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Kurzfassung / Abstract

Kurzfassung

Diese Doktorarbeit behandelt verschiedene Arten von Standardbasen in endlich erzeugten Mo-
duln tiber dem Ring der Differenzen-Schiefdifferentialoperatoren, deren Berechnung und An-
wendungen auf die Berechnung multivariater Dimensions(quasi)polynome. Sie besteht aus zwei
Teilen. Der erste behandelt Standardbasen in Moduln iiber dem Ring der Differenzen-Schief-
differentialoperatoren. Der zweite Teil behandelt mit solchen Moduln assoziierte uni- und mul-
tivariate Dimensionsquasipolynome.

Wir beginnen damit, die Begriffe von Schiefdifferential-, Differenzen- und Differenzen-Schief-
differentialoperatoren in Erinnerung zu rufen. Schiefdifferentialoperatoren sind eine Verallge-
meinerung von kommutativen Polynomen, Differentialoperatoren und Differenzenoperatoren.
Zur numerischen Losung linearer partieller Differentialgleichungen betrachtet man oft das zuge-
horige Differenzenschema, welches durch inverse Differenzenoperatoren beschrieben werden
kann. Indem wir die Begriffe der Schiefdifferential- und Differenzenoperatoren kombinieren,
betrachten wir Differenzen-Schiefdifferentialoperatoren. Wir prasentieren Matrixdarstellungen
verallgemeinerter Termordnungen. Dann fiihren wir den Begriff der gewichtet relativen Grob-
nerbasen in endlich erzeugten Moduln von Differenzen-Schiefdifferentialoperatoren ein. Diese
stellen eine Verallgemeinerung von Grobnerbasen, relativen Grobnerbasen und Groébnerbasen
beziiglich mehrerer Ordnungen dar. Wir geben eine Methode zu deren Berechnung an. Des
Weiteren geben wir eine Charakterisierung gewichtet relativer Grobnerbasen an, welche den
Anstofd zu Komplexititsiiberlegungen fiir die erwédhnte Methode liefert. Ein Teilresultat fiir kom-
mutative Polynome wurde bei ACA 2011 [Don11] préasentiert. Wir verallgemeinern den Begriff
der Randbasen zu endlich erzeugten Moduln von Differenzen-Schiefdifferentialoperatoren und
stellen eine Beziehung zwischen Rand- und Grobnerbasen in diesem Umfeld her. Durch die
Betrachtung von Multiplikationsendomorphismen leiten wir, in Analogie zu S-Polynomen, Kri-
terien ab, um zu tiberpriifen, ob eine Randvorbasis bereits eine Randbasis ist. Algorithmen zur
Berechnung von Randbasen von nulldimensionalen Moduln sind im Anhang enthalten.

Wir fithren auch den Begriff gewichteter Filtrierungen von Moduln tiber Differenzen-Schief-
differentialoperatorringen ein und generalisieren die klassische Theorie der Dimensionspoly-
nome assoziiert mit exzellenten Filtrierungen zu exzellenten gewichteten Filtrierungen. Wir be-
weisen die Existenz von mit solchen exzellenten gewichteten Filtrierungen assoziierten Quasipo-
lynomen. Mit Hilfe des Moduls der Differentiale erweitern wir dieses Resultat zu Differen-
tialkorpererweiterungen. Eine andere Erweiterung unseres Resultates betrifft gewichtete Mul-
tifiltrierungen und multivariate Dimensionsfunktionen. Schlussendlich geben wir mehrere Bei-
spiele fiir Dimensions(quasi)polynome bekannter Differential- und Differenzengleichungssys-
teme aus der mathematischen Physik an.

Abstract

This thesis treats different kinds of standard bases in finitely generated modules over the ring of
difference-skew-differential operators, their computation and their application to the computa-
tion of multivariate dimension (quasi-)polynomials. It consists of two parts. The first deals with
standard bases in modules over the ring of difference-skew-differential operators. The second
part deals with uni- and multivariate dimension quasipolynomials associated with such mod-
ules.

We start by recalling the notions of skew-differential, difference, and difference-skew-diffe-
rential operators. Skew-differential operators are a generalization of commutative polynomials,
differential operators, and difference operators. For the numeric solution of linear differential
equations one often considers the associated difference scheme which can be described in terms
of inversive difference operators. Combining the notions of skew-differential operators and dif-
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ference operators we consider difference-skew-differential operators. We present matrix repre-
sentations for generalized term orders. Then we introduce the notion of weight relative Grob-
ner bases in finitely generated modules of difference-skew-differential operators generalizing
the notions of Grobner bases, relative Grobner bases and Grobner bases with respect to several
orderings. We provide a method for their computation. Furthermore we give a characterization
of weight relative Grobner bases. This naturally gives rise to complexity considerations for the
aforementioned method. A partial result for commutative polynomials has been presented at
ACA 2011 [D6n11]]. We go on by generalizing the notion of border bases to finitely generated
modules of difference-skew-differential operators. We establish a connection between border
and Grobner bases in this setting. Considering multiplication endomorphisms we also derive
some S-polynomial-like criteria for a border prebasis to be a border basis. Algorithms for the
computation of border bases of zero-dimensional modules are included in the appendix.

We also introduce the notion of weighted filtrations of modules over rings of difference-skew-
differential operators and generalize the classical theory of dimension polynomials associated
with excellent filtrations to excellent weighted filtrations. We prove the existence of dimension
quasipolynomials associated with such excellent weighted filtrations. Considering the module
of differentials we can extend this result to differential field extensions. Another extension of our
results regards weighted multifiltrations and multivariate dimension functions. Finally we pro-
vide several examples for dimension (quasi)polynomials of well-known systems of differential
and difference equations from mathematical physics.
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Chapter 1

Introduction



2 CHAPTER 1. INTRODUCTION

1.1 Introduction

1.1.1 Overview

In this thesis we study different kinds of standard bases in finitely generated modules over rings
of difference-skew-differential operators and their application to the computation of difference-
skew-differential dimension polynomials taking into account different weights associated with
the different operators involved.

Taking a look at the standard literature for differential and difference dimension polynomials
— most notably [KLMP99] - there is a distinction between differential, difference, and inversive
difference operators which naturally arises from the different properties of these classes of op-
erators. Working with them however it turns out immediately that differential and difference
operators are not that different at all. A unified theory for differential and difference operators
can be found in the theory of Ore polynomials or skew-polynomials first appearing in [Ore33].
Throughout this thesis we will use the term skew-differential operators.

Inversive difference operators are distinguished from difference operators because in the for-
mer case the terms involved form a group whereas in the later case they form a monoid. Several
approaches have been developed to deal with this issue [PZ96, PU99| [ZW06, [ZW08al I ZW08b),
LWT11]. Unless otherwise noted, throughout this thesis difference operators will always be con-
sidered as a special case of skew-differential operators. Therefore, from now on, whenever we
use the term “difference operator” we mean an inversive difference operator.

1.1.2 Outline

In the beginning of the second chapter we recall the notions of skew-differential, difference, and
difference-skew-differential operators.

In Section[2.2]we recall the notion of and provide a matrix representation for generalized term
orders.

In Section [2.3| we unify the theories of relative Grobner bases as developed in [ZW08al] and
Grobner bases with respect to several orderings as developed in [Lev07al [Lev08] and introduce
the notion of weight relative Grobner bases in finitely generated modules over rings of difference-
skew-differential operators. We state a method for the computation of weight relative Grobner
bases and prove its correctness. We provide a characterization of weight relative Grébner bases
which gives rise to considerations leading to the result that in some situations no finite weight
relative Grobner basis exists. This is illustrated by an extended example regarding relative Grob-
ner bases of polynomial ideals. It turns out that if one drops the “relative”part then for ev-
ery finitely generated difference-skew-differential module and suitable choice of weights a finite
weight Grobner basis always exists. In this case the aforementioned method gives rise to an
algorithm for its computation.

In Section [2.4f we extend the notion of border bases from polynomial ideals to finitely gen-
erated modules over rings of difference-skew-differential operators. We show that there ex-
ists an intrinsic connection between border bases and Grobner bases modules over the ring of
difference-skew-differential operators. Considering multiplication endomorphisms we derive
S-polynomial-like criteria for a border-prebasis to be a border basis. Algorithms for the compu-
tation of border bases for zero-dimensional modules over the ring of difference-skew-differential
operators are provided in Appendix

The third chapter deals with uni- and multivariate dimension quasipolynomials. Section
is devoted to the existence and computation of uni- and multivariate dimension quasipoly-
nomials where the different skew-differential and difference operators are associated with cer-
tain weights. We introduce the notion of weighted filtrations of modules over filtered rings of
difference-skew-differential operators and apply the theory of weight relative Grobner bases in
order to prove the existence of uni- and multivariate dimension quasipolynomials associated
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with such modules. The provided proves are constructive and give rise to an algorithm for the
computation of said quasipolynomials. In Section 3.2 the relation between Einstein’s notion of
the “strength” of a system of differential equations governing a physical field and differential di-
mension polynomials is pointed out. We provide several examples of differential and difference
dimension (quasi)polynomials of well known systems from mathematical physics.

Our main original contributions are:

(i) introducing the notion of weight relative Grobner bases in finitely generated modules of
difference-skew-differential operators and clarifying their relation to Grébner bases, rela-
tive Grobner bases, and Grobner bases with respect to several orderings in the sense of
Levin,

(ii) extending the notion of border bases to finitely generated modules of difference-skew-
differential operators,

(iii) introducing the notion of (excellent) weighted filtrations,

(iv) proving the existence of weighted difference-skew-differential dimension quasipolynomi-
als and establishing the general form of multivariate difference-skew-differential dimen-
sion functions.






Chapter 2

Standard bases for
difference-skew-differential
operators



6 CHAPTER 2. STANDARD BASES

2.1 Difference-skew-differential operators

The following definition generalizes the definitions of differential, difference, and difference-
differential operators as provided in [KLMP99].

2.1.1 Definition of difference-skew-differential operators

Throughout this thesis the symbols N, Z, Q, Q1, Qp and R denote the sets of nonnegative inte-
gers, integers, rational numbers, positive rational numbers, nonnegative rational numbers, and
real numbers, respectively. We assume all rings to have a unit element, every subring of a ring
contains the ring’s unit element. Ring homomorphisms are considered to be unitary, i.e., map-
ping unit element to unit element. By the module over a ring R we always mean a unitary left
R-module.

Definition 2.1.1.

(i) (a) Let R be a ring, and T an endomorphisms on R. A function é on R is called T-derivation or
skew-derivation with respect to T if and only if for all a,b € R we have

6(a+b) = d(a)+6(b), and
d(ab) = é(a)b+ t(a)d(b).

(b) Let R be a commutative ring (respectively a field), {1, ..., T} a set of mutually commuting
injective endomorphisms on R, and A = {61,...,0m} a set of mutually commuting skew-
derivations on R such that for all i = 1,...,m the skew-derivation J; is a skew-derivation
with respect to T;. Then R is called a skew-differential ring or A-ring (respectively a skew-
differential field or A-field) with basic set of skew-derivations A.

(c) Let R be a A-ring (respectively A-field) and S a subring (respectively subfield) of R that is
closed with respect to the action of any operator from A. Then S is a A-ring (respectively
A-field) which will be called A-subring (respectively A-subfield) of R and R is called A-
ringlextension (respectively A-field extension) of S.

(d) By [A] we denote the commutative monoid generated by A, i.e.,
{65 | k e N™},

where we use multi-index notation, i.e., 6§ = (5]1{1 . -55,;” where k = (kq, ..., ky). Elements of
[A] are called skew-differential (A-) terms.

(e) The free R-module generated by [A] will be denoted by R[A]. Hence elements of R[A] are of
the form ¥ c(a) axA with ay € R and only finitely many a) are not vanishing. R[A] can be
equipped with a natural ring structure with the commutation rules

i. Ap=pAforall A,y € [A], and
ii. 6;r = 1;(r)d; + 6;(r) forall1 <i<m,r € R.
The obtained ring is called the ring of skew-differential (A-) operators over R.

(f) The order of any A = Sk — 5’{1 .. '551'” € [A] is given by ord A = ky . ..+ kn and the order
of f = Laeja) A € R[A] is given by
ord f = max{ord A | a, # 0}.

(g) A left module over the ring R[A] is called an R[A]-module. If G C R[A] then by gia)(G) we
denote the R[A]-module generated by G. If the ring R[A] is clear from the context we write

(G) instead of gip(G).



2.1. DIFFERENCE-SKEW-DIFFERENTIAL OPERATORS 7

(ii)

(iii)

(a) A commutative ring (respectively a field) R together with a finite set ¥ = {oy,...,04} of
mutually commuting automorphisms of R is called a difference ring or X-ring (respectively
difference field or X-field) with basic set 3.

(b) Let R be a X-ring (respectively L-field) and S a subring (respectively subfield) of R that is
closed with respect to the action of any operator from L. Then S is a X-ring (respectively -
field) which will be called X-subring (respectively X-subfield) of R and R is called X-ring
extension (respectively X-field extension) of S.

(c) By X* we denote the set {c1,07,... 00,07 '} and by [Z*] we denote the free commutative

group generated by ¥, i.e.,
=] = {c! |1 € Z"}.
Elements of [X*] are called difference (X-) terms.

(d) The free left R-module generated by [£*] we will denote by R[X*]. Hence, elements of R[Z*]
are of the form Y- ¢z axA with ay € R for any A € [£*] and only finitely many a, are not
vanishing. R[X*] can be equipped with a natural ring structure with the commutation rules

i. Ap=pAforall A,y € [Z¥],
ii. or =0;(r)o; foralll <i<n,r € R, and
iil. 0';11’ = (Tl.*l(r)(rflfor alll <i<n,reR.
The obtained ring is called the ring of difference (X-) operators over the ring R.

(e) The order of any A = ¢! = (Til ool e [A] ds given by ord A = |l1| + ... + |l;| and the
order of 0 # f = Y_)c[z+] arA € R[E"] is given by

ord f = max{ord A | a, # 0}.

(f) A left module of the ring R[X*] is called R[Z*|-module. If G C R[Z*] then by giz+(G) we
denote the R[X*]|-module generated by G. If the ring R[X*] is clear from the context we write
(G) instead of gz+1(G).

(a) Let R be a commutative ring (respectively a field), T = {t,..., T} a set of mutually com-
muting injective endomorphisms on R, A = {61,...,0m} a set of skew-derivations such
that for i = 1,...,m the skew derivation J; is a skew-derivation with respect to T;, and
X ={oy,...,0u} aset of automorphisms on Rwith Aoy = poAforany A,y € TUAUZL.
Then R is called a difference-skew-differential ring or A-X-ring (respectively difference-
skew-differential field or A-X-field) with basic set of skew-derivations A and basic set of
automorphisms L.

(b) Let R be a A-X-ring (respectively A-X-field) and S a subring (respectively subfield) of R that is
closed with respect to the action of any operator from AUX. Then S is a A-X-ring (respectively
A->-field) which will be called A-X-subring (respectively A-X-subfield) of R and R is called
A-Y-ring extension (respectively A-Y-field extension) of S.

(c) By [A,X*] we denote the set
{6*c! | ke N™,1 € Z},
where we use multi-index notation. Elements of [A, £*] are called difference-skew-differen-
tial (A-X-) terms.

(d) The free R-module generated by [A,X*] we will denote by R[A,X*]. Hence, elements of
R[A,X7] are of the form ) ¢ (s v+ axA with ay € R and only finitely many a, are not vanish-
ing. R[A,X*] can be equipped with a natural ring structure with the commutation rules

i Ap=upAforall A,y € [AX¥],
ii. 6;r =T;(r)0+6;(r) foralll <i<m,r €R,
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iii. or = o;(r)o; foralll <j<m,r € R, and
iv. ai_lr = Ui_1(r)ai_1for alll <j<mreR

The obtained ring is called the ring of difference-skew-differential (A-X-) operators over
R.

(e) The order of any A = 8o’ = 5’{1 . -5’,2"0{1 ..ol € [N, X is given by ord A = ky + ... +
km + || + ...+ |In| and the order of 0 # f = Y \c(p 5+ aaA € R[A, 7] is given by

ord f = max{ord A | ay # 0}.

(f) A left module of the ring R[A,X*] is called R[A,X*]-module. If G C R[A,X*] then by
R[p,z+] (G) we denote the R[A, X*|-module generated by G. If the ring R[A, £*] is clear from
the context we write (G) instead of g(p 5+)(G)-

O

Obviously, (i) and (ii) can be considered as special cases of (iii) in Deﬁnitionproviding
clarifications for the case that n = 0 or m = 0, respectively. From now on whenever we consider
a difference-skew-differential ring (or field) with basic set of skew-derivations A, and basic set of
automorphisms X we also allow A =@ or X = @.

For reasons of convenience throughout this thesis we will often use multi-index notation
meaning that if we consider a difference-skew-differential term 6“c” then u = (Ug, ..., um) €
N", 0= (v1,...,0) € Z" and 6"0° = 61 -+ - Sy o)t -+ - 0"

There are several popular approaches to difference-skew-differential operators. We hope that
the kind reader will find at least one of the two motivations we present satisfactionable.

2.1.2 Difference-skew-differential operators arising from physical applica-
tions
Linear partial differential operators arise naturally in physics, chemistry, biology, and many other

sciences. For example, Gauss’s flux theorem relates the divergence V = aa—x + % + % of an electric
field E to the distribution of electric charges p and the electric constant €y via

v.E= "

€0

Differences come into play when one discretizes a (partial) differential equation in order to solve
it. That means, replacing every occurrence of

o D) = F(2)

h—0 h

in a given differential equation by

f(x+ho) — f(x)
ho

for fixed hg and solving the resulting difference equation.
A second possibility for differences to arise is by considering systems involving time delays.
Then naturally expressions of the form

fE+1) = f()

have to be treated.
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2.1.3 Ore polynomials

The theory of Ore polynomials originates from the works of Jystein Ore [Ore32al(Ore32b)[Ore33]
examining polynomials satisfying a certain commutativity condition. Consider a ring R together
withmaps d,s : R — R such that

(i) sisan injective ring homomorphism, and

(ii) d is a homomorphism of abelian groups satisfying for any r1, 2 € R the equation
d(rir2) = s(r1)d(r2) +d(r1)r2.

By [0] we denote the commutative monoid generated by an element 9, i.e.,
[0] := {o" | k e N}.

Then the set R[] can be equipped with a ring structure by the commutation rule or = s(r)d + d(r)
forallr € R.

Definition 2.1.2. The ring R[0] together with this commutation relation is called ring of Ore polyno-
mials over R with respect to s and d and is denoted by R(9; s, d].

Example 2.1.3. Choosing s = 1 implies d(rirp) = r1d(ry) + d(r1)ro, i.e., in this case d is a derivation
on R. Furthermore we have
ory =r10+d(rp).

So R[] is the ring of differential operators over R (in this case one can consider d as a symbol for the
operator r — d(r)).

Example 2.1.4. Choosing d = 0 implies dr = s(r)0, i.e., d acts on R as an operator associated with the
endomorphism s. If R is a ring (or a field) of functions over a field K, then s is typically a mapping of the
form f(x) — f(x+ h), where f(x) € R, h € K. Therefore the name “difference operator”.

Keeping in mind that d and s correspond to derivations and shifts, respectively, it turns out
that the choices s = 1 and d = 0, respectively, are trivial.

2.1.4 The module of differentials
In this subsection we present the module of differentials as introduced in [KLMP99].

Definition 2.1.5. Let R be a ring, M an R-module, and D : R — M an additive map such that for any
r1,72 € R we have

D(rir2) = D(r1)ra +r1D(r2).

Then D is called a derivation from R to M. The set of all derivations from R to M is denoted by
Der(R, M).

In [Bou70, Chapter V, §9, Proposition 4] the following proposition is provided.

Proposition 2.1.6. Let Q) be a field, E a subfield of (), and F a separable algebraic field extension of E
contained in Q). Then every derivation D of E into Q) can be uniquely extended to a derivation D of F into
Q.

Let F C G be fields. The set Derr G is defined by

Derr G := {6 € Der(G,G) | Vepd(f) = 0}.
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Then Derr G is a G-vector space. Let (Derp G)* denote its dual space which again is a G-vector
space. For every element g € G let dg € (Derp G)* such that for all § € Derr G we have

(dg)(6) = d(g)-

Then g — dg is F-linear and

d($182)(0) = 0(8182)
= 0(g1)82 +810(82)
= ((dg1)g2 +81(dg2))(9).

Hence, g — dg is a derivative.

Definition 2.1.7. The G-vector space generated by {dg | ¢ € G} will be denoted by Qp(G). It is called
the module of differentials associated with the field extension G O F.

If B C G, then the intersection of all subfields of G containing F and B is denoted by F(B) and
is called the field extension of F generated by B. If B is finite then F(B) is called a finitely generated
field extension of F.

In [KLMP99] the following proposition is provided.

Proposition 2.1.8. Let F be a field and G = F(g1, ..., 8k) a finitely generated field extension of F. Then
Qr(G) is a finite dimensional G-vector space with generators dgy, . .., dgy.

2.2 Generalized term orders

Let K be a difference-skew-differential field of characteristic 0, {Ty,..., T} a set of mutually
commuting injective endomorphisms on K, {41, ..., d, } a basic set of skew-derivations such that
fori =1,...,m the skew-derivation J; is a skew-derivation with respect to T;, respectively, and
{01,...,04} a basic set of automorphisms. Since the set of difference-skew-differential terms
[A,X*] is isomorphic to IN™ x Z" for reasons of convenience throughout this section we will
consider N™ x Z" instead of [A, Z*].

2.21 Orthant decompositions

Zhou and Winkler [ZW06| [ZW08a [ZW08b] suggested to decompose the set IN"* x Z" so that
every component of such a decomposition is isomorphic to the m + n-fold nonnegative integers
providing a possibility for a natural extension of admissible orders as used in the theory of Grob-
ner bases. These so-called generalized term orders were first introduced by Pauer and Zampieri
on sets of monomials in a polynomial ring for modelling problems in system theory [PZ96].

Definition 2.2.1. Let Z" = U;::l Z,(C") such that for all 1 < k < p we have
(i) 0 € Z,(C") and apart from O the set Z,((") contains no two inverse elements,
(ii) Z,((n) is isomorphic to IN" as a semigroup, and
(iii) Z,((n) generates Z"* as a group.

Then {Z]({") | 1 < k < p} is called an orthant decomposition of Z" and each of its components
Z,(C") is called an orthant of the orthant decomposition {Z,(C”) | 1 < k < p}. Furthermore we call
{IN™ x ZI(C") | 1 < k < p} an orthant decomposition of N™ x Z" and each of its components N" x Z.1)
is called an orthant of the orthant decomposition {IN™ x Z,({") |1<k<p} O
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Every orthant decomposition of IN” x Z" induces a decomposition of [A,~*] which we call
orthant decomposition of [A, X*].
For the following examples of orthant decompositions see also [ZW06].

Example 2.2.2. The standard example of an orthant decomposition consists of {Z,((n) |1 <k <2"}being
(n)

the set of all distinct cartesian products of n sets each of which is either N or —IN, i.e., Z, is generated
as a semigroup by

{(c1,0,...,0),(0,¢,0,...,0),...,(0,...,0,¢cn)},

where fori =1,...,n either c; = 1 or ¢c; = —1. This orthant decomposition of Z" is called the canonical
orthant decomposition. O

Example 2.2.3. Let n = 2 and define an orthant decomposition {Z,(f) |1 <k<3}ofZ%by

zP = {(kk) |k k € N}
zP? = {(ky—ky —ka) | k1, kp € N}
7P = {(~ki,ky—ki) | ki, ky € N},

ie., Zgz),Zg) and Z§2) are generated by {(1,0),(0,1)},{(1,0), (=1, —1)} and {(0,1), (=1, —1)}, re-
spectively.

O

Consider an orthant decomposition & = {Z,((n) |1 <k < p}of Z". Since for1 < k < p the
orthant Z,((n) has n generators the set of all generators of the orthant decomposition = is finite, say
{&,...,&r} —there exist 1 < kq,...,k, < rsuch that Z,gn) is generated by C,, ..., Ck,. Then we

say that 1, ..., are the generators of the orthant decomposition . If E' = {IN"* x Z,((”) 1<
k < p} is an according orthant decomposition of IN" x Z" then we still call {¢3, ..., } the set of
generators of the orthant decomposition &' of N™ x Z".

2.2.2 Definition of generalized term orders

Definition 2.2.4. Let & be an orthant decomposition of N" x Z", E = {ey,...,e;} a finite set and let
=< be a total order on IN" x Z" x E such that forall 1 <i,j < q,A,yu € N™ x Z" we have

(i) (0,e;) < (A, e;),and
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(i) (A, e;) < (1,¢j) implies (A + p,e;) < (1 + p, ;) if n and p belong to the same orthant.

Then < is called a generalized term order on IN" x Z" x E with respect to the orthant decomposition
E. If 2. = @ then < is also referred to as admissible order.

If E is a finite set of generators of a free difference-skew-differential module we identify IN"* x
Z" x E with [A,X*]E. Then every generalized term order (respectively admissible order) < on
IN™ x Z" x E induces an order on [A, ~*]E which we call a generalized term order (respectively
admissible order) on [A, X*|E.

If no confussion is possible we simply say that < is a generalized term order or admissible
order, respectively.

Obviously, if < is a generalized term order with respect to the orthant decomposition & =
{8k |1 <k < p}and there exist 1 < ky,kp < p with ky # kp and &y, C Ey, then < is also a gener-
alized term order with respect to the orthant decompositions {Ek [1<k<pk+ kl}. Therefore
from now on whenever we consider a generalized term order < with respect to the orthant de-
composition & we assume that & does not contain any orthant which is entirely contained in
another orthant of the orthant decomposition Z.

For a better understanding of the relation between orthant decompositions and generalized
term orders consider an orthant decomposition & = {8 | 1 < k < p} of Z" such that the
intersection of two orthants, say E; and Z, generates Z" as a group. Let E be finite and <
a generalized term order on IN” x Z" x E with respect to {IN" x E; | 1 < k < p}, A, 11 €
IN™ x Eq,e,¢ € Ewith (Ay,e) < (171,€¢') and u € Z™*" such that Ay + u = #7. Then for Ay, 15 €
IN™ x By with Ay + p = 1, there exist p1, uy € IN™ x (E; N Ep) such that A + 3 = Ay + g €
IN™ x (B4 NEp) and 71 + p1 = 12+ p2 € N™ x (E1 N Ey). Hence, (Ay + pp,e) = (A1 + g, e) <
(m +wu1,¢) = (12 + pa,€') and (Ay,e) < (172, ¢’). From these considerations we obtain:

Lemma 2.2.5. Let E be finite and & = {E; | 1 < k < p} an orthant decomposition of Z" such that
51 N Ey generates Z" as a group.

(i) If there exist § € E1,A € Ep with yA = 1 then there cannot exist any generalized term order on
IN™ x Z" x E with respect to {N" x By | 1 < k < p}, and

(ii) if there exists a generalized term order < on IN™ x Z" x E with respect to {N" x B |1 < k < p}
then it also is a generalized term order with respect to the orthant decomposition {IN™ x (81 U
Ez),Nm X 33, .. .,Nm X E"P}'

From now on unless otherwise noted we always assume that if we consider a generalized term
order on N™ x Z" x E with respect to the orthant decomposition & = {IN" x 5 | 1 < k < p} of
IN™ x Z" then there exist no 1 < kq,ky < p with ky # kp and &, N &y, generating Z" as a group.

2.2.3 Characterization of admissible orders

At EUROCAL’85 Robbiano presented a classification of admissible orders over the polynomial

ring [Rob85|]. A classification of monomial orders for free modules over polynomial rings was

provided by Rust and Reid [RR97], and independently Horn [Hor98|]. Already earlier partial

classifications were obtained by e.g., Carra-Ferro and Sit [C594], Caboara and Silvestri [CS99].
First we recall Robbiano’s theorem classifying admissible orders on IN"".

Theorem 2.2.6. Let k € {1,...,m},uy,...,ur € R™ and let U € R be the matrix with rows
uy,...,Ux. By d; we denote the dimension of the Q-vector space spanned by the entries of u;. Suppose
Uy, ..., U are such that

() di+...+d=m,

(ii) fori=1,...,kwehave ||u;|| =1, and
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(iii) fori =2,..., k the vector u; is an element of the real completion of the rational subspace orthogonal
to the real space spanned by uy,. .., u;_q.

Then every linear order < on Q™ corresponds one-to-one with U by
a < b= Ua <j, Ub,

where a,b € Q™ and <y denotes the lexicographic order (cf. [Win96, Ex. 8.2.1 a]). The order < restricts
to an admissible order on IN™ if and only if the topmost non-vanishing entry in every column of U is
positive.

Fora = (ay,...,a;) withc > dlet Pry(a) := (ay,...,a4).
For E = {ey,...,e;} the classification of admissible orders on IN" x E as provided by Rust
and Reid [RR97] is given in the following theorem.

Theorem 2.2.7. Let ky,...,k; € {1,...,m}. Fors = 1,...,qlet 75 € R and Uy € Rks*m g
matrix corresponding to an admissible order on IN™ as in Theorem By m;j we denote the largest
non-vanishing integer for which U; and U; have the first m;; rows in common. Let E = {ey, ..., eq}
and let T = (t;;) € INT*9. Let a be an element of the symmetric group on {1,...,q} such that for all
1 <4,j,k < g we have

(i) 0 <t; <my,
(ii) ti; = m; = n;,
(iii) ti; = tj;,
(iv) tix > min{t;;, ty}, and
(v) whenever ty. > max{t;j, ty} and a(i) < a(j) then a(k) < a(j).
Then fora,b € IN™,1 <i,j < q an admissible order < on IN™ X E is defined by
(a,e;) < (bej) = (Pry, (Uia + 7i), (i) <tex (Pre, (Ub+ 7;), a(j))- (2.1)

Conversely, any admissible order on IN™ x E can be represented as in (2.1)) by matrices Uy, . . ., Uy, vectors
Y1, - -+, Vg a matrix T € INT*9 and an element a of the symmetric group on {1,...,q}.

2.2.4 Representation of generalized term orders

Consider a generalized term order < with respect to the orthant decomposition {IN" x ZI(C”) [1<
k < p} of N™ x Z" with generators {1 < ... < §,. Letky, ..., k, € {1,...,r} pairwise distinct

such that the orthant IN" x Z,((n) is generated by {;, < ... < {i,. We assume that for 1 <k, I <p
with k # [ there exists sg; € {1,...,n} such that
(i) foralll <i < sg; we have k; = I;, and

(ii) ks, < Lsy-

For b € Z" let
ky :=min{k |1 <k < p,b e Z"}.

By the above assumptions on orthant decompositions there exist unique By, ..., 8 € IN with
@ b =Yl pibis

(ii) B; > O for all i with ¢; being a generator of Z}E’:)I and
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(iii) B; = 0 for all i with ¢; not being a generator of Z,E:).

We define ¢ : Z"" — IN" by
¢(b) == (B1,-- -, Br)- 2.2)

Lemma 2.2.8. Let E = {ey,...,e;} and < a generalized term order on IN™ x Z" x E with respect to the

orthant decomposition & = {IN™ x Z,((") | 1 <k < p} where the orthants and their generators meet the
assumptions given in the definition of ¢ above. Then there exist

(i) ki,..., kg € {1,...,m +r} such that for every s = 1,...,q there exist ys € R*s and a matrix
Us € R*(m+7) corresponding to an admissible order on N as in Theorem m

(ii) T = (t;) € N79, and

(iii) an element  of the symmetric group on {1,...,q}
such that forall 1 <i,j,k < g we have

(i) 0 <t < myj,

(ii) ti; = mjj = n;,

(iii) t;; = tj;,

(iv) tix > min{t;;, ty}, and

(v) whenever ty > max{t;j, ty} and a(i) < a(j) then a(k) < a(j).
Then for (a1,b1), (a2, by) € N™ x Z",1 <i,j < q we have

(a1,b1,€;) < (a2, by, ¢j) <=
(Pre; (Ui(ar, (1)) + i), (i) <iex (Prey; (Uj(az, ¢(b2)) + 7)), a(f))- (2.3)

Proof. Let ¢1,...,Cr be the generators of the orthant decomposition = and for k = 1,...,p let
ki,...,kn be such that 5 is generated by {,, . .., k,. Note that ¢ as defined in (2.2) is injective.
We define ¢ : N" — Z" by

(B1,--- Br) = i Bidi-
i=1

Hence, fori = 1,2 and () = ( gi), ) ..,‘Bg)) € IN" we have

p(B) +p(8®) = p(p + ).
Let B, B € ¢p(z") with BV + B2 € ¢(Z"). Since p(BV)) € Z" there exist 0 < t € N and

j,---,Jt €{1,...,p} such that

1 (n) (n)
pp) ez n...nz.

If there exists 1 < i < r such that ﬁgl) > 0 and there exists a unique k € {1,...,p} with
i€ {ki,...,ki} then B0 4 @), 62 € ¢(Z") implies V) + 2, @ ¢ ¢(Z") and p(BV) +
), p(p?) ez},

If there exists v € {1,...,p} and kW, ... k® such that for all i € {1,...,r} with ,Bl(l) > 0 we
havei € {kgl), . k,(ql)} Nn...N {kgv),. . .,k,(f)} then there exists k € {k1), ..., k(®)} (not necessarily
unique) such that gV 4 g(2), g(2) ¢ 4)(21({")).
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So now let a,a;,a3 € N’”,ﬁ(l),ﬁ(z),ﬁ(3) € ¢p(Z"),i1,ip € {1,...,q} such that ﬁ(l) + ﬁ(3),ﬁ(2)
+B8) € ¢p(Z") and

(a1, p(BY), 1) < (a2, 9 (B, e1,).
Then there exists k € {1,...,p} such that ¢(8®)) € Z,((n) and then also ¢(8?), p(B? 4 ) €

Z,(:Z). Hence, we have

(a1 + a3, p(BY) + 9(BY) €1,) < (a2 + a3, (B?) + 9 (B), e1,).

Since < is a generalized term order on IN" x Z" x E this yields

(a1 + a3, p(BY +8%)),er,) = (a1 +a3,p(BY) +p(BY),e;)
< (a2 +a3,p(BP) + (%)), e;)
= (a2 +a3,p(B? + %)), e;).

We define a partial order <’ on N” x IN” x E by the following rules (for a = (ay,...,a,) €
N™,b = (by,...,by) € N" we identify (a,b) € N™ x N” with (ay,...,am,by,...,b;) € N"TT):

(i) Ty, a0 € N™, B, B3 € ¢(Z),ir,in € {1,...,q} and

(a1, p(BY),e1,) =< (a2, p(B?), ;)

then
(a1, BY,e;,) < (a2, 8%, ¢3,),

(i) (a,0,e) <’ (a,b,e) foralla € N™,b € N",e € E,
(iii) (a,0,e) <’ (a+1b,0,¢) foralla,b € N",e € E.

Then N™ x IN” x E together with <’ is a well-founded set. Hence, there exists a well-ordering
<" onIN" x IN" x E extending <’ (see [Har05]). Since N" x IN" x E satisfies the cancellation law
(cf. [KROO, Defg. 1.3.3.] it follows that <" is an admissible order (see [KR00]). Applying Theorem

proves the claim. O

Example 2.2.9. Let m = 0,n = 2,E = {e} —and let {1 = (0,—1),{» = (0,1),{3 = (=1,0),{y =
(1,0). Let {Z](.z) |j=1,...,4} be such that

{01, 02} ifj=1,
{C1,¢3} ifj=2,
{2, Ca} ifj=3,
{Ca,Ca} ifj=4.

We identify Z? x E with Z? and define the generalized term order < on Z? by

Z](-z) is generated by

(al,az) < (b],bz) <
(lar] + |az|, 41|, a1, a2)
<iex (|b1] + |b2], |b1], b1, b2).

Then ¢ : Z? — IN* is given by

ap — |az| ap +|az| a1 —|ay| a1+ |a
WWZ):( e e |1|>

2 7 27 27 2
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and ¢ : N* — Z2 is given by

Plag,..., aq) = (ag — a3,ap — ).

Let
1111
0 011
u= 0 0 01
01 00

Then M corresponds to an admissible order <" on IN* by
a <" B = Ma <jox MB,
for a, B € IN* and to the generalized term order < by
0 < b = Mp(a) <ion Mo(D),
fora,b € Z2. O

Remark 2.2.10. From Lemma[2.2.8|it follows that the set of generalized term orders on IN™ x Z" x E with
respect to any orthant decomposition of IN™ x Z" is countable. Since the set of orthant decompositions is
countable, too, we conclude that the set of generalized term orders on N x Z" x E is countable.

2.3 Generalized Grobner bases

The notion of Grébner bases is well-recognized as an effective tool for the algorithmic treatment
of polynomial algebra. It was first introduced by Buchberger in his Ph.D thesis [Buc65] although
not called so at that time. Grobner bases for difference-differential operators were introduced by
Zhou and Winkler [ZWO06, [ZW08b]|. Levin [Lev07al] considers the problem of computing multi-
variate dimension polynomials associated with modules over rings of Ore polynomials by means
of so-called Grobner bases with respect to several orderings. Zhou and Winkler consider bivariate
dimension polynomials and introduce the notion of relative Grobner bases as means of solution
[ZW08a]. Pauer and Unterkircher considered Grobner bases in Laurent polynomial rings and
their applications to difference operators [PU99].

In this section for the sake of unified notation and to avoid having several definitions of dif-
ferent kinds of standard bases we combine the notions of relative Grobner bases and Grobner
bases with respect to several orderings introducing weight relative Grébner bases and provide
their characterization. We will also provide methods of computation of such bases.

Unless otherwise noted, throughout this section let K be a difference-skew-differential field,
{71, ..., T} aset of mutually commuting injective endomorphisms on K, A = {41, ...,d, } abasic
set of skew-derivations such that fori = 1, ..., m the skew-derivation J; is a skew-derivation with
respect to T;, respectively, and {7, ..., 0, } a basic set of automorphisms. By E we always denote
the finite set {ey, ..., eq} of free generators of a free difference-skew-differential module.

2.3.1 Orders with respect to orthant decompositions

Definition 2.3.1. Let < be a generalized term order on [A,X*]E as in Definition Then for every
f = Z/\G[A,Z*]E ﬂ)\/\, by 1t< (f) = max<{/\ | ay * 0},1C< (f) = alt_<(f)/ and in< (f) = 1C< (f) 1t< (f)
we denote the leading term, leading coefficient, and initial of f w.r.t. <, resp. If no confusion is
possible we write 1t, Ic, and in instead of 1t<, lc<, and in, resp.

One of the most used characterizations of Grobner bases is provided in terms of the following
definition [AL94].
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Definition 2.3.2. Let K, [X] and K[X] denote a field of characteristic 0, the commutative semigroup
generated by a finite set X = {x1,..., %}, and the commutative polynomial ring with indeterminates
X1, ..., %m over K, respectively. A subset G of an ideal I of the ring K[X] is called a Grobner basis of I
with respect to the admissible order < on [X] iff for every f € I\ {0} there exists g € G such that 1t(g)
divides 1t(f).

For the more general case of a difference-skew-differential module this definition is not restric-
tive enough for the reason that in the polynomial ring K[X] for any polynomial f € K[X] \ {0},
term y € [X] and admissible order < on [X] we have

t(pf) = plt(f).

If K is a difference-skew-differential field with basic set of skew-derivations A and basic set of
automorphisms X instead then in general for f € K[A,X*]E, u € [A,X*] and a generalized term
order < on [A, X*] we have

(pf) # plt(f).

For f = Y jc[a s arA the set {A | a) # 0} is called the support of f and is denoted by supp(f).
For ¢ = Y c(ax+]ecE buepe the set {ue | by # 0} is called the support of g and is denoted by

supp(g)-

Lemma 2.3.3. [ZW08a, Lem. 3.2 and 3.3] Let < be a generalized term order on [A, X*] with respect to
the orthant decomposition {[A,L*]x | 1 < k < p}, f = Yea s arr € K[A, Z*]E \ {0}, with only
finitely many a, € K not vanishing.

(i) For u € [A, 2] we have It(pf) = max~{pua, | ay # 0}. In particular 1t(pf) = pA for a unique
A € supp(f).

(ii) If for some k € {1,...,p} we have 1t(f) € [A, XZ*|(E then It(uf) = ult(f) € [A, Z*|xE for any
pe [A/Z*]k

(iii) Foreachk € {1,...,p} there exists some u € [A,X*| and a unique term Ay of f such that
It(puf) = pAr € [A,ZkE,

i.e., if for some pq, po € [A, L] we have It(p1f) = piAy, € [A Z*|(E and lt(pof) = paAy, €
[A, ZF|xE then Ay, = Ay,. The term Ay will then be denoted by i, (f) or lty(f) if no confusion is
possible.

For the very same reason also the definition of S-polynomials becomes more complicated for
a pair of difference-skew-differential operators. We follow the approach outlined in [ZW08al.

Definition 2.3.4. Let f,g € K[A,X*|E\ {0} and let < be a generalized term order on [A,X*|E. Let
{[A,Z*]k | 1 < k < p} be an orthant decomposition of [A, £*]. For every orthant [A, X*]; let V< (k, f,8)
be a finite system of generators of the K[A, £*|-module
Kaz (< (Af) € [AZE | A € [A,Z7])
N kas (< (78) € [AZE [ 17 € [A,Z7]).

Foreveryk € {1,...,p},v € V<(k, f,g) the operator

v) = — S~ :
S<(k f,8,0) = Tte (f) Iop<(f) o< (8) lop(g)

is called an S-polynomial of f and g with respect to k, <, and v. If no confussion is possible we will write

S(k, f,g,v) instead of S~ (k, f,g,v). [
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We generalize the notions of Grobner bases with respect to several orderings and relative
Grobner bases as introduced in [Lev07al] and [ZW08al, respectively.

Definition 2.3.5. We consider the vector « = (&1,...,&mtn) € Qg‘*”. Then for a difference-skew-

differential term A = (5’1” . Bk U{l ..ol € [A,£¥] the a-order ord, of A is defined by
ordy (A) := arky + -+ - + apkm + a1l + 0+ mtallnl,
and for any f = Y \eax+) arA € K[A, Z¥]\ {0} the a-order of f is defined by
ordy(f) := max{ordy(A) | ay # 0}.

If E is a finite set generating a free difference-skew-differential module then for any f = Y .. fee €
K[A,Z*|E\ {0} with f, € K[A,X*] for all e € E the a-order of f is defined by

ord,(f) := max{ordu(fe) | fe # 0}.

We refine our notation taking into account also orthant decompositions in the following way.

Definition 2.3.6. Let & be an orthant decomposition of [A,X*] with generators §y,...,Cr. Let & =
(@1, ..., 0p4m) € Q6+m. We say that « is a weight vector associated with the orthant decomposition E.
Then for a difference-skew-differential term A = (5’{1 . gk Uil ol e [A,X*] the a-E-order ord, z of

A is defined by
OI‘d,x,E</\) = min{a1k1 + gk a1l o+ Al |
S gkl gl — ) and all & with
I; # 0 are generators of the same orthant},
and for any f = Yeax+) arr € K[A, Z¥]\ {0} the a-E-order of f is defined by
ord, z(f) := max{ord,z(A) | ay # 0}.

If E is a finite set generating a free difference-skew-differential module then for any f = Y ,cp fee €
K[A,Z*|E\ {0} with f, € K[A,Z*] for all e € E the a-E-order of f is defined by

ord, z(f) := max{ord,z(fe) | fe # 0}.

Lett € N, T € Q(()m+r)Xt a matrix with columns 71, ..., 7; which we consider as weight
vectors associated with the orthant decomposition E generated by ¢1,...,¢, and A = "% €
[A,X*]E. If < is a generalized term order on [A, X*|E satisfying for some j € {1,...,t} and for all
A, u € [A, X*]E the condition

ordyz(A) <ordyz(p) = A < p

then we say that < respects 7; If <q,...,<¢ are generalized term orders on [A,X*|E such that

for any j € {1,...,t} the order <; respects T) then we say that <1, ..., <; respects 7. We call
T a t-weight matrix or simply weight matrix if ¢ is clear from the context. From now on unless
otherwise noted whenever we consider a weight matrix 7 we mean a t-weight matrix where ¢
could be possibly vanishing.

2.3.2 Reduction

We introduce a suitable reduction relation generalizing relative reduction as introduced by Zhou
and Winkler [ZW08a] and reduction with respect to several orderings as introduced by Levin
[Lev07al.
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Definition 2.3.7. Let f,¢ € K[A,Z*]E\ {0}, < a generalized term order, T € QSHM)Xt a weight
matrix, and R a finite set of generalized term orders. If there exists A € [A,X*] such that for all j €
{1,...,t} and <"€ R we have

() 1e<(Ag) = Ie<(f),
(it) o (Ag) <" 1t (f), and
(iii) ordy,z(Ag) < ordy=(f),

then we say that f is <-reducible to f —lc~(f )Aﬁ modulo g relative to R respecting 7.

Let G C K[A,Z*|E\ {0}. Ifthereexist fy, ..., fs—1 € K[A,Z*]E\ {0}, fs € K[A,Z*]|E,go,...,8s €
G such that for all i = 1,...,s the difference-skew-differential operator f;_q is <-reducible to f; modulo
gi—1 relative to R respecting ‘T then we say that fq is <-reducible to fs modulo G relative to R respecting

T.
Algorithm describes the reduction process for finite G and R:

Algorithm 2.3.6 reduce

IN: f € K[A,2*]E\ {0}, finite G C K[A,X*|E \ {0}, a generalized term order <, a weight matrix
T, and a finite set of generalized term orders R

OUT: h such that f is <-reducible to 1 modulo G relative to R respecting 7 and & is not <-
reducible modulo G relative to R respecting 7.
h:=f
while there exist ¢ € G, A € [A,X*] such that h is <-reducible modulo G relative to R respect-
ing 7 and lt4(Ag) = lt<(h) do

h:=h—-1lc<(f)A

end while
return h;

8
le<(g)

Theorem 2.3.7. Algorithm is correct and terminates.

Proof. The correctness of Algorithm [2.3.6]is an immediate consequence of Definition[2.3.7]

For termination we observe that by Lemma there exists r € IN such that the generalized
term order < induces an admissible order on N""*" x E. Now let f = fo, f1, f2, ... € K[A,Z*]E be
the intermediate reduction results appearing during the execution of algorithm and denote
the elements in N""*" x E corresponding to lt<(fo), lt<(f1),1t<(f2),. .. by fo, f1, f2, - . .. Since for
every e € E the ring N"*" x {e} is noetherian the set {f; | i = 0,1,2,...} NIN"*" x {e} contains
a minimal element with respect to < and therefore is finite. Since E is finite we conclude that
fo, fi, f2, - .. and hence also fo, f1, fa, . .. must be finite. O

Remark 2.3.8. Let f € K[A,XZ*]E\ {0},G C K[A,X*|E \ {0} finite, < a generalized term order,

T € Qéﬂrm)w a weight matrix, R a set of generalized term orders and h € K[A,X*|E such that f is
<-reducible modulo G to h relative to R respecting T . From Theorem[2.3.7]it follows that then there exist
Q1,85 € G hy, ..., hs € K[A, X*|E such that for all <€ RU{=<},j € {1,...,t} we have

(i) f=Yi higi+h,
(i) 1t =" 1t_i(hg;), and

(iii) ordy z(higi) < ord7 z(f).
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2.3.3 Definition of weight relative Grobner bases

Definition [2.3.7|gives rise to the following definition of weight relative Grobner bases.

Definition 2.3.9. Let < be a generalized term order, T € Q, ()=t weight matrix , and R a set of

generalized term orders. Let M C K[A, X*| be a difference-skew- dzﬂ‘erential module and let G C M\ {0}.
Ifevery f € M\ {0} is <-reducible modulo G relative to R respecting T then G is called a <-Grébner
basis of M relative to R respecting 7. If no confusion is possible we will say that G is a weight relative
Grobner basis.

Remark 2.3.10. (i) Definition[2.3.9)includes the definitions of Grobner bases (t = 0, R = @, [ZW06,
Def. 3.5.]), relative Grobner bases (t = 0, [ZWO08a, Def. 3.3.], if G happens to be finite), and
Grobner bases with respect to several orderingsdecomp (R = @, T choosen appropriately, [Lev074,
Def. 3.3.]). If t = 0 and R = @ then we also call G a Grobner basis with respect to <.

(ii) Let T € Q(mH ® pe a weight matrix with columns Tq,...,T;, and T' € Q(()err)X(t_l) the
weight matrix with columns Ty, ..., Ti—1. Furthermore let < be a generalized term order respecting
Te. If G is a <-Grobner basis relative to R U { <} respecting T' then it is also a <-Grobner basis
relative to R respecting T .

We provide a generalization of [ZW08a, Prop. 3.1.]. The proof is a direct consequence of
Definition[2.3.9

Proposition 2.3.11. Let < be a generalized term order, T € Q, (m-+r)xt , R a set of generalized term orders,

M C K[A, 2*|E a difference-skew-differential module and G C M\ {O} TFAE
(i) G is a weight relative Grobner basis,
(i) f € Mifandonlyif f = 0or f is <-reducible to 0 modulo G relative to R respecting T,
(iii) every f € M\ {0} is <-reducible modulo G relative to R respecting T .

Corollary 2.3.12. Let < be a generalized term order, T € Q (m-+r)xt , R a set of generalized term
orders, M C KA, X*|E a difference-skew-differential module, G a wezght relative Grobner basis and
f € K[A,X*|E. Then there exists a unique h € K[A,X*|E such that f is <-reducible to h modulo G
relative to R respecting T and h is not <-reducible modulo G relative to ‘R respecting T .

Definition 2.3.13. The unique element h whose existence is established by Corollary [2.3.12|is called the
normal form of f modulo G.

2.3.4 Computation of weight relative Grobner bases

The following lemma is a somewhat enhanced version of [AL94} L. 1.7.5.] and [Lev(07a, Prop.
3.9.].

Lemma 2.3.14. Let f,g1,...,8s € K[A,X*|E, < a generalized term order with respect to the orthant

decomposition & = {E; |1 < k < p}, T € Q, (rem)xt weight matrix, R a set of generalized term
orders, c1,...,cs € K,A1,...,As € [A,L¥] andu € [A, Z*|E such that forall <'€¢ R, j € {1,...,t}
and for some k € {1,..., p} we have

(i) f=YiicMhigi

(i) 1< (f) < 1tz (Ag) = ... = It (Asgs) = u € [A, ZE,
(iii) Teo(Nigi) < 1t (F), and

(iv) ordr,z(Aigi) < ordrz(f).
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Then for 1 < s1,sp < s there exist vs, s, € V<(k,8s,,8s,),Csy,5, € K such that for 0, s, := ﬁ and for
all <'€ R,j € {1,...,t} we have
(i) f= 2.21,52:1 Cs1,5051,5,5< (K, 851/ 855/ Usy 50 )
(ii) 1t<(0s,,5,S<(k, Q51,8521 Vsy ) < U,
(iii) 11 (0s,,5,S<(k, 851, 8550 Vsy5,)) =/ 1toi(f), and
(iv) ord7; 2 (6s;,5,5<(k, §s1/ &2/ Us1,5,)) < ordy = (f).

Proof. W.lo.g. Ic.<(gi) =1fori=1,...,s. Thenlt4(f) <uandcy,...,cs € Kimplyc; +--- +
¢s = 0. By Definition for v, s, € V<(k, gs,,8s,) we have

Usy,50 Us1,57

- Ity < (851)gs1 - It~ (gs,)

S(k/gslzgszz 051,52) gSZr

andfori =2,...,s — 1 we have

u g = u Ui-1,i _ u Oii+1 '
< (81)°" vi1ilt<(81)°" vy Mk (8)°"
Using this and
SN 4 V7
It~ (g1) 81 01,2 It~ (1) s
_w o ® Usls
1tk;< (gs) & Us—1,s 1tk;< (gs) 8s
we obtain

f = Cl/\181+"‘cs/\sfs

u
+ e + Co—m——
81 sltk;< (8S>gs

= C1912( 2 - 2 gz)
T\« (81)° I<(82)

v
+(c1+¢2)023 <1tk;—< (gz)gz ltk,-<(g3)g3> "

Us—1,s B Us—1,s
+(C1 + + Csfl)gsfl,s <1tk;—< (gs_l)gsfl ltk;_< (gs)gs)

L
! It~ (1)

u
+(C1+"'+Cs)m

= ¢10125<(k 81,82, v12) + (c1 +¢2)0235<(k, 82, 83,V23) + - -~
+(C1 + -+ C571)9571,55-<(k1 8s—1,8s, Z7571,5)'

and forall <’e R,j € {1,...,t},i=2,...,s we have
(1) 1t<(0;1,:S<(k gi-1,8i,vi—1,)) <1,
(i) 1t (6;—1,:S<(k, gi-1,8i,vi-1,)) =" It=s(f), and

(iii) ord7,z(60;-1,5<(k, gi-1,8i,vi-1,)) < ordyz(f).
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For Grobner bases there are several equivalent characterizations which play a key role e.g.
in basis transformation algorithms or algorithms for fast computation of Grobner bases. Since
for weight relative Grobner bases the computational cost is even higher we would like to have
more useful characterizations for them. The following result extends a well known result (see
e.g. [AL94, Theorem 1.6.2.] for Grobner bases to weight relative Grobner bases.

Lemma 2.3.15. Let M < K[A, X*|E be a difference-skew-differential module and let G C M \ {0} be

finite. Let < be a generalized term order, T € Qé”m)” a weight matrix and R a set of generalized term

orders. The following are equivalent:
(i) Forevery f € M\ {0} there exist hy, ..., hs € K[A,2*]E, g1,...,8s € G such that
(a) f=Yiqhigi
(b) fori=1,...,sand every <'€ R U {<} we have
tt(higi) X' 1t (f),
and

(c) fori=1,...,sand every j € {1,...,t} we have
ordr = (h;g;) < ordr,z(f).
(i) G isa <-Grobner basis of M relative to R respecting T .

Proof. “(i)==(ii)"”: Assume that for every f € M\ {0} there exist Iy, ..., hs € K[A, Z*|E such that
(a), (b), and (c) hold. Then there exists iy € {1,...,s} such that lt-(h;,g;,) = 1t<(f). Hence, there
exists a term A in h;; with

On the other hand for every <’€ R we have

1t</ (/\glo) j/ 1t</(hl'0gl'0) j/ 1t</ (f)

and foreveryj =1,...,t we have
ordr, =(Agi,) < ordy =(h;,&i,) < ordrz(f)

and we conclude that f is <-reducible modulo g;, relative to R respecting 7. By Proposition
G is a <-Grobner basis of M relative to R respecting 7.

“(il)==()": Assume that G is a <-Grobner basis of M relative to R respecting 7. By Lemma
R.3.11)every f € M\ {0} is <-reducible to 0 modulo G relative to R respecting 7. Then by Defi-
nitionthere exists € N, fi,..., fs € K[A,Z*]Ewith f; = fand g1,...,8s € G, j1,...,js €
{1,...,8},A1,..., Ay € [A,£*] such that

@ 0=rfi— flzl 1C<(ﬂ)Ai%/

(11) 1t—<’()‘igji) j/ 1t_</(f1) foralli € {1, . .,S,}, <'e R, and
(iii) ord7 =(Aigj;) < ordr =(fo) foralli € {1,...,s'},j e {L,...,t}

Collecting coefficients’ belonging to the same element of G it is clear that there exist hy, ..., hy €
K[A,%*] such that (a), (b), and (c) hold. O

The following theorem generalizing [Lev07a, Thm. 3.10.] and [ZW08a, Thm. 3.3.] establishes
an S-polynomial criterion giving rise to a method for computing weight relative Grobner bases.
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Theorem 2.3.16. Let <, < be generalized term orders, 2 = {E | 1 < k < p} the orthant decomposition

with respect to which < is defined, T & Q(()Hm) “ta weight matrix with columns TV, ..., T, R a set

of generalized term orders, M C K[A, X*|E a difference-skew-differential module and G = {g1,...,gs} C
M\ {0} a <-Grobner basis of M relative to R respecting T. If forallk = 1,...,p,8,¢8 € G and for
allv e Vo (k,g,g") the S-polynomial S~ (k,g,§’,v) is <o-reducible to 0 modulo G relative to R U {<}
respecting T, then G is a <o-Grobner basis relative to R U { <} respecting T

So, if we assume that there exist generalized term orders </,..., <} such that R = {<]
,..., =t} and that there exist generalized term orders <, ..., <; respecting 7 then a <-Grobner
basis relative to R respecting 7 can be computed iteratively by first computing a <;-Grobner
basis, then — using Theorem — a <;_1-Grébner basis respecting 7*), and so on until we
obtain a <-Grobner basis relative to R respecting 7.

Proof. Let f € M\ {0} and <q,..., < respecting 7. We have to show that there exist A €
[A,X*],¢ € Gsuch thatforallj € {1,...,t} and <’€ RU {<} we have

(1) Tty (Ag) = Tt<, (f),
(ii) Ito(Ag) =" Itu(f), and
(iii) ordT/,E(/\g) < ordﬁrg(f).

By assumption there exist 11y, ..., hs € K[A,2*]E such that for all <'e RU{<},j € {1,...,t} we
have

) f =X higi+h,
(ii) 1t <! Lt (higi)/ and
(iii) ord7,z(higi) < ordy z(f).

Let u := max< {lt<,(h;g;) | i = 1,...,s} and let k be such that u € Z(E. W.l.o.g. we assume
that hy, ..., hs are choosen such that u is minimal with respect to <. For any i € {1,...,s} and
A € supp(h;) we have

It (Agi) =0 Tt<, (f)-

If for some i € {1,...,s} we have It (f) = u = lt<,(h;g;) then there exists A € supp(h;) such
that forallj € {1,...,t} and <’€ RU {<} we have

(i) lt<,(Agi) = lt<,(f),
(11) 1t</()tgi) j, 1t</ (f), and
(iii) ordy, =(Agi) < ordy =z (f).

Hence, f would be <(-reducible modulo G relative to R U { <} respecting 7. So assume It~ (f)
<o u and let

B:= {l | 1t<0(higi) = u}.
Then for every i € B there exists a unique difference-skew-differential term A; € supp(h;) such
that for every term # € supp(h;) \ {A;} we have

u =Tty (Aigi) =0 lt<, (178i)-
If we denote the coefficient of A; in h; by ¢; then
fo= Y hgi+) hgi
i€B i¢B

Y cidigi+ Y (hi —cidi)gi+ Y higis
i€B i€B i¢B
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and all terms appearing in the last two sums are <o u. For i € B by y; € supp(g;) we denote the
difference-skew-differential term satisfying u = 1t-,(A;g;) = A;u;. If we denote the coefficient of
i in g; by d; then we obtain

Zci/\i = ZCAd,]/ll'FZC/\d <§l ‘Z/ll)

i€B i€B i€B
= (Ecid§>u+26d/\<‘§l—yi),
i€eB i€eB !

for some d; € K and all terms appearing in the last sum are <o u. From It (f) <o u we obtain
Yicp cidi = 0. By Lemma[2.3.14{for 1 < 51,5, < s there exist bs s, such that we can write

8s1 8sa
2 Ci d /\ Z bs s <As /\s >
ieB d 1<51,50<s v ' d ? dsz
Since As, pis; = As, s, = u € ExE we obtain ps, = It (g5, 22, sy = It~ (8s,), ds; = 1Ck;g<o(3$1)r
_ _ u _ u 851 &8y u 51 _
dsz - 1Ck;-<o (gsz)f/\sl T I, (851)’/\52 RN and )\51 ds; /\52 dsy Ity < (8s1) lok< (85)

u 8so .
with
ltk;<0 (gsz ) lck;<0 (gsz)

1tk;-<o </\s1 iSl Asy izz > <o U.
2

Since for all v € V(k,gs,,gs,) the S-polynomial S(k, gs,,gs,,v) is <p-reducible to 0 modulo G
relative to R U {<} respecting 7 and for some v € V(k, gs,, gs,) we have
A gsl -A gsz u

- S(k,gs1,9s,, 0
s1ds1 de lcm(ltk;<o(gsl)r1tk;<0(gsz)) (k, 851852, 0)

by Lemma we can write
Asy f;sl A5 Z pigi
with
(@) 1<, (pigi) <o u,
(ii) lt=r(pigi) =" max_{ltor(As, g5, ), 1o (As,85,) } </ 1t (f) forall <€ RU{<}, and
(iii) ord7 =(pigi) < max< {ordy z(As &s, ), 0ordy z(As,8s,) } < ordy a(f) forallj e {1,...,t}.
Hence, there exist 1}, . .., h{ such that
() f=Xi1higi
(i) max<y{lt<,(hgi) |i=1,...,5} <o u,
(iii) forall '€ R U {<} we have lt_/(h]g;) =" lt_/(f), and
(iv) forallj=1,...,t we have ord7 5 (h;g;) < ordr z(f).
This is a contradiction to our assumption on the minimality of # which proves the claim. O

Using Theorem [2.3.16|we obtain a method for computing weight relative Grobner bases.

The correctness of Method is an immediate consequence of Theorem [2.3.16| As far as
termination is concerned we will later state an example in which Method does not termi-
nate.
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Method 2.3.17 basis
IN: finite G C K[A,Z*]E \ {0}, a generalized term order < with respect to the orthant decompo-
sition E = {E; | 1 <k < p}, a weight matrix T € Qér+m)Xt with columns 7y, ..., 7; where t is

possibly vanishing, and a finite set of generalized term orders R being possibly empty
OUT: a <-Grobner basis G of the difference-skew-differential module generated by G relative to
R respecting T .
G:=G
if t > 0 then
choose a generalized term order <; respecting 7;
let 7/ be the weight matrix with columns 73, ..., T;—1
G :=bpasis(G, <, T, R)
else if R # @ then
choose <€ R
G :=basis(G, <, T,R\{<'})
end if
while there exist ¢,¢' € Gk € {l,...,p} and v € V<(kgg') such that we have
reduce(S<(k,g,¢',v),G,<,T,R) #0do
G := GU{reduce(S<(k g ¢,v),G, <, T,R)}
end while
return G

2.3.5 Symmetry

Interestingly enough there also exists some symmetry property for weight relative Grobner bases.

Lemma 2.3.18. Let < be a generalized term order, T € Q(()mH)Xt, R a set of generalized term orders,

M C K[A, 2*|E a difference-skew-differential module and G C M \ {0} a <-Grobner basis of M relative
to R respecting T. Let <(Ve R and Ry C R. Then

(i) G isa <V)-Grobner basis of M relative to {<} UR \ {<(V} respecting T, and
(i)) G is a <-Grobner basis of M relative to Rq respecting T .
In particular, G is a Grobner basis of M with respect to < and every <) € R.

Proof. Assume that G is a <-Grobner basis of M relative to R respecting 7 and let f € M\

{0}. Then by Proposition and Definition there exist s € N, fo, f1,..., fs-1 € M\
{0}, fs = 0,80,...,8s-1 € G such that f = fy and fori = 0,...,s — 1 the difference-skew-
differential operator f; is <-reducible to f;;1 modulo g; relative to R respecting 7, i.e., there exist
Ao, oo, As—1 € [A,2*] such thatfori =0,...,s—1,<'€¢ Randj=1,...,t we have

(0) 1t<(Aigi) = 1t<(fi),
(i) It (Aigi) =" 1to(f;), and
(iii) ordy, =z (Migi) < ordy, (fi)-
Hence, there exists ig € {1,...,s — 1} such that for <" R\ {<W}andj=1,...,t we have
(1) o) (Aiygip) =ty (fiy) = L (fo),
(i) 1t<(Aiy&ip) = 1t<(fiy) = t<(fo),
(i) 1t (Aig8iy) =" 1t=r(fiy) =" 1t=r(fo), and

(iv) ord7 =(Ajygiy) < ordr z(fiy) < ordrz(fo)-
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So fo is <M-reducible modulo G relative to {<} U R \ {<)} respecting T, i.e., G is a <)-
Grobner basis of M relative to {<} UR \ {<(1)} respecting T so (i) holds. From Definition
it follows that if f € M \ {0} is <-reducible modulo G relative to R respecting 7 then it is also
~<-reducible modulo G relative to Rq C R respecting 7 . O

2.3.6 Characterization of weight relative Grobner bases

The following theorem (see e.g. [Win96, Theorem 8.3.4.]) provides a well-known characterization
of Grobner bases. We are going to develope a similar characterization for weight relative Grobner
bases.

Theorem 2.3.19. Let K be a field, < an admissible order on [X], I < K[X] an ideal and G C I finite.
Then G is a Grobner basis for I if and only if (in<(I)) = (in<(G)).

Along these lines Levin [Lev07al] provides a characterization for Grobner bases with respect
to several orderings, i.e., a characterization for weight relative Grobner bases with R = @. We
use a slightly more complicated approach for the general case.

Let < be a generalized term order, T € Q(Hm ¥t a weight matrix,and R = {<] [1 <[ <L}
a finite set of generalized term orders.

For | € L by Lemma|2.2.8/there exist a map ¢(!), matrices U(l), e (l) ,TH = (¢ (])) vectors

'ygl), ... ,'y,gl) and an element a(!) of the symmetric group on {1,... ,q} such that for (a1,by,e;),

(az, by, ej) € IN™ x Z" x E using the notation of Lemma we have

e <) 60 = (Pry (U (ar, ¢ (01)) + ), 4D (i)

ij
<tex (Pryy (U (a2, 9D (52)) + 1), a0 ).
L
For every difference differential operator f € K[A,X*]E let (a{ ), e (INME, (b{ ), € (ZME,
(ffl)lel €{1,...,q}t such thatfor ] = 1,..., L we have
fof
1t_<; (f) = 5% gl Ejﬂ.

Introduce new symbols y1,...,yr,z1,..., 2. Then for every ¢ € K[A,Z*|E\ {0} let the map 7, be
defined by

7o K[A,ZEN\ {0} 3 f 2.4)

) (f o) (4f O] ) (;
L (Prt(l) ) <uffi (al A0 <bl )>+7/‘f7>'“( )(]ﬂ)> t ordrz(f)
iftdgi i
le<(f) - Hyl . ' '
1

If

(i) T« (f) = 1t<(g),
(ii) foreveryl € {1,...,L} we have

(1 (2 9 (1)) +44) w000

<lex (Pr ]ﬂ]g[ (UJ'(flz) ( { ‘P() (bf)> +7J(fz)) ’“(l)(jﬂ)> ’

and
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ordr. =(g) ord7. = (f)
(iii) H§:1 z; / divides H;-:l z; ! in the ordinary sense,

then we say that 7¢(g) divides 7¢(f) and write 7¢(g)|7g(f)-

Lemma 2.3.20. Let f,g € K[A, X*|E\ {0}, < a generalized term order on [A,X*]E, T € Q(()r+m)Xt a
weight matrix, R = {<] |1 < | < L} a finite set of generalized term orders, and T as in R.4). f is
<-reducible modulo g relative to R respecting T if and only if there exists A € [A, L*| such that T¢(Ag)
divides Tg(f).

Proof. By Definition[2.3.7)f is <-reducible modulo g relative to R respecting 7 if and only if there
exists A € [A,Z*] such thatforall/ € {1,...,L}andallj € {1,...,t} we have

(i) Tt<(Ag) = 1t<(f),
(ii) 1t/ (Ag) =] 1t/ (f), and
(iii) ord7,z(Ag) < ordy =(f).
By Lemma this is equivalent to T¢(Ag)[Ta¢ (f)- O
By Proposition[2.3.11| we obtain the following
Corollary 2.3.21. Let M C K[A, *|E be a difference-skew-differential module and G C M\ {0}. TFAE
(i) Gisa <-Grobner basis of M relative to R respecting T, and
(i) for every f € M\ {0} thereexist g € G, A € [A, X*] with T¢(Ag)|Tag (f)-

Obviously, the most important part of this characterization is how to deal with the set R =
{=<] |11 <1 < L} of generalized term orders. The fact that E contains several elements only
complicates the representations of the generalized orders contained in R and the representation
of a generalized term order is very similar to that of an admissible order.

2.3.7 Extended example: characterization of relative Grobner bases for mod-
ules over rings of differential operators

Letn = 0,E = {1}. Consider R = {<} and t = 0, i.e., we are characterizing relative Grobner
bases for differential modules. By Theorem there exist s € {1,...,m} and U5 € R%=<*"
such that

wi:[A] = R
M = U< -a

is an injective homomorphism of monoids. Note that for A, u € [A] we have
a(Ap) = a(A) +a(p).
Let
Vi={mU-e1+ - +aml-em | Vicq, mya € Z,e; the i-th unit vector in N" }.
Let us consider a new symbol z and let

A zly = {F2YF |k e N™}
Azly = {2 |keN", veV,0<v—U-k}.




28 CHAPTER 2. STANDARD BASES

For v1,v, € V define z%1z%2 = z%11%2 and z°6K = §¥z%. Then [A, z];; and [A, z]y; can be considered
as multiplicative monoids.
Since E consists of a single element for any f,¢ € K[A,Z*|E the maps 77 and Ty coincide.

Therefore we will omit the index and write 7. Define 7 : K[A] — [A, z]; by

T(f) == le<(f)z ),
We get the following lemma.

Lemma 2.3.22. Let G = {g1,...,8} C K[A] be finite, M := g5)(G) and let <, <" be two admissible
orders on [A]. TFAE

(i) Gisa <-Gribner basis of M relative to </,

(ii)) (M) C [A,z]yT(G),
(iii) (A, zluTt(M) = [A,z]ut(G),
() yiazr; (TM)) = (a7, (T(G)):

Proof. ”(i)==>(ii)": Let G be a <-Grobner basis of M relative to <’. Then every f € M\ {0} is
<-reducible relative to </, i.e., there exist A € [A], ¢ € G such that

(i) 1t<(Ag) = 1t<(f), and
(i) It (Ag) =" 1t (f).

Hence, a(A) + a(1t2/(g)) <jex «(1t=/(f)) and we obtain

Aza(lt</(f))7lx(lt</(g)) e [A/Z]U

On the other hand
)\Zﬂt(lt</ (f))7“(1t<’ (g))T(g) — /\le(lt<’ (f))flx(lt<’ (g)) lt< (g)z‘x(lt<’ (g))
= lts (f)za(lw ()
7(f)

and we conclude T(M) C [A, z]yT(G).

"(il)==(iii)"”: From T(M) C [A, z]yT(G) we immediately obtain [A, z]yt(M) C [A,z]yT(G). On
the other hand from M D G we get [A,z]yT(M) D [A,z]yT(G) and conclude (A, z]yT(M) =
A, z]ut(G).

"(iii)==(iv)”: From [A, z]yt(M) = [A, z]y7T(G) we obtain

2

<
N

kA TM)) = (B Zut(M))
= K[A,z]u<[A/Z]UT(G)>
= K[A,Z]U<T(G)>-
"(iv)=-(1)": Suppose KM<T(M)> = KM<T(G)> and let f € M\ {0}. Then 7(f) € (M)

and there exists hy, ..., h, € K[A, z]y; such that
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In fact, since 7(f) and all the T(g) are monomials there exists a particular ¢ € G such that 7(f) =
het(g) for some monomial /iy € [A,z]y. Then hy = Az° for some A = &zU* € [A,z]; and
0 <jex v € V. Hence, It (f) = 6*1t<(g) and

le(lt</ f) — ZvZU-kZuc(lt</(g))
sztx(b‘k)ﬁx(lp/ (g))

sztx(ltK/ ((Skg)),

ie., a(lt_(65¢)) <jex a(lt(f)) which implies 1t_,(6¥g) =’ lt_/(f). We conclude that f is <-
reducible modulo G relative to <’ which is equivalent to G being a <-Grobner basis relative to
<. O

Since K[A, z]; is not necessarily Noetherian it is by no means obvious that for every module
M C K[A] there exists a finite basis of KM<T(M)>‘

Consider the particular case m = 3, i.e.,, A = {61,02,03} and let <= lex(d3 > d; > d) and
<'= grevlex(d3, 5, 01) on [A], i.e., they are given by

b
87107°05° < 511532‘553 = (a3,a1,02) <iex (b3, b1, b2),
and
ay oy o 1 b1 by cbs
01'05°05° <7 0116,°05° 1=
(a1 +az + a3, —a1, —az) <iex (b1 + b2 + b3, —b1, —by).

The leading terms with respect to < and <’ will be underlined and dotted underlined, respec-
tively. For i € IN let

G = for= Q0+ 0% fii= 85+ 055}

Ufgj =0 665+ 6, 53| j=0,...,i}.

It can be easily verified (e.g. using Maple ) that G is a Grobner basis of M := (fy, go) with respect
to <’. We use the method provided by [ZW08a] (which is a special case of Method p
for computing a <-Grobner basis of M relative to <'. For every i € IN the S-polynomial of fy and
gi with respect to < is given by

S<(fo gi) = 6y M3 fo — Oigi = 10348 — 6] M opds.

Then for every 0 < j <iwe have

(@) Tex(830) 0D gy = 1, (557405 4 6363H462) = 1t~ (S<(fo, &) and

(i) 1= (S<(fo, g1)) = 6745505 < a2 40Ty — 1t (8363 ™0 Vg,

Hence, S<(fo,gi) is not <-reducible modulo {go,...,g;} relative to <’. Furthermore it is not
~<-reducible modulo fj. Nevertheless we have

(i) lt< (820274 F) = 1t (63057402 + 036574 62) = 1t<(S<(fo, gi)) and

(i) 1t/ (026374 f)) = 62057462 </ 6745585 = 1t (S<(fo, &1))-
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Hence, S~(fo, &i)) is <-reducible modulo f; relative to <’ to
S(fo,gi) — 0703 4 f1 = —6] 46285 — 676,405 =: hy.

It is immediate that /1; is not <-reducible modulo fj. Furthermore for every 0 < j < i we have
(i) Tex (825540 gy — 26444162 — 1t (hy) and

(i) Tt (y) = 676,05 < 67 53 ™05y = 1t (8252740 )gj>-

So hy is not <-reducible modulo {g, ..., g;} relative to <’. Nevertheless we have
(i) 1t< (61654 f1) = 1261637403 + 636, *4167) = 1t~ (1) and

(ii) Tt/ (010274 f1) = 61657463 </ 671416285 = 1t i (hy).
Hence, Iy is <-reducible modulo f; relative to <’ to

hy + 01054 fy = — 6745505 + 61057483 =: hy.

It is immediate that /1 is not <-reducible modulo fy. Furthermore for every 0 < j < i we have
(@) Tt< (555 4N g) = 5,637452 = 1t~ () and

(if) Lt (o) = 67 H46,85 <7 63 45y 401 g5 — 1t (1650 g).

So Iy is not <-reducible modulo {go, ..., g;} relative to <’. Nevertheless we have
(i) 16<(3 4 1) = 1< (85463 + 6,65 7463) = It~ (2) and
(i) Tt/ (0574 f1) = 0574623 < 6746285 = 1t i (hy).

Hence, h; is <-reducible modulo f; relative to <’ to

hZ _ 5§+4ifl _ _5z+4i§253 _ 5g+4i5?2) = —gii1.

It is immediate that g; 1 is not <-reducible modulo { fo, f1 }. Furthermore for every 0 < j <iwe
have

. A+4(i—j -
(@) Tex (530 gy = 567462 — 1t (g;,1) and
. - 3+4j 5+4(i—j 4+4(i—j
(i) 1t (gir1) = 67 T46,85 </ 635540 55 —1e_ (5540 V).
So gj+1 is not <-reducible modulo {go, ..., g;} relative to <’.

Hence, the method provided by [ZW08a] will not terminate on this example. Nevertheless
it could still be the case that there exists a <-Grobner basis of M relative to <’ but the provided
method cannot compute it.

Now suppose there exists an element 1 € M \ {0} such that infinitely many g; are <-reducible

modulo / relative to <’. Then It~ (h) = 6,'55? and 1t ./ (h) = (55’1 532(553, ie.,

ay + ax by + by + b3 bs ap
0 <lex —b and by | <iex| O |-
1 —by by ai

Since infinitly many g; are <-reducible modulo  relative to <" we also have

by+by+2+4i—a;+b3+2—ap 54 4i
- <lex —3—4i

—by—2—4i+ay -1

for infinitly many i € IN. We have to distinguish several cases:
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a1 +ay <by+by+0bs: Thend+4i <by+by+bs—ay—ar+4+4i <5+4i,ie, by +by+b3—
a; —ay = 1. Then we have —b; < —3 —4;,i.e., by > 3 4 4i. This can obviously not happen
for infinitely many i € IN.

a1 + az = by + by + b3: We distinguish further

0 < —by: Then by < 0 which is not possible.
0= —by: Then —1 < —by,ie., by < 1.
by = 0: Then by = a; + ap and b3 < a5.
b3 < ap: Then a; < 0 which is not possible.
b3 = a: Thenay = 0,ie, h = cégz—i— lower terms with respect to < and <’ for
some ¢ € K\ {0}. Since Gy is a <'-Grobner basis of M we see that & is not
<’-reducible, i.e., h ¢ M.
bp =1: Then bz = a; +ap, — 1 and b3 < a5.
bz < ap: Thenbs =ay,—1anda; =0,ie., h = 015§3+1 +0252553+ lower terms with
respect to < and <’ for some ¢1, ¢ € K\ {0}. Again since Gy is a <’-Grébner
basis of M we see that 4 is not <’-reducible, i.e., h ¢ M.
by =a: Thenl = by, < ay = 1,ie, h = C(52(5§3+ lower terms with respect to <
and <’ for some ¢ € K\ {0}. Again since Gy is a <'-Grdbner basis of M we
see that /1 is not <’-reducible, i.e., h ¢ M

We conclude that there cannot exist any <-Grobner basis of I relative to <. O

2.3.8 Change of orders

Although Example reveals a mayor drawback of the concept of weight relative Grébner
bases we will still stick to this general setting.

It is quite obvious that the computation of a weight relative Grobner basis is very laborious.
Therefore we provide the following result providing sufficient conditions for a change of orders.
It is similar to the corresponding result in the theory of Grobner walks [CKM97].

Lemma 2.3.23. Let <1, <y be generalized term orders, T &€ Qér+m)Xt a weight matrix, R a set of

generalized term orders, M C K[A, L*|E a difference-skew-differential module and G C M\ {0} a <-
Grobner basis of M relative to R respecting T such that forall ¢ € G, A € [A,X*| we have

lt<, (Ag) = lt<,(Ag).
Then G is a <p-Grobner basis of M relative to R respecting T .

Proof. Let fo € M\ {0}. Then fy is <;-reducible modulo G relative to R respecting 7. Hence,
there exist A, ..., As € [A,X*],80,--.,9s € G, f1,..., fs € K[A,Z*] such that foralli € {0,...,s —
1},<'e R,je{1,...,t} wehave

(1) Tt (Aigi) = Tt<, (fi),
(i) 1t (Aigi) =" Tt (fi),
(iii) ord7z(Aigi) < ordy z(fi), and
(iv) fi—1 is <q-reducible to f; modulo G relative to R respecting 7.
We have to distinguish the following two cases:

It (fo) = lt<,(fo): Because of It (Aogo) = lt,(Aogo) we get that fj is <p-reducible modulo G
relative to R respecting 7. Hence, G is a <»-Grobner basis of M relative to R respecting 7.
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It (fo) <2 1t<,(fo): We obtain f; by removing lt<, (fp) from fy and replacing it with a linear
combination of finitely many strictly smaller terms than It~ (fp) with respect to <1 and <>
which are not bigger than lt_/(fp) for any <’€ R and which do not have a higher order
than fo with respect to 7; for any j € {1,...,t}. Since G is a <1-Grobner basis of M relative
to R respecting 7 and fy € M after finitely many reduction steps — say s’ — we obtain fy
such that It (fy) = lt<,(fy) and there exist Ay € [A,X*],gs € G such that for all <'e R
andj € {1,...,t} wehave

@) 1t<2()\s’gs/) = 1t<1 ()‘s/gs’) = 1t<1 (fs’) = 1t<2 (fs’)r
(11) 1t_</ (Aslgs/) j/ 1t_<l(fsl) j/ 1t_</(f0), and
(iii) OI'd'];,E()\s/ gs) < ordy = (fe) < ordy = (fo)-

Hence, fj is <»-reducible modulo G relative to R respecting 7T, i.e., G is a <»-Grobner basis
of M relative to R respecting 7.

O
Using Lemma [2.3.18| we obtain the following

Corollary 2.3.24. Let <1, <o be generalized term orders, R, R1, Ry sets of generalized term orders,

T € Q(()r+m)Xt a weight matrix, M C K[A, Z*|E a difference-skew-differential module and G C M\ {0}
a <1-Gribner basis of M relative to R U R respecting T such that for all <€ Ry U {=<1}, <4€ RoU
{=<2},8 € G, A € [A, X*] we have

It (Ag) = 1t_; (Ag).

Then G is a <p-Grobner basis of M relative to R U R respecting Ts.

2.4 Border bases for difference-skew-differential operators re-
specting orthant decompositions

In numerical polynomial algebra border bases have the advantage that they are numerically more
stable than Grobner bases (see [Ste04]). Due to their nature they are mostly used for solving zero-
dimensional polynomial systems of equations (see [AS88, M06193, Mou99]). In this chapter we
extend the notion of border bases to difference-skew-differential modules and give some results
which resemble the well known ones by Kehrein, Kreuzer and Robbiano [KKO05],[KKRO05],[KK06].
Most of the proofs carry over and we only have to take care of some technical details.

We use the notion of orthant decompositions to define border bases for difference-skew-dif-
ferential modules and establish a connection to Grobner bases for difference-skew-differential op-
erators resembling the well-known result for polynomial ideals (see [KKRO05| Proposition 4.4.9.]).

We give the definition of a difference-skew-differential order module with respect to an or-
thant decomposition. Based on this we define the index of a difference-skew-differential term
with respect to a difference-skew-differential order module and prove some of its fundamental
properties. We introduce the notion of difference-skew-differential border prebases and of re-
duction of difference-skew-differential operators with respect to a given border prebasis. The
goal of making reduction canonical leads naturally to the concept of difference-skew-differential
border bases. We establish a connection between difference-skew-differential border bases and
difference-skew-differential Grobner bases with respect to the same orthant decomposition. A
normal form function for difference-skew-differential operators is introduced and its relation
to difference-skew-differential border bases is demonstrated. Furthermore we consider rela-
tions between multiplication endomorphisms and difference-skew-differential border bases. For
polynomial ideals this leads to characterizing border bases by the property that for all pairs of
neighboring border basis elements the corresponding S-polynomial is reducible to 0 [KK06]. For
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difference-skew-differential border bases it turns out that also certain multiples of border ba-
sis elements have to be reducible to 0. For these basis elements we introduce the notion of i-
individuals.

Unless otherwise noted, throughout this section let K be a difference-skew-differential field
with {7y, ..., T } a set of mutually commuting endomorphisms on K, A = {4y, ...,d,, } abasic set
of skew-derivations such that for i = 1,...,m the skew-derivation J; is a skew-derivation with
respect to T;, respectively, and {7, ..., 0, } a basic set of automorphisms. By E we always denote
the finite set {ey, ..., e;} of free generators of a free difference-skew-differential module.

2.4.1 Order and index

Definition 2.4.1. Let & = {[AX*]x | 1 < k < p} be an orthant decomposition with generators
&1,...,Cr. For A € [A, X*] we define the order of y with respect to E (or the E-order of i) by

ordg(p) = min{a;+...+am+p1+...+ 5|
&1, &, B1, .., Br €N,
5{‘1...5%@?1...@?’ =u},

and extend this definition to [A,X*|E by ordz(pe) := ordz(p) forany e € E. For p = p1A1 +...+
psAs € K[A, Z*|E with py,...,ps € K\ {0} and Ay, ..., As € [A, X*|E mutually distinct let the order
of p with respect to & be given by

ordz(p) := max{ordz(A;)}.

1<i<s
If no confusion is possible we write ord instead of ordz.

Similar to [KKRO0S5, Def. 4.3.1] for polynomial ideals we introduce the notion of a difference-
skew-differential order module.

Definition 2.4.2. Let & = {[A,X*]x | 1 < k < p} be an orthant decomposition of [A,X*]. A set
@ # O C [AX*]E is called difference-skew-differential order module with respect to = (or E-
difference-skew-differential order module) if and only if for any A € O,1 < k < pand e € E such
that A € [A,X*]ge and for all 7, i € [A, Lg such that yue = A we have e, pe € O.

Consider an orthant decomposition & = {[A,X*]; | 1 < k < p} with generators {1, ..., ;.
For any nonempty set V' C [A,X*]E and any difference-skew-differential term A € [A,X*] let
AV :={Av|v €V}, and

E(V) := VU{ue|e € E ordz(u) = {/réi‘r/l{ordg(v)},
and there exists e € E with ye € V}.
Let V% := V and define for any d > 0 recursively
v .= pviE-yus vty us,vE-Uug vy, ug vl

For p = p1A1 + ...+ psAs € K[A, Z¥]E with py,...,ps € K\ {0} and Ay, ..., As € Uz V¥
mutually distinct let the index of p with respect to V be given by (compare [KKRO05, Def. 4.3.5])

indy (p) := max min{d | A; € V1}.

1<i<s

Note that if V is a difference-skew-differential order module then indy is defined for all p €
K[A,X*]E. If no confusion is possible we write ind instead of indy.
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Example 2.4.3. Let m = 0,n = 2,E = {1} and & the orthant decomposition of Example having
1

the generators &1 = 01,62 = 03 and {3 = 0y
A= oy L. Then ordg (M) = ordz(&&) = 2.

oyl Let V = {0720, 2,01}, p := 1430 ‘o, " and

Furthermore we have VI = vV U {012,0102, 02_1,01_102_2, 01_202_1,01_3(72_3} and V2 = vy {013,

2 -1 2 -1 -1 -1 -2 -3 -2 -3 2 _4 4 . _
o100, 010, *, 0105, 1,000, 00 "0, 7,00 "0, 7,007,007 057,00 "0y " }. Hence, indy (p) = 2. O

If V. C K[A, Z¥]|E then by (V) we denote the K-vector space spanned by the elements of V and
by (V) we denote the
2.4.2 Border and border closure

Then we can define border and border closure of difference-skew-differential order modules sim-
ilar to [KKRO5| Def. 4.3.2].

Definition 2.4.4. Let E be an orthant decomposition, O a E-difference-skew-differential order module and
k > 2. Then 90 := O\ O is called the Z-border of O. By convention 3°0 := O. The set

k0 := ol \ ol
is called the k-th E-border of O and O is called the k-th E-border closure of O.

Kehrein, Kreuzer and Robbiano [KKRO05, Prop. 4.3.4] proved some properties of order ideals,
their borders and border closures for polynomial rings. We provide according results for the ring
of difference-skew-differential operators.

Lemma 2.4.5. Let E be an orthant decomposition, O C [A,X*|E a E-difference-skew-differential order
module and 1 < k € IN. Then

(i) We have a disjoint union O = Uf'(:o ‘0,

(ii) 1O ={A-0| A € [A,2*], ordz(A) =k, 0 € OM}\{A-0| A € [A, %], ordz(A) <k, 0 €
olly,

(iii) we have a disjoint union [A, L*|E = Ujen 9'O,

(iv) for every A € 9O with k > 1 there exist A' € O, A" ¢ [A, 2*] with ordz(A") = k — 1 such
that A = A'A”.
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Proof. (i) By definition we have
OM=EO)U{r-0| A€ A E*], ordg(A) =1, 0 € O}.
By induction we obtain

okt — oW U{r-0|A e [A T, ordz(A) =1, 0 € OW}

flal

O U{A-0] A€ AL, ordz(A) =k 0 € O},

(ii) Follows immediately from Definition of oFH10.

(iii) The inclusion [A,Z*]E D U;en 9O is clear. The opposite inclusion follows from Definition
of 00 and the fact that for every A € [A, X*] there exist ay, ..., &m, B1, ..., Br € N with

A=opt- -5;"”’”51’51 .- &". Hence, every A € [A,Z*]E is an element of 9 O for some iy € IN.
By (i) and Definition the union is disjoint.

(iv) Follows from the second claim.
O

With this lemma at hand we can prove the following properties for the index (see also [KKR05|
Prop. 4.3.6]).

Lemma 2.4.6. Let & be an orthant decomposition and O C [A,X*|E a E-difference-skew-differential
order module.

(i) For A € [A,Z*]E \ O we have

indp(A) =min{i | A = A’A”, ordz(A) =i —1, A € [A,=*], A" € o[},

(i) A € [A, 2], u € [A,2*]E = indp(Ap) < ordz(A) +indo (),
(iii) For f,g € K[A,Z*|E\ {0} with f + g # 0 we have

indp (f +¢) < max{indp(f),indo(g)},

(iv) For f € K[A,2*]\ {0},¢ € K[A,Z*]E \ {0} we have

indo(fg) < ordz(f) +indo(g).

Proof. (i) The case indp(A) = 0 is clear. For indp(A) > 1 the claim follows from Lemma
iv) and the definition of the index.

(ii) Follows from (i).
(iii) Follows from supp(f + &) C supp(f) Usupp(g).
(iv) It is clear that supp(fg) C {Ap | A € supp(f), u € supp(g)}. Applying (ii) proves the

claim.
O
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2.4.3 Border prebases and border division

For the definition of a border prebasis in polynomial rings we refer to [KKR05| Def. 4.3.8].
Observe that [A, £*|E is countable. Hence, for any orthant decomposition Z any E-difference-
skew-differential order module and its Z-border are countable.

Definition 2.4.7. Let E be an orthant decomposition, I,] C N index sets and O = {t; |i € I} a
E-difference-skew-differential order module with border 0O = {b; | j € J}. Let G = {g; | j € J} C
K[A, Z*|E be such that for each j € ] we have

8j = bj — ) _wijti,
i€l
with only finitely many «; € K not vanishing. Then G is called O-border prebasis with respect to &
(or O-border prebasis or difference-skew-differential border prebasis if no confusion is possible).

From now on unless otherwise stated we assume that for any orthant decomposition E and
any E-difference-skew-differential order module O we have index sets I, ] C IN such that we can
write O = {t; | i € I} and 00 = {b; | j € J}.

Given an orthant decomposition &, a E-difference-skew-differential order module O, an O-
border prebasis and a difference-skew-differential operator f € K[A, Z*|E consider the following
algorithm [2.4.18](see also [KKRO05), Prop. 4.3.10]):

Algorithm 2.4.18 Border division algorithm

IN: E an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential order module,
00 = {b; | j € ]} its border, {g; | j € J} an O-border prebasis, f € K[A,Z*|E.
OUT: (ci)ic1, (fj)jes such that f = Ycjciti + Yiej figj and ordz(fj) < indp(f) —1forallj €]
with fjgj # 0.
: (ei)ier == (0)ier; (fj)jey == (0)jey; b= f;
2: while indp(h) > 0do
write h = ajhy + ...+ ashs such thatay, ..., a; € K\ {0} and Iy, ..., hs € [A, Z*]E mutually
distinct satisfy indp (hy) = indp (k). Choose jy € ] such that there exists A € [A, X*] with
ordg(A) = indp(h) — 1 and hy = Abjj;
h=h-— al)\gjo;
fio = fio + @A
end while
: choose (¢;)jer such thath = Y ;crciti; h =0;
: return (¢;)icr, (fj)jes;

—_

® N> g .

Theorem 2.4.8. Algorithm|2.4.18|is correct and terminates.

Proof. First we show that the while loop can be executed and terminates. By Lemma there
exist 4 € [A,X*] with ordz(p) = ind(h1) — 1 and jo € J such that iy = ubj, and there exists no
such factorization with a term y of smaller order with respect to Z.

For termination we consider the subtraction

h— a1/\g]'0 =aihy +...+ashs — alAbjo + a1\ Z’Xi,joti/
i€l
where aih; = a;Abj. Lemma shows that in /1 a term of index ind (/) is replaced by a finite
number of terms in O"4()-1 Gince the index of a given term is finite and there are only finitely
many terms in & having the same index as & the loop terminates.

For correctness consider the equation

f:h+2citi+2fjgj-

iel j€J
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It is certainely satisfied before we enter the while loop. The f;s are only changed inside the loop
where the subtraction & — a;Agj, makes up with the addition (fj, +a11)gj,- The coefficients c;
are changed immediately after termination of the while loop in the step where they are choosen
such that h is written as ) ;.| c;t;. Hence, the stated representation is computed by the algorithm.
Furthermore the output does not depend on the particular choice of h; since hy is replaced by
terms of strictly smaller index, i.e., the “reductions” of several terms of the same index do not
interfere with each other. O

Note 2.4.9. Although the output of Algorithm [2.4.18|does not depend on the actual choice of hy in the
while loop it still depends on the choice of jo.

Let E be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential order
module, G = {g; | j € J} an O-border prebasis and f € K[A,Z*|E a difference-skew-differential
operator. Then the set

(ci)ier, (fj)jey is a possible output

remoc(f) = {Zciti

iel

of Algorithm applied to &, O, G and f }

is called the set of O-remainders of f (see also [KKRO05, Def. 4.3.12]). If the context is clear we also
sometimes write rem(f) instead of remp ¢ (f).
We obtain the following corollary (see also [KKRO05, Cor. 4.3.4]).

Corollary 2.4.10. Let O = {t; | i € I} be a difference-skew-differential order module and G = {g; | j €
J} an O-border prebasis. Then the residue classes of the terms in O generate K[A,X*|E/(G) as a K-vector
space.

2.4.4 Definition of border bases

Note 2.4.11. Although the residue classes of the terms {t; | i € I} generate K[A,X*|E/(G) they do not
necessarily form a basis.

Example 2.4.12. Let m = 0,n = 2, E = {1} and E be the orthant decomosition from Examplem Let
O := {1}. Then 00 = {01,02,01_102_1}. Let ay,a; € Kand G := {0y —ay, 00 — az,al_laz_ —1}.
Applying Algorithm [2.4.18|yields remo G (0102) = {02(a1)az, 01 (a2)ar} and hence, the residue class of
1 does not necessarily form a K-vector space basis of K[X*]/(G).

This is addressed by the following definition which extends [KKR05| Def. 4.4.1] to our setting.

Definition 2.4.13. Let E be an orthant decomposition, M a difference-skew-differential module and O =
{ti | i € I} a E-difference-skew-differential order module. Let G = {g; | j € J} C M be an O-border
prebasis. We say that G is an O-border basis of M if the residue classes of the terms in O form a
K-vector space basis of K[A,2*]E/ M. If no ambiguities are possible we simply speak of a difference-
skew-differential border basis.

As for polynomial ideals also for difference-skew-differential modules one can show that an
O-border basis of M actually generates M (see also [KKRO05| Prop. 4.4.2]).

Lemma 2.4.14. Let E be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential
order module, M a difference-skew-differential module and G = {g; | j € J} an O-border basis of M.
Then M = (G).
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Proof. Let f € M. Applying Algorithmto E,0,00,G and f yields (c;)ic1, (f;)jej such that
f=Yciti+ ) fig):

iel j€]

Hence,
0=f= Zciti mod M.
icl
Since G is an O-border basis the elements of O form a K-vector space basis of K[A, ~*|E/ M. We
conclude that for all i € I we have ¢; = 0 which implies

f=) 18
j€l
Hence, M C (G). The opposite inclusion is obvious and the claim follows. O

We will use the following lemma providing conditions for an O-border prebasis to be an O-
border basis (see [KKR05, Rem. 4.4.3]).

Lemma 2.4.15. Let = be an orthant decomposition, O a E-difference-skew-differential order module, G
an O-border prebasis and M = (G). The following are equivalent:

(i) G isan O-border basis of M,
(i) MN(O) = {0},
(iii) K[A,Z*]E =M@ (O).

Proof. By Corollary [2.4.10|we have that the residue classes of the terms in O generate K[A, X*|E/
M. Since G being an O-border basis is equivalent to these residue classes being linearly inde-
pendent the claim follows. O

With this lemma we can prove the following theorem (see also [KK05| Prop. 9]).

Theorem 2.4.16. Let & be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential
order module and G = {g; | j € ]} an O-border prebasis. Then the following are equivalent:

(i) Gisan O border basis of (G).

(ii) Forevery f € (G) \ {0} there exists (fj)jc; € K[A, X*] such that f = Y c; f;g; and for all f; with
fig; # 0 we have ordz(f;) < ind(f) — 1.

(iii) For every f € (G) \ {0} there exists (f;)je; C K[A, Z*| such that f = Y ;c; figj and
max{ordz(fj) |j € ], figj # 0} = ind(f) — 1.

Proof. “(i)==-(ii)": Let f € (G) \ {0} then Algorithm [2.4.18 applied to &, O, G and f returns
(ci)ier € Kand (fj)je; € K[A, 2*] such that

f=Y citi+)_ fig
iel j€]

and ordz(f;) < ind(f) —1forall j € ]. We have }ic; ¢it; = 0 modulo (G) and since the residue
classes of the terms in O form a basis of K[A,2*]E/(G) we have ¢; = 0 foralli € I.
“(if)==(iii)"”: Lemma implies that for ordz(f;) < ind(f) — 1 we have

ind(fjgj) < ordz(f;)+ind(g;)
= ordz(fj) +1
< ind(f).

—
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Again by Lemma there exists jo € ] such that ind(f) = ind(fj,g;,) < ordz(f},)+ 1, i.e.
ordz(fj,) = ind(f) — 1.

“(iii)==(i)": Let (c;)ic; € K be such that f := Y c;c;t; € (G) \ {0}. Then there exist (fj);c; C
K[A,X*] such that f = Y fg;. Since f # 0 we have max{ordz(f;) | j € ], figj # 0} > 0. On the
other hand ind(f) — 1 = —1 which contradicts (iii). Hence (G) N (O) = {0} and Lemma [2.4.15|
implies that G is an O-border basis. O

2.4.5 Border form module
For the definition of border form and border form ideal in polynomial rings see [KKO05, Def. 10].

Definition 2.4.17. Let 0 # f = Y.\c[a x+| AAA, with only finitely many a, € K different from 0. Let
O be a difference-skew-differential order module. The operator BEo (f) = Yina(r)=ind(f) @A is called the
O-border form of f. We define BF»(0) := 0. For a difference-skew-differential module M C K[A, L*|E
the module BEp (M) := (BFp (f) | f € M) is called the O-border form module of M. If no confusion
is possible we write BF instead of BF .

The following lemma immediately carries over from the polynomial setting (see [KK05, Prop.
11]).

Lemma 2.4.18. Let & be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential
order module and G = {g; | j € ]} an O-border prebasis. The following are equivalent:

(i) G is an O-border basis of (G).
(ii) For f € (G) \ {0} we have supp(BE(f)) C [A,Z*]E\ O.

Proof. “(i)==(ii)": Let f € (G) \ {0} and suppose there exists iy € I such that t;; € supp(BF(f)).
Then supp(f) C O, i.e., there exist (¢;)jc; C K such that f = Y ;c;¢;t;. Since G is an O border
basis we obtain ¢; = 0 for all i € I which contradicts the assumtion f # 0.

“(i))==(1)": Let (¢;)ic; € K be such that f := Y ;c;c;it; € (G). Then supp(BF(f)) C [Z]\ O
implies ¢; = 0. Hence, (G) N (O) = {0} and Lemma2.4.15|implies that G is an O-border basis of
(G). O

2.4.6 Border bases and Grobner bases

For the existence of O-border bases we have the following theorem (see also [KKR05, Thm.
4.4.4)).

Theorem 2.4.19. Let E be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential
order module and M < K[A, X*|E a difference-skew-differential module such that the residue classes of
the terms in O form a K-vector space basis of K[A,X*]E/ M.

(i) There exists a unique O-border basis G of M.
(ii) Let F C M be an O-border prebasis. Then F is the O-border basis of M.

Proof. (i) Let 9O = {b; | j € J}. Then the residue class of every b;; in K[A,X*]E/ M is linearly
dependent on the residue classes of the terms in O. Hence, for i € [ there exist a;;; € K
such that

8jo = bjp — )} ijti € M.
iel
Then G := {g; | j € J} is an O-border prebasis and hence also an O-border basis of M.
Then Lemma [2.4.15/implies M N (O) = {0}. Let F = {f; | j € ]} be another O-border
basis of M different from G. Then there exists jo € ] such that g;; — f;; € M\ {0} and
supp(gj, — fjy) € O contradicting M N (O) = {0}.
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(ii) By Definition[2.4.13|the set F is an O-border basis of M. Applying (i) proves the claim.
O

The following theorem is a generalization of Macaulay’s basis theorem (see e.g. [KR00, Thm.
1.5.7]) to modules of difference-skew-differential operators.

Macaulay’s basis theorem for difference-skew-differential modules 2.4.20. Let < be a generalized
term order on [A,X*|E and let M be a difference-skew-differential module. The residue classes of the
elements of [A, 2*]E\ {lt<(f) | f € M\ {0}} form a basis of the K-vector space K[A,~*]E / M.

Proof. Let O<(M) = [A,Z]E\ {It<(f) | f € M\ {0}}. First we prove Y yco_(m) Kb +M =
K[A,Z*]E. In contradiction suppose

Y. Kb+M CK[AZE,
beO4 (M)

ie, there exists 0 # m € K[A,X*|E\ (Lyeo, (m) Kb + M) such that 1t (m) =< lt<(s) for all
i € K[A,Z*]E\ (Lpeo, (m) Kb+ M). If lt<(m) € O<(M) then

m—1c<(m)1t<(m)€K[A,Z*]E\( ) Kb+/\/l)

beO4 (M)

having a strictly smaller leading term than m which contradicts our assumption on m. Hence,
lto(m) € {It=(f) | f € M\ {0}}, i.e., there exists m" € M such that It~ (m) = lt<(m’). Then

e x| F )

beO4 (M)

having a strictly smaller leading term then m which contradicts our assumption on m. We con-
lude that the residue classes of the elements of O (M) generate K[A, 2*|E/ M.
Suppose now that there exist ¢y, ...,cs € K\ {0}, my,...,ms € O<(M) such that

S
m=Y cimj € M.
i=1

Then It (m) € {lt<(f) | f € M\ {0}} since m € M. On the other hand 1t~ (m) € supp(m) C
{my,...,ms} € O<(M). Hence

Ito(m) € {It<(f) | f e M\{0}}NO<(M) =Q.
We conlude that the elements of O~ (M) form a K-vector space basis of K[A, Z*|E/ M. O

Let 2 = {[A,Z"]x | 1 < k < p} be an orthant decomposition and O a E-difference-skew-
differential order module. Then for any k € {1,...,p} we have that K[A,Z*[tE \ O is a mono-
mial K[A,X*]xE-module, i.e., there exists a generating set consisting only of monomials. By
C(O)k C [A, Z*|xE we denote its minimal generating set. Let C(O) := U]’j:l C(O)g. Furthermore
for any generalized term order < and difference-skew-differential module M the set O< (M) =
[A,Z¥EN\ {lt<(f) | f € M\ {0}} is a E-difference-skew-differential order module.

Using Macaulay’s basis theorem for difference-skew-differential operators and the notion
of Grobner bases for difference-skew-differential — which by Remark is a special case of
weight relative Grobner bases — we obtain the following result stating that every difference-skew-
differential module possesses an O-border basis for some E-difference-skew-differential order
module O if there exists a generalized term order with respect to the orthant decomposition &
(compare [KKRO05| Prop. 4.4.6]).
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Lemma 2.4.21. Let E = {[A,X*]x | 1 < k < p} be an orthant decomposition, < a generalized term
order on [A, XL*|E with respect to E and let M be a difference-skew-differential module. Let O< (M) :=
[AZ)EN\ {It<(f) | f € M\ {0}} and let 0O (M) = {b; | j € J} . Then there exists a unique
O~ (M)-border basis G = {g; | j € ]} of M. Let ]’ be an index set such that C(O<(M)) = {b; | j €
J'}. Then the set G' := {g; | j € ]'} is a <-Gribner basis of M.

Proof. By Macaulay’s basis theorem for difference-skew-differential modules the residue
classes of the terms in O (M) form a basis of the K-vector space K[A,L*]E/ M. Hence, by
Theoremthere exists a unique O« (M )-border basis G = {g; | j € J} of M.

By Definition aset F C M forms a <-Grobner basis of M if and only if every element
f € M\ {0} is <-reducible to 0 modulo F. By Proposition this is equivalent to every
element f € M\ {0} being <-reducible modulo F at all. So let fy € M\ {0}. Then lt<(fy) €
[A, ZJxE\ O< (M) for some k € {1,...,p}. Hence, there exists jo € J' with bj, € [A, X*]¢E such
that

It<(fo) € kiaz, (bjo)s

where g5 v+, (bj,) denotes the K[A, £*]; module generated by bj . That means, there exists some
A € [A,2¥] such that 1t (fo) = Abj,. On the other hand

supp(gj, — bj,) S O<(M)
[AZEN\ {1t(f) | f € M\ {0}}

and gj, € M. Hence, lt(gj,) = bj,. By the definition of generalized term orders we obtain

lt(Agj,) = Abj, and

0

1t<(fo— Agj,) < 1t<(fo),

i.e., fo is <-reducible modulo G'. O

We even can establish the following theorem (see also [KKRO0S5, Prop. 4.4.9]).

Theorem 2.4.22. Let & be an orthant decomposition, < a generalized term order with respect to E,
O = {t; | i € I} a E-difference-skew-differential order module with 00 = {b; | j € J} and M a
difference-skew-differential module such that the residue classes of the terms in O form a basis of the K-
vector space K[A,X*]E/ M. Let G = {g; | j € ]} be the O-border basis of M. Let ]’ be an index set such
that C(O) = {b;j | j € J'} andlet G' = {gj | j € ]'}. TFAE

(i) O =0s(M),
(i) for j € ] we have lt<(g;) = bj,
(iii) for j € J' we havelt-(g;) = bj.
If these conditions are satisfied then G' is a <-Grobner basis of M.

Proof. “(i) ==(ii)”: By the definition of an O-border prebasis for j € ] there exists (oci]-)ie 1 €K
such that g; = b; — }ic; a;jt; and only finitely many «;; are different from 0. Since O =0s(M)
it is obvious that none of the t; can be the leading term of any element of M. By Lemma
we have g; € M. We obtain It<(g;) € supp(g;) \ O = {b;}. In addition by Lemmawe get
that G’ is a <-Grobner basis of M.

“(ii)==(iii)”: Follows from ]’ C J.

“(iii)==(i)": Assume that for all j € ]" we have lt<(g;) = b;. Since

P

U (a2 ({lt<(g;) [ j € '} N [AZE) € {lt<(f) | f € M\{0}}

k=1
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we obtain

p
O = [AZIENU A2 ({lt<(g)) |7 € I N [A,Z7E)
k=1

2> [AXEN{lt<(f) | f € M\ {0}}
= 0(M).

By Macaulay’s basis theorem [2.4.20| the residue classes of the terms in O~ (M) also form a basis
of the K-vector space K[A,2*]E/ M. We conclude

O =0<(M).

Example 2.4.23. Let E = {1},m=0,n=2,0 := {1,01,02_1,01_102_1} and

— -1 2 I 1 1 2
F .= {(72—(71—(72 ,(71—1+§(71 o, 0170, —2}.

Let ¢ : [Z*] — R* be given by

(k1 + 3kp, k1, k2,0) ifki, ko >0,
P(ol1082) = { (ky — 2ko, ky — kp,0,—ky)  ifky < Oand ki > ky,
(3k2—4k1,0,k2—k1,—k1) ka] < 0and ko >k1.

Let A, u € [£*] and let the generalized term order < be defined by

A< pie= (M) <iex ¢(1)-

Using Algorithm pi25] (or, e.g., [ZW06, Thm 3.3]) it is easy although tedious to verify that F is
a Grobner basis of M := (F) with respect to <. From this we obtain O(M) = O and C(O) =
{02, 02,00 20{ 21, Hence, completing F to an O-border prebasis with elements from M will yield an
O-border basis of M. The unique O-border basis of M is given by

-1_-2 1 1 1
F U {(71 o, —202,(7102—501 o,

-1 -1 -1 -1,_—1
o =20 —0, ,010, +1—07"0, }

2.4.7 Normal forms

In Grobner basis theory the representative of a residue class in K[A,X*]E/ M is defined as the
normal form of an operator f which is defined as the unique — with respect to the chosen ad-
missible order — remainder of f under division by an according Grobner basis of M. In fact, the
defining property of Grobner bases is that the remainder under division by the Grobner basis is
unique. For border division we have the following lemma (see also [KKRO05, Prop. 4.4.11]).

Lemma 2.4.24. Let & be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential order
module with 00 = {b; | j € J}. Let M be a difference-skew-differential module and G = {g; | j € ]} an
O-border basis of M. Then for any f € K[A, L*|E the set of O-remainders remp ¢ (f) of f contains only
one element.
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Proof. Let f € K[A,£*]E and assume that there are (¢;)icy, (¢i)icr € K, (fj)jes, (fi)je; C K[A, £7]
such that

fo= Y ati+) fig

iel je]
= Y ati+) fig
iel j€]
Then
Y (ci— @)t € (O)N M.
icl
Since G is an O-border basis of M we have (O) N M = {0}. So the set of O-remainders of f
contains only one element. O

Hence, we can define a normal form (compare [KKRO05} Def. 4.4.12]).

Definition 2.4.25. Let Z be an orthant decomposition, O a E-difference-skew-differential order module,
M a difference-skew-differential module and G an O-border basis of M. Then for any f € K[A,L*|E
define the normal form of f with respect to O and M to be the unique element NFo v (f) € (O) such
that

{NFo,m(f)} = remog(f)-
If O and M are clear from the context we simply write f instead of NFo aq(f).

This leads to the following lemma (compare [KKO05, Prop. 14]).

Lemma 2.4.26. Let E be an orthant decomposition, O = {t; | i € I} a E-difference-skew-differential
order module, M a difference-skew-differential module and G = {g; | j € J} € M an O-border prebasis.
The following are equivalent:

(i) G is an O-border basis of M.
(ii) For f € K[A,X*]E we have remp ¢ (f) = {0} if and only if f € M.

Proof. “(i)==-(ii)": Let f € K[A,X*]E such that remp (f) = {0}. By the definition of the set of
O-remainders there exist (f;);c; C K[A,£*] such that f = } ;¢ figj, ie, f € (G). Conversely, let
f € M. Applying Algorithm2.4.18|to &, O, G and f returns (¢;)ic C K, (fj)jej € K[A,Z*] such
that f = Ycrciti + Ljej fj8j 1€, Lie ¢iti € remp g(f). Since f € M we have remp g(f) C M.
G being an O-border basis implies remp (f) € M N (O) = {0}, i.e., remp c(f) = {0}.

“(ii)==(1)": Let (c;)ie; C K be such that f := Y ,ccit; € M\ {0}. Applying Algorithm 2.4.18]
to E,0,G and f returns (c;)ier and (0) e such that ¥c;cit; € remp g(f) = {0} contradicting
f # 0. Hence, M N (O) = {0} and Lemma2.4.6/implies that G is the O-border basis of M. [

We obtain the following relation between normal forms and Grobner bases (compare [KKR05|
Def. 4.4.13]).

Lemma 2.4.27. Let = be an orthant decomposition, O a E-difference-skew-differential order module and
M a difference-skew-differential module possessing an O-border basis.

(i) If there exists a generalized term order < such that O = O~ (M) then for all f € K[A,X*]E we
have that NFo apq(f) € f + M is <-irreducible modulo any Grobner basis of M with respect to
<.

(ii) For f € K[A,X*]E we have NF» r1(NFp a(f)) = NFo ap(f).



44 CHAPTER 2. STANDARD BASES

(iii) For f1, f» € K[A,X*]E we have

NFo,m(f1 — f2) = NFo, am(f1) — NFo u(f2)

and
NFo,m(f1f2) = NFo, m (NFo a4 (f1) NFo, um(f2))-

Proof. Since M possesses an O-border basis for every f € K[A, L*|E there exists fy € K[A, X*]E
such that

(f+ M)N(0) = {fo}-

Hence, there exists a uniquely determined operator in f + M whose support is contained in
O which proves (ii) and (iii). Since supp(NFp r((f)) € O we have fy = NFp p((f) and fy is
<-irreducible modulo any g € M \ {0} since O N{lt<x(g) | g € M\ {0}} =D, i.e, (i) holds. O

2.4.8 Multiplication endomorphisms

Effective computation with residue classes basically boils down to figuring out how to perform
multiplications. For zero-dimensional modules multiplication of residue classes can be described
by multiplication tables which give rise to multipication endomorphisms. If the module in con-
cern is not zero-dimensional then consequently the associated multiplication table is not finite but
still we can consider multiplication endomorphisms in this case. By this considerations Kehrein
and Kreuzer [KK05] derived an S-polynomial criterion for border bases of polynomial ideals. Due
to the group structure of [£*] contained in [A, £*] for border bases of difference-skew-differential
modules the according result becomes slightly more complicated.
Let Z be an orthant decomposition with generators ¢1,..., &, O = {t; |
i € I} a E-difference-skew-differential order module with border 00 = {b; | j € J} and G =

{8j = bj — Licrijti | j € J} an O-border prebasis. We identify {f € K[A,Z*|E | supp(f) C ol
with (O1) and define a K-linear projection N : (Ol1l) — (0) by

N:t;—t, and N : b] — szi]-ti.
i€l

For reasons of convenience define ¢,11 := é1,...,Cr4m = Oy and for 1 < k < r+ m let M :
(O) — (O) be given by

p = Mi(p) := N(Gkp)- (2.5
For every A € [A,X*]E \ E let

Cr:={(L,we{l,...,r+m} x[AZ]E | &u=A, ordg(pu) =ordzg(A) —1,
indp () < max{indp(A) —1,0}}.

If My, ..., M4y, are mutually commuting let M = (My, ..., M,1y) andfore € E,A € [A,X*|E\E
define recursively

e[M] = Nfe),
AM] = % 2

For p = Yo 1a90q € K[AX]E with ag, ..., a5 € K, Ay,...,As € [A,Z¥]E define p(M) :=
22:1 agAq[M].
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Example 2.4.28. Let m,n,E,E and O = {1, 01,02_1,01_102_1} be as in Example and let G =
{g1,.-.,87} be given by
1

§1 = p—01—0,,
2 I 1 1
= (71—1+§c71 oy,
-1 1
g3 == o0y —201—0,,
- 1 1 1
84 = 010'2—501 0y
— -1 -1,_-1
g5 = o0, —o0y 0, +1,
e 12
86 = 0y 0,°—20,
e 2 -2
g7 = 00,7 =2,
ie, N: (O = (0) is given by
= oto,
2 I 1 1
oy 1—501 oy,
-1
oy = 201 +0, °,
1 1 1
o0 501 o,
(71(72_1 —> (71_1(72_1 -1,
-1_-2
oy 0y — 207,
-2 -2
oy 0, — 2.

The generators of & are {1 = 01, = 0p and §3 = 01—102—1’ Then for &« € K the maps M1, My and
Mj : (O) — (O) are given by

M (aq + a0y + zx302*1 + a4afla£1) =

(s1(a2) — 51(a3)) + 51 (a1)oq + 51 (a) oy ! + <S1(0é3) — Sl("‘Z)) ooy,

2

1

-1 -1 -1
Mo(ag + ap01 + 30, +ag0y 0y ) =

Sz(“2)0—1 -1

52(a3) + (s2(1) +252(aa))n + (s2(a1) + 52 (@) oy ' + =507

M3 (g + ap0q + 0@,0{1 + a4af10{1) =
25;1(sgl(a4)) + 23{1(551(w3))01 + sfl(sgl(az))agl
+sl_1(sz_1(oc1))c71_102_1.

It is easy to check that My, My and Mj are mutually commuting. Let & € K and p := 0? — acyo, .
First we compute o2[M]. From Cp2 = {(1,01)} we get c*[M] = My (c1[M]) and from Co, = {(1,1)}
we obtain

GAIM) = M (M (1)) = MY(1) =1~ 50770

Next we compute o105 ' [M]. From Coot = {(1,05 1)} we get o105 ' [M] = My (0, [M]) and from
2

ng_l ={(1, 01_1(72_1), (3,01)} we obtain

o105 (M) = My ( 5(0 (e o5 (M) + Mafen[M)).
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Since C01_102—1 = {(3,1)} we have

1

o105 [M] = My (2<M1<M3<1>> + M3<M1<1>>>) = MM (1) = o7 "oy — 1.

We conlude .
p(M)=1—a— (2 —|—oc> (71_102_1.

Then we have the following lemma (compare [Mou99, Prop. 3.2]).
Lemma 2.4.29. Let My, ..., M, be mutually commuting. Then for any p € K[A, 2*|E with supp(p)
C O we have
p(M) = N(p).
Proof. Since the maps p — p(M) and p — N(p) are K-linear it suffices to assume p to be a
difference-skew-differential term. If p = e for some e € E then p(M) = M%[M] = N(e),
i.e., for operators of H-order O the claim holds. Assume now that it holds for all monomials

j € O with ordz(p) < d. Let p be in Ol with ordz(p) = d. Then for all (I, u) € Cp we have
ordz(n) <d, p € Oand

p(M) = |C1| My (u[M])

Omn the other hand we have

N(p) = 1-zo7loy" —a(oy'oy' = 1)

I
—_
+
&
|
VR
N~
+
K
N———
2
—_
N
—_

Then [Mou99, Prop. 3.3] carries over to our setting.
Lemma 2.4.31. Let My, ..., M,y be mutually commuting. Then

(Ker(N)) = (p—p(M) | peK[AZ]E)
= {peKpXE| p(M) =0},
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Proof. Let
=(p—pM)| p € K[A XT]E)

and
Y':={p € K[A,Z]E| p(M) =0},

i.e., we have to show

(Ker(N)) =Y=Y.
For p € K[A,£*]E we have supp(p(M)) € O and Lemma 2.4.29 together with the definition of
N yields

(p—pM)(M) = p(M)—p(M)(M)
= p(M) —p(M)
= 0,

ie,Y C Y Conversely, for p € Y with p(M) = 0 we have

p=p—-pM)EY,

ie, Y = Y. The kernel of N is generated by the elements p — N(p), where p € K[A, Z*|E with
supp(p) € OU. Hence, by Lemma [2.4.29| the module (Ker(N)) is generated by the elements
p — p(M), where supp(p) C O1 and we get (Ker(N)) C Y. Obviously, for any e € E we have
& — %e[M] € Y and &% — %[M] € (Ker(N)). Assume now that for all u € [A,Z*]E with
ordz(u) < d we have
p = #[M] € (Ker(N))
and consider A € [A, X*|E with ordg(A) = d. Then
A—A[M

|
- & z (€00 — p[M1) + EoplM] — My (u[M]) -

On the other hand supp(&;u[M]) € O/ and by assumption

GuM] — M (p[M]) = Gu[M] — N(Gu[M])
€ (Ker(N)).

Hence,
A —AIM] € (Ker(N))

and we conclude Y = (Ker(N)). O

These two lemmata together yield the following theorem which extends [Mou99, Thm. 3.1]
and [KKRO5, Thm. 4.4.17] to our setting.

Theorem 2.4.32. The maps My, ..., My are mutually commuting if and only if the set G = {g; | j €
J} is an O-border basis of (G).

Proof. “<=": Let G be an O-border basis of (G). Then Lemma|2.4.15implies K[A,2*|E = (O) &
(G). By the definition of N we have

Ker(N) = {Za]g]
i€l

Vje]aj S K} p
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ie., KA Z¥]E = (O) @ (Ker(N)). So we have O N (Ker(N)) = {0}. Then for any p € (O) we
get M;(p) = &p mod (Ker(N)). Hence,

(M, oMy, = My, oMy )(p) = (61,81, —S1,81)P
0 mod (Ker(N)).

On the other hand
(My, o My, — My, o My, )(p) € (O).

We conclude
(Ml] © Mlz - Mlz © Ml])(p) = 0/

ie. (M, o M, — My, o My, )(p) = 0 for all p. Hence, M;, and M;, commute.

"=—": The map K[A,2*]E > p — p(M) € (O) is surjectiv. Lemma implies that re-
stricted to (O) it is the identity map. Because of Lemma its kernel coincides with the ideal
(Ker(N)) = (G). So (0) ~ K[A,£*]E/(G) and K[A,X*]E = (O) ® (G). By Lemma[2.4.15 we
conclude that G is an O-border basis of (G). O

Example 2.4.33. Let m,n,5,E, O, G, My, My, M3 be as in Example 2.4.28[ Since we already saw that
M, My, M3 are mutually commuting we conclude by Theorem [2.4.32| that G is the O-border basis of
(G). O

249 Commutativity condition

As for polynomial ideals (see [KK05]]) also for modules of difference-skew-differential operators
it pays off to take a closer look at the commutativity condition derived in the previous subsection.
We will consider an element ¢;, of the order module O and multiplications by &;, and ¢;,. Then we
have to distinguish several cases depending on whether ¢ t; , ;,t;, and ¢, &j,t;, are elements of
O or 90. In the polynomial situation there are four cases to distinguish. Two carry directly over
to our setting. For the remaining two we have to take into account noncommutativity in form of
the action of skew-derivations and automorphisms on the coefficients. Dealing with difference-
skew-differential operators there is a fifth case to consider due to [£*] being a group contained in
(A, ZF].

In this subsection on several occasions we will make use of the Kronecker delta. It will be
denoted by ¢ with two subindices and therefore cannot be confussed with a 6 denoting a skew-
derivative because those only carry one subindex.

Case 1: gllélztil’gll til’glztil € O. Then there exist i, i3, i4 € I such that gll til = tiz’ (:121'1'1 = tis
and ¢;, ¢, t;, = t,- Then

M11M12t,‘1 = Mllti3 = tl'4 = Mlztiz = Mlelltil

and commutativity holds by definition of the maps M;,, M;,.
Case 2: ¢, 8, ti; € 00, Gitiy, Gitiy € O. Then there exist ip, i3 € I, j; € ] such that {; t;; =
tiy, (:12 t, =t and éll glztil = b]l Then

My Myt = Mytiy =) ai ti = My, = My, My t;,
iel

and commutativity holds by the definition of M, , M,.
Case 3: ¢ tiy € O, C,tiy, 81,8ti, € 00. Then there exist ip € I, j1,jo € ] such that ¢; t;; =
tiy, glztil = b]l and él] glztil = b]2 We get

My, Myt = My ) oty
iel
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and
Mlell ti, = Mpti, = Zﬂci,bti.
i€l
If Iy € {1,...,r} then because of the action of the automorphism ¢, the commutativity con-
dition becomes

(ak,jp Jker

= Y. Skp(i) Cny (i) + ) Cry (i jy ) i) /

i€l, 09611 ti:ttp(i) i€l, 809611 ti:bl/_)(i) kel

where ¢ : [ — I, P : I — | are such that St = ty i) and ¢; t; = bl/;(l-), the first sum runs over all
i € I'such that ¢ t; € O (it only consists of one summand for which ¢;, t; = t;) and the second
sum runs over all i € [ such that ¢; t; € 90.

Ifl; € {r+1,...,7 +m} then because of the action of the derivation ¢;, = J;, _, the commu-
tativity condition becomes

(ak,jp Jker

= | o —r(ag;) + ) Okp(i)¥ijy T )y i jy Ok (i) ,
i€l, 09;‘11 ti=ty (i) iel, ao;g,l ti:h¢(i> kel
where ¢ : I — I, ¥ : [ — ] are such that Sinti =ty and ¢, t; = bq"z(i)f the first sum runs over all
i € I such that {; t; € O (it only consists of one summand for which ¢, t; = t;) and the second
sum runs over all i € I such that ¢; t; € 90.
Case 4: {1, t;,, G, ti; € 00. Then there exist ji, jo € [ such that & t; = bj,, &,ti; = bj,. We get

My Mty = My, )ity
iel
and
Mlz M11 ti1 = M12 Zai/jl t;.
icl
If 1,1 € {1,...,r} then because of the actions of the automorphisms ¢;, and ¢;, the commu-
tativity condition becomes

Y Sroup(iyCy (i) + Y. 8y (2, )k (i)
i€l, 03¢ ti=ty i€l, 9038, i=by; kel

= )y Okp(i) 6l (@i, ) + Y Gy (@i jy )k (i) ,

iel, Oaélzti:tp(i) iel, 803512t,:bﬁ(i> kel

where ¢, 0: I = I, ,p : I — Jaresuchthat g, t; = ty(iy, Cipti = tp(iy and Gyt = b1ﬁ(z‘)/§lzti = bsi),
the first sum runs over all i € I such that ¢, t; € O, the second sum runs over all i € I such that
¢, ti € 90, the third sum runs over all i € [ such that {;,t; € O and the fourth sum runs over all
i € I'such that §;,t; € 00.

Ifly € {1,...,r},I € {r+1,...,7r + m} then because of the actions of the automorphism ¢;,
and the derivation ¢;, = J;,_, the commutativity condition becomes

Y. Skp(i) Cn (i jp) + )3 Gy (i, )ty i)
i€l, O3 ti=ty i€l, 0038, ti=by; kel
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= | Onrlaei)+ Y Gk + X “ij &kp(i) |
i€l, 09§12ti:tp<i) iel, aOaglzt,-:bﬁ(i> kel

where lp,p 11— 1, lp,ﬁ I — ]aresuchthatéllti = t¢(i),§12fi = tp(i) and gllti = b(/?(i)’glzti = bﬁ(l)'
the first sum runs over all i € I such that ¢, t; € O, the second sum runs over all i € I such that
i, ti € 90, the third sum runs over all i € [ such that {;,t; € O and the fourth sum runs over all
i € I such that {},t; € 90.

If I1,,b € {r+1,...,r + m} then because of the action of the derivations ¢;, = J;,_, and
G1, = 61, the commutativity condition becomes

Sprlp) + Y Gkt ) M)
iel, 03(:]1 ti:tv.p(i) i€l, 309511 t,':bl/“](i) kel
= | dp—rlwi)+ o Gepmpt D s |
i€l, Oaglzti:tp(,-) i€l, 609§12ti:bﬁ(,v> kel

where ¢, 0: I — I, ,p : I — Jaresuchthat g t; = ty(iy, Cipti = tp(iy and Gyt = blp(l-),ijlzt,« = bsi),
the first sum runs over all i € I such that ¢, t; € O, the second sum runs over all i € I such that
g1, ti € 90, the third sum runs over all i € [ such that {;,t; € O and the fourth sum runs over all
i € I'such that §;,t; € 00.

Case 5: 1,81, ti,Cotiy € O, ¢ tiy € 00. Then there exist ip,i3 € I, j1 € ] such that ¢, t; =
tiy,s Cll Clz t, =t and gll t, = b]l We get

M11 Mlztil = M11 ti, = tig

and
My, Mty = My, )iy i
i€l
Obviously, I, € {1,...,r}. Hence, because of the action of the automorphism G, = sk

associated to &, = Uk’Z, resp., the commutativity condition becomes

(Oigk ket

= )y Okp(i) Gl (@i jy) + Y Gy (@i jy ) (i) ,

i€l, 03¢, ti=t, i€1, 0038, ti=by(;) kel

where p: [ — I,p : [ — | are such that §,t; = to(i) and ¢, t; = bﬁ(i), the first sum runs over all
i € I'such that ¢;,t; € O and the second sum runs over all i € I such that {;,t; € 00.

2410 S- and T-polynomials

Let us take a closer look at the third, fourth and fifth case above to see whether the commutativity
conditions formulated there can be represented more intuitively. It turns out that for the third
and fourth case the results from [KKO05] carry over.

First consider the relation ¢;,b;, = bj,. If I; € {1,...,r} then for the corresponding combina-
tion of border operators we have

8 —Cngy = <b]‘2 - Z"‘i,jzti> — 1 <bfl =) i fi)

iel iel

= =Y wipti+ Y& (a )0t

iel iel
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= =) wpti+ ) Gy (i jy )by (i)

iel i€l, Oagllti:ttp(i)

+ ) &1y (@i )by

i€l, 809@'11 ti:hl/}(i)

= =) b+ ) Gy (i jy )by (i)

iel i€l, O9§llti:t¢(i)

+ ) &1 (i) & (i)

i€l, 809@'11 ti:hl/}(l‘)

+ ) (é‘zl (i) %”‘kxﬁ(i) tk) :

icl, 309611 ti:blp(i)
Hence, we obtain

=Y ijpti+ ) G (@i )y

icl i€l, 09611 ti:tl[)(i)

+ Z (Cll(ai,jl)Zak/lﬁ(i)tk) = 0 mod (G). (2.6)

icl, 309(311 ti:blp(i) kel

Ifl; € {r+1,...,r+ m} then for the corresponding combination of border operators we have

8jr — gllgjl = <bf2 - Z“i,jﬂi) - 511—’ (bjl - Z“ifh ti)
iel iel
= - Zt’éi,jzfi + lei,jl O —rti + Z5ll—r(“i,jl )t
iel iel iel
= ) aijptit Y i jy by )
iel i€l, 09(511,,ti:tlp(,‘)

+ ) wiji by + Y6 (i)t
i€l, 809(5[1 *Ytl':blp(i) i€l

= =) apti+ Y. iy by i)

iel iel, OBgllti:tlp(z‘)

+ Y i jy 8y + D O —r (i )i
i€l, aOagllti:bJ,m iel

+ ). (“i,jl Y %) fk) .

iel, B(’)aéll ti:blf}(i) kel
Hence, we obtain

— Z“i,jz t; + Z Xy tl[](i) + Z(Sll_r(lxi,jl )t (2.7)
iel i€l, 09611 ti:tlp(i) iel

+ Xjjy Z“k,li)(i)tk> = 0 mod <G>
kel

iel, 803611 ti:bl,lj'(i) <

If G is a border basis then for any I; € {1,...,r +m} and each i € I the coefficient of ¢; in the left
hand sides of and above must vanish. This in turn is equivalent to the commutativity
condition obtained in case 3 above.

Now consider the relation ¢ b;, = &,bj,. If I, € {1,...,r} then for the corresponding
combination of border operators we have

611 8 — Clzgh
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611 (bfz - Z“izfzti> - élz (bh - Z“ifh ti)
iel iel
= =) & (wip)enti+ Y & (i )Gt
iel iel
= - ) Gy (i jy )iy — Y Cn (i )by

icl, O9§llti:t¢(i) i€l, BOBCthi:blp(i)

+ Y C1y (wijy oy + )y Gl (i, )bj3)

iel, OB@[Zti:tpm i€l, aOBCszi:bp(i)
= - Y Gy (i jy )iy — Y. Cry (i1, )& (i)
i€l, Oggllti:tq](i) i€l, aoagllti:blﬁ(i)
(511 (@ijy) D %) fk)
i€l, 809511 ti:hlﬁ(i) kel
+ ) C1, (@i o) + Y. Sn (@i )85 (i)

i€l, OB@IZti:tP(i) iel, BOSCIZti:bp(,-)

& (ijy) E“k,ﬁ(z‘)tk> :
kel

+ (
i€l, 309512 t[:b[)(i)

Hence, we obtain

- Y nlaip)ty) — (é‘h (ijy) Y % g(i) tk)
i€l, Oagllti:tw(i) iel, 803611 ti:b(i)(i) kel

+ Y Gy (@i )iy + (sz (@ij) Y & p0i) tk)
i€l, (’)aélzti:tp(,-) i€l, aoagzZti:bﬁ(,') kel

=0 mod (G). (2.8)

Iflh e {1,...,r}, I € {r+1,...,r+ m} then for the corresponding combination of border oper-

ators we have

gll g]z - glzgh

& <bfz - Z“i,jzti> — 1y (bn - Z"‘i,hti)

el iel
=Y G (i)t + Y i 6, ti + )0, (i )t
el i€l iel
- Y (i)t — )3 S (i )b
i€l, 03@]1 ti:tlp(i) i€l, 609§llti:b¢(i)
Y byt )y iy bi(i) + X0 (#ijy )i
i€l, Oaélz—rti:tp(i) i€l, 8(99(5,2,,t,v:bﬁ(,) iel
- ) Cry (@i jy )ty (i) — Y. Sn (@ij)&4()
iel, OBCZI ti:ttp(i) i€l, 303511 ti:bq_;(i)
- (511 (@ijy) D o) tk)
i€l, 803611 t,':by,;(]-) kel
+ ) Wiy tpiy + )3 i j1 8p(i)
iel, Oaélzfrti:tp(i) i€l, aoa&lz—rtizbﬁ(i)

+ ) <0éi,j1 Y D‘k,p(i)tk> + ) 0, (i)t

i€l, 0036y, ti=by(; kel icl
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Hence, we obtain

- Y Gy (i jy by — )y (511 (i) Y & iy tk)
iel, Oagllt,-:ttp(,-) iel, 309611 ti:bq?(i) kel
+ Y ijito(iy + ) On—r (i )t
i€l, Osélz,rti:tp(l-) i€l

+ L <“z>f1 2 %00 fk)
i€l, aOSélz,rti:blj(O kel

=0 mod (G). (29

If13,lp € {r+1,...,r+ m} then for the corresponding combination of border operators we have

gllgjz - glzgh

= Oy-r (bfz - Zmirfzti> —Op—r (bh - Z‘Xirhti>

iel iel
= =Y a0t = Y 0 (i )t Y Ot Y0, (ai )
iel iel iel iel
= - Y. i jpty(i) — Y a; by — 30— (@)t
iel, 095117#1‘:%(1') i€l, 309511 —Vti:blp(i) iel
+ Yo Cijte) T )3 i bptiy + YO —r (i )ty
i€l, Osélz,rti:tp(i) i€l, 809(5[2,,11'217?([') iel
= - Y ity - )y %8 )
iel, 095[1 7rti:t1p(i) i€l, 309511 *T’ti:bt[-l(i)

- Z <lxirj2 E ak,t/?(i)tk> - Z 511*7(“1',]'2)“

i€l, 309(511 ,rti:h(l“](l') kel iel
S DR T )y i, 8p(i)
i€l, 09512,,1,':1‘[7(,*) iel, 3095]2,#,'217’3(1)

+ ) <1Xi,j1 Y tk) +Y 61, (aij )t

i€l, aOaélz,rti:bﬁ(,-) kel i€l
Hence, we obtain

- ) i jy (i) — 361 —r (@i j, )t
i€l, 036 _,ti=ty iel

<“z>fz )y “k,u;u)fk)
iel, 809(511,,11'217#}(1') kel

+ ) i ji oy + 3 Oy —r (@i, )i
icl, (99512_,t,»:tp(i) icl

+ Z (“z’,jl Z Qe (i) tk)

i€l, 0050;, _ ti=bp;) kel
=0 mod (G). (2.10)
Again, if G is a border basis then for each i € I the coefficient of t; in the left hand sides of

2.8),(2.9) and (2.10) above must vanish. This in turn is equivalent to the commutativity condition
obtained in case 4 above.
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Last consider the relation &;,b;, = t;,. Thenl € {1,...,r} and we have

Clzgjl = g12 (bh - Zai,jlti>

icl

=ty — Y G0, )Gt
icl

=ty — Y. C1y (i )iy — ) C1, (i )by
iel, 09512 ti:tp(i) i€l, 809§12 ti:bp(i)

= tj;— ). C1y (i )iy — Y. 81, (@) 8501)
i€l, 09612 ti:tp(i) i€l, 309612 ti:hp(i)

- ) <§lz (i) Y o) tk)

icl, 8(99512 ti=bp<i) kel

Hence, we obtain

tiy, — 2 Gy (@i jy )iy — 2 <sz (2ij,) kz;‘xk,p(i)tk>
) S

i€l, Oaglzti=tp(i) i€l, aOsg,zti:bﬁ(,-
=0 mod (G).

Again if G is a border basis then for each i € I the coefficient of ¢; in the left hand side above must
vanish. This in turn is equivalent to the commutativity condition obtained in case 5 above.
On the other hand if these three commutativity conditions are satisfied then we know from

the considerations above that the operators My, ..., M, 1, are mutually commuting and Theorem

2.4.32)implies that the O-border prebasis G is in fact the O-border basis of (G).
This motivates the following definition (see also [KK05| Def. 17]).

Definition 2.4.34. Let j1 # j, € ].

(i) The border terms bh'
I such that
(a) éilbjl = bfz'
(b) Gipti = bj, and
(c) (;(1'1 ti € O.

bj, are called iy-next-door neighbors if there exist iy, ip € {1,...,r+m}, i€

(ii) The border terms bh/ bjz are called iy, ip-across-the-street neighbors if there exist i1,i; € {1,...,

r+m}, i € I such that

(a) Giy bh = é'l'zb]'z’
(b) Giti = bj,, and

(c) (:izti = b]l
(iii) The border terms b; , b;, are called neighbors if they are next-door neighbors or across-the-street
neighbors.

(iv) The border term b; is called iy-individual if there exist iy € {1,...,r},io € {1,...,r+m}, i €]
such that
(@) &b €O,
(b) §i2tl~ = b] and
(c) (:;’1'1 t; € O.
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Remark 2.4.35. It is possible that b; and bj, are next-door and across-the-street neighbors at the same
time. Consider, e.g., m = 0,n = 2,E = {1} and let the orthant decomposition Z have the generators
61 =01,6 = 0102,83 = 02,84 = (Tl_l,é‘g, = (72_1 where for i = 1,...,4 the orthant 5; is generated by
i, i1 and Bs is generated by s, &1. Let O := {1,02}. Then by := oy and by := o107 are elements of
00. On one hand by and b, are 3-next-door neighbors and on the other hand they are 2, 1-across-the-street
neighbors.

In contrast to Grobner bases for border bases it only makes sense to define S-polynomials for
operators which are associated to neighbors (see also [KK06| Def. 2]). In addition we also have
to deal with operators associated to i-individuals.

Definition 2.4.36. Let O be a difference-skew-differential order module G = {g; | j € J} an O-border

prebasis and let i,11,iy € 1, jy,j2 € ] such that bjlfbjz are

(i) i-next-door neighbors with &;b;, = b;,. Then we define the i-th S-polynomial of g;, and g;, by

Si(81/85,) = Cigj — Sin-

(ii) iy, ix-across-the-street neighbors with §;, bj, = ¢;,bj,. Then we define the iy, ip-th S-polynomial of
gj, and gj, by
Sil,iz (gh/g]z) = Cilgjl - gizgjz'

Leti € {1,...,r}, j € ] be such that the border term b; is i-individual. Then we define the i-th T-
polynomial of g; by
Ti(gj) = Cigj-

Remark 2.4.37. It follows from Remark [2.4.35| that two O-border prebasis elements can have several
S-polynomials. If they have a unique S-polynomial we sometimes omit the index specifying the kind of
S-polynomial.

From the considerations above we obtain the following theorem resembling [KKO05| Prop. 18]
for our setting.

Theorem 2.4.38. Let O be a difference-skew-differential order module and G = {g; | j € J} an O-border
prebasis. Let M = (G). TFAE

(i) G is an O-border basis of M.
(ii) For ji,jo € Jand A, u € [A,X*] such that Abj, = pbj, we have
0¢c rem(g,(;(/\gj1 — ygjz),
and for j € Jand A € [A, L*] we have

0 € remp,G(Ag))-
(iii) Forall ji,j» € Jand i € {1,...,r + m} such that b; and b;, are i-next-door neighbors we have

0e rem(’),G(Si(gjl’gfz))’

forall j1,jp € Jandiy, iy € {1,...,r+ m} such that bj, and bj, are iy, ir-across-the-street-neighbors
we have

0 € remp G (Siy,i, (81, 81))s
and forall j € Jandi € {1,...,r} such that b; is i-individual we have

0 € remo (Ti(g)))-
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Proof. “(i)==(ii)": For A, u € [A,£*] we have Ag;, — ugj, € M. If G is the O-border basis of (G)
then by Lemmawe obtain remp G (Agj, — pgj,) = {0} and remp c(Agj) = {0}.
“(ii)==(iii)”: Obvious.

“(iif)==-(1)": The above calculations show that from (iii) we get that the operators My, ..., M,
are mutually commuting. By Theorem [2.4.32] this is equivalent to G being the O-border basis of
(G). O

Example 2.4.39. Let m = 0,n = 2,E = {1} and let E = {E; | 1 < k < 3}, where &1 is generated
by 01,02, & is generated by 01,0, 1(72_ 1, and Ej is generated by o>, oy 102_ L (compare Example .
We set &1 := 01,82 := 0 and &3 := (71*1(72*1. Let O := {1,01,Ugl,01*102*1,0(102*1,01*202*1}. Then
00 = {(72,(712, Uf3(753, Ufl,al(rz, 171*2(72*3, 010{1,052, Ufzagl}. Let & € K be such that 0>(a) = «
and let M := (G) where G = {g1,...,89} is given by

gi=m—0, g2 =0} = g0y oy,
3= 0705 —s;%(w), gr=0p —op 0y,
= 1 —2,-2 23 =1
g5 1= 010y — Wal 0,°, 86:=0y°0,° —s; (a)oy,
e =1 1 -2 -2 =2
87 =010, — Worl 0,5, 88:=0,"—1,
2

g9 =07 (751 — sfl(zx)al.

02

11
00

The set of next-door neighbors consists of the pairs {(by,bs), (b3, bg), (b1, by), (bs, by), (b2, b7), (b7,
bg)}, the set of across-the-street neighbors consists of the pairs {(by, bs), (be, bg), (b3, bo) } and the set of
individuals consists of {bs, bs, bg, bg }. We have

_ 1 o
remp,;(51(81,85)) = rempg (‘71‘72 1+ I 20 2)
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remop ¢ (51(83,86))
remp ¢ (S3(1,84))

remp (53(94,89))

remop ¢ (53(82,87))

remo ;(53(87,88))

remp ¢(52,1(82,85))

remp ¢(51,3(86,88))

remo G (52,3(83,89))

remp G (T1(84))

remo G (T3(8s))

remp ¢ (T2(86))

remp ;(T1(89))

remo,G(—g7)

{0},

remo,g(—s; ' (@)o1 + 57 ' ()on)
{0},

remo,(—07 'y 2 + oy oy %)
{0},

remp g (—0y 205 % + 57 (a)oq)
remo,G (—ge)

{o},

{0},

remo G (—aot + 07
remo G (*0682)

{0},

remo g (—sy 2(@)on +s72(a)os )

remo 6 (—s; 2(a)g1)

11
oy )

{0},

remp,g(1— 05 ?)
remac(—gs)
{0},

1 a3
remg g (1 — %‘71 3(72 3)
1

1
rempc | —— &3
( S1 2(a) )

{0},

remo (o7 205 57 were)
remolg(—sfl(“)gS)

{0},

remo (0 'oy ! — aof)

remo G ( —Dégz)

57
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— {o}.

Using Theorem we conclude that G is the O-border basis of M.
Let the generalized term order < be as in Example Since C(O) = {by, by, b3} andforj=1,2,3
we have 1t<(g;) = bj it follows from Theorem [2.4.22|that {g1, g2, 83} is a <-Grobner basis of M. O



Chapter 3

Difference-skew-differential
dimension polynomials and
Einstein’s strength of systems of
difference-differential quations
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As pointed out, e.g., in [Eis95, Bre98] Hilbert polynomials occupy a key position in algebraic
geometry, combinatorics, and commutative algebra. The prefered method of their algorithmic
computation for filtered and graded modules is provided by the theory of Grobner bases — see,
e.g., [CLO92]. Kolchin [Kol64] introduced the differential dimension polynomial as the equiva-
lent of the Hilbert polynomial in differential algebra. For a given system of differential equations
the associated differential dimension polynomial describes the number of arbitrary constants in
the system’s general solution.

As pointed out by Levin [Lev07al] the importance of differential dimension polynomials rests
on three pilars.

(i) Mikhalev and Pankratev [MP80] showed that for a system of linear differential equations
the associated differential dimension polynomial expresses the system’s “strength” in the
sense of Einstein [Ein53].

(ii) A differential dimension polynomial carries invariants characterizing a difference-differen-
tial field extension independent of the choosen representation [Joh69a), [JS78} [Kol73| Sit78|
MP80].

(iii) Dimension polynomials of prime differential ideals are useful tools in dimension theory of
differential rings [Joh69b| [KLMP99].

The theory of Grobner bases in modules over rings of differential operators was developed
by Mikhalev and Pankratev [MP80, MP89], Oaku and Shimoyama [OS94], Insa and Pauer [IP98].
Characteristic set methods for the computation of differential dimension polynomials arising
from the proof of Kolchin’s theorem [Kol73] were developed by Mikhalev and Pankratev [MP80].
A third method of computation of a differential dimension polynomial associated with a differ-
ential field extension uses the Hilbert polynomial of the associated module of Kahler differen-
tials which Johnson proved to coincide with the differential dimension polynomial in concern
[Joh69al Joh69c]. Mikhalev and Pankratev computed Einstein’s strength for several systems of
differential equations from mathematical physics, including — amongst others — the Wave equa-
tion, Maxwell’s equations, and Dirac equations.

Difference equations naturally arise in numerical solution methods for differential equations.
Consequently there exists a theory of difference dimension polynomials, too. They were intro-
duced by Levin [Lev78, [Lev80, [Lev82) [Lev85a| for difference field extensions and modules over
rings of difference operators.

Considering (a system of) partial differential equations it is natural to try isolating one of
the involved derivations and apply a difference scheme for it leading to a system of difference-
differential equations. Another reason to consider such systems is provided by considering dif-
ferential equations involving, e.g., time delays giving rise to shifts and hence involving differ-
ences. The computation of differential, and difference dimension polynomials using Grobner
basis techniques in modules over rings of differential, and difference operators, respectively, is
explained in [KLMP99].

Again it was Levin [Lev85b| [Lev87] who combined the notions of differential and difference
dimension polynomials and considered difference-differential dimension polynomials. Results
for difference-differential modules and field extensions are provided in [LM88|,[LMO91]]. The algo-
rithmic computation of difference-differential dimension polynomials by Grobner bases in mod-
ules over rings of difference-differential operators is developed in [Lev00, ZW06, ZWO08b].

Another direction of research on dimension polynomials associated with systems of partial
difference-differential equations emanates from grouping the involved derivations and automor-
phisms in different groups and considering the degrees of freedom of the system with respect
to these groups. Levin [Lev07al |[Lev07b) [Lev07c, [Lev08] as well as Zhou and Winkler [ZW08al
provided algorithms based on Grobner basis techniques for their computation.

Considering derivatives with weights Shananin was able to prove several interesting analytic
results [Sha00a), Sha00bl, ISha02, |Sha09].
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3.1 Uni- and multivariate difference-skew-differential dimen-
sion polynomials

In this section we will introduce the notion of weighted filtrations and consider dimension func-
tions for excellently weighted filtered modules over rings of difference-skew-differential opera-
tors. This leads to a generalization of Kolchin’s result on differential dimension polynomials.

Unless otherwise noted, throughout this section let K be a difference-skew-differential field,
{7, ..., Tu} aset of mutually commuting injective endomorphisms on K, A = {dy, ..., d,, } abasic
set of skew-derivations such that fori = 1, ..., m the skew-derivation J; is a skew-derivation with
respect to T;, respectively, and {c7, ..., 0, } a basic set of automorphisms. By E we always denote
the finite set {ey,...,e;} of free generators of a free difference-skew-differential module.

3.1.1 Weighted filtrations

For any finitely generated difference-skew-differential module M with generators my, ..., mg, a
weight vector & € QJ'*", and k € Z define the a-filtration (M, x)kez of M by

q
sz,k = { pjm;
i=1

Vlg]'gqu c K[A,Z*], ord,x(pj) < k} ,
]

and let

Yu:Z — N,
k — dimK(./\/la,k).

If no confusion is possible we will write M} and ¢ instead of M, ; and ¢, respectively. To the
present author Franz Winkler raised the question whether ¢, can be computed by Grobner basis
methods and independently Alexander Levin brought up the question of its general form.

We rephrase the problem in the following more general way. Let = be an orthant decomposi-
tion of [A,X*] with generators &1, ...,G,. For any finitely generated difference-skew-differential
module M with generators my, ..., m,, a weight vector a € Qg”r, and k € Z define the a-E-
filtration (M 5 x)kez of M

q
Myzii= { Y pjm;
j=1

Vlgqupj S K[A,Z*], Orda,E(Pj) < k} ,

and let

l/)a,EZZ — N,
k — dimK(Ma,E,k)-

If a is clear from the context we will write Mg and ¢z instead of M, z ; and ¢, =, respectively.
Recall that a filtered ring is a ring R together with an ascending chain (R )icz of additive
subgroups of R such that 1 € Ry and for all k,I € Z we have RgR; C Ry ;. The family (R )icz is
called (ascending) filtration of R and its elements are called components of the filtration.
We introduce the notion of weighted filtrations as follows.

Definition 3.1.1. Let E be an orthant decomposition of R = K[A,X*] with generators 1, ..., &y, and
consider a weight vector x € QJ'". A left R-module M is called a (left) filtered R-module if there
exists an ascending chain (My)xez of additive subgroups of M such that for all k,I € Z we have
{f € R| ordyz(f) < k}M; C Myyy. The family (My)ez is called weighted (or a-) filtration of
M and its elements are called components of the filtration. If
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(i) for every k € Z the component My is finitely generated as a K-vector space, and
(ii) there exist 0 < s € IN and ly € Z such that for all Iy <1 € Z we have

1—1Io

Ml:{feR

ordyz(f) < { J s } Myt (1-1y mod s)-

then the weighted filtration (M )iz is called excellent and s is called the period of (M;);cz.

Example 3.1.2. Let E be an orthant decomposition of [A, £*| with generators €1, ..., &, and o € Q.
Define the least common multiple lem of & by

lem(x) := min{p | thereexistay,...,ar4m € IN such that

Ay = -+ = Arimbrpm = p € N},
and define the filtration (K[A, Z*|x)kez by
KA, 2 == {f € K[A Z*] | ordyz(f) <k}

Let M be a finitely generated difference-skew-differential module. Then (M, = k) kez is a weighted filtra-
tion of M, every component M, z i is finitely generated as a K-vector space, and for any q1 € Z,q, €
{0,...,lem(a) — 1} satisfying

g1 =¢2 mod lem(a)

we have
. *
Moz = K[D, Z¥g g, Mazg,,

i.e., the weighted filtration (M, z x)kez is excellent.

3.1.2 Univariate difference-skew-differential dimension polynomials

We recall some basic facts about quasipolynomials [Sta97]. Remember that a function f : N — N
is called quasipolynomial if there exists s € IN and polynomials py, ..., ps—1 such that foralln € N
withn =i mod s we have f(n) = p;(n). The polynomials py, ..., ps_1 are called the constituents
and s is called the period of f. Equivalently f can be written as f(n) = c;(n)n? 4+ cy_1(n)n® 1 +
-+ 4 co(n) for periodic functions cy, .. ., ¢o with integral period. If c; # 0 then the degree of f is
defined to be d. If f = 0 then deg(f) := —o0.

Obviously, any finite sum of quasipolynomials is again a quasipolynomial.

Remark 3.1.3. It is easy to see that for any quasipolynomial f with period s and any 0 < m,n € IN also
the function ¢ : N — IN defined by g : t — f(m + tn) is a quasipolynomial in t with period < lem(s, n).

Theorem 3.1.4. Let M be a finitely generated difference-skew-differential module with generators my,
..., my, E an orthant decomposition of [A, X.*] with generators {y,...,8r, E = {e1,...,e,} a finite set
of generators of a free difference-skew-differential module, « € Q'*" a weight vector and < a generalized
term order on [A, X*|E respecting «. By 7t : K[A,X*]E — M we denote the difference-skew-differential
epimorphism given by 7t(e;) = m; fori = 1,...,q. Let G be a <-Grobner basis of the K[A,X*|E-
submodule ker(7t) and for all k € IN define

U :={A € [AZE | ordyz(A) <Kk Buepassgec lt<(1g) = A}.

Then for all k € N we have |Uy| = dimg (M z k).
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Proof. We show that 7r(Uy) is a basis of the K-vector space M, zx. Consider Am; ¢ 7(Uy) with
ied{l,...,q},A € [A, 2] and ord, z(A) < k. First we show that Am; can be written as a finite
K-linear combination of elements of 7t(Uy). Obviously this holds true for A = 1. So assume that
it holds for all terms y7m; with 7w(ym;) = ne; < Ae;. From Am; ¢ 7(Uy) we obtain Ae; ¢ Uy, ie.,
there exist u € [A,2*],¢ € G with Ae; = 1t(ug) and ord, =(1g) < k. Hence,

]/lg = a/\ei + Z aﬂ,jﬂej,
ordy,z () <kj€{1,...q}

where a # 0 and a,; # 0 for only finitely many 7, j. Obviously, 7e; < Ae; = 1t(ug) and since <
respects &« we obtain ord, z(17) < k. From G C N = ker(7) we get 71(g) = 0 which implies

0 = pun(g)
= 7(ug)
= anlAe) + )y ay,i7e(1e;)
ord, = (1) <kje{l,...q}
- L Ay j 11

ord, = (17)<kje{l,..q}

Hence, Am; is a finite K-linear combination of elements of the form ym; with ord,z(17) < k and
nej < Ae;. By induction we conclude that there exist b, ; € K such that

Am; = Z br],jﬂmj
ord, & (1) <kje{1,...q}

with ym; € 7t(Uy) for all 17, j such that b, ; # 0.
Regarding K-linear independence assume that there exist aq,...,a, € K, uq,...,u, € Uy with
Y. qaim(u;) = 0. Then f = Y7 ; aju; € N and from

ui & {1t(pg) | ordaz(p) <k, g € G}

we get

It(f) ¢ {lt(ug) | ordaz(n) <k g€ G}.
So f € N is <-reduced modulo G, i.e., f = 0. This implies 4y = --- = 4, = 0 which means
that 77(Uj) is K-linearly independent, i.e., it is a basis of M, z . Since 7 is a bijection on U} we
conclude |Uy| = dimg (M z)- O

Using Grobner basis techniques it is easy to compute the cardinality of Uy for a fixed k. The
theory of Ehrhart polynomials enables us to compute the cardinality of Uy and hence also the
K-dimension of M, efficiently.

For the definition and some fundamental properties of Ehrhart quasipolynomials see also
[Sta97]. By a convex polytope P in RY or a convex R?-polytope we mean the convex hull of a
finite set of points in R”. For some d € {0,...,v} the affine span of P is a d-dimensional affine
subspace of R”. A point a € P is a vertex of P if it is not an element of the interior of any line
segment contained in P. If V denotes the set of vertices of P then V is finite and P is the convex
hull of V. P is called integer polytope if all vertices of P have integer coordinates and it is called
rational polytope if all vertices of P have rational coordinates.

Let P be a convex polytope in R”. For any u € IN by uP we denote the polytope obtained by
expanding P by a factor of u in each dimension. Ehrhart [Ehr62] proved the following theorem.

Theorem 3.1.5. Let P be a convex integer polytope in R” and for 0 < t € IN let f(t) denote the number
of points contained in Z° N tP. Then f is a polynomial in t and deg(f) < v.

In [Sta97] the following theorem is proven.
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Theorem 3.1.6. Let P be a convex rational polytope in IR” and for 0 < 't € IN let f(t) denote the number
of points contained in Z° N P. Then f is a quasipolynomial in t.

Definition 3.1.7. The polynomial f, and quasipolynomial f whose existence is established in Theorem
and Theorem is called Ehrhart polynomial of P, and Ehrhart quasipolynomial of P, re-
spectively.

We will make use of the following lemma.

Lemma 3.1.8. Let K be a difference-skew-differential field with basic sets A = {01,...,0p,} and £ =
{01,...,00} of skew-derivations and automorphisms, respectively. Let E be an orthant decomposition
of [A,Z*],E = {e1,...,eq} a finite set of generators of a free difference-skew-differential module and
G C K[A,Z*|E finite. Furthermore let & € Q"'*" be a weight vector and < a generalized term order
respecting a. For k € IN let Uy C [A, X*|E be given by

Uy = {)\ S [A,Z*]E | Ol‘darg()\) <k, ﬂyE[A,Z*],gGG It< (“ng) = /\}
Then there exists a quasipolynomial f such that for all k € IN sufficiently large we have f (k) = |Uy|.

Proof. Let E be the orthant decomposition {&; |1 < I < p} of [A, X*]. By Exercise 10.2) of [BK94]
the intersection of two finitely generated subsemigroups of a commutative semigroup is finitely
generated. It follows that for any @ # S C {1,..., p} the intersection Eg := (sc5 s is finitely
generated, say by elements ¢gq,...,{s o, for some vg € IN (note that m < vg forall @ # S C
{1,...,p}). Assume that ord, =(s1) < ... < ordyz(Cs, ). Naturally, because s, ...,(s,, are
a generating set for Zg but not necessarily a basis, the elements {s 1, ..., s, satisfy relations of
the form B l
6oy 8B, =0

Let Xg := {x1,..., %y, } and consider the polynomial ring K[Xs], let M = {m;,...,m,} be gen-
erators of a free K[Xs]-module and let 7t : K[x1,...,x0,]M — K[Gs1,...,8s5]E be the natural
epimorphism Vic 1 01 jeq1,..,q3XiM;j +> Csi¢j. Let Gg be a Grobner basis of ker(7r) with respect

to an admissible order <g satisfying for all A = x? . -x;vss,]/t = xlf e xi,vss,j € {1,...,q} the
condition

Us Us

Y tiordez(Esi) < ) liordyz(8s;) = Amj <g pm;,

i=1 i=1
and M the set of all elements of [Xs]M which are irreducible modulo Gs. For any A € [Xs]M
by NF~,(A) we denote the normal form of A under reduction modulo Gs with respect to <.

t
i 6]"—>

Then there exists a natural isomorpism ¢s : EgE — Mg given by ¢s : EgE > 6;11 G v

NF<S(x§1 e x;”; m;) € Ms.
The ring K[Xs] is Noetherian which impies that the (left) K[Xs]-submodule Ms C K[Xs|M
generated by the set

t ty t ty —
{31 xEmy | Bucinreigealy -~ Gsnoer = lt<(ng) € KESE |

is finitely generated. Let Gg be a Grébner basis of ker(7r) U Mg with respect to <s. Note that
ordy=(8s;) € Qp forall@ #S C {1,...,p},i € {1,...,vs}. Now for any p = xi! -- -xz;S € [Xs]
let my1,my> € N with ged(m, 1,m,2) = 1 and ordalg(gglll e §tsvf)S) = my,1/my mod 1. For

k € N let P, s(k) denote the rational R”-polytope with vertices (t1, ..., tvs), (t1 + (m"fn;y;n”l +
k) orduz(Es1) "t tog) ey (H e tog—1, ko + (% + k) ordyz(Zs05)71). Let D g be

the rational R”S polytope with vertices (0,...,0), ((m,, orda,E(Csll))’l,O,...,O),. .., (0,...,0,
(myz0rdez(8s0s))")- Then P, s satisfies

(m;t,Z - my,l + kmy,z)py,s = Py,S (k) - (tlf ceey tvs)‘ (3‘1)
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By Theorem there exists a quasipolynomial f;,/s such that for all 0 < k € IN we have
fus(k) = kP, sNZ"|,
and by Remark it follows from that there exists a quasipolynomial f, s such that for all
k € N with k > ord, z(y) we have
fus(k) = |Pys(|k—ordyz(n)|) N2Z%]|.

For ease of notation we use the convention fj s := 0. Since Gg is finite there exist ws € IN,gs 1, ...,
8s,ws € K[Xs]M such that we can write G5 = {gs,1,---,8Sws}- For1 <w <wgand 1 < vy <
-+ < vy < Ws by Uy, v, We denote the least common multiple of {lt<,(gs,) i =1,...,w}. By
the Principle of Inclusion-Exclusion [Sta97, Ch. 2.1] we obtain that there exists a quasipolynomial

fs given by
q ws
fs(k) =) fe,s(k) + ) ). (=) fuuay, 0,5 (KD,
j=1 w=11<01 <+ <vyp<wg

such that for all k € IN sufficiently large we have

fs(k) = |Ps(k)\ U Pie_ (g5, (k)] -

iE{l,...,wS}
On the other hand we have
Pis®)\ U P (gsnsk)

ie{l,...,ws}
= ¢ ({1 € BsE | ordaa(V) Sk, Buciazygec Itx(ug) =A}) -

Since ¢ is an isomorphism we obtain for all k € IN sufficiently large

fs(k) = [{A € B | ordaz(A) <k, Buciageclt=(ug) = A}|.

Therefore there exists a quasipolynomial f given by

fy= Y (—D)B (),

@#SC{1,...p}

satisfying for all k € IN sufficiently large

£ = {4 € KIA Z7IE | ordyz(A) < K, Buepnzgeclt<(rg) = A}
O

From Theorem and Lemma we obtain the following corollary extending [KLMP99,
Thm. 6.7.3.] to the described setting.

Corollary 3.1.9. Let K be a difference-skew-differential field with basic sets A = {1,...,0m} and
Y = {oq,...,0u} of derivations and automorphisms, respectively. Let E be an orthant decomposi-
tion, o a weight vector, and M a finitely generated K[A,X*]|-module with excellent weighted filtration
(Myz)kez. Then there exists a quasipolynomial 1, = satisfying for all sufficiently large k € IN the
equation
Yo,z (k) = dimg (Mgz).

Definition 3.1.10. The quasipolynomial 1, = whose existence has been established in Corollary is
called difference-skew-differential dimension quasipolynomial associated with the excellent weighted
filtration (M =i )kez or a-E-difference-skew-differential dimension quasipolynomial (or a-di-
mension quasipolynomial if & is clear from the context) associated with M.

Definition 3.1.11. If & is the canonical orthant decomposition and o = (1,...,1) € Q+?" then the
degree of P, = is called the dimension of the difference-skew-differential module M.
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3.1.3 Weighted differential dimension polynomials of differential field ex-
tensions

It has been pointed out to the author by Alexander Levin that Corollary allows us to gen-
eralize Kolchin’s result on differential dimension polynomials [Kol73| Chapter II, Theorem 6]. In
order to express his (and also our) result we extend the notion of filtration of a differential field
extension (cf. [KLMP99, Definition 5.2.1.]) to our setting introducing weights.

Definition 3.1.12. Let G be a differential field with basic set A = {61, ...,0m} of derivations, F a A-
subfield of G, and o € Q' a weight vector. An wa-filtration or weighted filtration of G over F is an
ascending sequence (Gy )xez of (nondifferential) subfields of G such that

(i) forall k < 0 we have Gy = F,
(ii) forall A € [A], g € Gy with ordy(A) < 1 we have Ag € Gy, and
(ii1) Ugez Gk = G.
If in addition
(iv) forall k € Z the field Gy is finitely generated over F, and

(v) thereexist 0 < s € N and kg € Z such that for all kg < k € Z we have
Gk = Gyt (k—ko mod s) (K[A] | | G+ (k—ky mod s)) ,

then the weighted filtration (Gy)rez is called excellent.

Consider an excellent a-filtration (Gy)rez of a A-extension G of F. For k € Z let Q) denote
the G-subspace of the module of differentials Qg ,/r generated by {dg | ¢ € Gi} (cf. Subsection
for the definition of dg). Then () )cz is an excellent a-filtration of Qg /p.

Recall that for a field extension G of a field F the transcendence degree of G over F is defined as
the maximal number of elements of G which are algebraically independent over F and is denoted
by trdeg, G.

Theorem 3.1.13. Let F be a differential field with basic set A = {01,...,0m}, G = F(g1,.--,87) @
finitely generated A-extension of F, and « € Q' a weight vector. Let the filtration (Gy)xe be given by

Gy = F({Agi | orda(A) <k,i=1,...,q}).

Then there exists a quasipolynomial x such that for all k € IN sufficiently large we have x (k) = trdeg Gy
and x coincides with the a-dimension quasipolynomial of Qg /F.

Proof. By Corollary[3.1.9|there exists a quasipolynomial x such that for all k € IN sufficiently large
we have x (k) = dimg(Q)y).

If (1a)ac 4, is a transcendence basis of Gy over F for some index set Ay, then {dr, | a € Ag}
generates the G-space (). For any a € Ay there exists a derivation D, € Derr Gy such that

(i) foralla # b € Ay wehave D,(1,) =0, and
(i) Da(na) = 1.

By Proposition the derivation D, can be extended uniquely to a derivation D, on G. Assume
there exists (A;)zca, € G with
Z Aadyg = 0.

LZEAk



3.1. WEIGHTED DIMENSION POLYNOMIALS 67

Then

0 = 2 )\adT]a(Db)

acAy

= 2 AaDy(11)

ac€Ay

forall b € Ay. Hence, the system {dy, | a € Ax} is G-linearly independent. Therefore we obtain
trdeg(Gy) = dimg (Q) which proves the claim. O

Definition 3.1.14. The quasipolynomial x whose existence is proved in Theorem [3.1.13|is called weigh-
ted (or a-) differential dimension quasipolynomial of the A-field extension G over F.

3.1.4 Weighted multi-filtrations

We can generalize even further by taking into account several weight vectors simultaneously.
Recall that an [-filtered ring or multi-filtered ring is a ring R together with a family (Ry);cz of
additive subgroups of R such that

(i) 1€ Rq,...0)

(ii) forall k <p k we have Ry € Rz, where <p denotes the product-order on Z! and
oo 7 l
(iii) forallk,k € Z' we have RyRp C Ry 1.

The family (Ry);cz: is called (ascending) I-filtration or multi-filtration of R and its elements are
called components of the I-filtration.
We introduce the notion of weighted multi-filtrations as follows.

Definition 3.1.15. Let E be an orthant decomposition of [A,X*| with generators &y,...,&r, and T €
Q"X g weight matrix. A left K[A,%*]-module M is called a (left) weighted (or T-) filtered
K[A, £¥]-module or multi-filtered K[A, X*|-module if there exists a family (M )rez: of additive sub-
groups of M such that for all k <p k we have My C My, and for all k = (ky,... ki), k € Z' we have
{f € K[AZ*] | Vi<icrord ) 2 (f) < kit Mg © Myt The family (My)ycz: is called weighted (or
T-) filtration or multi—ﬁltration of M and its elements are called components of the weighted filtration.
If

(i) for every k € Z! the component M is finitely generated as a K-vector space, and

(i) there exist 0 < s = (s1,...,5:) € Nt and k = (ky,..., ki) € Z! such that for all k <p k =
(ky,...,kt) € Z! we have

M, { KA, 3] ’V1<z<tord =(f) < {HJ Si}
M

( (k —k; mods)) 1’

then the weighted filtration (My) o is called excellent and s is called the period of (M) cz1-

Example 3.1.16. Let E be an orthant decomposition of [A, £*] generated by &y, ..., &r, and T € Q(()mH) Xt
a weight matrix with columns TW, ..., T satisfying aT # 0 for all a € N7\ {0}. For any finitely

generated difference-skew-differential module M with generators my, ..., mgy, and k = (ki,...,k) € Z}
define the T-E-filtration (M7 g x)rezt of M by

MT k= {)\m] |1 <j< q/vl<z<t0rd &( ( ) < ki}.

Fr=n
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If T and B are clear from the context we will write My, instead of M z . Fork = (ky, ..., ki) define the
t-filtration (K[A, ¥z x)kezt by

.....

Then for any § = (41,...,4:) € ZHq1 € {0,...,lem(TW) —=1},...,q; € {0,...,lem(T®)) —
1}, 9 = (q1,--.,q¢) satisfying foralli = 1,.. .t the condition

§i=¢; mod lem(7T),

we have
Mr 5 =K[AZ |j-gMT 2,

i.e., the weighted filtration (M7 g ) ezt is excellent.

3.1.5 Multivariate difference-skew-differential dimension polynomials

With the notation of the previous subsection let

Paz:Z' — N
k — dimK(MT,E,k)-

If 7 and E are clear from the context we will write ¢ instead of ¢, z. We are interested in the
general form of ¢.

In Theorem[3.1.4we established the existence of weighted difference-skew-differential dimen-
sion quasipolynomials. As a generalization of Theorem [Lev07a, Theorem 4.1], [ZW08a),
Theorem 4.1], and [Lev08| Theorem 3.3.16] to the case where we take into account several weight
vectors in the form of a weight matrix we obtain the following theorem.

Theorem 3.1.17. Let M be a finitely generated difference-skew-differential module with generators my,
..., my, E an orthant decomposition of [A, X.*] with generators {y,...,8r, E = {e1,...,eq} a finite set

of generators of a free difference-skew-differential module, and T € Qémﬂ)” a weight matrix such that
there exist generalized term orders <1,..., <y on [A,X*]E respecting T. By 7 : K[A,2*]E — M we
denote the difference-skew-differential epimorphism given by t(e;) = m; fori = 1,...,q. Let G be a
<1-Grobner basis of the K|A, 2*|E-submodule ker(7t) respecting T and for all k = (ky,... ki) € IN!
define Uy := U, U U}/, where

U = {A€[AXE|Vjoy, rord g z(A) < kj, and A # 1t (ug)
forall u € [A, 2], g € G},
U;C, = {/\ € [A, Z*]E | Vj:l,...,t OrdT@,E(A) < k], and vye[A,Z*],geG)‘ = 1t<1 (]/lg)

= Jjepa,...1y ord £ (It (p1g)) > kj}.
Then for all k € N¥ we have |Uy| = dimg (M7 zx).

Proof. For some k € IN! let Am; € My gy \ m(Uy). Then Ae; ¢ Uy. Hence, there exist y €
[A,2*],8 € G such that Ae; = 1t (ug) and ord ;) o (It<;(ug)) < k; forall j = 2,..., . Therefore

there exist V. € IN,a,aq,...,ay € K\ {0},A,Aq,..., Ay € [AX*],wy,...,wy € {1,...,49} such
that we can write

v
ug = akej + Y avAyeu,.
v=1
Then for all v = 1,...,V we have Ayey, <1 Ae; = lt<, (pug) which implies ord ) z(As) < k1.

Furthermore for all j = 2,...,t we have ord () z(lt<;(#g)) < k; and Ayew, <; lt<;(ug) which

S~
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imply ord () z(Av) < kj. Since G C ker(7) we have 77(g) = 0 and

\4 \4
0=pun(g) = n(ug) = amn(Ae;) + 2 ay T (Ayey,) = arm; + Z Ay Aptiy, .
v=1 v=1
Hence, Am; is a K-linear combination of elements A, such that for all j € {1,...,t} we have
ord () (Av) < kjand Avew, <1 Ae;. By induction with respect to <1 we obtain that there exist
V' eN,by,...,byr € K\{0}, p1, ..., uyr € [A,2*],c1,...,cyr €{1,...,q} such that we can write

V/
Am; = Z bv,uvecv/
v=1

such thatforallj=1,...,t;0=1,...,V' we have ord ) 5 (tto) < k;j and pyec, € 7w(Uy)-

Sullapose that there exist uy,...,u; € U, ay,...,a; € Kwithayrt(ug) + - - - +a;7t(u;) = 0. Then
=Y,_qaiu; € ker(r). Since foralli =1,...,] we have

up ¢ |J {It<,(Ag) | A € [A, 2], Vo, s ord ) £ (It (Ag)) < kj}
g€G

it is clear that foralli = 1,...,/ either there existno A € [A,X*],¢ € G with It-, (Ag) = u; or for
every A € [A,X7],¢ € G with lt<, (Ag) = u; there exists j € {2,...,t} with ord ;) 5 (It<;(Ag)) >
k]-. Hence,

lt<, (h) ¢ | {It<, (Ag) [ A € [A,27],¥jm,.. s ord 1) 2 (1t (Ag)) < ord ) o (1t (7))}

o o
geG

Therefore, h is <1-irreducible modulo G respecting 7. By Proposition[2.3.11|we conclude i = 0
and ay,...,a; = 0. So 7r(Uy) is K-linearly independent, i.e., 7t(Uy) is a basis of M7 z . Since 7 is
a bijection from Uy — 7t(Uy) we obtain for all k € IN! the equality

dimg (M7 zx) = [(Ux)| = Ul
O

Again for a particular k € IN using Grobner basis techniques it is possible to compute
dimg (M zx). For a result similar to Corollary we have to try a slightly more elaborate
approach than in the univariate case.

The following generalization of the concept of Ehrhart polynomials is due to Clauss, Loechner
and Wilde [CL96}ICLW97]. A good reference is also [LLS08, Section 2.2].

Definition 3.1.18. Let t,0,w € N\ {0}, A € Z"*!,C € Z¥*!,b € Z',and p = (p1, ..., pw) a vector
containing w parameters py, ..., pw. Then

Py :={x € R’ |[xA <p pC+b}

is called rational v-dimensional parametrized polyhedron. If P — p is bounded for each value of p, it
will be called a parametric polytope.

Definition 3.1.19. Let p = (p1,..., pw) be a vector containing w parameters py, ..., pw and let f :
Z" — Q such that there exists g = (q1, ..., qw) € N” with f(p) = f(p') whenver foralli =1,...,w
we have p; = p; mod gq;. Then f is called w-dimensional periodic number or multidimensional
periodic number on py, .. ., py with period lem(qy, . . ., Gw)-

Definition 3.1.20. Let g be a polynomial in w variables p1, . .., pw such that each coefficient is a multidi-
mensional periodic number on a subset of {p1, ..., pw}. Then g is called multivariate quasipolynomial.
The period of g is defined to be the least common multiple of the periods of its coefficients.
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Theorem 3.1.21. (Clauss) Let t,v,w € N\ {0}, A € Z"*!,C € Z¥*',b € Z', p = (p1,..., Pw)
a vector containing w parameters p1, ..., pw and Py a v-dimensional parametric polytope. For k € N
let f : N' — IN be given by k — |P|. Then f can be represented by a finite set of multivariate
quasipolynomials of degree d, each valid on a different validity domain.

Using Theorem [3.1.21|we obtain the following result.

Theorem 3.1.22. Let E = {ey,...,e,} bea finite set of generators of a free skew-differential module, T €
Q<! a weight matrix with columns TW, ..., TW satisfying |{a € N | ijlwtaT(j) < pj}| < oo for
all p = (p1,...,pt) € Nt and <q,..., < admissible orders on [A] respecting T. Let G C K[A]E be
finite and for all k € N* define Uy := U, U U}/, where

U,’( = {A€A]E| Vj=1,... ord ) 1) < kj, and A # lt<, (ug)
forall u € [A], g € G},
Uy = {A€[AE|Vjo, rordy(A) <kj and Ve(a) gecA = b=, (pg)

= Jjeqz,..1p ord ) (lt<; (1g)) > kj}-

Then the function f : N! — IN given by k > |Uy| can be represented by a finite set of multivariate
quasipolynomials in k, each valid on a different validity domain.

Proof. Obviously, for all k € N we have

Uy {)L S [A]E | Vj:l,...,t OI'dT(j) (A) < k]}
8)=A

= \{A € [A]E | 3yeja) gec 1t< (1)
Vi1, ordy) (ng) < kj,ord ;) (A) < kj}.

By t; we denote the least common multiple of the denominators of all nonzero entries of 7. For
k € N! by Py, x we denote the m-dimensional parametric polytope given by

Pl,H,k = {X eR" ‘ xTt <p tik, 1 <p x}.
Then Py, N IN™ is naturally isomorphic to
{A € [A]E | A is <y-reducible modulo p and Vi1, ;ord ) (A) < k;}.

Let f1,, : N' — Nbe givenby k |Py,y.k|- By Theorem3.1.21jthe function f ;, can be represented
by a finite set of multivariate quasipolynomials, each valid on a different validity domain. Then
there exists a function f1 : N — IN given by

g
filk) = Z;fl,ej(k)
=

such that for all k € N sufficiently large we have

.....

and f7 can be represented by a finite set of multivariate quasipolynomials, each valid on a differ-
ent validity domain.

For k € IN" and any h € K[AJE \ {0} such that for j = 1,...,t there exists h; € IN™ with
lt<j(h) = ", where we use multi-index notation, by P, x we denote the m-dimensional para-
metric polytope given by

Pyjii={x € R" [ xTty <p tik,x >p hy,Vj—p, i (x —h1 +h;) Tty < tik;}.
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Then P, j, , N IN™ is naturally isomorphic to

{A€[AIE | V1, pordy)(A) < kjand 3y iy
lt, (h) = A, V=, sord (nh) < ki}.

Let fo, : N' — N be given by k — |P,;,x|. By convention f, : N* — N is given by k ~— 0. By
Theorem the function f, ;, can be represented by a finite set of multivariate quasipolyno-
mials, each valid on a different validity domain. Since G is finite there exist w € IN, g1, ..., 8w €
K[A]E such that G = {g1,...,8w}. For2 <m <wand1 < vy < --- < vy < wlethy,, o, and
Soy,....0, De given by

hoy,.om = lem(lt<,(80,), ..., 1t<;(80,)), and
t m hvl,...,vm .
Svi,om T Moy, om + Zj:z Li=1 1t<j (ltﬁ (gvi)gv,-) o iy, o # 0,
0, otherwise.

By the Principle of Inclusion-Exclusion [Sta97, Ch. 2.1] we obtain that there exists a function
f> : N! — N given by

fk) =) Y D gy (),

m=11<v;<---<vy<w

such that for all k € N sufficiently large we have

falk) = A €[AE | 3eia)gec =, () = A,
Vi1, ordy) (ng) < kj,ord;) (A) < kj}l,

and fo can be represented by a finite set of multivariate quasipolynomials, each valid on a
different validity domain. We conclude that there exists a function f : N/ — IN given by
f(k) := f1(k) — f2(k) such that for all k € IN! sufficiently large we have

fk) = [Uxl,

and f can be represented by a finite set of multivariate quasipolynomials, each valid on a different
validity domain. O

Let E be an orthant decomposition of [A, Z*] with generators ¢y,...,¢, E a finite set of free
generators of a free K[A, £*]-module, and M a K[A, £*]E-submodule. For v = (y1,...,7:),T =
{m,--., 1w} é=(C1,...,8r),e € E,a € N™, b € N" define ¢z o : K[A, T]E to M by ¢ : 5ybe
5°&be (using multi-index notation). We consider K[A,T]E as a skew-differential ring equipped
with the commutation relations

(i) Ay =puAforallA, p e AUZ,
(11) 51'61 = Ti(ﬂ)(si + (Si(r) foralli=1,...,mua €Kk,
(iii) v;a = &;i(a)y;foralli=1,...,r,a € K.

Let \V be the K[A, I'| E-submodule generated by ker(¢p). Consider a weight matrix 7 € Qémﬂ) Xt

with columns 7(), ..., 7). Then for every k € IN* we have

Pz MNT ) = MT 5k

Hence, we obtain the following corollary.
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Corollary 3.1.23. Let K be a difference-skew-differential field with basic sets A = {61,...,0m} and
Y ={o,...,0u} of skew-derivations and automorphisms, respectively. Let E be an orthant decomposition
with generators &1, . .., &y, T a weight matrix satisfying aT # 0 foralla € N™*"\ {0}, and M a finitely
generated K[A, 2*]-module with excellent weighted filtration (M gy )rez:- Let 7z : N — N satisfy
for all sufficiently large k € IN* the equation

Yrz(k) = dimg (M7 zx).

Then 1 g can be represented by a finite set of multivariate quasipolynomials, each valid on a different
validity domain.

Definition 3.1.24. The function 1 = whose general form has been established in Corollary|3.1.23|is called
multivariate difference-skew-differential dimension function associated with the excellent weighted
filtration (M1 5 k) ezt or T-E-difference-skew-differential dimension function associated with M.

3.2 Strength of selected systems of differential and difference
equations

In [Ein53] Einstein introduced the concept of the strength of a system of partial differential oper-
ators in order to measure the size of the associated solution space: ”...the system of equations is
to be chosen so that the field quantities are determined as strongly as possible. In order to apply
this principle, we propose a method which gives a measure of strength of an equation system. We
expand the field variables, in the neighborhood of a point P, into a Taylor series (which presup-
poses the analytic character of the field); the coefficients of these series, which are the derivatives
of the field variables at P, fall into sets according to the degree of differentiation. In every such
degree there appear, for the first time, a set of coefficients which would be free for arbitrary choice
if it were not that the field must satisfy a system of differential equations. Through this system of
differential equations (and its derivatives with respect to the coordinates) the number of coeffi-
cients is restricted, so that in each degree a smaller number of coefficients is left free for arbitrary
choice. The set of numbers of ‘free’ coefficients for all degrees of differentiation is then a measure
of the ‘'weakness’ of the system of equations, and through this, also of its 'strength’.”

Mikhalev and Pankratev [MP80] showed the strength of a system of algebraic partial differ-
ential equations to coincide with the leading coefficient of the associated differential dimension
polynomial. The notion of strength of a system of partial differential equations can be general-
ized to systems of skew-differential, difference and difference-skew-differential equations. We
will use the notion of weight relative Grobner bases to compute the strength of several systems.

For the diffusion equation in 1-space the differential dimension polynomial and the differ-
ence dimension polynomials for the associated forward and symmetric difference scheme, re-
spectively, can be found in [DL12].

3.2.1 Diffusion equation in 1-space

The diffusion equation in one spatial dimension for a constant collective diffusion coefficient a
and unknown function u(x, t) describing the density of the diffusing material at given position x
and time ¢ is given by

ou(x,t) aazu(x, t)
ot ax?

(3.2)

Example 3.2.1. Differential dimension polynomial: Let K be a differential field with basic set A =
{6 = 2,6, = &} containing a and let M be a differential K-vector space generated as K[A]-module by
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one generator m satisfying the defining equation
Sm = ad’m.

Then M is isomorphic to the factor module of a free K[A]-module with free generator e by its submodule
N generated by
G := {de — ad%e}.

For every ¢ € N \ {0} we choose the weigth vector

ac:(1{C>€Qi

and define the admissible order < for vy, v, wy, w; € IN by
v w
036t e <. 6976 e 1= (% + o4, Ut> <lex (Tx + wy, wt> .

Then < respects w.. Since G consists of only one element there are no S-polynomials to compute, i.e., G
is a <-Griobner basis of N for every ¢ € IN '\ {0}. For the difference-differential dimension polynomials
we will use the notation of Theorem [3.1.4and Corollary([3.1.9, In [DLI2] it was shown that if ¢ = 1 then
the differential dimension polynomial 1, with respect to a. is just the differential dimension polynomial
in the sense of Kolchin. It is given by

P, (k) =2k + 1.

Forall 2 < ¢ € N we have 1t~ _(6te — ad%e) = dre and for all k € IN sufficiently large we obtain
U = {zﬁgaﬁfe l?"
= {e,(Sxe, . ..,5§ke} ,

and therefore |U,, | = ck + 1. Hence, for ¢ > 2 the differential dimension polynomial with respect to .
associated with the diffusion equation in one spatial dimension for a constant collective diffusion coefficient
is given by

+1; <k, (555‘5?6 is < -irreducible modulo G }

wac(k) = Ck"’ 1.
If on the other hand for every ¢ € IN'\ {0} we choose the weight vector

(1)<

and define the admissible order <. for vy, v, wy, wy € IN by
606 e < 606" e = (vxC 4 V1, V) <jex (WxC + Wr, Wy).

Then <! respects Bc. Still there are no S-polynomials to compute, and G is a <[-Grobner basis of N for
every ¢ € N\ {0}. Forall c € N\ {0} we have 1t , (6te — ad2e) = b%e and for all k € N sufficiently
large we obtain

Ug x = {(555(5?6 | e+ 1y <k, 555“5?6 is </-irreducible modulo G}

= {e/ (Ste/ cecy §ttk/cj e/ éxe, (Sx(StE, PPN ,(Sxétl‘(k_l)/cje} ,

and therefore |Ug,_ x| = L%J + ch;lj + 2 which obviously is a quasipolynomial with period c. Hence, for
c € N\ {0} the differential dimension quasipolynomial with respect to B associated with the diffusion
equation in one spatial dimension for a constant collective diffusion coefficient is given by

0= ||+ [ 2

c
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In order to obtain a forward difference scheme for the diffusion equation (3.2) every occurence

of auéi’t) and a”g’tc’t) is replaced by u(x 4+ 1,t) — u(x,t) and u(x, t + 1) — u(x, t), respectively. We
obtain
u(x,t+1) —u(x,t) =a(u(x+2,t) —2u(x+1,t) + u(x,t)). (3.3)

Example 3.2.2. Difference dimension polynomial for forward difference scheme: Let K be a
difference field with basic set ¥ = {0y : x — x+ 1,0y : t — t+ 1} containing a and let M be
a difference K-vector space generated as a left K[X*]-module by one generator m satisfying the defining
equation

oym —m = a(orm — 20,m + m).

Then M is isomorphic to the factor module of a free K[X*|-module with free generator e by its submodule
N generated by
G := {ote — acZe + 2acve — (1 +a)e}.

Let E be the canonical orthant decomposition of [£*| with generators {1 = 0x, {2 = 0y 1 &3 = oy and
& = o7 L. Forevery c € N\ {0} we choose the weigth vector

1/c
1/c

Ko = 1 GQi.
1

If c = 1 then the weighted differential dimension polynomial associated with the difference scheme is
just the usual difference dimension polynomial. Define the admissible order <. for vy, v¢, Wy, Wy € Z by

0|

oloTe <. oVote = (c + |v¢l, [vt], |vx|, o1, vx>

|ws|
<lex c + ‘wt|/|wt|r‘wx|/wt1wx .

Then < respects .. Since G consists of only one element there are no S-polynpomials to compute and G
is a <-Grabner basis of N'. We obtain

Uy zx = {A€[Zle] ord, z(A) < kand A is not <¢-reducible modulo

ore — aoze + 2aove — (14 a)e}

1

ck -1 —k —-1.,— -1 __—k+1
e,0; e...,0; €0, 0 €...,00 0 e},

k

= {o;%e,..., 0%

and therefore |U,,_x| = 2(c + 1)k. Hence, for ¢ > 2 the difference dimension polynomial with respect to
. associated with the difference scheme (3.3) is given by

P, (k) =2(c + 1)k.

If on the other hand for every ¢ € IN'\ {0} we choose the weight vector

ﬁc:

cQi

== a0

and define the admissible order <. for vy, v, wy, wy € Z by

Uy

oo/te <. o0 e = (|ox|c+ |ve], |, [0x], vt Ux)

<iex (Jwx|c+ [wil, [we], |wx|, we, wy) .
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Then <. respects B.. Since G consists of only one element there are no S-polynpomials to compute and G
is a <.-Grobner basis of N'. We obtain
Ug.zx = {A€[Z]e| ordgz(A) <kand A is not <¢-reducible modulo
ore — acZe + 2aove — (1 +a)e}
= {6;7%..., 0k, dre, ..., 6005 %,
5710 e, 0710, % e, 072, .., 61/ ey,

and therefore |U,_ x| = 4k — 2c +1+ | X | which obviously is a quasipolynomial in k with period c. Hence,
forc € N\ {0} the difference dimension quasipolynomial with respect to B, associated with the difference

scheme is given by
. (k) = 4k —2c + 1+ m .

3.2.2 Maxwell’s equations for vanishing free current density and free charge
density

For Maxwell’s equations for vanishing free current density and free charge density the differential
dimension polynomial and the difference dimension polynomials for the associated forward and
symmetric difference scheme, respectively, can be found in [DL12].

Let E = (Ey, Ea, E3), D = (D1, D2, D3), H = (Hy, Ha, H3), B = (B1, B2, B3), Jf = (J1, )2, J3) and
P be functions in (x,y,z,t) denoting electric field strength, electric displacement vector, mag-
netic field strength, magnetic displacement vector, free current density and free charge density,

respectively. With
0 0 0
v (v )

Maxwell’s equations in 3 spatial dimensions are given by

dB oD
V~D:pf, V-B=0, VxE—l—g:O, and VXH:]f—i-g.
Assuming J; = 0 and py = 0 Maxwell’s equations can be considered as a set of homogeneous
linear differential equations.

Example 3.2.3. Let K be a differential field with basic set

) 0 0 0
A: {(5X - a,éy: @,5‘2 - E,ét - at}

Assuming Jr = 0 and pf = 0 Maxwell’s equations give rise to a differential K[A]-module M with
generators eq, ey, e3,d1,dp, d3, hy, hy, h3, by, by, b3 satisfying
Oxdy +0ydy +0:d3 = 0 = 0Oyby +6yby + 5:b3,
5y€3 — ey +6b; = 0 = §yh3 — 0;hy — 64d1,
0ze1 —0xe3 + 6ty = 0 = 6;hy — 6xh3 — 6yda,
Oyey — 5y€1 +0tbs = 0 = byhp — §yh1 — Oid3.

Then M is isomorphic to the factor module of a free K[dx, &y, 6, 8] module with free generators p1, ..., p12
by its submodule N generated by

{ Oxpa+9dyps +0:ps, dxpro + dyp11 + zp12,
Oyps — Ozp2 + 6tp10, Syp9 — Ozps — Otpa,
0zp1 — OxP3 + Otp11, 0zp7 — OxP9 — Otps,
dxp2 — dyp1 + Otp12, Oxps — Oyp7 — ditps  }-
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We consider the weight matrix T € IN**2 given by

T =(TW, 7)) =

O R
_ O O O

Hence, we separate &; from 6x, 6y, and &, i.e., for this example our approach boils down to Levin's approach
using Grobner bases with respect to several orderings [Lev07d]. We choose two admissible orderings <1
and <7 defined by

898, 09267 e; <1 6920, 0V=6,"ej 1= (vx + vy + 0z, 01,1, Uy, 0y, V)

<lex (Wx + Wy + Wz, Wy, j, Wy, wy, w,), and
5§x(5;y5§z§ffei =<2 5;”X5;}y5§”25f”ej = (04, 0x + 0y + Vz,1, 05,0y, 0z)

<lex (Wt, Wy + Wy + Wz, J, Wy, Wy, W),

Then <1, <y respects T
A <o-Grobner basis of N is given by

G={g1 = &p+&p°+6:p°
@ = 5xp10+(5yp11+(5zp12/
8 = —op° +8:p°+ap?,
g = —op +6p’ +0p°,
g5 = —(5xp8+(5yp7+(5tp6,
g8 = &p°—&:p*+0p",
g7 = 0 —&pP+apt,
g = &xp*—dy+ap”}.

The <1-S-polynomial of g3 and g4 is given by
S~1(83,84) = 0x02p8 — y02p7 + 6yt ps + 0x0tpa.
It is <1 reducible respecting T modulo g5 to
020t pe + OyOtps + 0x0tpa
which in turn is <1-reducible respecting T modulo g1 to 0. The <1-S-polynomial of g and g7 is given by
S<,(86,87) = —0ydtp11 — 0xOtp10 + 6x02p2 — Oydzp1.
It is <q-reducible respecting T modulo gg to
—026tp12 — SyStp11 — 6x6tP10

which in turn is <q-reducible respecting T modulo g5 to 0. Hence, G is a <1-Grobner basis of N respecting
T.Let P = {p1,...,p12} and for all k € IN? define

U, = {Ae€[AP| ordy(A) <pk, and A # It (ug)
forall u € [A], g € G},
Uy = {A€[A]P]| ordy(A) <pk, and Viela)gech = 1t (1g)

= Jjeqa...ey ord 7 (It (4g)) > Ky}
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Then using the combinatorial formulas provided in [Lev08, Thm. 1.5.7] for all k € IN? sufficiently large
we obtain
\Up| = K3k + k3 + 8K2ky + 8K2 + 19k1ka + 19k1 + 12k, + 12

and using the combinatorial formulas provided in the proof of [Lev08, Thm. 3.3.16] for all k € IN?
sufficiently large we obtain

uy| = fk3+3k2+ k1

Hence, the bivariate differential dimension polynomial with respect to ‘T associated with the system of
Maxwell equations for vanishing free current density and free charge density for all k = (k1,ky) € N
sufficiently large is given by

5 64
¥(ky, ko) = K3ky + gkﬁ + 8k3ky + 11k% + 19k1ky + 3k +12k +12.

3.2.3 Electromagnetic field given by its potential

For a system of equations defining an electromagnetic field by its potential the differential di-
mension polynomial and the difference dimension polynomials for the associated forward and
symmetric difference scheme, respectively, can be found in [DL12].

An electromagnetic field can be defined by the differential equations describing its potential,
cf. [KLMP99, Ex. 9.2.6.]. Let fi(x1,...,%x4),..., fa(x1,...,x4) be unknown functions and for
i=1,...,4 consider the system

49

g E)Tc]f] = 0 (3.4)
i ( o ) 0 (3.5)
= /i~ ox; ax]f - '

Example 3.2.4. Let K be a differential field with basic set A = {; = % |i=1,...,4}. Then (3.4) and
(3.5) give rise to a differential K[A]-module M with generators my, ..., my satisfying fori =1,...,4 the
defining equations

4
Y omj = 0,
j=1
4
21((5]27111—(51(5]711]) = 0.
=

Then M is isomorphic to the factor module of a free K[A]-module with free generators eq, ..., ey by its
submodule N generated by

{25%} U { > (6Fei — 07¢;)

j=1

i:1,...,4}. (3.6)

We consider the weight vector « € IN* given by

W R =)=
<
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and forv = (vy,...,04), w = (W1, ..., ws) define the admissible order < by

6%; <1 6%e; = (v1+v2+v3+ 304,01 + 02+ V3 + Vg, 1,01, 02,03)
<lex (W1 + w2 + w3 + 3wy, w1 + wa + W3 + Wy, j, Wy, W2, W3).

Then < respects o and a <-Grobner basis of N is given by

G={g1 = bie1+ber+dse3+ dgey,
D = —5%64 + 6104e1 — (5%64 + dpdger — 5%64 + 63d4e3,
g3 = Ofe; + 03e + d5e; + die,
Q4 = (S%ez + (5%62 =+ 5%62 + Jiez,
g5 = 0%e3+ d3e3 + d3e3 + dae3 b

The leading terms of G with respect to < are {d4e4, 5304€3, 5231, 5232, 5233}. Using the notation of Lemma
orallk € Nand 1 = (Iy,...,1s) we obtain

U, = {dle;|li+L+13<kly=0}
U{dle; | W+l +13<k—3,I3=1}
U{der | I + 1 + 13 < k, Iy = 0}
U{dler | i+ 1 +13 <k—3,1, =1}
U{(Sleg |h+5hL+13<kly=0}
U{dles | lh+1p <k—3,I3=0,13 =1}
U{dley | i+ 1 + 13 < k14 = 0}.

Hence, for all k € N sufficiently large we have
k+3 k k—1
ud = o(5°)42() ()
7 13
_ 302,10
= k+ 2k + > k+5.
Therefore, the differential dimension polynomial , associated with « is given by

a(k) =K + ;k2+ 12—3k+5.
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The obvious problem with border bases is that in general they will not be finite, making it
hard to deal with them algorithmically. Let & = {[A,X*] | 1 < k < p} be an orthant de-
composition, < a generalized term order on [A, X*|E with respect to E. If the difference-skew-
differential submodule M C K[A,X*|E in concern is zero-dimensional then by Lemma
there exists a Z-difference-skew-differential order module O and an O-border basis of M such
that |O| = dimg (K[A, Z*]E/M). Kehrein and Kreuzer [KK06] gave several algorithms for com-
puting border bases of zero-dimensional ideals. The following is one of their algorithms adapted
to the difference-skew-differential setting.

Algorithm A.1 Basis transformation algorithm
IN: O = {t;|1 <i < u} afinite E-difference-skew-differential order module, M C K[A,X*|E a
zero-dimensional difference-skew-differential module
OUT: The O-border basis G of M, if it exists. An error otherwise.
Choose a generalized term order < on [A,2*] and compute O (M) = [A,Z*]E\ {lt<(f) | f €
M \ {0}} = {Sll cee rsﬁ};
if u # ji then
return “Error: O has the wrong cardinality.”;
end if
For1 <i,j < pcompute 7;; € K such that t; = Z]H:l T;jsj mod M andlet T := (Tl-j)?/j:l;
if det(T) = O then
return “Error: O has the wrong shape.”;
end if
Let 00 = {by,...,by} and for 1 <i < p,1 < j < v compute B;; € K such that b; = Z]H:l Bijs;
mod M. Let B := (Bij)1<i<v, 1<j<ps
Let (Déi])lﬁiﬁl/rlﬁ]'ﬁﬂ = BTﬁl,'

return G := {b; — Z]H:l wiitj |1 <i<v};

Theorem A.2. Algorithm|[A.1|is correct.

Proof. By Macaulay’s basis theorem for difference-skew-differential operators we have ji =
dimg (K[A,Z*]E/ M), i.e., by the condition u = ji we check whether O has the correct number of
terms to form a basis of K[A, 2*|E/ M. Then the matrix T represents the expansions of ¢; in terms
of the basis {sq,...,s,},ie.,
t1 51
=T
t S

Hence, {t1,...,t,} is abasis of K[A,L*]E/ M if and only if T is invertible. The matrix B represents
the expansion of b; in terms of the basis {s1, ...,s, }. Hence,

bl 51 t
| =B ¢ | =BT
O

Kreuzer and Robbiano also formulated Mourrain’s generic algorithm [Mou99] such that it can
be used for computing border bases of zero-dimensional polynomial ideals. We are doing the
same to obtain an algorithm for computing border bases of zero-dimensional difference-skew-
differential modules.



Consider an orthant decomposition & with generators &y, ..., of [A,2*] and two K-vector
subspaces F C L of K[A,X*|E. Let Fy := F and for all k € IN \ {0} define inductively

Fo:=LN (K1 +0F1+ - +0uF1+G1F1+-+8F_1).

Then let F, := Ugen F2 € L
For a finite set F C K[A, X*|E we write (F) to denote the K-vector space generated by F.

Lemma A.3. Let V C U C L be vector subspaces of K[A, X*|E. Then
Vv, Vi = (V)L Vi C U, Vu € Vi, Vi = (Vu)r.

Proof. “V C V1.”: By the definition of V.

“Vi, = (V1)L": By the definition of V.

“V, C U": Wehave V C Uy = Uand Vyq = VI N L, Uyyy = UL N L. Hence, inductively for
d € N weobtain V; C Uy and Vi = Ugen Vi € Ugen Uy = Ur.

“Viy € Vs Let Vou = Vor = Voand Vi = Vi MU, Viyq; = Vi N L. Then inductively for
d € N we have Vy; C Vy; and conclude Vi; = Ugen Vau € Ujen Var = Vi

“Vi, = (Viy)1”: By the first relation we have Vy C Vi; and by the third relation we obtain V; C
(Vir)L- On the other hand by the fourth relation we have Vi; C V and by the second relation we
obtain (VU)L - VL' O

We need the following subroutine doing Gaussian elimination.

Algorithm A.4 Basis extension algorithm

IN: < a generalized term order, V = {v1,...,0; | Vi<izj<r 1t<(v;) # lt<(vj)} € K[A,Z*]E\ {0}
a set of monic difference-skew-differential operators, G = {g1,...,8s} € K[A,X*]E a set of
difference-skew-differential operators.

OUT: W C K[A,X*]E finite set of monic difference-skew-differential operators such that every
two different operators in V' U W have different leading terms and (VU W) = (VUG).
LetH:=Gand S :=V;
while H # @ do

Choose f € Handlet H = H\ {f};

while f # 0 and Jsc51lt<(f) = lt<(s) do
fi= f—lex(f)s

end while

if f # 0 then

— f
5:=5U {1C<(f)}
end if
end while

return W:=S\V;

Theorem A.5. Algorithm[A.4]is correct and terminates.

Proof. During initialization of the algorithm when f is not defined interpret { f} as the empty set.
Then during the execution of the algorithm the invariant

(SU{f}UH) = (VUG)

is always satisfied.
The inner while loop terminates since in each iteration the leading term of f # 0 can be
reduced only finitely often. The reduction inside the loop does not alter the invariant and after
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termination of the inner while loop we have either f = 0 or lt<(f) ¢ {lt<(s) | s € S}. The outer
while loop terminates since H is initialized as the finite set G and during each iteration of the
loop the cardinality of H is decreased by 1 while we never add any element to H. Hence, the
algorithm terminates.

At termination we have H = @ and either f = 0 orlt<(f) € {lt<(s) | s € S}, i.e., the invariant
is satisfied and we have (WU V) = (S\VUV) = (S) = (VUG). O

Then we can use algorithm[A.6]to compute a basis of V;.

Algorithm A.6 F;, algorithm

IN: Z an orthant decomposition, F = {fy,...,f;} € K[A,Z*]E, d > max{ordz(f;) |1 < i <
r}, L= (A € £ | ordg(A) < d) and < a generalized term order on [A, X*]E such that for all
A€ [A,X¥] with ordg(A) < ordz(u) we have A < p.

OUT: A K-basis V of (F), such that the basis elements have pairwise different leading terms.
Apply Algorithm[A.4to <, @ and F to obtain a K-basis V of (F) with pairwise different leading
terms;

LetW :=V;
while W # @ do
V=VUW;
Apply Algorithm to <, V and VII'\ V obtaining a set W' such that the operators in
V U W' have pairwise different leading terms;
W:={we W| ordg(w) < d};
end while
return V;

Theorem A.7. Algorithm|A.6|is correct and terminates.

Proof. The first step computes a finite set V containing difference-skew-differential operators
with pairwise different leading terms. If we begin one iteration of the while loop with a set
V having this property then we compute a set W’ such that V U W’ is a basis of (V1) whose
operators have pairwise different leading terms. In the next step we discard all operators with
order greater than d, i.e., we intersect W' with L to obtain W. This step is correct because < is
compatible with the order (with respect to Z). Hence, in the beginning of each iteration of the
while loop we have a finite set V containing difference-skew-differential operators with pairwise
different leading terms and in the end of each iteration we have computed a finite set W such that
the difference-skew-differential operators in V U W have pairwise different leading terms and

(V) (Vuw)=wvIhnLCL.

In particular V U W is a basis of (V1) N L. In each iteration of the while loop — except the first
— the cardinality of V is increased. Since V is a basis we have |V| < dimg L which implies
termination of the loop. When the loop terminates we have W = @, i.e., we have a finite set V
such that (V) = (V)N L. O

For a zero-dimensional difference-skew-differential submodule M generated by a finite set
F C K[A,X*]E and a generalized term order < compatible with the order with respect to the given
orthant decomposition the O (M )-border basis can be computed with algorithm provided
that a suitable basis of the vector space (F) is known (see also [KKO06]).

Theorem A.9. Algorithm[A.8is correct and terminates.

Proof. In the input we have a basis V of the vector space (F)r such that for each b; € 9O there
exists hj € V with 1t<(h;) = bj. We have to ensure supp(h;) C {b;} UO.
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Algorithm A.8 O_ (M)-border basis algorithm
IN: E an orthant decomposition of [A,X*], F = {f1,...,fs} € K[A,X*]E a basis of M, < a
generalized term order such that ordz(A) < ordg(y) implies A < u,d € N, L = {A €
[A,2*]E | ord(A) < d} an order ideal, V C K[A,X*|E \ {0} a basis of the vector space (F)r
with pairwise different leading terms and O = L\ {lt-(v) | v € V} such that L = F, & (O)
and 00 C L.
OUT: G = {g1,...,8v} the O~ (M)-border basis of M.
Let V' := @;
while V # @ do
Choose v € V such that lt<(v) < lt<x(w) forallv #w € V; V := V \ {v};
H :=supp(v) \ (lt<(v) U O);
if H # @ then
Determine (¢;)pen € K, (wp,)pey € V' such that for h € H we have lt4(wy,) = h and
h & supp (v — cwy);
V=0 =Y peH Chlln;
end if
Vii=V'U {%},
end while
{b1,...,by} = 00;For1 < j <vchoose g; € V' such that 1t (g;) = b;.
return G :={g,..., v}

Throughout the while loop we have (VU {v} UV’) = (F), and the set V U {v} UV’ con-
sists of difference-skew-differential operators with pairwise different leading terms. For every
v/ € V' we have supp(v') C {lt<(v')} UO and ¢’ is monic. Since v is choosen such that
lt<(v) < lt4(w) for all v # w € V we have supp(v) C {ltx(v)} UOU{ltx(v') | v/ € V'},
Le, supp(v) \ ({lt<(v)} UO) € {A € [A,Z7]E | ordg(A) < d}\ O = {It<(f) | f € (F)L\{0}} =
{t<(f) | f € VIU{lt<(v)} U{lt<(f) | f € V'}. On the other hand supp(v) \ ({lt<(v)} N
{lt<(f) | f e V}U{lt<(v)})) = @. Hence, for h € supp(v) \ {lt<(v)} there exist ¢, € K, wy, €
V' such that lt<(w;) = h and h ¢ supp(v — c,wy,). During each iteration of the while loop the
cardinality of V is reduced by 1 and during the execution there is no element added to V. Hence,
the loop terminates with V = @ and we have a set V' consisting of difference-skew-differential
operators with pairwise different leading terms such that (V') = (F), and for all v’ € V we have
supp(v') C {ltx(v')} U O. The algorithm returns a set G = {g1,...,9v} € V' C (F)L € M of
monic difference-skew-differential operators such that for all j = 1,...,v we have lt<(g;) = b;
and supp(g;) € {lt<(gj)} U O. Hence, G is an O-border prebasis of M with (G) = M. Now
consider the maps Mj, ..., M+, defined by (2.5), p@ Then foralli,j € {1,..., m+r},t € O

we have
MjoM;(t) = M;(N(Gi(t)))

= M;(Git — (1o — N(Git)))

= ¢i(Git— (1o —N)(&it)) — (1o — N)(&igjt — ¢j(1o — N)(&it))

= giGjt +Gik1 + ko,
for some kq,k, € F;. Hence,

(=) (M] oM; — M; OM])(t) = C:]k1 +ky — O'ikll — klz € C]FL U Fr UF.
From
on (CjFL U¢;Fr U FL) = O0On (CjFL U Fr U FL) NL

ONF
{0}
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we obtain M; o M; — M; o M; = 0. By Theorem 2.4.32]it follows that G is a border basis. O

Algorithm can be used to compute an O (M)-border basis of a zero-dimensional ideal
M.

Algorithm A.10 Border basis algorithm
IN: E an orthant decomposition, F = {f1,..., fs} € K[A,X*]E\ {0} a finite basis of the zero-
dimensional difference-skew-differential module M, < a generlized term order on [A,X*]E
such that ordg(A) < ordg (i) implies A < p.
OUT: G the O« (M)-border basis of M.
d:=max{ordz(f;) |1 <i<s}—1,0:={A € [AX*]E| ordg(A) <d}; L :=(O);
Apply Algorithm to <, and F to obtain a basis V of the vector space (F) consisting of
difference-skew-differential operators with pairwise different leading terms; W := V;
while 00 ¢ L do
d:=d+1,L:=(A€[AX]E| ordg(A) <d);
while W # @ do
V=VUW;
Apply Algorithm to <,V and VI/\ V obtaining a set W’ such that the operators in
V U W’ have pairwise different leading terms;
W:=W Nn{A e [AZ*E| ordg(A) <d};
end while
O:={Ae€[AZX¥]E| ordzg(A) <d}\ {lt<(v) |v e V}
end while
Apply Algorithmto F,=<,d,L,V and O to obtain a set G C K[A,X*|E
return G;

Theorem A.11. Algorithm[A.10|is correct and terminates.

Proof. Throughout the execution of the algorithm O is always a difference-skew-differential order
module. By Theorem [A.5| we see that when the inner while loop terminates for the first time
we have obtained a basis V of the vector space (F); consisting of difference-skew-differential
operators with pairwise different leading terms.

Every time we enter the outer while loop we have d € N such that V C U = (A € [A, 2*]E |
ordz(A) < d) is a basis of the vector space (F)y. Let L = (A € [AX*]E | ordg(A) < d+1).
By Lemma [A.3|we have (V); = ((F)u). = (F)r and the inner while loop updates V' to a basis
of the vector space (F); and O to a E-difference-skew-differential order module such that L =
(F)L& (0).

By Lemma there exists a unique O (M)-border basis G = {g1,...,4v} of M. For
1 < j < v there exist hjy, ..., hjs € K[A,Z*]E such that gi = hjfi+...+hifs. Let d =
max{ordg(hﬁ fi) |1 <i<s,1<j< v} Suppose thatthe outer while loop has not termi-
nated before reaching the case d = d. Then at the end of this iteration of the outer while loop we
have a basis V of the vector space (F);, where L = {A € [A,£*] | ordz(A) < d} and V consists
of difference-skew-differential operators with pairwise different leading terms. By the definition
of d we have G C (F); and 00 (M) = {lt<(g1),.--,1t<(gv)} € (F)r. From (F) C M we get
Ox(M)D 0 ={re[AZE| ordz(A) <d}\ {lt<(f) | f € (F)L \ {0}} at the end of this iter-
ation of the outer while loop. Hence, 00 C O (M) U090~ (M) C L which implies termination
of the loop.

When the outer while loop terminates we have a set V being a basis of the vector space (F)|
consisting of difference-skew-differential operators with pairwise different leading terms. So
applying Algorithm[A.8]yields the O (M)-border basis of M. O
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