{k+r-v} d^{l+s-v} \wedge \exists u: x^{k+r} d^{l+s}=b_{u} x^{k+p-u} d^{l+q-u} .
\end{gathered}
$$

It follows that

$$
p=r-v, q=s-v, r=p-u, s=q-u
$$

from which we derive that $u=v=0$. Consequently $t_{1}=t_{2}$.
2. This is proved similarly.

We consider three natural order functions $\Lambda \longrightarrow \mathbb{N}$. For $\lambda=x^{k} d^{l} \in \Lambda$

$$
\nu_{1}(\lambda)=|k|=k_{1}+\cdots+k_{n}, \quad \nu_{2}(\lambda)=|l|=l_{1}+\cdots+l_{n}, \quad \nu_{0}=\nu_{1}+\nu_{2} .
$$

The extensions of the ν_{j} to $F(j=0,1,2)$ obey the rules

$$
\begin{align*}
\nu_{j}(f+g) & \leq \max \left\{\nu_{j}(f), \nu_{j}(g)\right\} \quad(f, g \in F) \tag{11}\\
\nu_{j}(c f) & =\nu_{j}(f)(c \in \mathbf{k} \backslash 0) .
\end{align*}
$$

Note that the extension of ν_{0} to F is not the sum of the extensions to F from ν_{1} and ν_{2}.
We define three well orders $\prec_{x}, \prec_{d}, \prec_{0}$ on ΛE :
\prec_{x} comes from the injection

$$
\Lambda E \longrightarrow \mathbb{N}^{2 n+3}, t=x^{k} d^{l} e_{i} \mapsto\left(\nu_{1}(t), \nu_{2}(t), k_{1}, \ldots, k_{n}, l_{1}, \ldots, l_{n}, i\right) ;
$$

\prec_{d} comes from

$$
\Lambda E \longrightarrow \mathbb{N}^{2 n+3}, t=x^{k} d^{l} e_{i} \mapsto\left(\nu_{2}(t), \nu_{1}(t), l_{1}, \ldots, l_{n}, k_{1}, \ldots, k_{n}, i\right) ;
$$

\prec_{0} comes from

$$
\Lambda E \longrightarrow \mathbb{N}^{2 n+2}, t=x^{k} d^{l} e_{i} \mapsto\left(\nu_{0}(t), k_{1}, \ldots, k_{n}, l_{1}, \ldots, l_{n}, i\right)
$$

The corresponding leading term and leading coefficient functions are written $\mathrm{LT}_{x}, \mathrm{LC}_{x}$, $\mathrm{LT}_{d}, \mathrm{LC}_{d}$ and $\mathrm{LT}_{0}, \mathrm{LC}_{0}$ respectively.

Lemma 1. Let $\lambda=x^{k} d^{l} \in \Lambda, t=x^{r} d^{s} e \in \Lambda E, f \in F \backslash 0$. Then

1. $\nu_{1}(\lambda \cdot t)=k+r, \nu_{2}(\lambda \cdot t)=l+s, \nu_{0}(\lambda \cdot t)=k+r+l+s=\nu_{1}(\lambda \cdot t)+\nu_{2}(\lambda \cdot t)$;
2. $\operatorname{LT}_{x}(\lambda \cdot t)=\operatorname{LT}_{d}(\lambda \cdot t)=\mathrm{LT}_{0}(\lambda \cdot t)=x^{k+r} d^{l+s} e$;
3. $\nu_{1}(f)=\nu_{1}\left(\operatorname{LT}_{x}(f)\right), \nu_{2}(f)=\nu_{2}\left(\operatorname{LT}_{d}(f)\right), \nu_{0}(f)=\nu_{0}\left(\operatorname{LT}_{0}(f)\right)$;
4. $\nu_{j}(\lambda \cdot t)=\nu_{j}(\lambda)+\nu_{j}(t)(0 \leq j \leq 2)$.

Proof.

1. This is obvious from (10).
2. Also evident from (10).
3. Take $s \in \mathrm{~T}(f)$. Then $s \preceq_{x} \operatorname{LT}_{x}(f), s \preceq_{d} \operatorname{LT}_{d}(f)$ and $s \preceq_{0} \operatorname{LT}_{0}(f)$. Therefore $\nu_{1}(s) \leq \nu_{1}\left(\operatorname{LT}_{x}(f)\right), \nu_{2}(s) \leq \nu_{2}\left(\operatorname{LT}_{d}(f)\right)$ and $\nu_{0}(s) \leq \nu_{0}\left(\mathrm{LT}_{0}(f)\right)$. Therefore

$$
\begin{aligned}
& \nu_{1}(f)=\max \left\{\nu_{1}(s): s \in \mathrm{~T}(f)\right\}=\nu_{1}\left(\operatorname{LT}_{x}(f)\right) \\
& \nu_{2}(f)=\max \left\{\nu_{2}(s): s \in \mathrm{~T}(f)\right\}=\nu_{2}\left(\operatorname{LT}_{d}(f)\right) \\
& \nu_{0}(f)=\max \left\{\nu_{0}(s): s \in \mathrm{~T}(f)\right\}=\nu_{0}\left(\operatorname{LT}_{0}(f)\right)
\end{aligned}
$$

4. This is obvious from point 1 .

Lemma 2. Let $\lambda, \mu \in \Lambda, s, t \in \Lambda E$ and $j \in\{x, d, 0\}$.

1. $\lambda \prec_{j} \mu \Rightarrow \operatorname{LT}_{j}(\lambda t) \prec_{j} \operatorname{LT}_{j}(\mu t)$;
2. $s \prec_{j} t \Rightarrow \operatorname{LT}_{j}(\lambda s) \prec_{j} \operatorname{LT}_{j}(\lambda t)$.

Proof. 1.) $\lambda=x^{k} d^{l}, \mu=x^{r} d^{s}, t=\nu e=x^{\alpha} d^{\beta} e, \lambda \prec_{x} \mu$. Then

$$
\operatorname{LT}_{x}(\lambda t)=x^{k+\alpha} d^{l+\beta} e \text { and } \operatorname{LT}_{x}(\mu t)=x^{r+\alpha} d^{s+\beta} e
$$

If $\nu_{1}(\lambda)<\nu_{1}(\mu)$ then

$$
\nu_{1}\left(\operatorname{LT}_{x}(\lambda t)\right)=|k+\alpha|=|k|+|\alpha|<|r|+|\alpha|=|r+\alpha|=\nu_{1}\left(\operatorname{LT}_{x}(\mu t)\right)
$$

and thus $\operatorname{LT}_{x}(\lambda t) \prec_{x} \operatorname{LT}_{x}(\mu t)$.
If $\nu_{1}(\lambda)=\nu_{1}(\mu)$ and $\nu_{2}(\lambda)<\nu_{2}(\mu)$ then

$$
\begin{aligned}
\nu_{1}\left(\operatorname{LT}_{x}(\lambda t)\right) & =|k|+|\alpha|=|r|+|\alpha|=\nu_{1}\left(\operatorname{LT}_{x}(\mu t)\right) \\
\nu_{2}\left(\operatorname{LT}_{x}(\lambda t)\right) & =|l|+|\beta|<|s|+|\beta|=\nu_{2}\left(\operatorname{LT}_{x}(\mu t)\right)
\end{aligned}
$$

which also means that $\operatorname{LT}_{x}(\lambda t) \prec_{x} \operatorname{LT}_{x}(\mu t)$.

If $\nu_{1}(\lambda)=\nu_{1}(\mu)$ and $\nu_{2}(\lambda)=\nu_{2}(\mu)$ and $k \neq r$ then let $j=\min \left\{i: k_{i} \neq r_{i}\right\}$. We obtain

$$
(|k+\alpha|,|l+\beta|,(k+\alpha),(l+\beta), e)<_{\operatorname{lex}}(|r+\alpha|,|s+\beta|,(r+\alpha),(s+\beta), e) .
$$

Once again this means that $\operatorname{LT}_{x}(\lambda t) \prec_{x} \operatorname{LT}_{x}(\mu t)$.
If $\nu_{1}(\lambda)=\nu_{1}(\mu)$ and $\nu_{2}(\lambda)=\nu_{2}(\mu)$ and $k=r$ then l must be different from s. Let $j=\min \left\{i: l_{i} \neq s_{i}\right\}$. Then $l_{j}<s_{j}$ which results again in $\operatorname{LT}_{x}(\lambda t) \prec_{x} \operatorname{LT}_{x}(\mu t)$.
2.) $\lambda=x^{\alpha} d^{\beta}, s=x^{k} d^{l} e_{1}, t=x^{p} d^{q} e_{2}, s \prec_{x} t$. The proof works similarly as before. The only difference is that there is one more case: When $x^{k} d^{l}=x^{p} d^{q}$ then e_{1} must be smaller
than e_{2} and the statement follows.
The proofs of the remainig statements are repetitions of the previous considerations by changing the subscripts of \prec, LT, LC and the order functions accordingly.

Proposition 2. $\operatorname{char}(\mathbf{k})=0, A=A_{n}(\mathbf{k}), F=A^{(E)}$ the free A-module on the set E. Let $a \in A \backslash 0, f \in F \backslash 0$ and $j \in\{x, d, 0\}$. Then

$$
\begin{align*}
\operatorname{LT}_{j}(a \cdot f) & =\operatorname{LT}_{j}\left(\operatorname{LT}_{j}(a) \cdot \operatorname{LT}_{j}(f)\right) ; \\
\operatorname{LC}_{j}(a \cdot f) & =\operatorname{LC}_{j}(a) \cdot \operatorname{LC}_{j}(f) . \tag{12}
\end{align*}
$$

Proof. Let $\lambda_{0}=\operatorname{LT}_{x}(a), a_{0}=\operatorname{LC}_{x}(a), t_{0}=\operatorname{LT}_{x}(f), f_{0}=\mathrm{LC}_{x}(f)$. Thus

$$
\begin{gathered}
a=a_{0} \lambda_{0}+\sum_{\lambda \prec_{x} \lambda_{0}} a_{\lambda} \lambda \text { and } f=f_{0} t_{0}+\sum_{t \prec_{x} t_{0}} f_{t} t . \\
a \cdot f=\underbrace{a_{0} f_{0} \lambda_{0} t_{0}}_{(0)}+\underbrace{\sum_{t \not x_{0} t_{0}} a_{0} f_{t} \lambda_{0} t}_{(1)}+\underbrace{\sum_{\lambda \prec_{x} \lambda_{0}} a_{\lambda} f_{0} \lambda t_{0}}_{(2)}+\underbrace{\sum_{\lambda \prec_{x} \lambda_{0}} \sum_{t \prec_{x} t_{0}} a_{\lambda} f_{t} \lambda t}_{(3)} .
\end{gathered}
$$

Pick out a term $\lambda_{0} t$ of sum (1). Then from Lemma 2 we derive $\operatorname{LT}_{x}\left(\lambda_{0} t\right) \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right)$. Similar things happen when choosing a term from sum (2) or (3):

$$
\begin{aligned}
\operatorname{LT}_{x}\left(\lambda t_{0}\right) & \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right) \text { (term chosen from (2)), } \\
\operatorname{LT}_{x}(\lambda t) \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t\right) & \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right) \text { (term chosen from (3)), }
\end{aligned}
$$

Let $s \in \mathrm{~T}(a \cdot f)$. Then $\exists \lambda, t$ with $\lambda \in \mathrm{T}(a)$ and $t \in \mathrm{~T}(f)$ and $s \in \mathrm{~T}(\lambda t)$. It follows that $s \preceq_{x} \operatorname{LT}_{x}(\lambda t)$.

$$
\begin{aligned}
& \lambda=\lambda_{0} \wedge t=t_{0} \Rightarrow s \preceq_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right) ; \\
& \lambda=\lambda_{0} \wedge t \neq t_{0} \Rightarrow s \preceq_{x} \operatorname{LT}_{x}\left(\lambda_{0} t\right) \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right) ; \\
& \lambda \neq \lambda_{0} \wedge t=t_{0} \Rightarrow s \preceq_{x} \operatorname{LT}_{x}\left(\lambda t_{0}\right) \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right) ; \\
& \lambda \neq \lambda_{0} \wedge t \neq t_{0}
\end{aligned} \Rightarrow s \prec_{x} \operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right) .
$$

Consequently

$$
\begin{aligned}
& \operatorname{LT}_{x}(a \cdot f)=\operatorname{LT}_{x}\left(\lambda_{0} t_{0}\right)=\operatorname{LT}_{\mathrm{x}}\left(\operatorname{LT}_{x}(a) \cdot \operatorname{LT}_{x}(f)\right) \text { and } \\
& \operatorname{LC}_{x}(a \cdot f)=a_{0} f_{0}=\operatorname{LC}_{x}(a) \cdot \operatorname{LC}_{x}(f) .
\end{aligned}
$$

Again the proof of the remaining statements is a repetition by changing ' x ' to ' d ' or ' 0 ' respectively.

Corollary 1. $j \in\{x, d, 0\}$. Then

$$
\lambda \in \Lambda \backslash 0 \wedge f \in F \backslash 0 \Rightarrow \operatorname{LT}_{j}(\lambda f)=\operatorname{LT}_{j}\left(\lambda \cdot \operatorname{LT}_{j}(f)\right) .
$$

Corollary 2. Let $a \in A, f \in F$. Then

$$
\begin{equation*}
\nu_{j}(a \cdot f)=\nu_{j}(a)+\nu_{j}(f) \quad(j=0,1,2) . \tag{13}
\end{equation*}
$$

Proof. If $a=0$ or $f=0$ the statements are obvious. So assume $a \neq 0 \wedge f \neq 0$. Set

$$
\begin{array}{ll}
\lambda_{1}=x^{k} d^{l}=\operatorname{LT}_{x}(a) & t_{1}=x^{\alpha} d^{\beta} e_{1}=\operatorname{LT}_{x}(f) \\
\lambda_{2}=x^{p} d^{q}=\operatorname{LT}_{d}(a) & t_{2}=x^{\gamma} d^{\delta} e_{2}=\operatorname{LT}_{d}(f) \\
\lambda_{3}=x^{r} d^{s}=\operatorname{LT}_{0}(a) & t_{3}=x^{\varepsilon} d^{\zeta} e_{3}=\operatorname{LT}_{0}(f)
\end{array}
$$

From Lemma 1 we get

$$
\mathrm{LT}_{x}\left(\lambda_{1} \cdot t_{2}\right)=x^{k+\alpha} d^{l+\beta} e_{1}, \mathrm{LT}_{d}\left(\lambda_{2} \cdot t_{2}\right)=x^{p+\gamma} d^{q+\delta} e_{2}, \mathrm{LT}_{0}\left(\lambda_{3} \cdot t_{3}\right)=x^{r+\varepsilon} d^{s+\zeta} e_{3}
$$

From (1) and (12):

$$
\begin{aligned}
\nu_{1}(a \cdot f) & =\nu_{1}\left(\operatorname{LT}_{x}(a \cdot f)\right)=\nu_{1}\left(\operatorname{LT}_{x}\left(\operatorname{LT}_{x}(a) \cdot \operatorname{LT}_{x}(f)\right)\right)=\nu_{1}\left(\operatorname{LT}_{x}\left(\lambda_{1} \cdot t_{1}\right)\right) \\
& =\nu_{1}\left(x^{k+\alpha} d^{l+\beta} e_{1}\right)=|k+\alpha|=|k|+|\alpha|=\nu_{1}\left(\operatorname{LT}_{x}(a)\right)+\nu_{1}\left(\operatorname{LT}_{x}(f)\right) \\
& =\nu_{1}(a)+\nu_{1}(f) . \\
\nu_{2}(a \cdot f) & =\nu_{2}\left(\operatorname{LT}_{d}(a \cdot f)\right)=\nu_{2}\left(\operatorname{LT}_{d}\left(\operatorname{LT}_{d}(a) \cdot \operatorname{LT}_{d}(f)\right)\right)=\nu_{2}\left(\operatorname{LT}_{d}\left(\lambda_{2} \cdot t_{2}\right)\right) \\
& =\nu_{2}\left(x^{p+\gamma} d^{q+\delta} e_{2}\right)=|q+\delta|=|q|+|\delta|=\nu_{2}\left(\operatorname{LT}_{d}(a)\right)+\nu_{2}\left(\operatorname{LT}_{d}(f)\right) \\
& =\nu_{2}(a)+\nu_{2}(f) . \\
& \\
\nu_{0}(a \cdot f) & =\nu_{0}\left(\operatorname{LT}_{0}(a \cdot f)\right)=\nu_{0}\left(\operatorname{LT}_{0}\left(\operatorname{LT}_{0}(a) \cdot \operatorname{LT}_{0}(f)\right)\right)=\nu_{0}\left(\operatorname{LT}_{0}\left(\lambda_{3} \cdot t_{3}\right)\right) \\
& =\nu_{0}\left(x^{r+\varepsilon} d^{s+\zeta} e_{3}\right)=|r+\varepsilon+s+\zeta|=|r+s|+|\varepsilon+\zeta|=\nu_{0}\left(\operatorname{LT}_{0}(a)\right)+\nu_{0}\left(\operatorname{LT}_{0}(f)\right) \\
& =\nu_{0}(a)+\nu_{0}(f) .
\end{aligned}
$$

For a different proof of the statement involving ν_{0} see [Cou95], chapter 2. Proposition 1 generalizes to the statement that $A_{n}(\mathbf{k})$ is a domain.

Corollary 3. $a \in A, f \in F$. Then $a \cdot f=0 \Rightarrow a=0 \vee f=0$.
Proof. Assume $a \neq 0 \wedge f \neq 0$. Let ν denote one of $\nu_{1}, \nu_{2}, \nu_{0}$. Then $\nu(a) \geq 0 \wedge \nu(f) \geq 0$. It follows $\nu(a \cdot f)=\nu(a)+\nu(f) \geq 0$. Consequently $a \cdot f \neq 0$.

Definition 6. For $r, s \in \mathbb{N}$ we set

$$
\begin{align*}
F_{r}^{0} & =\left\{f \in F: \nu_{0}(f) \leq r\right\} \\
F_{r}^{1} & =\left\{f \in F: \nu_{1}(f) \leq r\right\} \\
F_{r}^{2} & =\left\{f \in F: \nu_{2}(f) \leq r\right\} \\
F_{r, s} & =F_{r}^{1} \cap F_{s}^{2} \tag{14}
\end{align*}
$$

We will show that these sets define filtrations on F. Remark that we have defined implicitely $A_{r}^{(i)}$ and $A_{r, s}$ since we may consider A as the free module A^{1}.

Proposition 3.

1. $\left(F_{r}^{i}\right)_{r \in \mathbb{N}}$ defines a univariate filtration on $F(0 \leq i \leq 2)$.
2. $\left(F_{r, s}\right)_{(r, s) \in \mathbb{N}^{2}}$ defines a bivariate filtration on F.

Proof. From (11) it is clear that all the sets F_{r}^{i} - hence also the $F_{r, s}$ are monomial k-vector spaces, that is, vector spaces with the property

$$
f \in F_{r}^{i} \Longleftrightarrow \mathrm{~T}(f) \subseteq F_{r}^{i} \quad(i=0,1,2)
$$

Immediately from Corollary 2 we obtain that $A_{r}^{i} \cdot F_{s}^{i} \subseteq F_{r+s}^{i}(i=0,1,2)$. Therefore also $A_{r, s} \cdot F_{t, u} \subseteq F_{r+t, s+u}$.

Corollary 4. $\forall r \in \mathbb{N}: F_{r}^{0} \subseteq F_{r, r} \subseteq F_{2 r}^{0}$.
Proof. By monoimiality, if $f \in F_{r}^{0}$ then $\mathrm{T}(f) \subseteq F^{0}$. Thus, for arbitrary $t \in \mathrm{~T}(f)$, $\nu_{1}(t)+\nu_{2}(t)=\nu_{0}(t) \leq r$. Therefore also $\nu_{1}(t) \leq r$ and $\nu_{2}(t) \leq r$, i.e., $t \in F_{r}^{1} \cap F_{r}^{2}=F_{r, r}$. Thus $\mathrm{T}(f) \subseteq F_{r, r}$ and so $f \in F_{r, r}$.

Now assume that $f \in F_{r, r}$. Then $\mathrm{T}(f) \subseteq F_{r, r}$. Therefore, if $t \in \mathrm{~T}(f)$ then $\nu_{0}(t)=$ $\nu_{1}(t)+\nu_{2}(t) \leq r+r$. Consequently $t \in F_{2 r}^{0}$. This shows that $f \in F_{2 r}^{0}$.

(x, ∂)-Gröbner Bases

Dönch and Levin [DL12] introduced the notion of an (x, ∂)-Gröbner basis for free modules over $A_{n}(\mathbf{k})$. We present their concepts here and prove then that the reduction relation resulting from a (x, ∂)-basis is a Gröbner reduction in our sense.

First they defined a divisibility notion in a non-standard way mimicking commutative monomials

$$
x^{k} d^{l} \mid x^{r} d^{s} \Longleftrightarrow(k, l) \leq_{\pi}(r, s)
$$

This notion extends to divisibility of monomials $t_{1}=x^{k} d^{l} e_{1}, t_{2}=x^{r} d^{s} e_{2}$ of the free A module $F=A^{(E)}$ by setting

$$
t_{1}\left|t_{2} \Longleftrightarrow x^{k} d^{l}\right| x^{r} d^{s} \wedge e_{1}=e_{2}
$$

In this case the quotient $\frac{t_{2}}{t_{1}}$ is the element $x^{r-k} d^{s-l} \in \Lambda$.

Lemma 3. Let $t_{1}, t_{2} \in \Lambda E$. Then

$$
t_{1} \left\lvert\, t_{2} \Rightarrow \frac{t_{2}}{t_{1}} \cdot t_{1}=t_{2}+\sum_{j} n_{j} s_{j}\right.
$$

with all $n_{j} \in \mathbb{N}^{+}$and $s_{j} \in \Lambda E$ such that

$$
\nu_{1}\left(s_{j}\right)<\nu_{1}\left(t_{2}\right) \wedge \nu_{2}\left(s_{j}\right)<\nu_{2}\left(t_{2}\right)
$$

Proof. $t_{1}=x^{k} d^{l} e, t_{2}=x^{r} d^{s} e, k \leq r, \leq s$. Using formula (10) gives

$$
\begin{aligned}
\frac{t_{2}}{t_{1}} \cdot t_{1} & =x^{r-k} d^{s-l} \cdot x^{k} d^{l} e=\sum_{v \leq \pi s-l}\binom{s-l}{v} x^{r-k} \partial^{v}\left(x^{k}\right) d^{s-l+l-v} e \\
& =\left[\binom{s-l}{0} x^{r-k} \partial^{0}\left(x^{k}\right) d^{s-0}+\sum_{0 \neq v \leq \pi^{s}-l}\binom{s-l}{v} x^{r-k} \partial^{v}\left(x^{k}\right) d^{s-v}\right] e
\end{aligned}
$$

$$
=x^{r} d^{s} e+\sum_{0 \neq v \leq \pi s-l}\binom{s-l}{v} x^{r-k} \partial^{v}\left(x^{k}\right) d^{s-v} e=t_{2}+\sum_{j} n_{j} s_{j}
$$

Since the index v in the previous sum is in $\mathbb{N}^{n} \backslash 0$ the conditions on the s_{j} are obvious.
Lemma 4. Let $t_{1}, t_{2}, w \in \Lambda E$. Then

$$
t_{1} \prec_{x} t_{2} \wedge t_{2} \left\lvert\, w \Rightarrow\left(\frac{w}{t_{2}} t_{1}\right)_{w}=0\right.
$$

Proof. Set $t_{1}=x^{\alpha} d^{\beta} e_{1}, t_{2}=x^{\gamma} d^{\delta} e_{2}, w=x^{r} d^{s} e_{2}, \gamma \leq_{\pi} r, \delta \leq_{\pi} s$. From $t_{1} \prec_{x} t_{2}$ we get $\nu_{1}\left(t_{1}\right) \leq \nu_{1}\left(t_{1}\right)$ whence $|\alpha| \leq|\gamma|$. From (10) we obtain

$$
\begin{aligned}
\frac{w}{t_{2}} \cdot t_{1} & =x^{r-\gamma} d^{s-\delta} \cdot x^{\alpha} d^{\beta} e_{1}=\sum_{u \leq \pi s-\delta}\binom{s-\delta}{u} x^{r-\gamma} \partial^{u}\left(x^{\alpha}\right) d^{s-\delta+\beta-u} \cdot e_{1} \\
& =\sum_{u \leq \pi s-\delta}\binom{s-\delta}{u} \frac{\alpha!}{(\alpha-u)!} x^{r-\gamma+\alpha-u} d^{s-\delta+\beta-u} \cdot e_{1}
\end{aligned}
$$

To derive a contradiction assume that $\left(\frac{w}{t_{2}} \cdot t_{1}\right)_{w} \neq 0$. Then

$$
\exists u\left(0 \leq_{\pi} u \leq_{\pi} s-\delta \wedge x^{r-\gamma+\alpha-u} d^{s-\delta+\beta-u} \cdot e_{1}=x^{r} d^{s} \cdot e_{2}\right) \text { that is, }
$$

$e_{1}=e_{2} \wedge \alpha=\gamma+u \wedge \beta=\delta+u \leq_{\pi} s$, i.e., $u=\beta-\delta \geq_{\pi} 0, \delta \leq_{\pi} \beta$.
If $u>_{\pi} 0$ then $|\alpha|=|\gamma|+|u|>|\gamma|$, a contradiction. Therefore $u=0, \alpha=\gamma \wedge \beta=\delta \wedge e_{1}=e_{2}$, i.e., $t_{1}=t_{2}$. This contradicts the assumption $t_{1} \prec_{x} t_{2}$. Consequently $\left(\frac{w}{t_{2}} t_{1}\right)_{w}=0$.

Let $f, g, h \in F, g \neq 0 .(x, \partial)$-reduction defined in [DL12] amounts to the following

$$
\begin{align*}
f \xrightarrow[g]{(x, \partial)} h \Longleftrightarrow & \exists w \in \mathrm{~T}(f)\left(\operatorname{LT}_{x}(g) \left\lvert\, w \wedge h=f-\frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\mathrm{LT}_{x}(g)} g\right.\right. \\
& \left.\wedge \nu_{2}\left(\frac{w}{\operatorname{LT}_{x}(g)} \cdot \operatorname{LT}_{d}(g)\right) \leq \nu_{2}\left(\operatorname{LT}_{d}(f)\right)\right) \tag{15}
\end{align*}
$$

Lemma 5. Assume that $f \xrightarrow[g]{(x, \partial)} h$ and let w be a term mentioned in (15). Then $w \notin \mathrm{~T}(h)$.
Proof. Isolating the x-leader of g gives

$$
\begin{aligned}
h & =f-\frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\mathrm{LT}_{x}(g)}\left(\mathrm{LC}_{x}(g) \mathrm{LT}_{x}(g)+\sum_{t \in \Lambda E \backslash\left\{\mathrm{LT}_{x}(g)\right\}} g_{t} t\right) \\
& =f-\frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\mathrm{LT}_{x}(g)} \mathrm{LC}_{x}(g) \mathrm{LT}_{x}(g)-\frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\mathrm{LT}_{x}(g)} \sum_{t \neq \mathrm{LT}_{x}(g)} g_{t} t \\
& =f-f_{w} \frac{w}{\operatorname{LT}_{x}(g)} \cdot \operatorname{LT}_{x}(g)-\sum_{t \neq \mathrm{LT}_{x}(g)} \frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\mathrm{LT}_{x}(g)} g_{t} t
\end{aligned}
$$

Aplication of Lemma 3 gives

$$
h=f-f_{w}\left(w+\sum_{j} n_{j} s_{j}\right)-\sum_{t \prec_{x} \mathrm{LT}_{x}(g)} \frac{f_{w}}{\operatorname{LC}_{x}(g)} \frac{w}{\operatorname{LT}_{x}(g)} g_{t} t
$$

$$
\begin{equation*}
=f-f_{w} w-\sum_{j} n_{j} f_{w} s_{j}-\sum_{t \prec_{x} \mathrm{LT}_{x}(g)} \frac{f_{w} g_{t}}{\mathrm{LC}_{x}(g)} \frac{w}{\operatorname{LT}_{x}(g)} t \tag{16}
\end{equation*}
$$

where all $n_{j}>0$ and $\nu_{1}\left(s_{j}\right)<\nu_{1}(w), \nu_{2}\left(s_{j}\right)<\nu_{2}(w)$.
Considering (16), the coefficient of w in h is

$$
h_{w}=f_{w}-f_{w}-0-\sum_{t \prec_{x} \mathrm{LT}_{x}(g)} \frac{f_{w} g_{t}}{\operatorname{LC}_{x}(g)}\left(\frac{w}{\mathrm{LT}_{x}(g)} t\right)_{w} .
$$

Lemma 4 now immediately provides $h_{w}=0$.
It is now possible to relate (x, ∂)-reduction to Gröbner reduction.
Theorem 3. Let P denote the predicate

$$
\begin{gather*}
P(f, g, \lambda) \Longleftrightarrow \nu_{2}(\lambda \cdot g) \leq \nu_{2}(f) \text {. Then } \\
f \stackrel{(x, \partial)}{g} h \Longleftrightarrow \exists \lambda \in \Lambda\left(\operatorname{LT}_{x}(\lambda g) \in \mathrm{T}(f) \wedge h=f-\frac{f_{\mathrm{LT}_{x}(\lambda g)}}{\mathrm{LC}_{x}(\lambda g)} \lambda g \wedge P(f, g, \lambda)\right) . \tag{17}
\end{gather*}
$$

Consequently, using notation (1) from section 3, we have

$$
f \stackrel{(x, \partial)}{g} h \Longleftrightarrow f \stackrel{\rho}{g} h .
$$

Proof. Observe that

$$
P(f, g, \lambda) \Longleftrightarrow \nu_{2}\left(\lambda \cdot \mathrm{LT}_{d}(g)\right) \leq \nu_{2}\left(\mathrm{LT}_{d}(f)\right) \text { c.f. [DL12]. }
$$

Let $f \xrightarrow[g]{(x, \partial)} h$ and set $\lambda=\frac{w}{\mathrm{LT}_{x}(g)}$, where w is a term mentioned in (15). Write $\operatorname{LT}_{x}(g)=$ $x^{k} d^{l} e, w=x^{k+r} d^{l+s} e$. Thus $\lambda=x^{r} d^{s}$.

$$
\operatorname{LT}_{x}(\lambda g)=\operatorname{LT}_{x}\left(\lambda \cdot \operatorname{LT}_{x}(g)\right)=\operatorname{LT}_{x}\left(x^{r} d^{s} \cdot x^{k} d^{l} e\right)=x^{r+k} d^{s+l} e=w \text { and } \operatorname{LC}_{x}(\lambda g)=\operatorname{LC}_{x}(g)
$$

It follows that

$$
h=f-\frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\mathrm{LT}_{x}(g)} g=f-\frac{f_{\mathrm{LT}_{x}(\lambda g)}}{\mathrm{LC}_{x}(\lambda g)} \lambda g \text { and } \mathrm{LT}_{x}(\lambda g)=w \in \mathrm{~T}(f) .
$$

Since $f \xrightarrow[g]{(x, \partial)} h$ holds, the predicate $P(f, g, \lambda)$ is true. Consequently $f \underset{g}{\stackrel{\rho}{g}} h$. Conversely, assume that $f \xrightarrow[g]{\rho} h$. Let $\lambda \in \Lambda$ be such that $\operatorname{LT}_{x}(\lambda g) \in \mathrm{T}(f)$ and

$$
h=f-\frac{f_{\mathrm{LT}_{x}(\lambda g)}}{\mathrm{LC}_{x}(\lambda g)} \lambda g \wedge P(f, g, \lambda) .
$$

Set $w=\operatorname{LT}_{x}(\lambda g)$. Then $w \in \mathrm{~T}(f)$. Write λ as $\lambda=x^{u} d^{v}$ and $\operatorname{LT}_{x}(g)=x^{k} d^{l} e$. Then

$$
w=\operatorname{LT}_{x}\left(\lambda \cdot \operatorname{LT}_{x}(g)\right)=\operatorname{LT}_{x}\left(x^{u} d^{v} \cdot x^{k} d^{l} e\right)=x^{u+k} d^{v+l} e .
$$

Thus $\operatorname{LT}_{x}(g) \mid w$ and $\frac{w}{\operatorname{LT}_{x}(g)}=x^{u} d^{v}=\lambda$. Since $\operatorname{LC}_{x}(\lambda g)=1 \cdot \operatorname{LC}_{x}(g)$ we obtain

$$
h=f-\frac{f_{w}}{\mathrm{LC}_{x}(g)} \frac{w}{\operatorname{LT}_{x}(g)} g \wedge \nu_{2}\left(\frac{w}{\mathrm{LT}_{x}(g)} \cdot \operatorname{LT}_{d}(g)\right) \leq \nu_{2}\left(\operatorname{LT}_{d}(f)\right) .
$$

Consequently $f \xrightarrow[g]{(x, \partial)} h$.
Proposition 4. I_{ρ} is monomial.
Proof. Let $\mathrm{LT}_{x}(\lambda \cdot g) \in \mathrm{T}(f) \wedge P\left(\operatorname{LT}_{x}(\lambda \cdot g), g, \lambda\right)$. This means that

$$
\nu_{2}(\lambda \cdot g) \leq \nu_{2}\left(\operatorname{LT}_{x}(\lambda \cdot g)\right) .
$$

Since $\operatorname{LT}_{x}(\lambda \cdot g) \in \mathrm{T}(f)$ it follows $\operatorname{LT}_{x}(\lambda \cdot g) \preceq_{d} \operatorname{LT}_{d}(f)$ and therefore $\nu_{2}\left(\operatorname{LT}_{x}(\lambda \cdot g)\right) \leq$ $\nu_{2}\left(\operatorname{LT}_{d}(f)\right)=\nu_{2}(f)$. Thus $\nu_{2}(\lambda \cdot g) \leq \nu_{2}(f)$. Consequently $\operatorname{LT}_{x}(\lambda \cdot g) \in \mathrm{T}(f) \wedge P(f, g, \lambda)$. This demonstrates that the monomial irreducibility condition (5) is satisfied.

In [DL12] the authors define Gröbner bases differently. Formulated in our notation:
Definition 7. Let N be a submodule of $F=\mathbf{k}^{(\Lambda E)}$ and $G \subseteq N \backslash 0$. G is a (x, ∂)-Gröbner basis for N iff

$$
\forall f \in N \backslash 0 \exists g \in G\left(\operatorname{LT}_{x}(g) \mid \operatorname{LT}_{x}(f) \wedge \nu_{2}(g)-\nu_{2}\left(\operatorname{LT}_{x}(g)\right) \leq \nu_{2}(f)-\nu_{2}\left(\operatorname{LT}_{x}(f)\right) .\right.
$$

We position this notion into the frame of our concepts.
Theorem 4. Given $G \subseteq N$, let σ denote the leading term reduction corresponding to the relation $f \xrightarrow[G]{(x, \partial)} h$,i.e.,

$$
\begin{equation*}
f \xrightarrow[g]{\sigma} h \Longleftrightarrow \exists \lambda \in \Lambda\left(\operatorname{LT}_{x}(\lambda g)=\operatorname{LT}_{x}(f) \wedge h=f-\frac{\operatorname{LC}_{x}(f)}{\mathrm{LC}_{x}(\lambda g)} \lambda g \wedge \nu_{2}(\lambda \cdot g) \leq \nu_{2}(f)\right) \tag{18}
\end{equation*}
$$

Then G is an (x, ∂)-Gröbner basis for N iff $I_{\sigma} \cap N=0$.
Proof. Let f, g be elements of $F \backslash 0$.

$$
\begin{aligned}
& f=f_{0} t_{0}+\sum_{t \prec_{x} t_{0}} f_{t} t=f_{0}^{\prime} t_{0}^{\prime}+\sum_{t<_{d} t_{0}} f_{t} t \\
& g=g_{1} t_{1}+\sum_{t<_{x} t_{1}} g_{t} t=g_{1}^{\prime} t_{1}^{\prime}+\sum_{t \prec_{d} t_{1}^{\prime}} g_{t} t \text { with }
\end{aligned}
$$

$$
\begin{array}{ll}
\operatorname{LT}_{x}(f)=t_{0}=x^{k_{0}} d^{l_{0}} e_{0} & \operatorname{LT}_{d}(f)=t_{0}^{\prime}=x^{k_{0}^{\prime}} d_{0}^{l_{0}^{\prime}} e_{0}^{\prime} \\
\operatorname{LT}_{x}(g)=t_{1}=x^{r_{1}} d^{s_{1}} e_{1} & \operatorname{LT}_{d}(g)=t_{1}^{\prime}=x^{r_{1}^{\prime}} d^{s_{1}} e_{1}^{\prime} .
\end{array}
$$

Assume that G is an (x, ∂)-Gröbner basis for N and $f \in N \backslash 0 . \exists g \in G$ such that

$$
\operatorname{LT}_{x}(g) \mid \operatorname{LT}_{x}(f) \wedge \nu_{2}(g)-\nu_{2}\left(\operatorname{LT}_{x}(g)\right) \leq \nu_{2}(f)-\nu_{2}\left(\operatorname{LT}_{x}(f)\right.
$$

Using the notation from above we get

$$
x^{r_{1}} d^{s_{1}} e_{1} \mid x^{k_{0}} d^{l_{0}} e_{0} \wedge s_{1}^{\prime}-s_{1} \leq l_{0}^{\prime}-l_{0}
$$

hence $r_{1} \leq_{\pi} k_{0} \wedge s_{1} \leq_{\pi} l_{0} \wedge e_{1}=e_{0}$. Set $\lambda=x^{k_{0}-r_{1}} d^{l_{0}-s_{1}}$. Then

$$
\begin{gathered}
\operatorname{LT}_{x}(\lambda \cdot g)=\operatorname{LT}_{x}\left(x^{k_{0}-r_{1}} d^{l_{0}-s_{1}} \cdot x^{r_{1}} d^{s_{1}} e_{1}\right)=x^{k_{0}} d^{l_{0}} e_{0}=\operatorname{LT}_{x}(f) . \\
\nu_{2}(\lambda \cdot g)=\nu_{2}\left(\operatorname{LT}_{d}\left(x^{k_{0}-r_{1}} d^{l_{0}-s_{1}} \cdot x^{r_{1}^{\prime}} d^{s_{1}^{\prime}} e_{1}^{\prime}\right)\right)=l_{0}-s_{1}+s_{1}^{\prime} \leq l_{0}^{\prime}=\nu_{2}(f) .
\end{gathered}
$$

This shows that

$$
f \xrightarrow[g]{\sigma} f-\frac{\mathrm{LC}_{x}(f)}{\operatorname{LC}_{x}(\lambda \cdot g)} \lambda \cdot g
$$

that means, f is σ-reducible. Consequently, each $f \in N \backslash 0$ is σ-reducible whence $N \cap I_{\sigma}=0$.
Conversely, assume that $N \cap I_{\sigma}=0$ and let $f \in N \backslash 0$. Then f is σ-reducible, $\exists g \in G$ $\exists \lambda \in \Lambda$ such that

$$
\begin{equation*}
\operatorname{LT}_{x}(\lambda \cdot g)=\operatorname{LT}_{x}(f) \wedge h=f-\frac{\mathrm{LC}_{x}(f)}{\mathrm{LC}_{x}(\lambda \cdot g)} \lambda \cdot g \wedge \nu_{2}(\lambda \cdot g) \leq \nu_{2}(f) \tag{19}
\end{equation*}
$$

Write $\lambda=x^{a} d^{b}$. From (19) we get

$$
\begin{gathered}
x^{k_{0}} d^{l_{0}} e_{0}=\operatorname{LT}_{x}(f)=\operatorname{LT}_{x}(\lambda \cdot g)=\operatorname{LT}_{x}\left(x^{a} d^{b} \cdot x^{r_{1}} d^{s_{1}} e_{1}\right) \text { hence } \\
k_{0}=a+r_{1} \wedge l_{0}=b+s_{1} \wedge e_{0}=e_{1} \text { and so } r_{1} \leq_{\pi} k_{0} \wedge s_{1} \leq_{\pi} l_{0} \text { i.e. }
\end{gathered}
$$

$\operatorname{LT}_{x}(g) \mid \operatorname{LT}_{x}(f)$. Moreover

$$
\nu_{2}(\lambda \cdot g)=\nu_{2}\left(\operatorname{LT}_{d}(\lambda \cdot g)\right)=\nu_{2}\left(\operatorname{LT}_{d}\left(x^{a} d^{b} \cdot x^{r_{1}^{\prime}} d^{s_{1}^{\prime}} e_{1}^{\prime}\right)\right)=b+s_{1}^{\prime}
$$

From (19) we obtain $b+s_{1}^{\prime} \leq l_{0}^{\prime}$ and so

$$
\begin{gathered}
\underbrace{b+s_{1}}_{l_{0}}+s_{1}^{\prime} \leq l_{0}^{\prime}+s_{1} \text {. Therefore } \\
\begin{aligned}
\nu_{2}(g)-\nu_{2}\left(\operatorname{LT}_{x}(g)\right) & =\nu_{2}\left(x^{r_{1}^{\prime}} d^{s_{1}^{\prime}} e_{1}^{\prime}\right)-\nu_{2}\left(x^{r_{1}} d^{s_{1}} e_{1}\right)=s_{1}^{\prime}-s_{1} \\
& \leq l_{0}^{\prime}-l_{0}=\nu_{2}(f)-\nu_{2}\left(\operatorname{LT}_{x}(f)\right) .
\end{aligned}
\end{gathered}
$$

Therefore G is an (x, ∂)-Gröbner basis for N.
Corollary 5. Let ρ denote (x, ∂)-reduction (15) for N. If G is an (x, ∂)-Gröbner basis for N then ρ is a weak reduction for N. Thus, an (x, ∂)-Gröbner basis for N is a Gröbner basis for N w.r.t. ρ.

Proof. Consider an (x, ∂)-Gröbner basis for N. Since $I_{\rho} \subseteq I_{\sigma}$ we obtain that $I_{\rho} \cap N=0$. Together with Proposition 4 this says that ρ is a weak reduction for N.

Even when G is a Gröbner basis, the corresponding reduction relation ρ is in general not a strong reduction.

Example 1. Consider $A=A_{1}(\mathbf{k}), g=x d+d^{2} \in A$. Let ρ be the (x, ∂)-reduction defined by $G=\{g\}$, and $N=A g$.

We show that $N \cap I_{\rho}=0$. Let $a \in A$

$$
\begin{gathered}
a=a_{0} x^{k_{0}} d^{l_{0}}+\sum_{\mu \prec{ }_{x} x^{k_{0}} d^{l_{0}}} a_{\mu} \mu \quad\left(a_{0} \neq 0\right) . \text { Then } \\
a \cdot g=a_{0} x^{k_{0}} d^{l_{0}}\left(x d+d^{2}\right)+\sum_{\mu \prec_{x} x^{k_{0}} d^{l_{0}}} a_{\mu} \mu\left(x d+d^{2}\right) \\
=a_{0} x^{k_{0}} d^{l_{0}} \cdot x d+a_{0} x^{k_{0}} d^{l_{0}} \cdot d^{2}+\sum_{\mu \prec_{x} x^{k_{0}} d^{l_{0}}}\left(a_{\mu} \mu x d+a_{\mu} \mu d^{2}\right) .
\end{gathered}
$$

Set $\lambda=x^{k_{0}} d^{l_{0}} . \operatorname{Then} \operatorname{LT}_{x}(\lambda \cdot g)=\operatorname{LT}_{x}\left(x^{k_{0}} d^{l_{0}} \cdot x d\right)=x^{k_{0}+1} d^{l_{0}+1}$.

$$
\operatorname{LT}_{x}(a \cdot g)=\operatorname{LT}_{x}\left(\operatorname{LT}_{x}(a) \cdot \operatorname{LT}_{x}(g)\right)=\operatorname{LT}_{x}\left(x^{k_{0}} d^{l_{0}} \cdot x d\right)=x^{k_{0}+1} d^{l_{0}+1}
$$

and thus $\operatorname{LT}_{x}(\lambda \cdot g)=\operatorname{LT}_{x}(a \cdot g) \in \mathrm{T}(a \cdot g)$.

$$
\begin{gathered}
\nu_{2}(\lambda \cdot g)=\nu_{2}\left(\operatorname{LT}_{d}(\lambda \cdot g)\right)=\nu_{2}\left(\operatorname{LT}_{d}\left(\lambda \cdot \operatorname{LT}_{d}(g)\right)\right)=\nu_{2}\left(\operatorname{LT}_{d}\left(x^{k_{0}} d^{l_{0}} \cdot d^{2}\right)\right)=l_{0}+2 \\
\nu_{2}(a \cdot g)=\nu_{2}\left(\operatorname{LT}_{d}(a \cdot g)\right)=\nu_{2}\left(\operatorname{LT}_{d}\left(\operatorname{LT}_{d}(a) \cdot \operatorname{LT}_{d}(g)\right)\right)=\nu_{2}\left(\operatorname{LT}_{d}(a) \cdot d^{2}\right)
\end{gathered}
$$

Now $x^{k_{0}} d^{l_{0}} \preceq_{d} \operatorname{LT}_{d}(a)$. Applying Lemma 2 gives

$$
\begin{gathered}
\underbrace{\operatorname{LT}_{d}\left(x^{k_{0}} d^{l_{0}} \cdot d^{2}\right)}_{x^{k_{0}} d^{l_{0}+2}} \preceq_{d} \operatorname{LT}_{d}\left(\operatorname{LT}_{d}(a) \cdot d^{2}\right) \text {. Therefore } \\
l_{0}+2=\nu_{2}\left(x^{k_{0}} d^{l_{0}+2}\right) \leq \nu_{2}\left(\operatorname{LT}_{d}\left(\operatorname{LT}_{d}(a) \cdot d^{2}\right)\right)=\nu_{2}\left(\operatorname{LT}_{d}(a) \cdot d^{2}\right) \text { and so }
\end{gathered}
$$

$\nu_{2}(\lambda \cdot g) \leq \nu_{2}(a \cdot g)$. All in all

$$
\exists \lambda \in \Lambda\left(\operatorname{LT}_{x}(\lambda \cdot g)=\operatorname{LT}_{x}(a \cdot g) \wedge \nu_{2}(\lambda \cdot g) \leq \nu_{2}(a \cdot g)\right)
$$

and choosing h appropriately we see that $a \cdot g \xrightarrow[g]{\sigma} h$ whence $a \cdot g$ is σ-reducible. Therefore $N \cap I_{\sigma}=N \cap I_{\rho}=0$. Consequently ρ is a weak reduction for $N=A g$ and $\{g\}$ a Gröbner basis.

Now consider $f_{1}, f_{2}, g \in A$

$$
f_{1}=x d, \quad f_{2}=d^{2}
$$

Then it is obvious that $f_{1}, f_{2} \in I_{\rho}$. But $f_{1}+f_{2}$ is not:

$$
\mathrm{LT}_{x}(1 \cdot g)=x d \in \mathrm{~T}(f) \wedge \nu_{2}(1 \cdot g)=2 \leq \nu_{2}\left(f_{1}+f_{2}\right) \text { this means } f_{1}+f_{2} \xrightarrow[g]{\rho} 0
$$

and so $f_{1}+f_{2} \notin I_{\rho}$. This shows that I_{ρ} is not closed under addition and therefore ρ is not a strong reduction for N.

Theorem 5. Let $f, g, h \in F, g \neq 0$. Assume that $f \frac{(x, \partial)}{g} h$. Then, for arbitrary $r, s, \in \mathbb{N}$

1. $f \in F_{r}^{1} \Rightarrow h \in F_{r}^{1}$;
2. $f \in F_{r}^{2} \Rightarrow h \in F_{r}^{2}$;
3. $f \in F_{r, s} \Rightarrow h \in F_{r, s}$;
4. $f \in F_{r}^{0} \Rightarrow h \in F_{2 r}^{0}$.

Consequently the full reduction corresponding to an (x, ∂)-Gröbner basis for a submodule $N \subseteq F$ is a weak Gröbner reduction for N w.r.t. these filtrations.

Proof. By Proposition 3 we may assume that $f \xrightarrow[g]{\rho} h$, i.e.,

$$
\exists \lambda \in \Lambda\left(\mathrm{LT}(\lambda g) \in \mathrm{T}(f) \wedge h=f-\frac{f_{\mathrm{LT}(\lambda g)}}{\mathrm{LC}(\lambda g)} \lambda g \wedge P(f, g, \lambda)\right)
$$

1. Assume that $f \in F_{r}^{1}$. Then $\nu_{1}(f) \leq r$ whence $\forall t \in \mathrm{~T}(f): \nu_{1}(t) \leq r$.

Take $t \in \mathrm{~T}(h)$. If $t \in \mathrm{~T}(f)$ then $\nu_{1}(t) \leq r$. If $t \notin \mathrm{~T}(f)$ then

$$
0 \neq h_{t}=-\frac{f_{\mathrm{LT}_{x}(\lambda g)}}{\mathrm{LC}_{x}(\lambda g)}(\lambda g)_{t}
$$

Thus $(\lambda g)_{t} \neq 0, t \in \mathrm{~T}(\lambda g), t \preceq_{x} \operatorname{LT}_{x}(\lambda g) \in \mathrm{T}(f)$. Therefore $\nu_{1}(t) \leq \nu_{1}\left(\operatorname{LT}_{x}(\lambda g)\right) \leq r$. This means that $\mathrm{T}(h) \subseteq F_{r}^{1}$. Consequently $h \in F_{r}^{1}$.
2. $f \in F_{r}^{2}$. Then $\mathrm{T}(f) \subseteq F_{r}^{2}$. Writing out the predicate P we obtain

$$
\nu_{2}\left(\lambda \cdot \operatorname{LT}_{d}(g)\right) \leq \nu_{2}\left(\operatorname{LT}_{d}(f)\right)
$$

Take $t \in \mathrm{~T}(h)$. If $t \in \mathrm{~T}(f)$ then $t \in F_{r}^{2}$. If $t \notin \mathrm{~T}(f)$ then, with the same argument as in the previous case, we obtain $t \in \mathrm{~T}(\lambda \cdot g)$. Therefore $t \preceq{ }_{d} \mathrm{LT}_{d}(\lambda \cdot g)=\mathrm{LT}_{d}\left(\lambda \cdot \mathrm{LT}_{d}(g)\right)$. Then we derive

$$
\nu_{2}(t) \leq \nu_{2}\left(\operatorname{LT}_{d}\left(\lambda \cdot \operatorname{LT}_{d}(g)\right)=\nu_{2}\left(\lambda \cdot \operatorname{LT}_{d}(g)\right) \leq \nu_{2}\left(\operatorname{LT}_{d}(f)\right)\right.
$$

whence $\nu_{2}(t) \leq r$, that is, $t \in F_{r}^{2}$. This shows $\mathrm{T}(h) \subseteq F_{r}^{2}$. Since the filtersets are vector spaces we arrive at $h \in F_{r}^{2}$.
3. If $f \in F_{r, s}$ then $f \in F_{r}^{1} \cap F_{s}^{2}$. Therefore also $h \in F_{r}^{1} \cap F_{s}^{2}=F_{r, s}$.
4. This follows from Corollary 4 and the previous point.

4 The Ring of Difference-Differential Operators

Let $\delta=\left(\delta_{1}, \ldots, \delta_{m}\right)$ be a tuple of derivations and $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ a tuple of automorphisms of the commutative ring K. All these maps are assumed to commute with each other. The ring D is then constructed as the free K-module on the set of formal expressions

$$
\delta^{k} \sigma^{l}=\delta_{1}^{k_{1}} \cdots \delta_{m}^{k_{m}} \sigma_{1}^{l_{1}} \cdots \sigma_{n}^{l_{n}}, \quad\left(k_{i} \in \mathbb{N}, l_{i} \in \mathbb{Z}\right)
$$

and a product that reflects the properties of derivations and automorphisms. We consider the elements of the set $\Lambda=\left\{\delta^{k} \sigma^{l} \mid(k, l) \in \mathbb{N}^{m} \times \mathbb{Z}^{n}\right\}$ as the distinguished monomials. Consequently elements of D are finite K-linear combinations

$$
\sum_{(k, l) \in \mathbb{N}^{m} \times \mathbb{Z}^{n}} a_{k, l} \delta^{k} \sigma^{l}, \quad\left(a_{k, l} \in K\right)
$$

and the product is driven by the rules

$$
\delta_{i} \cdot c=c \cdot \delta_{i}+\delta_{i}(c) \quad \sigma_{j} \cdot c=\sigma_{j}(c) \sigma_{j}, \quad(c \in K)
$$

We call D a difference-differential ring, or $\Delta \Sigma$-ring over K.
A left module over D is also called a difference-differential module, or $\Delta \Sigma$-module over $K .{ }^{1}$ The concept covers difference modules $(\Delta=\emptyset)$ as well as differential modules $(\Sigma=\emptyset)$ as special instances.

Proposition 5. Consider a field \mathbf{k} with $\operatorname{char}(\mathbf{k})=0$. Let $K=\mathbf{k}\left[x_{1}, \ldots, x_{m}\right], \Delta=$ $\left\{\frac{d}{d x_{1}}, \ldots, \frac{d}{d x_{m}}\right\}$ and $\Sigma=\emptyset$. Then the resulting $\Delta \Sigma$-ring is the Weyl-algebra $A_{m}(\mathbf{k})$.

Proof. This is due to the fact that partial derivatives have no relations among each other. Precisely: Let Δ^{\star} be the monoid generated $\left(\operatorname{in~}_{\operatorname{End}_{\mathbf{k}}}(K)\right)$ by Δ. Then $\Delta^{\star} \cong \mathbb{N}^{m}$ and $A_{m}(\mathbf{k})$ is a free K-module with basis Δ^{\star}.

We use the notation

$$
y^{k}=\delta^{k}(y) \text { and } y_{s}=\sigma^{s}(y) \quad\left(k \in \mathbb{N}^{m}, s \in \mathbb{Z}^{n}\right)
$$

For the free D-module $F=D^{(E)}$, the product $D \times F \longrightarrow F$ can then be written explicitly

$$
\begin{equation*}
\delta^{k} \sigma^{l} \cdot y \delta^{r} \sigma^{s} e=\sum_{u \leq \leq_{\pi} k}\binom{k}{u} y_{l}^{k-u} \delta^{u+r} \sigma^{l+s} e \quad\left(k, r \in \mathbb{N}^{m} ; l, s \in \mathbb{Z}^{n} ; y \in K ; e \in E\right) \tag{20}
\end{equation*}
$$

For $\lambda=\delta^{k} \sigma^{l} \in \Lambda$ we set

$$
\begin{equation*}
\nu_{1}(\lambda)=|k|, \quad \nu_{2}(\lambda)=|l|, \quad \nu_{0}=\nu_{1}+\nu_{2} \tag{21}
\end{equation*}
$$

The extensions of these functions induce the univariate filtrations

$$
D_{t}^{j}=\left\{a \in D: \nu_{j}(a) \leq t\right\} \quad(j=0,1,2)
$$

[^1]Proposition 6. The family $\left(D_{t}^{j}\right)_{t \in \mathbb{N}}$ is a monomial filtration on $D(j=0,1,2)$. Therefore $\left(F_{t}^{j}\right)_{t \in \mathbb{N}}$ is a monomial filtration on F.

Fix an enumeration of the set E and set
$t=\delta^{k} \sigma^{l} e_{i} \mapsto\left(\nu_{j}(t), i, k_{1}, \ldots, k_{m},\left|l_{1}\right|, \ldots,\left|l_{n}\right|, \operatorname{sgn}\left(l_{1}\right)+1, \ldots, \operatorname{sgn}\left(l_{n}\right)+1\right) \quad(j \in\{0,1,2\})$.
The corresponding well-orders for monomials $s=\delta^{k} \sigma^{l} e_{i}, t=\delta^{r} \sigma^{s} e_{j}$ in ΛE are now

$$
\begin{aligned}
s \prec_{j} t & : \Longleftrightarrow \\
& \left(\nu_{j}(s), i, k_{1}, \ldots, k_{m},\left|l_{1}\right|, \ldots,\left|l_{n}\right|, \operatorname{sgn}\left(l_{1}\right)+1, \ldots, \operatorname{sgn}\left(l_{n}\right)+1\right) \\
& <\text { LEX } \\
& \left(\nu_{j}(t), j, r_{1}, \ldots, r_{m},\left|s_{1}\right|, \ldots,\left|s_{n}\right|, \operatorname{sgn}\left(s_{1}\right)+1, \ldots, \operatorname{sgn}\left(s_{n}\right)+1\right)
\end{aligned}
$$

Then $s \preceq_{j} t \Rightarrow \nu_{j}(s) \leq \nu_{j}(t)(j=0,1,2)$.
These orders single out $\operatorname{LT} j(f)$ and $\operatorname{LC} j(f)$ for each $f \in F \backslash 0$. According to (1) we get

$$
f \xrightarrow[g]{\stackrel{\rho_{j}}{\longrightarrow} h \Longleftrightarrow \exists \lambda \in \Lambda\left(\mathrm{LT}_{j}(\lambda g) \in \mathrm{T}(f) \wedge h=f-\frac{f_{\mathrm{LT}_{j}(f)}}{\mathrm{LC}_{j}(\lambda g)} \lambda g\right), ~(\lambda)}
$$

and for $G \subseteq F \rho_{j}$ is

$$
f \frac{\rho_{j}}{G} h \Longleftrightarrow \exists g \in G \text { such that } f \frac{\rho_{j}}{g}>h
$$

Note that the predicate ' P ' mentioned in (1) is empty here, that is, we may set $P=$ TRUE.
Proposition 7. $f \xrightarrow[G]{\rho_{j}} h$ and $f \in F_{t}^{j} \Rightarrow h \in F_{t}^{j}$.
Proof. There exists $g \in G$ and $\lambda \in \Lambda$ such that $\mathrm{LT}_{j}(\lambda g) \in \mathrm{T}(f)$. Therefore, from monomiality of the filtration, we get $\mathrm{LT}_{j}(\lambda g) \in F_{t}^{j}$. Let $b \in \mathrm{~T}(\lambda g)$ be an arbitrary monomial. Then from $b \preceq_{j} \operatorname{LT}_{j}(\lambda g)$ we obtain $\nu_{j}(b) \leq \nu_{j}\left(\operatorname{LT}_{j}(\lambda g) \leq t\right.$, that is, $b \in F_{t}^{j}$. Consequently $\lambda g \in F_{t}$, and so is $h=f-c \cdot \lambda g$.

Together with the previous remarks, the last proposition exhibits the relations ρ_{ν} as Gröbner reductions.

Relative reduction in Zhou/Winkler

In [ZW07] the filtration F^{0} is treated by using a variant of the term order \prec_{0} and its corresponding reduction. In [ZW08a] the bivariate filtration $D_{r, s}=D_{r}^{1} \cap D_{s}^{2}$ occurs. For the purpose of reduction the following two term orders have been used. For monomials $u=\delta^{k} \sigma^{l} e_{i}$ and $v=\delta^{r} \sigma^{s} e_{j}$ in ΛE, set

$$
\begin{aligned}
u \prec_{1} v \quad & \Longleftrightarrow \\
& \left(\nu_{2}(u), \nu_{1}(u), i, k_{1}, \ldots, k_{m},\left|l_{1}\right|, \ldots,\left|l_{n}\right|, \operatorname{sgn}\left(l_{1}\right)+1, \ldots, \operatorname{sgn}\left(l_{n}\right)+1\right) \\
& <_{\text {LEX }} \\
& \left(\nu_{2}(v), \nu_{1}(v), j, r_{1}, \ldots, r_{m},\left|s_{1}\right|, \ldots,\left|s_{n}\right|, \operatorname{sgn}\left(s_{1}\right)+1, \ldots, \operatorname{sgn}\left(s_{n}\right)+1\right)
\end{aligned}
$$

respectively

$$
\begin{aligned}
u \prec_{2} v & \Longleftrightarrow \\
& \left(\nu_{1}(u), \nu_{2}(u), i, k_{1}, \ldots, k_{m},\left|l_{1}\right|, \ldots,\left|l_{n}\right|, \operatorname{sgn}\left(l_{1}\right)+1, \ldots, \operatorname{sgn}\left(l_{n}\right)+1\right) \\
& <\text { LEX } \\
& \left(\nu_{1}(v), \nu_{2}(v), j, r_{1}, \ldots, r_{m},\left|s_{1}\right|, \ldots,\left|s_{n}\right|, \operatorname{sgn}\left(s_{1}\right)+1, \ldots, \operatorname{sgn}\left(s_{n}\right)+1\right)
\end{aligned}
$$

The appropriate reduction concept - called relative reduction in [ZW08a] - takes into account both of these orders. Let $f, g, h \in F$. Then $f \xrightarrow{\text { rel }} g$ iff

$$
\exists \lambda \in \Lambda\left(\operatorname{LT}_{1}(\lambda g)=\mathrm{LT}_{1}(f) \wedge \mathrm{LT}_{2}(\lambda g) \preceq \preceq_{2} \mathrm{LT}_{2}(f) \wedge h=f-\frac{\mathrm{LC}_{1}(f)}{\mathrm{LC}_{1}(\lambda g)} \lambda g\right)
$$

Here we meet leading term reduction (2) involving the predicate

$$
P(f, g, \lambda) \Longleftrightarrow \mathrm{LT}_{2}(\lambda g) \preceq_{2} \mathrm{LT}_{2}(f)
$$

Again, for $G \subseteq F$ relative reduction is

$$
f \xrightarrow{\text { rel }}_{G} h \Longleftrightarrow \exists g \in G \text { with } f \xrightarrow{\text { rel }} g .
$$

Theorem 6. Let $F_{r, s}=\bigoplus_{e \in E} D_{r, s} e$ denote the bivariate filtration on F induced by $\left(D_{r, s}\right)_{(r, s) \in \mathbb{N}^{2}}$. Then $f \xrightarrow{\text { rel }} g \wedge f \in F_{r, s} \Longrightarrow h \in F_{r, s}$. Consequently, the full reduction associated to $\xrightarrow{\text { rel }}{ }_{G}$ is a Gröbner reduction.

A proof can be found in [FL15].
In order to solve problems arising from negative exponents, the authors of [ZW08a] introduced in [ZW06] the concept of an orthant decomposition. Their approach treats negative exponents by covering the set of monomials ΛE with finitely many isomorphic copies of $\mathbb{N}^{m} \times \mathbb{N}^{n} \times E$.

A detailed discussion can be found in [ZW06, ZW07, ZW08a, ZW08b, Lev12].

5 The ring of Ore polynomials

Given a K-endomorphism $\sigma: K \longrightarrow K$, a σ-skew derivation is an additive map $\delta: K \longrightarrow K$ satisfying

$$
\delta(a b)=\sigma(a) \delta(b)+\delta(a) b, \quad(a, b \in K) .
$$

An Ore-variable over K is a pair $\partial=(\sigma, \delta)$ where σ is an endomorphism and δ is a σ-skew derivation.

Let $\partial_{i}=\left(\sigma_{i}, \delta_{i}\right)$ be Ore-variables $(1 \leq i \leq n)$ such that all mappings σ_{i}, δ_{j} commute with each other. Then the Ore algebra \mathbb{O} defined by $X=\left(\partial_{1}, \ldots, \partial_{n}\right)$ is the free K-module on the set of formal expressions $\partial^{k}=\partial_{1}^{k_{1}} \cdots \partial_{n}^{k_{n}}$ with multiplication determined by the rules

$$
\begin{equation*}
\partial_{i} \cdot \partial_{j}=\partial_{j} \cdot \partial_{i} \text { and } \partial_{i} \cdot x=\sigma_{i}(x) \partial_{i}+\delta_{i}(x) \quad(x \in K) \tag{22}
\end{equation*}
$$

We set $\Lambda=\left\{\partial^{k}: k \in \mathbb{N}^{n}\right\} \cong \mathbb{N}^{n}$, as usual its elements are called monomials.
With the convenient notation

$$
\begin{equation*}
x_{k}^{l}=\left(\delta^{l} \circ \sigma^{k}\right)(x) \quad\left(k, l \in \mathbb{N}^{n}, x \in K\right) \tag{23}
\end{equation*}
$$

the product in \mathbb{O} may be written explicitly

$$
\begin{align*}
x \partial^{l} \cdot y \partial^{q} & =\sum_{v \in \mathbb{N}^{n}}\binom{l}{v} x y_{v}^{l-v} \partial^{q+v} \\
& =\sum_{v \leq \pi l}\binom{l}{v} x y_{l-v}^{v} \partial^{l+q-v} \tag{24}
\end{align*}
$$

where $x, y \in K$ and $l, q \in \mathbb{N}^{n}$. In particular

$$
x \partial^{0} \cdot y \partial^{q}=x y \partial^{q}
$$

demonstrating that K is naturally a subring of \mathbb{O}.
Example 2. Let δ_{i} be ordinary derivations $(1 \leq i \leq m)$ and σ_{j} automorphisms $(1 \leq j \leq n)$. Then (1) defined by the Ore-variables $\partial_{i}=\left(\delta_{i}\right.$, id $)(1 \leq i \leq m)$ and $\partial_{j}^{\prime}=\left(0, \sigma_{j}\right)(1 \leq j \leq n)$ is a difference-differential ring where the σ_{j} allow positive exponents only. The $\Delta \Sigma$-ring D defined by $\Delta=\left\{\delta_{1}, \ldots, \delta_{m}\right\}$ and $\Sigma=\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ as defined in the previous section can be obtained as follows:

Starting from Δ, Σ define Ore-variables

$$
\begin{aligned}
& \partial_{i}=\left(\delta_{i}, \mathrm{id}\right) \quad(1 \leq i \leq m) \\
& \eta_{j}=\left(0, \sigma_{j}\right) \quad(1 \leq j \leq n) \\
& \phi_{j}=\left(0, \sigma_{j}^{-1}\right) \quad(1 \leq i \leq n)
\end{aligned}
$$

and let \mathbb{O} be the Ore-algebra defined by them. Let I be the 2 -sided ideal generated by the set $\left\{\eta_{j} \cdot \phi_{j}-1 \mid 1 \leq j \leq n\right\}$. Then $\mathbb{D} / I \cong D$.

Levin ([Lev07]) splits the set X of variables into disjoint subsets $X=X_{1} \cup \cdots \cup X_{p}$. This gives order functions

$$
\nu_{j}: \Lambda \longrightarrow \mathbb{N}, \partial^{k} \mapsto \sum_{\partial_{i} \in X_{j}} k_{i} \quad(1 \leq j \leq p)
$$

and the total degree function $\nu_{0}=\nu_{1}+\cdots+\nu_{p}$ that extend to the free module $F=\mathbb{O}^{(E)}$ where $E=\left\{e_{1}, \ldots, e_{q}\right\}$. As usual

$$
\nu_{j}\left(\partial^{k} e\right)=\nu_{j}\left(\partial^{k}\right), \quad \nu_{j}(f)= \begin{cases}\max _{t \in \mathrm{~T}(f)} \nu_{j}(t) & \ldots f \in F \backslash 0 \\ -\infty & \ldots f=0\end{cases}
$$

for all $j=0,1, \ldots, p$.
For the remainig part of this section we assume that K be a field.

Lemma 6. Let $x, y \in K \backslash 0, k, l \in \mathbb{N}^{n}$. Then, for $0=1, \ldots, p$

$$
\begin{equation*}
\nu_{j}\left(x \partial^{k} \cdot y \partial^{l} e\right)=\nu_{j}\left(\partial^{k}\right)+\nu_{j}\left(\partial^{l}\right) \tag{25}
\end{equation*}
$$

Proof. Take a term $t \in \mathrm{~T}\left(x \partial^{k} \cdot y \partial^{l}\right)$. From (24) we see that $\exists v \leq_{\pi} k$ with $t=\partial^{l+v} e$. Thus, if $1 \leq j \leq p$ then

$$
\nu_{j}(t)=\sum_{\partial_{i} \in X_{j}}\left(l_{i}+v_{i}\right) \leq \sum_{\partial_{i} \in X_{j}}\left(l_{i}+k_{i}\right)=\sum_{\partial_{i} \in X_{j}} l_{i}+\sum_{\partial_{i} \in X_{j}} k_{i}=\nu_{j}\left(\partial^{l}\right)+\nu_{j}\left(\partial^{k}\right)=\nu_{j}\left(x y_{k} \partial^{k+l}\right)
$$

Since $x y_{k} \neq 0$ the assertion follows. The statement for $j=0$ is seen by summing up all $j=1, \ldots, p$.

The p orders on ΛE considered in [Lev07] are defined by the p injections $\tau_{j}: \Lambda \longrightarrow \mathbb{N}^{n+p+1}$

$$
\lambda=\partial^{k} \mapsto\left(\nu_{j}(\lambda), \nu_{0}(\lambda), \nu_{1}(\lambda), \ldots, \widehat{\nu_{j}(\lambda)}, \ldots, \nu_{p}(\lambda), k^{j}, k^{1}, \ldots, \widehat{k^{j}}, \ldots, k^{p}\right)
$$

with notation $k=\left(k_{1}, \ldots, k_{n}\right)=\left(k^{1}, \ldots, k^{p}\right)$ where $k_{i} \in \mathbb{N}, k^{j} \in \mathbb{N}^{\operatorname{Card}\left(X_{j}\right)}$, and the extensions of τ_{j} to ΛE

$$
\varphi_{j}: \Lambda E \longrightarrow \mathbb{N}^{n+p+2}, t=\partial^{k} e_{i} \mapsto\left(\tau_{j}\left(\partial^{k}\right), i\right)
$$

Thus, for terms $t_{1}, t_{2} \in \Lambda E$,

$$
t_{1} \prec_{j} t_{2} \Longleftrightarrow \varphi_{j}\left(t_{1}\right)<\operatorname{LEX} \varphi_{j}\left(t_{2}\right)
$$

Note that $\nu_{j}\left(\partial^{k}\right)=\left|k^{j}\right|(1 \leq j \leq p)$.
Lemma 7. $\tau_{j}\left(\partial^{k+l}\right)=\tau_{j}\left(\partial^{k}\right)+\tau_{j}\left(\partial^{l}\right)(1 \leq j \leq p)$.
Proof. Using the notation from above it is plain that $(k+l)^{j}=k^{j}+l^{j}$. Therefore

$$
\nu_{j}\left(\partial^{k+l}\right)=\left|(k+l)^{j}\right|=\left|k^{j}+l^{j}\right|=\left|k^{j}\right|+\left|l^{j}\right|=\nu_{j}\left(\partial^{k}\right)+\nu_{j}\left(\partial^{l}\right)
$$

From this observation the statement is obvious.
Leading term and leading coefficient functions are written $\mathrm{LT}_{j}, \mathrm{LC}_{j}(1 \leq j \leq p)$. As before it is plain that

$$
\nu_{j}(f)=\nu_{j}\left(\operatorname{LT}_{j}(f)\right) \forall j
$$

Proposition 8. Let $x, y \in K \backslash 0, k, l \in \mathbb{N}^{n}, e \in E$. Then $\forall j=1, \ldots, j$

$$
\operatorname{LT}_{j}\left(x \partial^{k} \cdot y \partial^{l} e\right)=\partial^{k+l} e
$$

Proof. Take a term $t \in \mathrm{~T}\left(x \partial^{k} \cdot y \partial^{l} e\right)$ with $t \neq \partial^{k+l} e$. Then $\exists v<_{\pi} k$ with $t=\partial^{l+v} e$. Let $i_{0}=\min \left\{i: v_{i} \neq k_{i}\right\}$. Then $v_{i_{0}}<k_{i_{0}}$ and $\forall i<i_{0}: v_{i}=k_{i}$, hence also $(l+v)_{i_{0}}<(k+l)_{i_{0}}$ and $\forall i<i_{0}:(l+v)_{i}=(k+l)_{i}$. Thus

$$
i_{0}=\min \left\{i:(l+v)_{i} \neq(k+l)_{i}\right\} \wedge(l+v)_{i_{0}}<(k+l)_{i_{0}} \wedge \forall i:(l+v)_{i} \leq(k+l)_{i} .
$$

Therefore

$$
\nu_{0}(t)=|l+v|=|l|+|v|<|l|+|k|=|k+l|=\nu_{0}\left(\partial^{k+l} e\right)
$$

If $i_{0} \in X_{j}$ then $\nu_{j}(t)<\nu_{j}\left(\partial^{k+l} e\right)$ whence $t \prec_{j} \partial^{k+l} e$.
If $i_{0} \notin X_{j}$ then $\nu_{j}(t) \leq \nu_{j}\left(\partial^{k+l} e\right) \wedge \nu_{0}(t)<\nu_{0}\left(\partial^{k+l} e\right)$, and again $t \prec_{j} \partial^{k+l} e$.

We may blow up the content of Lemma 7 to the following statement.
Corollary 6. Let $a, b, x, y \in K \backslash 0, k, l, r \in \mathbb{N}^{n}, e_{1}, e_{2} \in E$. Then $\forall j=1, \ldots, p$

$$
\begin{aligned}
\partial^{k} \prec_{j} \partial^{l} & \Rightarrow \operatorname{LT}_{j}\left(x \partial^{k} \cdot a \partial^{r} e_{1}\right) \prec_{j} \operatorname{LT}_{j}\left(y \partial^{l} \cdot b \partial^{r} e_{2}\right) \\
& \wedge \operatorname{LT}_{j}\left(a \partial^{r} \cdot x \partial^{k} e_{1}\right) \prec_{j} \operatorname{LT}_{j}\left(b \partial^{r} \cdot y \partial^{l} e_{2}\right) .
\end{aligned}
$$

Proof. We have to show that $\partial^{k+r} e_{1} \prec_{j} \partial^{l+r} e_{2}$. From the hypothesis we have $\tau_{j}\left(\partial^{k}\right)<$ LEX $\tau_{j}\left(\partial^{l}\right)$. Thus, using Lemma 7

$$
\tau_{j}\left(\partial^{k+r}\right)=\tau_{j}\left(\partial^{k}\right)+\tau_{j}\left(\partial^{r}\right)<\operatorname{LEX} \tau_{j}\left(\partial^{l}\right)+\tau_{j}\left(\partial^{r}\right)=\tau_{j}\left(\partial^{l+r}\right)
$$

Therfore also $\left(\tau_{j}\left(\partial^{k+r}\right), 1\right)<\operatorname{LEX}\left(\tau_{j}\left(\partial^{l+r}\right), 2\right)$.
Proposition 9. Let $1 \leq j \leq p$. Let $a \in \mathbb{O} \backslash 0$ with $\operatorname{LT}_{j}(a)=\partial^{k_{0}}$ and $f \in F \backslash 0$. Then

$$
\begin{aligned}
\operatorname{LT}_{j}(a \cdot f) & =\operatorname{LT}_{j}(a) \cdot \operatorname{LT}_{j}(f) ; \\
\operatorname{LC}_{j}(a \cdot f) & =\operatorname{LC}_{j}(a) \cdot \sigma^{k_{0}}\left(\operatorname{LC}_{j}(f)\right) .
\end{aligned}
$$

Proof. Set $a_{0}=\mathrm{LC}_{j}(a), \partial^{L_{0}} e_{0}=\mathrm{LT}_{j}(f), f_{0}=\mathrm{LC}_{j}(f)$. Thus

$$
\begin{gathered}
a=a_{0} \partial^{k_{0}}+\sum_{\partial^{k} \prec_{j} \partial^{k_{0}}} a_{k} \partial^{k} \text { and } f=f_{0} \partial^{l_{0}} e_{0}+\sum_{\partial^{l} \prec_{j} \partial^{l_{0} e_{0}}} f_{l, e} \partial^{l} e . \\
a \cdot f=\underbrace{a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}}_{(0)}+\underbrace{\sum_{\partial_{e} \prec_{j} \partial^{l_{0} e_{0}}} a_{0} \partial^{k_{0}} \cdot f_{l, e} \partial^{l} e}_{(1)}+\underbrace{\sum_{\partial^{k} \prec_{j} \partial^{k_{0}}} a_{k} \partial^{k} \cdot f_{0} \partial^{l_{0}} e_{0}}_{(2)}+\underbrace{\sum_{\partial^{k} \prec_{j} \partial^{k_{0}}} \sum_{\partial^{l} e \prec_{j} \partial^{l_{0} e_{0}}} a_{k} \partial^{k} \cdot f_{l, e} \partial^{l} e}_{(3)} .
\end{gathered}
$$

Pick out a summand of sum (1). If $\partial^{l} \prec_{j} \partial^{l_{0}}$ then $\mathrm{LT}_{j}\left(a_{o} \partial^{k_{0}} \cdot f_{l, e} \partial^{l} e\right) \prec_{j} \mathrm{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}\right)$. If $\partial^{l}=\partial^{l_{0}}$ then $e<e_{0}$ and

$$
\operatorname{LT}_{j}\left(a_{o} \partial^{k_{0}} \cdot f_{l, e} \partial^{l} e\right)=\partial^{k_{0}+l} e \prec_{j} \partial^{k_{0}+l_{0}} e_{0}=\operatorname{LT}_{j}\left(a_{k} \partial^{k} \cdot f_{0} \partial^{l_{0}} e_{0}\right) .
$$

For a summand of sum (2) we obtain $\operatorname{LT}_{j}\left(a_{k} \partial^{k} \cdot f_{0} \partial^{l_{0}} e_{0}\right) \prec_{j} \operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}\right)$.
As to sum (3), from the scope of the 1st sigma sign we derive $\operatorname{LT}_{j}\left(a_{k} \partial^{k} \cdot f_{l, e} \partial^{l} e\right) \prec_{j}$ $\operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l} e_{0}\right)$.

If $\partial^{l} \prec_{j} \partial^{l_{0}}$ then $\operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l} e_{0}\right) \prec_{j} \operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}\right)$.
If $\partial^{l}=\partial^{l_{0}}$ then $\operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l} e_{0}\right)=\partial^{k_{0}+l}=\partial^{k_{0}+l_{0}}=\operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}\right)$.
So, in any case, $\operatorname{LT}_{j}\left(a_{k} \partial^{k} \cdot f_{l, e} \partial^{l} e\right) \prec_{j} \operatorname{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}\right)$.
Let $t \in \mathrm{~T}(a \cdot f)$. Then t must be a term (surviving after cancellation) of one of the sum expressions (0),(1),(2),(3). Consequently $t \preceq_{j} \mathrm{LT}_{j}\left(a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}\right)=\partial^{k_{0}+l_{0}} e_{0}=\partial^{k_{0}} \cdot \partial^{l_{0}} e_{0}=$ $\operatorname{LT}_{j}(a) \cdot \operatorname{LT}_{j}(f)$. Moreover we see that the expression $\partial^{k_{0}} \cdot \partial^{l_{0}} e_{0}$ does not cancel out. It follows that $\mathrm{LT}_{j}(a \cdot f)=\mathrm{LT}_{j}(a) \cdot \mathrm{LT}_{j}(f)$.

From the expansion of expression (0)

$$
a_{0} \partial^{k_{0}} \cdot f_{0} \partial^{l_{0}} e_{0}=\sum_{v \leq \pi}\binom{k_{0}}{v} a_{0}\left(f_{0}\right)_{v}^{k_{0}-v} \partial^{l_{0}+v} e_{0}
$$

we derive $\operatorname{LC}_{j}(a \cdot f)=a_{0}\left(f_{0}\right)_{k_{0}}=\mathrm{LC}_{j}(a) \cdot \mathrm{LC}_{j}(f)_{k_{0}}=\mathrm{LC}_{j}(a) \cdot \sigma^{k_{0}}\left(\mathrm{LC}_{j}(f)\right)$.
Corollary 7. $\lambda=\partial^{k} \in \Lambda, f \in F \backslash 0$. Then $\forall j=1, \ldots, p$

$$
\operatorname{LT}_{j}(\lambda \cdot f)=\lambda \cdot \operatorname{LT}_{j}(f) \text { and } \operatorname{LC}_{j}(\lambda \cdot f)=\sigma^{k}\left(\operatorname{LC}_{j}(f)\right)
$$

Corollary 8. $a \in \mathbb{O}, f \in F$. Then $\forall j=0, \ldots, p$

$$
\nu_{j}(a \cdot f)=\nu_{j}(a)+\nu_{j}(f) .
$$

Proof. If $a=0 \vee f=0$, the statement is true. So assume $a \neq 0 \wedge f \neq 0$. Let $1 \leq j \leq p$ and set $\operatorname{LT}_{j}(a)=\partial^{k_{0}}, \operatorname{LT}_{j}(f)=\partial^{l_{0}} e_{0}$. Then

$$
\begin{aligned}
\nu_{j}(a \cdot f) & =\nu_{j}\left(\operatorname{LT}_{j}(a \cdot f)\right)=\nu_{j}\left(\operatorname{LT}_{j}(a) \cdot \operatorname{LT}_{j}(f)\right)=\nu_{j}\left(\partial^{k_{0}} \cdot \partial^{l_{0}} e_{0}\right)=\nu_{j}\left(\partial^{k_{0}}\right)+\nu_{j}\left(\partial^{l_{0}}\right) \\
& =\nu_{j}\left(\operatorname{LT}_{j}(a)\right)+\nu_{j}\left(\operatorname{LT}_{j}(f)\right)=\nu_{j}(a)+\nu_{j}(f) .
\end{aligned}
$$

The statement for $j=0$ follows by summation.
Corollary 9. $a \in \mathbb{O}, f \in F$. Then $a \cdot f=0 \Rightarrow a=0 \vee f=0$.
Consequently, (1) is a domain.
Proof. Let $a \neq 0 \wedge f \neq 0$ and ν one of $\nu_{0}, \nu_{1}, \ldots, \nu_{p}$. Then $\nu(a) \geq 0 \wedge \nu(f) \geq 0$. Therefore

$$
\nu(a \cdot f)=\nu(a)+\nu(f) \geq 0
$$

hence $a \cdot f \neq 0$.
The order functions ν_{j} propose a natural filtration concept.

$$
\begin{equation*}
F_{t}^{j}=\left\{f \in F: \nu_{j}(f) \leq t\right\} \quad(t \in \mathbb{N}, 0 \leq j \leq p) . \tag{26}
\end{equation*}
$$

For $\alpha \in \mathbb{N}^{p}$ we set

$$
\begin{equation*}
F_{\alpha}=\bigcap_{j=1}^{p} F_{a_{j}}^{j}=\left\{f \in F: \nu_{1}(f) \leq \alpha_{1} \wedge \cdots \wedge \nu_{p}(f) \leq \alpha_{p}\right\} . \tag{27}
\end{equation*}
$$

Again the sets \mathbb{D}_{t}^{j} and \mathbb{O}_{α} are implicitely defined $\left(F=\mathbb{D}^{1}\right)$.
Proposition 10. For all $1 \leq j \leq p$, the sets F_{t}^{j} define a univariate filtration on F w.r.t. the univariate filtration \mathbb{D}_{t}^{j} in \mathbb{O}. Consequently F_{α} is a p-fold filtration w.r.t. \mathbb{O}_{α}.

Proof.

- If $f, g \in F_{t}^{j}$ then $\nu_{j}(f+g) \leq \max \left\{\nu_{j}(f), \nu_{j}(g)\right\} \leq t$, thus the sets F_{t}^{j} are abelian groups.
- $s \leq t$ in \mathbb{N} implies $F_{s}^{j} \subseteq F_{t}^{j}$ and $\bigcup_{t=0}^{\infty} F_{t}=F$.
- If $a \in \mathbb{O}_{s}^{j} \wedge f \in \mathbb{O}_{t}^{j}$ then $\nu_{j}(a \cdot f)=\nu_{j}(a)+\nu_{j}(f) \leq s+t$, hence $\mathbb{O}_{s}^{j} \cdot F_{t}^{j} \subseteq F_{s+t}^{j}$.

Levins reduction with respect to several term orders

In [Lev07] the following theory is developed.
Definition 8. $f, g \in F, g \neq 0$. Let k, i_{1}, \ldots, i_{r} be distinct elements in $\{1, \ldots, p\}, I=$ $\left\{i_{1}, \ldots, i_{r}\right\}$ and $L=(k, I)$. Then f is L-reduced w.r.t. g iff

$$
\begin{equation*}
\neg \exists \lambda \in \Lambda\left(\lambda \cdot \operatorname{LT}_{k}(g) \in \mathrm{T}(f) \wedge \forall i \in I: \nu_{i}\left(\lambda \cdot \operatorname{LT}_{i}(g)\right) \leq \nu_{i}\left(\operatorname{LT}_{i}(f)\right)\right) \tag{28}
\end{equation*}
$$

f is L-reduced w.r.t. $G \subseteq F i f f f$ is L-reduced w.r.t. $g \forall g \in G$.
The corresponding reduction concept in [Lev07] is
Definition 9. $f, g, h \in F, g \neq 0$. I and $L=(k, I)$ as before. Then

$$
\begin{align*}
f \stackrel{L}{g}>h & \Longleftrightarrow \exists w \in \mathrm{~T}(f)\left(\operatorname{LT}_{k}(g) \left\lvert\, w \wedge h=f-\frac{f_{w}}{\tau_{\frac{w}{\operatorname{LT}_{k}(g)}}\left(\mathrm{LC}_{k}(g)\right)} \frac{w}{\operatorname{LT}_{k}(g)} g\right.\right. \\
& \left.\wedge \quad \forall i \in I: \nu_{i}\left(\frac{w}{\operatorname{LT}_{k}(g)} \cdot \operatorname{LT}_{i}(g)\right) \leq \nu_{i}\left(\operatorname{LT}_{i}(f)\right)\right) . \tag{29}
\end{align*}
$$

Here for $\lambda \in \Lambda$ the symbol τ_{λ} denotes the exponent of λ - as a power of ∂ - considered as the corresponding endomorphism of K, precisely, if $\lambda=\partial^{k}$ and $x \in K$ then $\tau_{\lambda}(x)=\sigma^{k}(x)$.

Theorem 7. Let $f, g, h \in F, g \neq 0$ and $L=(k, I)$ as before. Let P denote the predicate

$$
\begin{equation*}
P(f, g, \lambda) \Longleftrightarrow \forall i \in I: \nu_{i}(\lambda \cdot g) \leq \nu_{i}(f) . \tag{30}
\end{equation*}
$$

Let ρ denote the reduction relation

$$
\begin{equation*}
f \stackrel{\rho}{g} h \Longleftrightarrow \exists \lambda \in \Lambda\left(\operatorname{LT}_{k}(\lambda \cdot g) \in \mathrm{T}(f) \wedge h=f-\frac{f_{\mathrm{LT}_{k}(\lambda \cdot g)}}{\mathrm{LC}_{k}(\lambda \cdot g)} \lambda \cdot g \wedge P(f, g, \lambda)\right) . \tag{31}
\end{equation*}
$$

Then

$$
f \stackrel{\rho}{g} h \Longleftrightarrow f \xrightarrow[g]{L} h .
$$

Proof. Assume that $f \xrightarrow[g]{L} h$ and let $w \in \mathrm{~T}(f)$ as mentioned in (29). Let $\mathrm{LT}_{k}(g)=\partial^{l} e$.
Since $\operatorname{LT}_{k}(g) \mid w$ we may write $w=\partial^{l+p} e$. Set $\lambda=\frac{w}{\operatorname{LT}_{k}(g)}=\partial^{p}$. Then, by Corollary 7

$$
\operatorname{LT}_{k}(\lambda \cdot g)=\lambda \cdot \operatorname{LT}_{k}(g)=\partial^{p} \cdot \partial^{l} e=\partial^{l+p} e=w .
$$

In terms of the τ-notation we obtain

$$
\tau_{\frac{w}{\operatorname{LT}_{k}(g)}}\left(\operatorname{LC}_{k}(g)\right)=\tau_{\lambda}\left(\operatorname{LC}_{k}(g)\right)=\sigma^{p}\left(\operatorname{LC}_{k}(g)\right)=\mathrm{LC}_{k}(\lambda \cdot g) .
$$

Consequently $\operatorname{LT}_{k}(\lambda \cdot g) \in \mathrm{T}(f)$ and $h=f-\frac{f_{\mathrm{LT}_{k}(\lambda \cdot g)}}{\mathrm{LC}_{k}(\lambda \cdot g)} \lambda \cdot g$. Since

$$
\nu_{i}(\lambda \cdot g)=\nu_{i}\left(\operatorname{LT}_{i}(\lambda \cdot g)\right)=\nu_{i}\left(\lambda \cdot \operatorname{LT}_{i}(g)\right)=\nu_{i}\left(\frac{w}{\operatorname{LT}_{k}(g)} \cdot \operatorname{LT}_{i}(g)\right)
$$

the formula $P(f, g, \lambda)$ is exactly the additional condition in (29), which means that $f \xrightarrow[g]{\rho} h$. Conversely, assume that $f \xrightarrow[g]{\rho} h$. Let $\lambda=\partial^{p}$ as mentioned in the formula, $\operatorname{LT}_{k}(g)=\partial^{l} e$ and set $w=\operatorname{LT}_{k}(\lambda \cdot g)=\lambda \cdot \operatorname{LT}_{k}(g)=\partial^{p} \cdot \partial^{l} e=\partial^{p+l} e$. Then $\operatorname{LT}_{k}(g) \mid w, \frac{w}{\operatorname{LT}_{k}(g)}=\partial^{p}=\lambda$ and $\mathrm{LC}_{k}(\lambda \cdot g)=\sigma^{p}\left(\mathrm{LC}_{k}(g)\right)$. In τ-notation:

$$
\tau_{\frac{w}{\mathrm{LT}_{k}(g)}}\left(\mathrm{LC}_{k}(g)\right)=\tau_{\partial^{p}}\left(\mathrm{LC}_{k}(g)\right)=\sigma^{p}\left(\mathrm{LC}_{k}(g)\right)=\mathrm{LC}_{k}(\lambda \cdot g)
$$

Therefore $w \in \mathrm{~T}(f) \wedge \operatorname{LT}_{k}(g) \mid w$ and

$$
h=f-\frac{f_{w}}{\tau_{\frac{w}{\mathrm{LT}_{k}(g)}}\left(\mathrm{LC}_{k}(g)\right)} \frac{w}{\mathrm{LT}_{k}(g)} g \wedge P(f, g, \lambda)
$$

and this means that $f \xrightarrow[g]{L} h$.
Proposition 11. P satisfies the monomial irreducibility condition (5). Therefore

$$
f \in I_{\rho} \Rightarrow \mathrm{T}(f) \subseteq I_{\rho}
$$

Proof. Assume $\exists g \in G, \exists \lambda \in \Lambda$ such that

$$
\operatorname{LT}_{k}(\lambda \cdot g) \in \mathrm{T}(f) \wedge \mathrm{LC}_{k}(\lambda \cdot g) \in K^{\times} \wedge \forall i \in I: \nu_{i}(\lambda \cdot g) \leq \nu_{i}\left(\mathrm{LT}_{k}(\lambda \cdot g)\right)
$$

Then $\nu_{i}(\lambda \cdot g)=\nu_{i}\left(\operatorname{LT}_{k}(\lambda \cdot g)\right)$. As $\operatorname{LT}_{k}(\lambda \cdot g) \in \mathrm{T}(f)$ it follows $\nu_{i}\left(\operatorname{LT}_{k}(\lambda \cdot g)\right) \leq \nu_{i}(f)$, hence $\nu_{i}(\lambda \cdot g) \leq \nu_{i}(f)$. Consequently

$$
\exists g \in G \exists \lambda \in \Lambda: \mathrm{LT}_{k}(\lambda \cdot g) \in \mathrm{T}(f) \wedge \mathrm{LC}_{k}(\lambda \cdot g) \mid f_{\mathrm{LT}_{k}(\lambda \cdot g)} \wedge \forall i \in I: \nu_{i}(\lambda \cdot g) \leq \nu_{i}(f)
$$

6 Conclusion

We have designed the notion of a (weak) Gröbner reduction with the aim of describing several Gröbner basis concepts for finitely generated free modules over a wide class of noncommutative rings. To examine our system of axioms against known Gröbner basis techniques, we picked up three classes of such rings from the recent literature on Gröbner bases and dimension polynomials, and we have shown that the Gröbner basis notions introduced there fit into our general framework. The algorithmic generation of Gröbner bases in environments of great generality is subject to further research.

References

[BWK93] T. Becker, V. Weispfenning, and H. Kredel. Gröbner bases: a computational approach to commutative algebra. Graduate texts in mathematics. Springer-Verlag, 1993.
[Cou95] S.C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge University Press, 1995.
[DL12] C. Dönch and A. Levin. Computation of Bivariate Characteristic Polynomials of Finitely Generated Modules over Weyl Algebras. ArXiv e-prints:1212.1833, 2012.
[FL15] C. Fürst and G. Landsmann. Computation of Dimension in Filtered Free Modules by Gröbner Reduction. In Proceedings of the International Symposium for Symbolic and Algebraic Computation, ISSAC '15. ACM, 2015.
[Lev07] A. Levin. Gröbner bases with respect to several orderings and multivariable dimension polynomials. Journal of Symbolic Computation, 42(5):561-578, May 2007.
[Lev12] A. Levin. Multivariate Difference-Differential Dimension Polynomials. ArXiv eprints:1207.4757, July 2012.
[ZW06] M. Zhou and F. Winkler. Gröbner bases in difference-differential modules. In Proceedings of the 2006 international symposium on Symbolic and algebraic computation, ISSAC '06, pages 353-360, New York, NY, USA, 2006. ACM.
[ZW07] M. Zhou and F. Winkler. Computing difference-differential Groebner Bases and difference-differential dimension polynomials. RISC Report Series 07-01, Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, January 2007.
[ZW08a] M. Zhou and F. Winkler. Computing difference-differential dimension polynomials by relative Gröbner bases in difference-differential modules. Journal of Symbolic Computation, 43(10):726-745, 2008.
[ZW08b] M. Zhou and F. Winkler. Gröbner bases in difference - differential modules and difference - differential dimension polynomials. Science in China Series A: Mathematics, 51(9):1732-1752, 2008.

[^0]: *partially supported by the Austrian Science Fund (FWF): W1214-N15, project DK11

[^1]: ${ }^{1}$ In the literature the tuples δ and σ are denoted informally as the sets Δ and Σ, whence the name. Note though, that the mappings δ_{i} need not be distinct. The same is the case with the σ_{j}.

