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Foreword
In the frame of the research project “Symbolic and Algebraic Methods for LPDOs (DIFFOP)” (funded by the Austrian
Science Fund (FWF) under the project number P20336-N18) we organized the 2nd DEAMWorkshop on “Differential Equa-
tions by Algebraic Methods”. DEAM2 took place February 9–11, 2011, at Johannes Kepler University in Linz, Austria.
Approximately 40 researchers participated in the discussions on differential algebra, theory of differential operators, and
their application to the solution of differential equations.
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Challenging Bernstein-Sato polynomials and b-functions

Daniel Andres1

Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, 52062 Aachen,

Germany

Abstract

The Bernstein-Sato polynomial bf , which is also known as global b-function, of a
hypersurface given by a polynomial f ∈ K[x] := K[x1, . . . , xn], where K denotes
a field of characteristic zero, plays an important role in many applications of
algebraic D-module theory.

It is defined to be the monic polynomial of least degree satisfying the func-
tional identity P • fs+1 = bf · fs for some operator P ∈ Dn[s] := Dn ⊗K K[s]
(Bernstein, 1971, 1972). Here

Dn := K�x1, . . . , xn, ∂1, . . . , ∂n | xj∂i = xj∂i + δij for 1 ≤ i, j ≤ n�

denotes the n-th Weyl algebra, s is another variable and fs stands for a symbolic
power of f . Formally, fs denotes the generator of the free K[x, s, f−1]-module
Mf of rank one. This module Mf can also be viewed as a left Dn[s]-module via

xi • gfs+j := xi · gfs+j , s • gfs+j := s · gfs+j , and

∂i • gfs+j :=
∂g

∂xi
fs+j + g(s+ j)

∂f

∂xi
fs+j−1

for g ∈ K[x, s] and fs+j := f j · fs, j ∈ Z.
As a consequence of its definition, the Bernstein-Sato polynomial can be

computed as follows:

�bf � = (AnnDn[s](f
s) + �f�) ∩K[s],

where AnnDn[s](f
s) = {p ∈ Dn[s] | p • fs = 0} is the annihilator of fs.

In the talk, we address the following problems:

• The algorithm by Briançon and Maisonobe (2002) for the computation of
AnnDn[s](f

s) turned out to be the most effective one in practice (Levan-
dovskyy and Martín-Morales, 2008). We show how to enhance this ap-
proach by obtaining a pre-processing via purely commutative methods,
see also Andres et al. (2010a).

Email address: daniel.andres@math.rwth-aachen.de (Daniel Andres)
1Supported by DFG Graduiertenkolleg 1632 “Experimentelle und konstruktive Algebra”
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• Since it is known that −1 is always a root of bf , one can directly compute
bf
s+1 . This is in particular useful combined with the following problem, see
Andres et al. (2010b).

• The intersection of an ideal with a univariate subalgebra arises in different
situations, not only limited to D-module theory. We present a general al-
gorithm that does not require the use of (expensive) elimination orderings,
see Andres et al. (2009); Noro (2002).

An implementation is available in the computer algebra system Singular

(Decker et al., 2010), respectively in its non-commutative subsystem Singu-

lar:Plural (Greuel et al., 2010), whose D-module suite currently consists of
the libraries bfun.lib, dmod.lib, dmodapp.lib and dmodvar.lib.

Further references are given in Andres (2010).
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An algorithm for computing simple forms of first-order linear differential
systems

Carole El Bacha
Université de Limoges; CNRS; XLIM UMR 6172; DMI

Abstract

We consider systems of ordinary differential equations of first-order. With such a system, we
associate a matrix pencil and we say that the system is simple if the associated matrix pencil
is regular. The latter condition is very useful in computing regular solutions (local problems) or
rational solutions (global problems). Here, we propose a new algorithm for transforming a non
simple system into a simple one.

We consider a system of linear differential equations of first-order of the form

D(Y (x)) = A(x)ϑ(Y (x)) +B(x)Y (x) = 0, (1)

where ϑ = x d
dx

, A(x) andB(x) are two square matrices of size n with formal power series coefficients

and A(x) is invertible. If one is looking for regular solutions of System (1), in particular, solutions
of the form y(x) = xλ0

�∞
i=0 uix

i with λ0 ∈ C and ui ∈ Cn (u0 �= 0), then one is first confronted to
the linear algebra problem: find λ0 ∈ C and a nonzero vector u0 ∈ Cn such that

(A(0)λ0 +B(0))u0 = 0.

If L(λ) = A(0)λ+B(0) is a singular matrix pencil, i.e., det (L(λ)) vanishes for all elements λ of C,
then no useful information is provided. Otherwise, λ0 has to be chosen as a root of the determinant
of L(λ) and u0 ∈ ker(L(λ0)). Thus, a prerequisite for computing regular solutions of System (1)
is to make sure that the matrix pencil L(λ) associated to (1) is regular, that is, det(L(λ)) �≡ 0.
If this condition holds, we say that System (1) is simple. The notion of simplicity has been first
introduced by Barkatou in [1] for the study of rational solutions then used by Barkatou & Pflügel
in [2] for computing regular local solutions. Unfortunately, a differential system of the form (1)
is not necessarily simple hence it is important to have an algorithm that, taking as input a non
simple system of the form (1), returns a simple one. To our knowledge, the only known approach to
achieve this is to write System (1) as Y �(x) = C(x)Y (x), where matrix C(x) has coefficients in the
field of Laurent series, then compute a super-reduction form of this system (see [3]). This allows us
to obtain a simple system equivalent to (1) (see [2]). But by computing the super-reduction form,
we do more work than needed since a simple system is not necessarily super-reduced. Therefore,
the purpose of this talk is to present a new algorithm that computes a simple system equivalent to
(1) without calling the super-reduction. Our algorithm proceeds as follows. First, we can assume,
without any loss of generality, that the leading coefficient A(x) is in Smith normal form, i.e.,
A(x) = diag(1, . . . , 1, xαr+1 , . . . , xαn) where the αi’s are positive integers satifying αr+1 ≤ · · · ≤ αn.

Preprint submitted to Elsevier March 29, 2011
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The associated matrix pencil L(λ) is then of the form

L(λ) = A(0)λ+B(0) =

�
λIr +B11

0 B12
0

B21
0 B22

0

�
∈ C[λ]n×n.

To obtain a regular matrix pencil, we will multiply operator D given by (1) on the left and on the
right by invertible matrices in order to increase either the rank of A(0) or that of B(0). Increasing
the rank of A(0) can be done by dropping some of the integers αi to zero while increasing the rank
of B(0) can be done by eliminating the linear dependencies between its columns and its rows. We
show that as long as the constant columns or rows of L(λ) are linearly dependent, we can perform
some transformations on D and decrease some values of the αi’s without affecting the others. Thus,
after at most

�n
i=r+1 αi iterations, we either obtain a simple system or a non simple one for which

the constant columns and rows of L(λ) are linearly independent. If this occurs, then we show that
we can always go back to the case where the constant columns of L(λ) are linearly dependent,
without affecting the values of the α�

is.
We end by mentioning two important points: firstly, this algorithm allows to classify the singu-

larity x = 0 of System (1) as regular or irregular singularity. Indeed, x = 0 is a regular singularity
of System (1) if and only if our algorithm returns a system for which αr+1, . . . , αn are all zero. So
our algorithm can be considered as an alternative of Moser’s algorithm [4] to classify singularities.
Secondly, our algorithm can be extended to handle systems of the form

Dk(Y (x)) = A(x)ϑk(Y (x)) +B(x)Y (x) = 0,

where k is a positive integer and ϑk = xkϑ. Indeed, it has been shown in [5] that the regularity of
the matrix pencil A(0)λ+B(0) implies the existence of irregular solutions of the form

y(x) = exp

��
λ0

xk+1
+ · · ·

�
z(x),

where the dots stand for the terms of valuation higher than −k − 1, z(x) ∈ C[[x]][log(x)]n and λ0

satisfies det(A(0)λ0 +B(0)) = 0.
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Removing Apparent Singularities of Systems of Linear Differential
Equations with Rational Function Coefficients

Extended Abstract

Moulay Barkatou
Université de Limoges; CNRS; XLIM UMR 6172; DMI

moulay.barkatou@unilim.fr

Abstract

In this talk we present a new algorithm which, given a system of the form (S) (see 1 below), detects
apparent singularities [3] and constructs a gauge equivalent system (S’) with rational coefficients,
such that every finite singularity of (S’) is a singularity of (S) that is not apparent. Our method
can, in particular, be applied to the companion system of any linear differential equation with
arbitrary order n. We thus have an alternative method to the standard methods for removing
apparent singularities of linear differential operators. We compare our method to the one designed
for operators and we shall show some examples of computation.

1. Definitions- Notations

Consider a first-order differential system of size n with rational function coefficients in the
complex variable z

(S) Y � = A(z)Y (1)

where � = d
dz , Y = (y1, . . . , yn)

t is a vector of length n and A ∈ C(z)n×n.

The finite singularities of system (S) are the poles of the entries of A(z).

Definition 1. A singular point z0 of (S) is called an apparent singularity if there exists a funda-
mental matrix solution Φ(z) of (S) which is holomorphic at z = z0.

Let T ∈ GL(n,C(z)). The substitution Y = TZ transforms System (S) into a new system (S’)
Z � = B(z)Z, where

B = T [A] := T−1AT − T−1T �.

Definition 2. We the say that Y � = A(z)Y and Z � = B(z)Z, are said to be gauge equivalent if
there exists T ∈ GL(n,C(z)) such that B = T [A]. In this case we say that the matrices A and B
are equivalent.

Definition 3. A system (S̃) Ỹ � = Ã(z)Ỹ with Ã ∈ C(z)n×n is called a desingularization of (S) if:

(i) there exits a polynomial matrix T (z) with detT (z) �≡ 0 such that Ã = T [A],

(ii) the singularities of (S̃) are the singularities of (S) that are not apparent.

Preprint submitted to Elsevier March 31, 2011
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2. How to detect and remove apparent singularities?

We prove the following propositions

Proposition 1. If z = z0 is a finite apparent singularity of (S) then one can construct a polynomial
matrix T (z) with detT (z) = c(z − z0)

α, c ∈ C∗ and α ∈ N such that T [A] has at worst a simple
pole at z = z0.

Proposition 2. Suppose that A(z) has a simple pole at z = z0 and let

A(z) =
A0

(z − z0)
+
�

i≥1

Ai(z − z0)
i−1, Ai ∈ Cn×n.

If z0 is an apparent singularity then the eigenvalues of A0 are nonnegative integers and A0 is
diagonalizable.

Proposition 3. Suppose that z = z0 is a simple pole of A(z) and that A0 has only nonnegative
integer eigenvalues. Then there exists a polynomial matrix T (z) with detT (z) = c(z − z0)

α for
some c ∈ C∗ and α ∈ N such that B := T [A] has at worst a simple pole at z = z0 and B0 has a
single eigenvalue: B0 = mIn +N where m ∈ N and N nilpotent.
Moreover, z0 is an apparent singularity iff N = 0. In this case the gauge transformation Y =
(z − z0)

mỸ leads to a system for which z = z0 is an ordinary point.

Proposition 4. If z = z0 is a finite apparent singularity of (S) then one can construct a polynomial
matrix T (z) with detT (z) = c(z − z0)

α, c ∈ C∗ and α ∈ N such that B(z) := T [A] has no pole at
z = z0.

Due to the form of its determinant, the gauge transformation T (z) in the above proposition
does not affect the other finite singularities of (S). Thus by applying the above result to each
apparent singularity we get the following:

Theorem 1. One can construct a polynomial matrix T (z) which is invertible in C(z) such that the
finite poles of B := T [A] are exactly the poles of A that are not apparent singularities for (S).

2.1. How to construct a complete desigularization ?

Consider a system (S) Y � = A(z)Y and let P (A) be the set of poles of A.

1. Compute a polynomial matrix T (z) such that

- the zeros of detT (z) are in P (A)

- T [A] has the same finite poles as A with minimal orders (among all gauge equivalent
matrices).

- Put A:=T[A] and go to step 2.

2. For each simple pole z0 of A compute A0,z0 the residue matrix of A(z) at z = z0 and its
eigenvalues. Let App(A) denote the set of singularities z0 such that A0,z0 has only nonnegative
integer eigenvalues.

2
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3. For each z0 ∈ App(A) compute a polynomial matrix T (z) with detT (z) = c(z − z0)
α such

that A := T [A] has at worst a simple pole at z = z0 with residue matrix of the form
A0,z0 = mz0In +Nz0 where mz0 ∈ N and Nz0 nilpotent.

4. Keep in App(A) only the point z0 for which Nz0 = 0.

5. Let T =
�

z0∈App(A) (z − z0)
mz0 In , then B:=T[A] is a desingularization of the input system

(S).

Remark 1. 1. The transformation T in Step 1 can be constructed using our Rational Moser
Algorithm [2, 4].

2. Step 1 can be skipped when the given system comes from a scalar differential equation.

3. If the point at infinity of the original system is singular regular then it will be also singular
regular for the computed desingularization but the order of the pole at infinity may increase.

3. Application to desigularization of scalar differential equation

Let ∂ = d
dz and L ∈ C(z)[∂] be monic, have order n:

L = ∂n + cn−1(z)∂
n−1 + · · ·+ c0(z),

Let S(L) be the set of finite singularities of L, that the set of the poles of the ci’s.

Definition 4. An operator L̃ ∈ C[z][∂] is called a desingularization of L if :

(i) L̃ = RL for some R ∈ C(z)[∂] ,

(ii) S(L̃) = {z0 ∈ S(L) | z0 not apparent}

In [1] we present an algorithm that given a monic operator L ∈ C(z)[ d
dz ] of order n constructs

a monic operator L̃ ∈ C(z)[ d
dz ] with minimal order m + 1 ≥ n satisfying (i) and (ii), m being the

maximum of the of the set of all local exponent at the different finite apparent singularities of L.
This algorithm has been implemented in Maple. In the sequel, we refer to this algorithm as ABH
method.

Example 1. Let L be the monic operator with ez and 1 + z + z2/2 as solutions:

L := ∂2 − (z + 2) ∂

z
+

2

z
.

The desingularization computed by ABH method is

L̃ = ∂4 + (−1 + 1/4 z) ∂3 + (−1/4− 3/8 z) ∂2 + (1/2 + 1/8 z) ∂ − 1/4

This operator is of order 4.

By working directly on the companion system of L, the apparent singularity of L at z = 0 can
be removed also by computing an equivalent first-order differential system of size ord(L) = 2.

(S) Y � = C(z)Y, C(z) =

�
0 1
−2
z 1 + 2

z

�

Indeed if we put

3
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Y = T (z)Z, T (z) =

�
1 0
1 z2

�

then the new variable Z satisfies the system Z � = T [C]Z where

T [C] := T−1CT − T−1T � =
�

1 z2

0 0

�
.

Example 2. Let L = ∂2 +
(3 z2−4)∂
z(z2+2)

− 2 −1+2 z2

z2+2
. It has an apparent singularity at z = 0 with local

exponents 0 and 3. The desingularization computed by ABH method is of order 4:

L̃ = ∂4 + 1/2
z(24+7 z2)∂3

z2+2
+ 1/2

(58 z2+88+27 z4)∂2

(z2+2)2
− 1/2

z(−4 z2+4+93 z4+28 z6)∂
(z2+2)3

− 4 44 z2+16+42 z4+7 z6

(z2+2)3
.

The companion matrix of L is

A =




0 1

2 −1+2 z2

z2+2
− 3 z2−4

z(z2+2)


 .

It has a simple pole at z = 0 with a residue matrix A0 =

�
0 0

0 2

�
.

Our algorithm computes the following gauge transformation T

T =

�
1 0

z −z2

�

The matrix of the new equivalent system is

B = T−1(AT − T �) =




z −z2

1 − z(z2+7)
z2+2




It has z = 0 as ordinary point.
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Abstract

Given a linear functional system (e.g., ordinary/partial differential systems, differ-
ential time-delay systems, difference systems), Serre’s reduction aims at finding an
equivalent linear functional system which contains fewer equations and fewer un-
knowns. The purpose of this talk is to study Serre’s reduction of underdetermined
linear systems of partial differential equations with either polynomial, formal power
series or analytic coefficients and with holonomic adjoints in the sense of algebraic
analysis. We prove that these linear partial differential systems can be defined by
means of only one linear partial differential equation. In the case of polynomial co-
efficients, we give a constructive algorithm to compute the corresponding equation.

Key words: Serre’s reduction, underdetermined linear systems of partial
differential equations, holonomic D-modules, constructive module theory,
mathematical systems theory, symbolic computation.

Given a multidimensional linear system, a first important issue in mathemat-
ical systems theory is to simplify its equations before studying its structural
properties, studying synthesis problems or applying numerical analysis meth-
ods. Serre’s reduction aims at reducing the number of equations and unknowns
of a linear system. It was recently introduced in the literature of mathematical
systems theory in [1,2]. Let us recall the main theorem of [1].

Email addresses: cluzeau@ensil.unilim.fr (Thomas Cluzeau),
alban.quadrat@inria.fr (Alban Quadrat).
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Theorem 1 Let D be a noetherian domain and R ∈ Dq×p a full row rank
matrix, namely, the rows of R are left D-linearly independent. If there exist
a column vector Λ ∈ Dq and a unimodular matrix U ∈ D(p+1)×(p+1), i.e.,
U ∈ GLp+1(D), such that (R − Λ)U = (Iq 0), then the finitely presented
left D-module M = D1×p/(D1×q R) is isomorphic to the left D-module L =
D1×(p+1−q)/(D Q2), where the row vector Q2 ∈ D1×(p+1−q) is defined by:

U =




S1 Q1

S2 Q2


 , S1 ∈ Dp×q, Q1 ∈ Dp×(p+1−q), S2 ∈ D1×q, Q2 ∈ D1×(p+1−q).

This result depends only on the residue class of Λ ∈ Dq in the right D-module
E � Dq/(R Dp).

A classical remark in algebraic analysis [6] due to Malgrange shows that the
behaviour kerF(R.) � {η ∈ Fp | R η = 0} defined by R and a left D-
module F (i.e., a signal space) is defined by kerF(R.) ∼= homD(M,F), where
homD(M,F) denotes the abelian group of left D-homomorphisms (i.e., linear
applications) fromM to F . Theorem 1 then proves that kerF(R.) is isomorphic
to kerF(Q2.) = {ζ ∈ F (p+1−q) | Q2 ζ = 0} defined by a sole equation.

Moreover, it was proved in [1] that if D is a principal left ideal domain (e.g.,
the ring of ordinary differential/shift operators with coefficients in a differen-
tial/difference field), a commutative polynomial ring D = k[x1, . . . , xn] over a
field k or the Weyl algebras An(k) or Bn(k) of partial differential operators
with respectively polynomial and rational coefficients over a field k of charac-
teristic 0 (e.g., R, C), then the condition given in Theorem 1 can be reduced
to the existence of Λ ∈ Dq such that P = (R − Λ) admits a right-inverse
S = (ST

1 ST
2 )

T ∈ D(p+1)×q, i.e., R S1 − ΛS2 = Iq, which is also equivalent
the fact that the right D-module E is generated by the residue class of Λ
in E. Constructive algorithms were given in [1,2] to compute Serre’s reduc-
tion for different classes of multidimensional linear systems. In particular, it
was proved that many multidimensional linear systems classically studied in
the literature of differential time-delay systems or partial differential equa-
tions admit a Serre’s reduction. The reason why is that their corresponding
D = k[x1, . . . , xn]-modules Dq/(R Dp) are 0-dimensional, namely, are finite-
dimensional k-vector spaces.

The purpose of this talk is to constructively study the case of a leftD = An(k)-
module M = D1×p/(D1×q R) satisfying that the right D-module E is “0-
dimensional”, which is called holonomic in the literature of partial differential
systems [6]. Even if E is no longer a finite-dimensional k-vector space, we can
prove the following interesting theorem.

Theorem 2 Let k be a field of characteristic 0 (e.g., R, C), D the Weyl
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algebra An(k), R ∈ Dq×p a full row rank matrix and M = D1×p/(D1×q R) the
left D-module finitely presented by R. If E = Dq/(R Dp) is a holonomic right
D-module and p − q ≥ 1, then M is isomorphic to L = D1×(p+1−q)/(D Q2),
where the matrix Q2 is defined as in Theorem 1. In particular, if F is a left
D-module, then the linear partial differential system kerF(R.) is equivalent to
a sole linear partial differential equation kerF(Q2.). Finally, if q ≥ 3, then
there exist V ∈ GLq(D) and W ∈ GLp(D) such that V R W = diag(Iq−1, Q2).

We give a constructive algorithm for Theorem 2 which is implemented in the
package Serre (see [4]) built upon OreModules [3] and Stafford [7].
We illustrate Theorem 2 on different explicit examples (e.g., linear elasticity,
Hadamard’s example, conjugated Beltrami equations). Moreover, using the
main result of [8], we prove the following result.

Corollary 1 If D is the ring of ordinary differential operators with coeffi-
cients respectively in the ring A of polynomial, formal power series or con-
vergent power series over a field k of characteristic 0 for the first two cases
and over R or C for the latter one and if R ∈ Dq×p is a full row rank matrix
and p − q ≥ 1, then the left D-module M = D1×p/(D1×q R) is isomorphic to
L = D1×(p+1−q)/(D Q2) for a certain row vector Q2 ∈ D1×(p+1−q) which can
be computed as in Theorem 1. Moreover, if q ≥ 3 then the matrices R and
diag(Iq−1, Q2) are equivalent.

This talk is based on the results of [5].
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New factorization algorithm in the first q-Weyl algebra

Albert Heinle∗, Viktor Levandovskyy
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1. Introduction

This is a joint work with Viktor Levandovskyy, RWTH Aachen. In our
talk we are going to present techniques to deal with factorization problems
in polynomial q-Weyl algebras making use of their graded structure. We will
discuss the applicability of the methods we already developed for Weyl algebras
to the q-case. Furthermore, during the presentation some examples will be
demonstrated live with our experimental implementation.

2. The first q-Weyl algebra as a graded ring

It is well known that there exists a nontrivial Z-grading on the q-Weyl alge-
bras over a field K(q). Let A1 be the first q-Weyl algebra, that is a K(q)-algebra
generated by ∂ and x subject to the relation ∂x = qx∂+1. A1 can be regarded
as a graded algebra by assigning a weight v to x and −v to ∂ for any v ∈ Z.
For our purposes, K is a field of characteristic zero and v = 1. For n ∈ Z, the
n-th graded part of A1 is the vector space

A
(n)
1 := {

�

j−i=n
ri,jx

i∂j |i, j ∈ N0, ri,j ∈ K(q)}.

Concentrating on the problem of factorizing these polynomials there are the
following interesting observations.

Lemma 2.1. Let θ := x∂. Then A
(0)
1 = K(q)[θ]. Moreover, A

(k)
1 is an A

(0)
1 -

module generated by the element xk, if k < 0, or by ∂k, if k > 0.

Lemma 2.2. The polynomials θ and θ + 1
q are the only irreducible monic

elements in K(q)[θ] that are reducible in A1.

Due to these lemmata, for k > 0 (resp. k < 0) and g ∈ A
(k)
1 there exists

f ∈ A
(0)
1 such that

g = f∂k (resp. g = fxk).

∗Corresponding author
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Thus, if we want to get one factorization of a [−1, 1]-homogeneous polyno-
mial in the first q-Weyl algebra, it suffices to deal with a factorization of the

above f , which is in A
(0)
1 . The factorization of this element can be reduced

to the commutative case as seen above. These facts lead to a simple and fast
algorithm that delivers a factorization of a homogeneous polynomial, that is

A
(k)
1 � f =

�m
i=1 gi, gi ∈ A1. There is also an algorithm of combinatorial

nature, which computes all possible polynomial factorizations of this kind of
polynomials. The next section will focus on this algorithm and we will show,
that our existing and already implemented algorithm to compute all homoge-
neous factorizations of a polynomial in the first Weyl algebra can be deduced
from this one.

Remark 2.3. If we set q = 1, we get as a special case the first Weyl algebra.
Everything claimed in this section of course also holds for that algebra.

3. Differences between the algorithms for q-Weyl and Weyl algebras

Lemma 3.1. Let xm∂m ∈ A1, m ∈ N, and θ := x∂. Then the following
identities hold for the first q-Weyl algebra:

xm∂m = q−
m(m+1)

2

m−1�

i=0

(θ − [i]q),

where [n]q denotes the so called q-bracket ([n]q := qn−1−1
q−1 ). Furthermore, we

have

θdn =
dn

q

�
θ − 1

qn−1
− q−n+2 − q

1− q

�

θxn = xn (qnθ + [n]q) .

Now we will compare these formulas to the already known formulas in the
first Weyl algebra.

Corollary 3.2 (compare to (sst)). Let xm∂m be an element in the first Weyl
algebra (relations: ∂x = x∂ + 1), m ∈ N, and θ := x∂. Then the following
identities hold:

xm∂m =

m−1�

i=0

(θ − i).

Furthermore, we have

θxm = xm(θ +m)

θ∂m = ∂m(θ −m).

These formulas are used in our algorithm to deduce all possible factorizations
of a [−1, 1]-homogeneous polynomial from one given factorization of a polyno-
mial in the first Weyl algebra. For the first q-Weyl algebra, these formulas differ
slightly, as we have seen above.

2
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Thus swapping x, ∂ and θ stays computationally feasible in the q-Weyl alge-
bras and our algorithm for computing all factorizations of a [−1, 1]-homogeneous
polynomial has got the same complexity for both first Weyl and q-Weyl algebra.

4. Implementation and timings

We compared our implementation in Singular (procedure facFirstWeyl in
the ncfactor.lib library, see (sing)) for the first Weyl algebra to the methods
in Maple (Procedure: DFactor in the DETools library, see (mh)) and Reduce
(Procedure: nc factorize[ all] in the library NCPOLY, see (rm)) before. We
found out that homogeneous polynomials seem to be the worst case for Maple
and Reduce, while they form the best case for our implementation. Mark van
Hoeij, the author of the algorithm implemented in Maple, conceded this point
to us in a conversation at last year’s ISSAC conference. For the q-Weyl case,
we have not found any implementation for Maple or Reduce yet. Thus, no
comparison can be made here.

Example 4.1. First of all, the timings for a homogeneous polynomial in the
first Weyl algebra:

h := x10d10 + 25x9d9 + 201x8d8 + 615x7d7 + 660x6d6 + 190x5d5 + 6x3d3 + 24

Maple (Version 13):
Output: No factorization
Time: 1.01s

Reduce (Version 3.8):
Output: Not Available
Time: Calc. stopped after nine hours

Singular:
Output: h = (x5∂5 + 6)(x5∂5 + x3∂3 + 4),
h = (x5∂5 + x3∂3 + 4)(x5∂5 + 6)
Time: 0.08s

Example 4.2. Now, we multiply the same two factors in the first q-Weyl alge-
bra:

h = q25x10d10 + q16(q4 + q3 + q2 + q + 1)2x9d9

+q9(q13 + 3q12 + 7q11 + 13q10 + 20q9 + 26q8

+30q7 + 31q6 + 26q5 + 20q4 + 13q3 + 7q2 + 3q + 1)x8d8

+q4(q9 + 2q8 + 4q7 + 6q6 + 7q5 + 8q4 + 6q3 + 4q2 + 2q + 1)

(q4 + q3 + q2 + q + 1)(q2 + q + 1)x7d7

+q(q2 + q + 1)(q5 + 2q4 + 2q3 + 3q2 + 2q + 1)

(q4 + q3 + q2 + q + 1)(q2 + 1)(q + 1)x6d6

+(q10 + 5q9 + 12q8 + 21q7 + 29q6 + 33q5

+31q4 + 24q3 + 15q2 + 7q + 12)x5d5 + 6x3d3 + 24

3
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Singular:
Output: h = (x5∂5 + 6)(x5∂5 + x3∂3 + 4),
h = (x5∂5 + x3∂3 + 4)(x5∂5 + 6)
Time: 2.93s1

Availability: The mentioned implementation can be found in the new
Singular library ncfactor.lib, which is contained in the latest Singular ver-
sion with experimental status (see http://www.singular.uni-kl.de/Manual/
latest/sing_1647.htm).

5. Conclusion and future work

As a future work we are going to improve our algorithm for finding fac-
torizations of inhomogeneous polynomials. Since our current algorithm utilizes
exclusively the information about the factorizations of the homogeneous parts of
the polynomials, our results will be applicable to the Weyl algebra as well as to
the q-Weyl and shift algebra. Another interesting question is whether there are
computable relations between the different factorizations in the inhomogeneous
case.
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Constructive D-module theory and
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We sketch the algorithmic fundamentals of constructive D-module theory, develop the
central character decomposition technique to D-modules and investigate the connection
of Bernstein-Sato polynomial of a hypersurface with central characters. Also, we propose
a stratification of an affine space into constructible sets, where on each stratum local
Bernstein-Sato polynomial is constant. To each stratum a global D[s]-module is attached
in a natural way.

1. Introduction

Let K be a field of characteristic zero and R = K[x1, . . . , xn]. In the sequel, f ∈ R resp.
f1, . . . , fr ∈ R will be non-constant polynomials. By GK. dim we denote the Gel’fand-
Kirillov dimension, see e. g. [5].

We consider the n-th Weyl algebra as the algebra of linear partial differential operators
with polynomials coefficients. That is Dn = D(R) = K�x1, . . . , xn, ∂1, . . . , ∂n | {∂ixi =
xi∂i+1, ∂ixj = xj∂i, i �= j}�. We denote by Dn[s] = D(R)⊗K K[s1, . . . , sn] and drop the
index n depending on the context.

1.1. Bernstein-Sato Polynomial of f

Let us recall Bernstein’s construction. Given a non-zero polynomial f ∈ Rn in n
variables, we consider M = Rn[s,

1
f ] · fs, the free Rn[s,

1
f ]-module of rank one generated

by the formal symbol fs. Then M has a natural structure of left Dn[s]-module.

∂i(g(s, x) · fs) =
�
∂g
∂xi

+ sg(s, x) ∂f∂xi

1
f

�
· fs ∈M (1)

1 Corresponding author. Tel. +49 241 80 94546, Fax +49 241 80 92108
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Theorem 1.1 (Bernstein [1]). For f ∈ Rn there exists a non-constant polynomial bf (s) ∈
K[s] and a differential operator P (s) ∈ Dn[s] such that

P (s)f · fs = bf (s) · fs ∈ Rn[s,
1
f ] · fs = M. (2)

The monic polynomial bf (s) of minimal degree, satisfying (2) is called the (global)

Bernstein-Sato polynomial. Remarkably, b(s) has only negative integer roots.

Let AnnDn[s](f
s) be the left ideal of elements from D[s], annihilating fs. Indeed we

have AnnDn[s](f
s) ∩K[x, s] = 0 and

�bf (s)� = (AnnDn[s](f
s) + �f�) ∩K[s]. (3)

We are interested in the structure of the D[s]-module D[s]/(AnnDn[s](f
s) + �f�).

Theorem 1.2 (L.-M., [4]). Let R be a K-algebra, whose center contains K[s]. Let q(s) ∈
K[s] and I a left ideal in R satisfying I ∩K[s] �= 0. The following equalities hold:

(1)
�
I +R�q(s)�

�
∩K[s] = I ∩K[s] +K[s]�q(s)�,

(2)
�
I : q(s)

�
∩K[s] =

�
I ∩K[s]

�
: q(s),

(3)
�
I : q(s)∞

�
∩K[s] =

�
I ∩K[s]

�
: q(s)∞.

Corollary 1.3. Let mα be the multiplicity of α as a root of bf (−s). Consider the ideals

I = AnnDn[s](f
s) + �f�, Ji = I + �(s + α)i+1� ⊆ Dn[s], i = 0, . . . , n. The following

conditions are equivalent:

(1) mα > i,

(2) Ji ∩K[s] = �(s+ α)i+1�,
(3) (s+ α)i /∈ Ji,

(4)
�
I : (s+ α)i

�
+Dn[s]�s+ α� �= Dn[s],

(5)
�
I : (s+ α)i

�
|s=−α �= Dn.

Moreover if Dn[s] � J0 � J1 � · · · � Jm−1 = Jm, then mα = m. In particular, m ≤ n

and Jm−1 = Jm = · · · = Jn.

1.2. Local Bernstein-Sato Polynomial

For simplicity, letK = K̄. Recall, that the singular locus of V (f) is V (�f, ∂f
∂x1

, . . . , ∂f
∂xn
�).

One can define the local Bernstein-Sato polynomial as follows. Let p ∈ Kn be a point

and mp = �{x1 − p1, . . . , xn − pn}� ⊂ Rn the corresponding maximal ideal. Let Dp be

the local Weyl algebra at p, that is Weyl algebra with coefficients from K[x1, . . . , xn]p
instead of Rn = K[x1, . . . , xn]. From the Bernstein’s functional equation (2) it follows

that ∃P (s) ∈ D[s], bf (s) ∈ K[s], such that P (s)f · fs = b(s) · fs holds. Hence, since

in K[x1, . . . , xn]p we have non-constant units, ∃Pp(s) ∈ Dp[s], bf,p(s) ∈ K[s], such that

Pp(s)f · fs = bf,p(s) · fs holds. We define local Bernstein-Sato polynomial to be the

univariate monic polynomial bf,p(s) of the minimal degree, such that the above identity

holds.

Theorem 1.4. (Briançon-Maisonobe, Mebkhout-Narváez) Let bf,p(s) the local Bernstein-

Sato polynomial of f at the point p ∈ Kn and bf (s) the global one. Then bf (s) =

lcmP∈Kn bf,P (s) = lcmP∈Σ(f) bf,P (s).
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1.3. Central Character Decomposition

Let K = K̄, A be a K-algebra, Z = Z(A) the center of A and M be an A-module. Let
Z∗ := HomK(Z,K). For χ ∈ Z∗, define the generalized χ-weight subspace of M to be

Mχ =
�
v ∈M | ∃n(v) ∈ N, ∀z ∈ Z, (z − χ(z))n(v)v = 0

�
.

SuppZM = {χ ∈ Z∗|Mχ �= 0} is the central support of M . We say that M possesses
a generalized weight decomposition if M =

�
χ∈Z∗ Mχ.

Lemma 1.5. Let M be a finitely presented A-module, that is M ∼= AN/IM for a
left submodule IM ⊂ AN . Let ej be a canonical unit vector on AN . Then the pre-

annihilator of M , preAnn(M) =
�N
j=1 AnnMA ej is a left ideal and

(1) Z ∩ preAnn(M) = Z ∩AnnAM , (where AnnAM is a two-sided ideal),
(2) the Zariski closure of SuppZM equals V (preAnn(M) ∩ Z).

Theorem 1.6 ([3]). Suppose that for M ∼= AN/IM we have | SuppZM |< ∞. Then
M =

�
χ∈Z∗ Mχ. Moreover, Mχ ∼= AN/(IM : J∞

χ ), where Jχ = ∩ψ∈SuppZM\{χ}. Note,
that these computations are algorithmic.

Theorem 1.7 (L.-M.). Let K be a field of characteristic zero. Consider the D[s]-module
M = D[s]/J for J = AnnD[s] f

s + �f�. Then
(1) The center of D[s]: Z(D ⊗K K[s]) = K[s].
(2) The annihilator of the module AnnD[s](D[s]/J) = D[s]�bf (s)�.
(3) Since |SuppK[s](D[s]/J)| is the number of different roots of bf (s), M possesses finite

generalized weight decomposition

M = D[s]/J = D[s]/(AnnD[s] f
s + �f�) =

�
Mχ,

where kerχ = K[s]�s− χ(s)�, where bf (χ(s)) = 0.
(4) GK. dim(D[s]/J) = n, GK. dim(D[s]/�bf (s)�) = 2n and thus the module AnnD[s](D[s]/J)

is generalized holonomic, see [5].

2. Stratification

It is possible to construct a stratification of Cn in such a way, that bf,p(s) is constant
on each stratum. For the first time it’s been suggested by Oaku [7], see also [6]. We
have presented algorithmic treatment of the stratification using roots of Bernstein-Sato
polynomial in [4].

Theorem 2.1 (L.–M., [4]). Let I = AnnD[s](f
s) + D[s]�f�. Consider the ideals Iα,i =�

I : (s+ α)i
�
+D[s]�s+ α�, for α root of bf (s) and i = 0, . . . ,mα − 1. Then one has

mα(p) > i ⇐⇒ p ∈ V (Iα,i ∩ C[x]).

Let Vα,i be the affine variety corresponding to the ideal Iα,i ∩ C[x]. Then

∅ =: Vα,mα
⊂ Vα,mα−1 ⊂ · · · ⊂ Vα,0 ⊂ Vα,−1 := Cn, (4)

and mα(p) = i if and only if p ∈ Vα,i−1 \ Vα,i. The exposition would not be complete
without an example.
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Example 2.2. Consider f = (x2 + 9/4y2 + z2 − 1)3 − x2z3 − 9/80y2z3 ∈ C[x, y, z]. The
global Bernstein-Sato polynomial is bf (s) = (s+ 1)2(s+ 4/3)(s+ 5/3)(s+ 2/3).
Take V1 = V (x2+9/4y2−1, z), V2 = V (x, y, z2−1) and V3 = V (19x2+1, 171y2−80, z).
Then V2 (resp. V3) consists of two (resp. four) different points and V3 ⊂ V1, V1 ∩ V3 = ∅.
The singular locus of f is union of V1 and V2. The stratification associated with each
root of bf (s) is given by

α = −1, ∅ ⊂ V1 ⊂ V (f) ⊂ C3 ;

α = −4/3, ∅ ⊂ V1 ∪ V2 ⊂ C3 ;

α = −5/3, ∅ ⊂ V2 ∪ V3 ⊂ C3 ;

α = −2/3, ∅ ⊂ V1 ⊂ C3.

From this, one constructs a stratification of C3 into constructible sets such that bf,p(s)
is constant on each stratum.

bf,p(s) =





1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (V1 ∪ V2),

(s+ 1)2(s+ 4/3)(s+ 2/3) p ∈ V1 \ V3,

(s+ 1)2(s+ 4/3)(s+ 5/3)(s+ 2/3) p ∈ V3,

(s+ 1)(s+ 4/3)(s+ 5/3) p ∈ V2.

Remark 2.3. As we have seen above, Mχ can be further decomposed equidimensionally
into a sum (not necessarily direct) of holonomic D[s]-modules if the multiplicity of the
corresponding root of bf (s) is bigger than 1. This decomposition respects different multi-
plicities. Moreover, to each stratum defined above, we can associate a global D[s]-module
by summing modules with corresponding central characters (involving multiplicities). It
is then holonomic D[s]-module, we conjecture that it is also a holonomic D-module as
well. Moreover, this can be seen as a decomposition of the original module into a sum,
respecting the stratification.

We are working on the natural generalization of the above techniques to provide a strat-
ification and module decomposition, corresponding to Bernstein-Sato polynomial of a
variety [2].
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Invariants of Difference Field Extensions

Alexander Levin

The Catholic University of America
Washington, D. C. 20064

Abstract

In this paper presented at the Second Workshop on Differential Equations by Algebraic Methods
(RISC, Johannes Kepler University, Linz, Austria, February 9-11, 2011) we consider invariants of
a finitely generated difference field extension, that is, characteristics of such an extension, which
do not depend on the set of its difference generators. Most of the invariants (e.g., difference
transcendence degree, difference type, and typical difference transcendence degree) are carried
by univariate and multivariate difference dimension polynomials; they play an important role in
the description of transcendental difference field extensions. However, there are also invariants
of algebraic difference field extensions that are not determined by dimension polynomials; we
will also discuss properties of such invariants.

Key words: Difference field, difference dimension polynomial, difference transcendence degree,
difference type, limit degree, distant degree

Introduction. LetK be a difference field with basic set σ = {α1, . . . , αm} (also called
a σ-field), that is, a field considered together with mutually commuting endomorphisms
αi of K. We assume that CharK = 0. If K is inversive, that is, all αi are automorphisms,
we set σ∗ = {α1, . . . , αm, α

−1
1 , . . . , α−1

m } and call K a σ∗-field. In what follows, T will
denote the free commutative semigroup {τ = αk11 . . . αkmm | k1, . . . , km ∈ N} generated
by σ. (As usual, N, Z, and Q denote the sets of all nonnegative integers, integers, and
rational numbers, respectively.) The number ord τ = k1+ · · ·+km is called the order of τ .
IfK is inversive, then Γ will denote the free commutative group generated by σ. The order
of an element γ = αk11 . . . αkmm ∈ Γ (k1, . . . , km ∈ Z) is defined by ord γ = |k1|+ · · ·+ |km|.
If r ∈ N, we set T (r) = {τ ∈ T | ord τ ≤ r} and Γ(r) = {γ ∈ Γ | ord γ ≤ r}.

If K0 is a subfield of K and α(K0) ⊆ K0 for any α ∈ σ, we say that K0 is a difference
(or σ-) subfield of K and K is a difference (σ-) field extension of K0. We also say that
we have a σ-field extension K/K0. If B ⊆ K, then the intersection of all σ-subfields of
K containing K0 and B is called the difference (σ-) subfield of K generated by the set
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of σ-generators B over K0; it is denoted by K0�B�. As a field, K0�B� = K0({τ(b)|b ∈
B, τ ∈ T}). If B = {b1, . . . , bk}, we say that K/K0 is finitely generated and write
K = K0�b1, . . . , bk�.

If a σ-field K is inversive, then a subfield K0 of K is said to be a σ∗-subfield of K
(and K is said to be a σ∗-field extension of K0) if α(K0) ⊆ K0 for any α ∈ σ∗. If B ⊆ K,
then the smallest σ∗-subfield of K containing K0 and B is called the inversive difference
(or σ∗-) subfield of K generated by the set B over K0; it is denoted by K0�B�∗, and B is
called the set of σ∗-generators of K/K0. As a field, K0�B�∗ = K0({γ(b)|b ∈ B, γ ∈ Γ}).

Let L be a σ-field extension of K. A set U ⊆ L is said to be σ-algebraically dependent
over K, if the set TU = {τ(u)|τ ∈ T, u ∈ U} is algebraically dependent over the field K.
Otherwise,we say that U is σ-algebraically independent over K. A set B ⊆ L is called a
difference (σ-) transcendence basis of L over K if B is a maximal σ-algebraically indepen-
dent over K subset of L. It is known (see (5, Chapter 4)) that any two σ-transcendence
bases of L/K have the same cardinality. The difference (σ-) transcendence degree of L
over K, denoted by σ-trdegKL, is the number of elements of any σ-transcendence basis
of L over K, if this number is finite, or infinity in the contrary case. The difference tran-
scendence degree is additive at towers K ⊆ L ⊆ M of difference fields. Also, any family
of σ-generators of L over K contains a σ-transcendence basis of L/K. If K is inversive
and L a σ∗-field extension of K, then any system of σ∗-generators of L over K contains
a σ-transcendence basis of L over K.

2. Difference Dimension Polynomials and their Invariants. In what follows
we introduce certain numerical polynomials associated with finitely generated difference
field extensions. Their properties provide a technique for the study of difference fields and
system of algebraic difference equations. Also, these polynomials carry invariants of the
extensions, that is, numbers that do not depend on the systems of difference generators.
Some properties and methods of computation of dimension polynomials can be found in
(4, Chapter 6) and (5, Chapter 4).

Theorem 1. Let K be a difference field with a basic set σ = {α1, . . . , αm}, let L =
K�η1, . . . , ηn� be a σ-field extension of K generated by a finite family η = {η1, . . . , ηn},
and for any r ∈ N, let Lr = K({τηj | τ ∈ T (r), 1 ≤ j ≤ n}). Then there exists a
polynomial φη|K(t) ∈ Q[t] such that

(i) φη|K(r) = trdegKLr for all sufficiently large r ∈ N.

(ii) deg φη|K(t) ≤ m and φη|K(t) =

m�

i=0

ai

�
t+ i

i

�
=

am
m!

tm + o(tm) where ai ∈ Z

(1 ≤ i ≤ m) and deg o(tm) < m.
(iii) The integers am, d = deg φη|K(t) and ad do not depend on the choice of a system

of σ-generators η. Furthermore, am = σ-trdegKL.

(iv) If η1, . . . , ηn are σ-algebraically independent over K, then φη|K(t) = n

�
t+m

m

�
.

The polynomial φη|K(t) is called the difference (or σ-) dimension polynomial of the
difference field extension L/K associated with the system of σ-generators η. The integers
d = deg φη|K(t) and ad are called, respectively, the difference (or σ-) type and typical
difference (or σ-) transcendence degree of L over K. These invariants of φη|K(t) are
denoted by σ-typeKL and σ-t.trdegKL, respectively.
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Theorem 2. Let K be an inversive difference (σ∗-) field, let L = K�η1, . . . , ηn�∗ be a
σ∗-field extension of K generated by a finite family η = {η1, . . . , ηn}, and for any r ∈ N,
let L∗

r = K({γηj | γ ∈ Γ(r), 1 ≤ j ≤ n}). Then there exists a polynomial ψη|K(t) ∈ Q[t]
such that

(i) ψη|K(r) = trdegKL∗
r for all sufficiently large r ∈ N.

(ii) deg ψη|K(t) ≤ m and ψη|K(t) =
2ma

m!
tm + o(tm) where a ∈ Z and deg o(tm) < m.

(iii) a, d = degψη|K(t) and the coefficient of td do not depend on the choice of a
system of σ∗-generators η. Furthermore, a = σ-trdegKL.

(iv) If η1, . . . , ηn are σ-algebraically independent over K, then

ψη|K(t) = n

m�

k=0

(−1)m−k2k
�
m

k

��
t+ k

k

�
.

More general, if F is any intermediate σ∗-field of the extension L/K, then there ex-
ists a polynomial ψK,F,η(t) ∈ Q[t] such that ψK,F,η(r) = tr.degK(F

�
L∗
r) for all suffi-

ciently large r ∈ Z, degψK,F,η ≤ m, and the polynomial ψK,F,η(t) can be represented as

ψK,F,η(t) =
2mb

m!
tm+o(tm) where deg o(tm) < m. Furthermore, d = deg φK,F,η does not

depend on η and the same is true for the coefficient of td, which has the form
2dad
d!

with

ad ∈ N. Finally, b = σ-trdegKF .

The polynomial ψη|K(t) is called the σ∗-dimension polynomial of L/K associated with
the system of σ∗-generators η. The numbers d = deg ψη|K and ad are called, respectively,
the inversive difference (or σ∗-) type and typical inversive difference (or typical σ∗-)
transcendence degree of L over K. They are denoted by σ∗-typeKL and σ∗-t.trdegKL,
respectively.

Let (K,σ) and (K,σ1) be inversive difference fields with the same underlying field K
and with basic sets σ = {α1, . . . , αm} and σ1 = {τ1, . . . , τm}, respectively. The sets σ and
σ1 are said to be equivalent (we write σ ∼ σ1) if there exists a matrix K = (kij)1≤i,j≤m ∈
GL(m,Z) such that αi = τki11 . . . τkimn (1 ≤ i ≤ m).

Theorem 3. LetK be a σ∗-field with a basic set σ = {α1, . . . , αm}, L a finitely generated
σ∗-field extension of K, and d = σ∗-typeKL. Then there exists a set σ1 = {β1, . . . , βm} of
mutually commuting automorphisms of L and a finite family ζ = {ζ1, . . . , ζq} of elements
of L such that σ1 ∼ σ and L is an algebraic extension of the field H = K�ζ1, . . . , ζq�∗σ2

where σ2 = {β1, . . . , βd}. (The last field is a finitely generated σ∗
2-field extension of K

when K is treated as an inversive difference field with the basic set σ2.)

Let K be a σ∗-field, σ = {α1, . . . , αm}, L = K�η1, . . . , ηn�∗, U the set of all inter-
mediate σ∗-fields of L/K, and BU = {(F,E) ∈ U × U |F ⊇ E}. Then it is easy to see
that there is a unique mapping µU : BU → Z

�{∞} such that µU(F,E) ≥ −1 for all
(F,E) ∈ BU and if d ∈ N, then µU(F,E) ≥ d if and only if trdegEF > 0 and there exists
an infinite descending chain of intermediate σ∗-fields F = F0 ⊇ F1 ⊇ · · · ⊇ Fr ⊇ · · · ⊇ E
such that µU(Fi, Fi+1) ≥ d− 1 (i = 0, 1, . . . ).

We define the difference (σ-) transcendental type of the σ∗-field extension L/K as
σ-tr.type(L/K) = sup{µU(F,E) | (F,E) ∈ BU} and the difference (σ-) transcendence
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dimension of L/K as σ-tr.dim(L/K) = sup{q ∈ N | there exists a chain F0 ⊃ F1 ⊃
· · · ⊃ Fq such that Fi ∈ U and µU(Fi−1, Fi) = σ-tr.type(L/K) for i = 1, . . . , q}.

Theorem 4. With the above notation, σ-tr.type(L/K) ≤ σ∗-typeKL ≤ m. Furthermore,
if σ-trdegKL > 0, then σ-tr.type(L/K) = m and σ-tr.dim(L/K) = σ-trdegKL. Finally,
if σ-trdegKL = 0, then σ-tr.type(L/K) < m.

3. Multivariate Dimension Polynomials. Let K be a difference (σ-) field and let
a partition of the basic set σ = {α1, . . . , αm} into a disjoint union of its subsets be fixed:

σ = σ1 ∪ · · · ∪ σp (1)

where Card σi = mi (1 ≤ i ≤ p). For any τ = αk11 . . . αkmm ∈ T and i = 1, . . . , p, we
define the order of τ with respect to σi as ordiτ =

�
j∈σi

kj and set T (r1, . . . , rp) =
{τ ∈ T |ordiτ ≤ ri (1 ≤ i ≤ p)} for any r1, . . . , rp ∈ N. Also, for any permutation
(j1, . . . , jp) of the set {1, . . . , p}, we define the lexicographic order ≤j1,...,jp on Np as
follows: (r1, . . . , rp) ≤j1,...,jp (s1, . . . , sp) if and only if rj1 < sj1 or there is k ∈ N,
1 ≤ k ≤ p − 1, such that rjν = sjν for ν = 1, . . . , k and rjk+1

< sjk+1
. If Σ ⊆ Np, then

Σ� will denote the set {e ∈ Σ|e is a maximal element of Σ with respect to one of the p!
lexicographic orders ≤j1,...,jp}.

Theorem 5. Let L = K�η1, . . . , ηn�. Then there exists a polynomial in p variables
φη(t1, . . . , tp) ∈ Q[t1, . . . , tp], deg φ ≤ m, such that φη(r1, . . . , rp) = trdegKK({τηi | τ ∈
T (r1, . . . , rp), 1 ≤ j ≤ n}) for all sufficiently large r1, . . . , rp ∈ N, degtiφη ≤ mi (1 ≤ i ≤

p), and the polynomial φη can be written as φη =

m1�

i1=0

. . .

mp�

ip=0

ai1...ip

�
t1 + i1
i1

�
. . .

�
tp + ip
ip

�

where ai1...ip ∈ Z for all i1, . . . , ip. Furthermore, if Σ is the set of all p-tuples (i1, . . . , ip)
such that ai1...ip �= 0, then d = deg φη, am1...mp , all (j1, . . . , jp) ∈ Σ�, the corresponding
aj1...jp , and the coefficients of all terms of degree d do not depend on the choice of the
system of σ-generators η. Also, am1...mp

= σ-trdegKL.

A similar result holds for inversive difference fields as well (in this case the order of
an element γ = αk11 . . . αkmm ∈ Γ with respect to σi is defined as

�
j∈σi
|kj | and the sets

Γ(r1, . . . , rp) are defined accordingly). The corresponding polynomial in p variables as-
sociated with a σ∗-field extension L = K�η1, . . . , ηn�∗ can be represented in the same
form as the above polynomial φη and it has similar invariants with an additional prop-

erty 2m|am1...mp and the equality
am1...mp

2m
= σ-trdegKL instead of the last equality of

Theorem 5.

4. Limit Degree. Let K be a difference field with a basic set σ = {α1, . . . , αm}
and let � be an order on the free semigroup T such that τ = αk11 . . . αkmm � τ � =
αl11 . . . αlmm if and only if (km, . . . , k1) <lex (lm, . . . , l1). Furthermore, for any r1, . . . , rm ∈
N, we set T�(r1, . . . , rm) = {τ ∈ T | τ � αr11 . . . αrmm } and extend this notation to the
case when ri =∞ for some i (with the condition k <∞ for any k ∈ N). Let L = K�S�
be a σ-field extension of K generated by a finite set S and for any (r1, . . . , rm) ∈ Nm

with r1 ≥ 1, let d(S; r1, . . . , rm) = [K(T�(r1, . . . , rm)(S)) : K(T�(r1 − 1, . . . , rm)(S))].

Lemma 6. d(S; r1, . . . , rm) ≥ d(S; r1 + p1, . . . , rm + pm) for any p1, . . . , pm ∈ N.
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Thus, if some d(S; r1, . . . , rm) is finite, then d(S) = min{d(S; r1, . . . , rm)|r1, . . . , rm ∈ N}
is finite. If d(S; r1, . . . , rm) =∞ for all (r1, . . . , rm) ∈ Nm, we set d(S) =∞.

Lemma 7. If K�S� = K�S�� for two finite sets S and S�, then d(S) = d(S�).

It follows that if L = K�S� (CardS < ∞), then d(S) does not depend on the set
of generators S. This characteristic of the finitely generated difference field extension is
called the limit degree of L/K and denoted by ld(L/K). This concept was introduced
in (1) (see also (2, Chapter 5)) for the ordinary case; we are presenting a generalization
of the notion of limit degree to the partial case.

If L/K is not finitely generated, then ld(L/K) is defined as the maximum of limit
degrees of finitely generated difference subextensions of L/K if this maximum exists, or
∞ otherwise.

Theorem 8. Let L/K be a σ-field extension. Then
(i) If σ-trdegKL > 0, then ld(L/K) =∞.
(ii) If L/K is finitely generated and σ-trdegKL = 0, then ld(L/K) <∞.
(iii) If M is a σ-field extension of L, then ld(M/K) = [ld(M/L)][ld(L/K)].

One of the important applications of the properties of limit degree is the following
result: if M is a finitely generated σ-field extension of a difference (σ-) field K, and L an
intermediate difference field of M/K, then the σ-field extension L/K is finitely generated.

Let K be an ordinary difference field with a basic set σ = {α} and L = K�S�,
CardS < ∞. Then the core LK of L over K is defined to be the set of elements a ∈ L
algebraic and separable over K and such that ld(K�a�/K) = 1. If K is inversive, we also
have (see (5, Chapter 4)) LK =

�∞
n=0K�αn(S)� .

The next theorem shows that core plays an important role in the study of the problem
of compatibility. Difference field extensions L/K and M/K are called compatible if
there are difference K-isomorphisms of L and M into some difference field extension N
of K. Otherwise, the extensions are called incompatible.

Theorem 9. (Criterion of compatibility) Let K be an ordinary difference field with a
basic set σ and let L andM be two σ-field extensions ofK. Then the following statements
are equivalent.

(i) L/K and M/K are incompatible.
(ii) LK/K and MK/K are incompatible.
(iii) LK/K and M/K are incompatible.

5. Distant Degree. In what follows we present some results of the recent work (3)
where the authors introduce a new invariant of an ordinary difference field extension
closely related to the concept of limit degree.

Let K be an ordinary difference field with a basic set σ = {α}. Let K∗ be the inversive
closure of K, that is the unique (up to a difference K-isomorphism) difference field
extension of K such that K∗ is inversive and for any inversive difference field extension L
ofK, there is a differenceK-isomorphism ofK∗ into L. We will work in some large σ∗-field
U that contains all difference fields we are going to consider. If a = (a1, . . . , an) is an n-
tuple over K (ai ∈ U), then the field K�a1, . . . , an� and K(a1, . . . , an) will be denoted by
K�a� and K(a), respectively. Clearly, if α(a) is algebraic over K(a), that is, every α(ai) is
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algebraic overK(a), then the limit degree ld(K�a�/K) = lim
k→∞

[K(a, . . . , αk(a), αk+1(a)) :

K(a, . . . , αk(a))] is finite; it is also denoted by ld(a/K).
The inverse limit degree of a over K, denoted by ild(a/K) or ild(K�a�/K), is

defined as limk→∞[K∗(a, α−1(a), . . . , α−(k+1)(a)) : K∗(a, α−1(a), . . . , α−k(a))].
The distant degree dd(a/K) of a over K (also called the distant degree of the σ-field

extension K�a�/K and denoted by dd(K�a�/K) ) is defined by

dd(a/K) = limk→∞[K(a, αk(a)) : K(a)])
1
k .

The inverse distant degree idd(a/K) of a over K (also called the inverse distant
degree of the σ-field extension K�a�/K and denoted by idd(K�a�/K) ) is defined by

idd(a/K) = lim
k→∞

[K∗(a, α−k(a) : K∗(a))]
1
k .

Lemma 10. Let a and b be tuples in U such that b and α(a) are algebraic over K(a)
and α(b) is algebraic over K(b). Then

(i) dd(b/K) ≤ dd(a/K).
(ii) ld(K�a, b�/K)ild(a/K) = ild(K�a, b�/K)ld(a/K).
(iii) There is a constant D such that for every k > 0, [K(a, αk(a)) : K(a)] ≤

D[K∗(a, αk(a)) : K∗(a)].

Theorem 11. Let K be an ordinary σ∗-field and let a be a tuple over K such that α(a)
is algebraic over K(a) and ld(a/K) = [K(a, α(a)) : K(a)]. Then

(i) {[K(a, α(a), αl(a)) : K(a, αl(a))] | l = 1, 2 . . . } is a non-decreasing sequence.
(ii) Let m = sup{[K(a, α(a), αl(a)) : K(a, αl(a))] | l = 1, 2 . . . }, let l0 be the smallest

l at which m is attained, and let C = [K(a, α(a), . . . , αl0−1(a), αl0(a)) : K(a, αl0(a))]. If

l, j ≥ l0, then [K(a, α−j(a), αl(a)) : K(α−j(a), αl(a))] = ml0

C .

(iii) With m as in (ii), dd(a/K) = ld(a/K)
m .

Theorem 12. Let K be an inversive ordinary difference (σ-) field and let a, b ∈ U be
tuples over K such that α(a) is algebraic over K(a) and α(b) is algebraic over K(b). Then

dd(K�a, b�/K) ≥ dd(K�a, b�/K�b�)dd(K�b�/K).

Remark. Unfortunately, the distance degree is not multiplicative in towers: Z. Chatzi-
dakis and E. Hrushovski give an example of a difference field K and two tuples a and b
over K such that dd(K�a, b�/K) = 2, but dd(K�a�/K)dd(K�a, b�/K�a�) = 1 (see (3)).

References

[1] Cohn, R. M.An invariant of difference field extensions. Proc. Amer. Math. Soc., 7
(1956), 656-661.

[2] Cohn, R. M. Difference Algebra. Interscience, New York, 1965.
[3] Chatzidakis, Z; Hrushovski, E. An invariant for difference field extensions.

arXiv:0902.0844, math.LO., 2011.
[4] Kondrateva, M. V.; Levin, A. B.; Mikhalev, A. V.; Pankratev, E. V. Differential and

Difference Dimension Polynomials, Kluwer Academic Publishers, Dordrecht, 1999.
[5] Levin, A. B. Difference Algebra. Springer, New York, 2008.

2nd Workshop on Differential Equations and Algebraic Methods

Proc-30



On the Structure of Compatible

Rational Functions

(Extended Abstract)

Shaoshi Chen1,2, Ruyong Feng1,
Guofeng Fu1, Ziming Li1

1Key Lab of Math.-Mech. Chinese Academy of Sciences,
Beijing 100190, (China)

2 Algorithms Project-Team, INRIA,
Paris-Rocquencourt, 78513 Le Chesnay, (France)

{schen, ryfeng}@amss.ac.cn,
{fuguofeng, zmli}@mmrc.iss.ac.cn

2 May, 2012

1 Introduction

Compatibility conditions are fundamental for first-order linear homogeneous
functional systems. Such a system has only the zero solution if the compatibility
conditions on its coefficients are not satisfied.

A nonzero solution of a first-order linear partial differential system is called
a hyperexponential function. Christopher and Zoladek [5, 11] use the compati-
bility (integrability) conditions to show that a hyperexponential function can be
written as a product of a rational function, finitely many power functions, and
an exponential one. Their results generalize the well-known fact: for a rational
function r(t),

exp

��
r(t)dt

�
= f(t)r1(t)

e1 · · · rm(t)em exp(g(t)),

where e1, . . . , em are constants, and f, r1, . . . , rm, g are rational functions of t.
A nonzero solution of a first-order linear partial difference system is called a

hypergeometric term. Ore-Sato’s Theorem [8, 10] states that a hypergeometric
term is a product of a rational function, several power functions and factorial
terms. Similar results are given in [7, 4] for q-hypergeometric terms. All these
results are based on compatibility conditions on the certificates of a hypergeo-
metric or q-hypergeometric term.
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Consider a first-order mixed system

�
∂z(t, x)

∂t
= u(t, x)z(t, x), z(t, x+ 1) = v(t, x)z(t, x)

�
,

where u and v are rational functions with v �= 0. Its compatibility condition
is ∂v(t, x)/∂t = v(t, x)(u(t, x+ 1)− u(t, x)). By Proposition 5 in [6], a nonzero
solution of the above system can be written as a product f(t, x)r(t)xE(t)T (x),
where f is a bivariate rational function in t and x, r is a univariate rational
function in t, E is a hyperexponential function in t, and T is a hypergeometric
term in x.

Christopher and Zoladek’s result are useful to compute Liouvilian first in-
tegrals. Ore-Sato’s theorem was rediscovered in one way or another, and is
important for the proofs of a conjecture of Wilf and Zeilberger about holonomic
hypergeometric terms [2, 9]. Bivariate Ore-Sato’s theorem played a crucial role
in deriving criteria for the existence of telescopers for hypergeometric and q-
hypergeometric terms [1, 4]. Proposition 5 in [6] is used not only to describe
Liouvillian solutions of difference-differential systems, but to prove the criteria
on the existences of telescopers in the mixed case [3].

2 Compatible rational functions

In the rest of this abstract, F is a field of characteristic zero. Let t = (t1, . . . , tl),
x = (x1, . . . , xm) and y = (y1, . . . , yn). Assume that q1, . . . , qn ∈ F are neither
zero nor roots of unity. For an element f of F(t,x,y), define δi(f) = ∂f

∂ti
for

all i with 1 ≤ i ≤ l,

σj(f(t,x,y)) = f(t, x1, . . . , xj−1, xj + 1, xj+1, . . . , xm,y)

for all j with 1 ≤ j ≤ m, and

τk(f(t,x,y)) = f(t,x, y1, . . . , yk−1, qkyk, yk+1, . . . , yn)

for all k with 1 ≤ k ≤ n.
Let Δ = {δ1, . . . , δl, σ1, . . . , σm, τ1, . . . , τn}. These maps commute pairwise,

because a map in Δ is effective on only one variable. The field of constants
w.r.t. a map in Δ consists of all rational functions free of the variable that is
moved by the map.

By a first-order linear functional system over F(t,x,y), we mean a system
consisting of

δi(z) = uiz, σj(z) = vjz, τk(z) = wkz (1)

for some rational functions ui, vj , wk ∈ F(t,x,y) and for all i, j, k with 1 ≤ i ≤ l,
1 ≤ j ≤ m and 1 ≤ k ≤ n. System (1) is said to be compatible if (2)-8 given
below hold:

v1 · · · vnw1 · · ·w� �= 0, (2)

δi(uj) = δj(ui), 1 ≤ i < j ≤ l, (3)
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σi(vj)/vj = σj(vi)/vi, 1 ≤ i < j ≤ m, (4)

τi(wj)/wj = τj(wi)/wi, 1 ≤ i < j ≤ n, (5)

δi(vj)/vj = σj(ui)− ui, 1 ≤ i ≤ l and 1 ≤ j ≤ m, (6)

δi(wj)/wj = τj(ui)− ui, 1 ≤ i ≤ l and 1 ≤ j ≤ n, (7)

σi(wj)/wj = τj(vi)/vi, 1 ≤ i ≤ m and 1 ≤ j ≤ n. (8)

These conditions are obtained by the commutativity of the maps in Δ. We say
that a sequence of rational functions:

u1, . . . , ul, v1, . . . , vm, w1, . . . , wn

is Δ-compatible if the equalities in (2)−(8) hold.

3 Results

Our main result describes the structure of compatible rational functions.

Theorem 1. Let
u1, . . . , ul, v1, . . . , vm, w1, . . . , wn (9)

be Δ-compatible rational functions in F(t,x,y). Then there exist f in F(t,x,y),
α1, . . . , αm, β1, . . . , βl in F(t), λ1, . . . , λm in F(x), and µ1, . . . , µn in F(y)
s.t., for all i with 1 ≤ i ≤ l,

ui = �δi(f) + �δi(α1)x1 + · · ·+ �δi(αn)xn + βi, (10)

for all j with 1 ≤ j ≤ m, and, for all k with 1 ≤ k ≤ n,

vj = �σj(f)αjλj and wk = �τk(f)µk. (11)

Moreover, β1, . . . , βl are compatible w.r.t. {δ1, . . . , δl}, λ1, . . . , λm are compat-
ible w.r.t. {σ1, . . . , σm}, and µ1, . . . , µn are compatible w.r.t. {τ1, . . . , τn}.

Assume that our ground F is algebraically closed. We recall that an H-
element over F(t,x,y) is a nonzero solution of system (1) and given a finite
number of H-elements over F(t,x,y), there is a Δ-extension ring of F(t,x,y),
which contains these H-elements and their inverses. The ring of constants of
this Δ-extension is equal to F. Hence it makes sense to multiply and invert H-
elements in some Δ-extension ring. We will not specify the Δ-extension ring if
no ambiguity arises. All H-elements we consider will be over F(t,x,y). Denote
by 0s and 1s the sequences consisting of s 0’s or of s 1’s, respectively.

Let ≺ be a monomial order in F [t,x,y]. An H-element is said to be a
symbolic power if its certificates are of the form

m�

j=1

xj
δ1(αj)

αj
, . . . ,

m�

j=1

xi
δ�(αj)

α�
, α1, . . . , αm, 1n, (12)
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where α1, . . . , αm are in F(t)× and monic with respect to ≺. It is easy to
verify that such a sequence is Δ-compatible. Such a symbolic power is de-
noted αx1

1 · · ·αxm
m . The monicity of the αi’s exclude the case, in which some αi

is a nonzero constant unequal to one. By an E-element, we mean an H-
element whose certificates are of the form β1, . . . , βl,1m+n, where β1, . . . , βl
are in F(t). By a G-element, we mean an H-element whose certificates are of
the form 0l, λ1, . . . , λm,1n, where λ1, . . . , λm are in F(x). By a Q-element,
we mean an H-element whose certificates are of the form 0l,1m, µ1, . . . , µn,
where µ1, . . . , µn are in F(y). An E-element is a hyperexponential function
w.r.t. {δ1, . . . , δl}; aG-element is a hypergeometric term w.r.t. {σ1, . . . , σm}; and
a constant w.r.t. other operators in Δ; and a Q-element is a q-hypergeometric
term w.r.t. {τ1, . . . , τn} and a constant w.r.t. other operators in Δ. But E-
elements (resp. G-elements or Q-elements) are constants w.r.t. other irrelevant
operators in Δ.

An easy consequence of Theorem 1 is the following multiplicative decompo-
sition of an H-element.

Proposition 2. An H-element is a product of an element in F×, a rational
function in F (t,x,y), a symbolic power, an E-element, a G-element, and a
Q-element.
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RESULTS AND OPEN PROBLEMS ON THE ALGEBRAIC

LIMIT CYCLES OF POLYNOMIAL VECTOR FIELDS IN R2

JAUME LLIBRE

Since Darboux [12] has found in 1878 connections between algebraic
curves and the existence of first integrals of planar polynomial vector fields,
invariant algebraic curves are a central object in the theory of integrability
of these vector fields. Today after more than one century of investigations
the theory of invariant algebraic curves is still full of open questions.

A real planar polynomial differential system is a differential system of the
form

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

where P and Q are real polynomials in the variables x and y. The dependent
variables x and y, the independent variable t, and the coefficients of the
polynomials P and Q are all real because in this paper we are interested in
the real algebraic limit cycles of system (1). The degree n of the polynomial
system (1) is the maximum of the degrees of the polynomials P and Q.

Associated to the (real) polynomial differential system (1) there is the
(real) polynomial vector field

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

or simply X = (P,Q).

Let f = f(x, y) be a (real) polynomial in the variables x and y. The
algebraic curve f(x, y) = 0 of R2 is an invariant algebraic curve of the
vector field X if for some polynomial K ∈ R[x, y] we have

(2) X f = P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant algebraic curve
f = 0. We note that since the polynomial system has degree n, then any
cofactor has at most degree n− 1.

We recall that a limit cycle of a polynomial vector field X is an isolated
periodic orbit in the set of all periodic orbits of X . An algebraic limit cycle
of degree m of X is an oval of an irreducible invariant algebraic curve f = 0
of degree m which is a limit cycle of X .

A first question related with this subject is whether a polynomial vector
field has or does not have invariant algebraic curves. The answer is not easy,
see the large section in Jouanolou’s book [21], or the long paper [31] devoted
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to show that one particular polynomial system has no invariant algebraic
solutions. Even one of the more studied limit cycles, the limit cycle of the
van der Pol system, until 1995 it was unknown that it is not algebraic [32].

One of the nice results in the theory of invariant algebraic curves is the
following result.

Theorem 1 (Jouanolou’s Theorem [21]). A polynomial vector field of degree
n has less than [n(n+ 1)/2] + 2 irreducible invariant algebraic curves, or it
has a rational first integral.

For a shorter proof of this result see [9] or [10].

Jouanolou’s Theorem shows that for a given polynomial vector field X of
degree n the maximum degree of its irreducible invariant algebraic curves is
bounded, because either X has a finite number of invariant algebraic curves
less than [n(n + 1)/2] + 2, or X has rational first integral f(x, y)/g(x, y).
In this last case all the orbits of X are contained in the invariant algebraic
curves af(x, y) + bg(x, y) = 0 for some a, b ∈ R.

Thus for each polynomial vector field there is a natural number N which
bounds the degree of all its irreducible invariant algebraic curves. A natural
question, going back to Poincaré [33] and which for some people in this area
is now known as the Poincaré problem, is to give an effective procedure to
find N . There are only partial answers to this question, see for instance [2],
[3], [4], [36], ... We must mention here that the actual Poincaré problem is to
determine when a polynomial differential system over the complex plane has
a rational first integral, and that the previous called Poincaré problem is a
main step according with Poincaré for solving the actual Poincaré problem.

Of course if we know for a polynomial vector field the maximum degree
of its invariant algebraic curves, then it is possible (at least in theory) to
compute its invariant algebraic curves.

We are interested in algebraic limit cycles of polynomial vector fields, and
if a polynomial vector field has a rational first integral it cannot have limit
cycles. Unfortunately for the class of polynomial vector fields with fixed
degree n having finitely many invariant algebraic curves (i.e. having no
rational first integrals), there does not exist a uniform upper bound N(n) for
N as it was shown in [11, 30]. This implies that there are polynomial vector
fields with a fixed degree having irreducible invariant algebraic curve of
arbitrary degree. Therefore a priori it is possible the existence of polynomial
vector fields with a fixed degree having algebraic limit cycle of arbitrary
degree. But it may be worse than that.

Summarizing, a polynomial vector field of degree n with finitely many
irreducible invariant algebraic curves has at most [n(n + 1)/2] + 1 of such
curves, but we do not have a bound for the degree of these invariant algebraic
curves. Consequently due to the Harnack’s Theorem we do not have a
uniform bound for the number of algebraic limit cycles that any polynomial
vector field of degree n can have. So the second part of the 16–th Hilbert
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problem [20] (see also [19, 22]) which asks for finding a uniform bound for
the number of limit cycles that any polynomial vector field of degree n can
have, remains also open if we restrict our attention to the limit cycles which
are algebraic.

Open problem 1. Is there a uniform bound for the number of algebraic
limit cycles that a polynomial vector field of degree n could have?

¿From the previous paragraphs it is clear that a uniform positive answer
to the Poincaré problem inside the class of all polynomial vector fields of
degree n, i.e. to provide a uniform bound N(n) for the degrees of the
invariant algebraic curves of all polynomials vector fields of degree n, will
provide also a uniform bound for the number of algebraic limit cycles of all
polynomials vector fields of degree n.

Theorem 2 (Bautin–Christopher–Dolov–Kuzmin Theorem). Let f = 0 be
a non–singular algebraic curve of degree m, and D a first degree polynomial,
chosen so that the line D = 0 lies outside all bounded components of f = 0.
Choose the constants a and b so that aDx + bDy �= 0, then the polynomial
differential system

ẋ = af −Dfy, ẏ = bf +Dfx,

of degree m has all the bounded components of f = 0 as hyperbolic limit
cycles. Furthermore the vector field has no other limit cycles.

It seems that the main result in the paper of Bautin [1] is similar to
the previous theorem. However the paper contains a mistake which was
corrected in [13] and generalized in [14]. A proof of the statement of theorem
like it is presented here appeared in [8].

The next proposition provides the maximum number of algebraic limit
cycles that a polynomial vector field having a unique irreducible invariant
algebraic curve can have in function of the degree of that curve. This propo-
sition is well known in the area we write it here for completeness.

Proposition 3. Suppose that f = 0 of degree m is the unique irreducible
invariant algebraic curve of a polynomial vector field X. Then X can have
at most [(m − 1)(m − 2)/2] + 1 algebraic limit cycles. Moreover choosing
that f = 0 has the maximal number of ovals for the irreducible algebraic
curves of degree m, there exist vector fields X of degree m having exactly
[(m− 1)(m− 2)/2] + 1 algebraic limit cycles.

In 1958 Qin Yuan–Xun [35] proved that quadratic (polynomial) vector
fields can have algebraic limit cycles of degree 2, and when such a limit
cycle exists then it is the unique limit cycle of the system.

Evdokimenco in [15, 16, 17] proved that quadratic vector fields do not
have algebraic limit cycles of degree 3, for two different shorter proofs see
[6, 25].

In 1966 Yablonskii [34] found the first class of algebraic limit cycles of
degree 4 inside the quadratic vector fields. The second class was found in
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1973 by Filiptsov [18]. More recently two new classes has been found and
in [6] the authors proved that there are no other algebraic limit cycles of
degree 4 for quadratic vector fields. The uniqueness of these limit cycles
has been proved in [5]. Some other results on the algebraic limit cycles of
quadratic vector fields can be found in [27, 28].

Doing convenient birational transformations of the plane to quadratic
vector fields having algebraic limit cycles of degree 4 in [7] the authors
obtained algebraic limit cycle of degrees 5 and 6 for quadratic vector fields.
Of course in general a birational transformation does not preserve the degree
of the polynomial vector field.

Open problems 2. The following questions related with the algebraic limit
cycles of quadratic polynomial vector fields remain open, see for instance[25].

(i) What is the maximum degree of an algebraic limit cycle of a quadratic
polynomial vector field?

(ii) Does there exist a chain of rational transformations of the plane
(as in [7]) which gives examples of quadratic systems with algebraic
limits cycles of arbitrary degree, or at least of degree larger than 6?

(iii) Is 1 the maximum number of algebraic limit cycles that a quadratic
system can have?

In 1900 Hilbert not only proposed in the second part of his 16–th problem
(see [20]) to estimate a uniform upper bound for the number of limit cycles
of all polynomial vector fields of a given degree, but he also asked about the
possible distributions or configurations of the limit cycles in the plane. This
last question has been solved using algebraic limit cycles.

A configuration of limit cycles is a finite set C = {C1, . . . , Cn} of disjoint
simple closed curves of the plane such that Ci ∩ Cj = ∅ for all i �= j.

Two configurations of limit cycles C = {C1, . . . , Cn} and C � = {C �
1, . . . , C

�
m}

are (topologically) equivalent if there is a homeomorphism h : R2 → R2 such
that h (∪ni=1Ci) =

�
∪mi=1C

�
i

�
. Of course for equivalent configurations of limit

cycles C and C � we have that n = m.

We say that a polynomial vector field X realizes the configuration of limit
cycles C if the set of all limit cycles of X is equivalent to C.

Theorem 4. Let C = {C1, . . . , Cn} be an arbitrary configuration of limit
cycles. Then the configuration C is realizable with algebraic limit cycles by
a polynomial vector field.

This theorem is proved in [26]. Looking at the way in which is proved
you can provide an alternative proof using the Bautin–Christopher–Dolov–
Kuzmin Theorem.
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Adapting the FGLM-algorithm for conversion between Hermite and Popov
normal forms of differential operator matrices
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Abstract

We consider matrices over univariate Ore polynomial rings. We connect the Popov normal form and the
Hermite normal form of such matrices to Gröbner bases extending a result in [8]. Finally, we adapt the
FGLM algorithm to convert matrices from Popov normal form to Hermite normal form and vice versa.

Keywords: Matrix normal forms, Ore polynomials, Hermite normal form, Popov normal form

1. Ore polynomials

Ore polynomials are an algebraic construct which is suitable for modelling linear ordinary differential
operators. They have been first described by Øystein Ore in [10] with the purpose of studying ring extensions
with almost the same properties as the usual polynomials except for commutativity. For this abstract, we
will be content with a short and informal recapitulation of the construction and its properties—see Ore’s
original paper [10] or [4, Sect. 0.10] for proofs and more details.

Let K be a skew field together with an automorphism σ : K → K and an additive map ϑ : K → K
which fulfills the σ-Leibniz rule ϑ(ab) = σ(a)ϑ(b) + ϑ(a)b for all a and b ∈ K. We consider the set of all
polynomial expressions over K in the indeterminate ∂, that is, the set R = {an∂n + . . . + a1∂ + a0 | n ≥
0 and a0, . . . , an ∈ K}. This is a left K-space with the obvious operations. It is possible to prove, that with
the commutation rule

∂a = σ(a)∂ + ϑ(a)

we can define a multiplication which makes R into a ring—see, for example, [4, Thm. 0.10.1]. We write
R = K[∂;σ, ϑ] and call it the ring of Ore polynomials over K with respect to σ and ϑ. One can prove that
R is a (left and right) Euclidean domain—see, for example, [5, Thm. 5.8].

For σ = id and ϑ = 0, the commutation rule becomes just ∂a = a∂. Thus, if K is commutative, we
obtain simply the usual polynomials. For σ = id, a non-trivial ϑ fulfills the usual Leibniz rule and we have
the differential operators. The commutation rule in this case is ∂a = a∂ + ϑ(a) which corresponds to the
composition of differential operators. The third prominent example of Ore polynomials are delay operators
where σ is an arbitrary automorphism, ϑ = 0 and the commutation rule becomes ∂a = σ(a)∂.

2. Hermite normal form and Popov normal form

Let K be a field with automorphism σ : K → K and σ-derivation ϑ : K → K, and let R = K[∂;σ, ϑ]. We
denote the set of m×n matrices over R by mRn and the group of unimodular m×m matrices by GLm(R).
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Analogously to [7, Def. 2.3], we say that matrix M ∈ mRn is in Hermite normal form if M is in upper
row echelon form such that the pivot entries are monic and every entry above a pivot entry has a strictly
smaller degree than the pivot. I can be shown that for each matrix A ∈ mRn there exists U ∈ GLm(R) such
that the submatrix consisting of the non-zero rows of UA is in Hermite normal form—see, for example, [7,
Thm. 3.2] where greatest common divisor computations are used. Moreover, the Hermite normal form of
each matrix is unique.

Defining the Popov normal form is more difficult. For this, we will need to introduce another concept
first. Let v ∈ 1Rn be a row vector. We can write v as v = ud∂

d + . . . + u1∂ + u0 where u0, . . . , u1 ∈ K.
If ud �= 0, then we call ud the leading vector of v and denote it by lv(v) = ud. A matrix M ∈ mRn is
said to be row-reduced if it does not contain zero rows and if the set of the leading vectors of all its rows
is K-linearly independent. It is possible to prove that for any matrix A ∈ mRn there exists a unimodular
matrix U ∈ GLm(R) such that the submatrix of UA formed by the non-zero rows is row-reduced. See, for
example, [1, Thm. 1] for an algorithmic proof of this claim.

Stating that a matrix is in Popov normal form essentially means that it is row-reduced and fulfills some
additional conditions to ensure that it is uniquely determined—see, for example, [3, Def. 2.8]. Assume that
M is row-reduced. For each row v ∈ 1Rn of M consider the smallest index j such that lv(v)j �= 0. We call
vj the pivot of the row v. Then, we say that M is in Popov normal form if the rows are sorted by degree
and for each row the pivot entry is monic and all entries in the same column have a stricly smaller degree.
Again, it can be shown that for each matrix A ∈ mRn there exists U ∈ GLm(R) such that the submatrix of
the non-zero rows of UA is in Hermite normal form.

3. Gröbner bases and FGLM

For Ore polynomials there is a theory of Gröbner bases which is completely analogous to the case of
commutative polynomials. Confer, for example, [2]. Moreover, as in the case of commutative polynomials
this extends to modules in the following way: Use e1, . . . , en to denote the unit vectors in 1Rn. Then, a
monomial is of the form ∂aej where a ≥ 0 and 1 ≤ j ≤ n. With this definition, one can define monomial
orderings, leading monomials, division and Gröbner bases as in the usual case.

We would like to introduce the two most prominant monomial orderings—see again [2, Def. 5.3.8 and
Def. 5.3.9]. We say that ∂aej is larger than ∂bek with respect to to the position over term ordering if j < k
or if j = k and a > b. We say that ∂aej is larger than ∂bek with respect to to the term over position ordering
if a > b or a = b and j < k.

Anaolgously to [8], it is not hard to prove the following result. The key observation is that for both the
Hermite normal form and the position over term ordering as well as the Popov normal form and the term
over position ordering the pivots are exactly the leading terms.

Theorem 1. Up to permutation of the rows, a matrix is in

1. Hermite normal form if and only if the rows are a reduced Gröbner basis with respect to the position
over term ordering; or in

2. Popov normal form if and only if the rows are a reduced Gröbner basis with respect to the term over
position ordering.

Proof. See [9, Thm. 13 and Thm. 14].

In the theory of Gröbner bases, the FGLM algorithm—which was first presented in [6]—is an efficient
method to compute a Gröbner basis for a zero-dimensional ideal I in a polynomial ring K[x1, . . . , x�] and a
given monomial ordering provided that already a Gröbner basis for a different monomial ordering is known.
That means, that the FGLM algorithm converts Gröbner bases to a different monomial ordering. The idea
is to convert the problem to a linear problem by doing the computations in the finite dimensional quotient.
The algorithm considers a basis of K[x1, . . . , x�]/I consisting of residue classes of monomials and uses linear
systems to test for every of these monomials whether it is the leading monomial of a member of the new
Gröbner basis or not.
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If we want to mimick this algorithm for matrices M ∈ mRn in Hermite normal form or Popov normal
form, then we have the problem that the quotient 1Rn/ 1RmM in general does not have finite dimension.
However, we can overcome this problem by using a degree bound for the Popov normal form or the Hermite
normal form as in [7, Cor. 3.4]. This again leads to a finite search space consisting of all those basis elements
being the residue classes of monomials which fulfill the degree bound. With this, it is possible to modify
the original FGLM algorithm in a way that it works for arbitrary matrices in mRn. See [9, Alg. 19] for the
precise formulation of the algorithm.
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Solving first-order parametrizable ODEs
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Abstract

We present an algorithm to solve for a rational general solution of a first-order parametrizable
ODE. The method turns out to be depending on the choice of a rational parametrization of the
corresponding surface of the differential equation. We classify the set of first-order parametrizable
ODEs by means of a group action on the set. With the relation defined by the group, differential
equations in the same class have the same difficulty in solving its rational general solutions. In
particular, we describe some classes of first-order ODEs that are simple in a sense and they are
perfect components for a complete system of representative elements w.r.t the group action.

Key words: Ordinary differential equations, Rational solutions, Invariant algebraic curves,
Rational parametrizations.

1. Preliminaries

Let K be an algebraically closed field of characteristic zero. Let F (u, v, w) be a trivari-
ate polynomial over K. The algebraic ordinary differential equation (ODE) of order 1
defined by F is of the form

F (x, y, y�) = 0, (1)

where y is an indeterminate over the differential field of rational functions K(x) with the
usual derivation � = d

dx .
Let {F} be the radical differential ideal generated by F in the differential ringK(x){y}.

Then one can prove that
{F} = ({F} : S) ∩ {F, S}, (2)

where S = ∂F
∂y� is the separant of F . So the set of solutions of F = 0 is decomposed as two

components: one is vanished by S, the other one is not. Of course, most of the solutions
of F = 0 should belong to the component that is not vanished by S. This decomposition
is valid for differential polynomials of any order.

� This work has been supported by the Austrian Science Foundation (FWF) via the Doctoral Program
“Computational Mathematics” (W1214), project DK11 and project DIFFOP (P20336-N18).
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Definition 1.1. A generic zero of the prime differential ideal {F} : S is called a general
solution of F (x, y, y�) = 0. A common zero of F and S is called a singular solution of
F (x, y, y�) = 0.

We are interested in computing a rational general solution of F (x, y, y�) = 0, i.e., a
general solution of the form

y =
amx

m + am−1x
m−1 + · · ·+ a0

bnxn + bn−1xn−1 + · · ·+ b0
, (3)

where ai, bj are constants in a transcendental extension field of K. In the sequel, by an
arbitrary contant we mean a transcendental contant over K.

Problem: Given F (x, y, y�) = 0, P(s, t) = (χ1(s, t), χ2(s, t), χ3(s, t)) such that

F (P(s, t)) = 0,

where χ1, χ2, χ3 are bivariate rational functions over K. Decide the existence of a
rational general solution of F (x, y, y�) = 0 and compute such a solution when it exists.

Note that the problem is already solved for autonomous ODEs in Feng and Gao (2006).
We now give a geometric method, which generalizes the one in the autonomous case, to
compute an explicit rational general solution of F (x, y, y�) = 0. Assume that P(s, t) is
proper, i.e., it has an inverse and its inverse is also rational. Then a rational general
solution of F (x, y, y�) = 0 can be computed via computing (s(x), t(x)) such that

P(s(x), t(x)) = (x, f(x), f �(x)).

In order to satisfy the last condition, it turns out that (s(x), t(x)) must be a rational
general solution of the system





s� =
χ2t − χ3 · χ1t

χ1s · χ2t − χ1t · χ2s
,

t� =
χ1s · χ3 − χ2s

χ1s · χ2t − χ1t · χ2s
,

(4)

provided that χ1s · χ2t − χ1t · χ2s �= 0.

Definition 1.2. The system (4) is called the associated system of F (x, y, y�) = 0 w.r.t
P(s, t).

By construction, if (s(x), t(x)) is a rational general solution of the associated system
(4), then

P(s(x), t(x)) = (x+ c, χ2(s(x), t(x)), χ2(s(x), t(x))
�)

for some constant c. Therefore,

y = χ2(s(x− c), t(x− c))

is a rational general solution of the corresponding differential equation F (x, y, y�) = 0. A
proof can be found in Ngô and Winkler (2010).

Theorem 1.3. If the parametrization P(s, t) is proper, then there is a one-to-one corre-
spondence between rational general solutions of the parametrizable ODE F (x, y, y�) = 0
and rational general solutions of its associated system w.r.t P(s, t).
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The associated system (4) is an autonomous system in two differential indeterminates
s and t; and the degrees w.r.t s� and t� are 1. The Darboux’s theory on invariant algebraic
curves can apply to this system in order to find a rational solution (Jouanolou, 1979; Lins
Neto, 1988; Singer, 1992).

Definition 1.4. Let M1,M2, N1, N2 be polynomials in K[s, t] and gcd(Mi, Ni) = 1 for
i = 1, 2. An invariant algebraic curve of the rational system





s� =
M1(s, t)

N1(s, t)
,

t� =
M2(s, t)

N2(s, t)
,

(5)

is an algebraic curve G(s, t) = 0 such that

GsM1N2 +GtM2N1 = GK,

where Gs and Gt are the partial derivatives of G w.r.t s and t; and K is some polynomial.
An invariant algebraic curve of the system is called a general invariant algebraic curve if
it contains an arbitrary constant in its coefficients.

Assume that we have found an irreducible invariant algebraic curve of the system (5),
which is also rational and containing an arbitrary constant in its coefficients. Then we
show how to obtain a rational general solution of the system (5) from a proper rational
parametrization of that general invariant algebraic curve. For a complete description of
this step we refer to Ngô and Winkler (2011b,a); Sendra and Winkler (2001); Sendra et al.
(2008). Of course, the remained problem is computing an irreducible invariant algebraic
curve of the system (5); in order that we use the undetermined coefficients method and
base on the degree bound given by (Carnicer, 1994) for the system having no dicritical
singularities, which is a generic case. Therefore, the problem is solved in a generic case.

2. A group of affine linear transformations

We define a group of affine linear transformations on K(x)3 that maps an integral curve
of the space to another one. By an integral curve of the space we mean a parametric curve
of the form C(x) = (x, f(x), f �(x)). So this group can act on the set of all algebraic ODEs
of order 1 and it is compatible with the solution curves of the corresponding differential
equation. Therefore, it gives a partition on the set of all algebraic ODEs of order 1.

Precisely, let L : K(x)3 −→ K(x)3 be an affine linear transformation defined by

L(v1, v2, v3) = (v1, av2 + bv1, av3 + b),

where vi ∈ K(x) for all i = 1, 2, 3 and a, b ∈ K such that a �= 0. The set of all such
transformations forms a group under the composition. This group naturally acts on the
set of first-order ODEs as follows:

L · F = F (L−1(x, y, y�)) = F

�
x,− b

a
x+

1

a
y,− b

a
+

1

a
y�
�
.

Theorem 2.1. Let F (x, y, y�) = 0 be a parametrizable ODE of order 1. Let L be an
affine linear transformation in the group G. Then L · F and F have the same associated
system with respect to a certain proper rational parametrization of F (x, y, z) = 0.
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A proof of the theorem can be found in our manuscript Ngô et al. (2011).

3. Special parametrizable ODEs

These are special first-order parametrizable ODEs whose parametrizations are easily
recognized from the defining equations.
(1) y� = G(x, y), G(x, y) is a rational function.
(2) y = G(x, y�), G(x, y�) is a rational function.
(3) x = G(y, y�), G(y, y�) is a rational function.
(4) F (y − λx, y�) = 0, where F (u, v) = 0 is a rational curve.

(5) F

�
y

xm+1
,
y�

xm

�
, where F (u, v) = 0 is a rational curve.

A full description can be found in our manuscript Ngô et al. (2011).
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1. Introduction

This is a report on joint work with Daniel Robertz on composite analytic
functions and linear differential elimination, cf. Plesken and Robertz (2010).
In another extended abstract of this conference Daniel Robertz reports on his
own ongoing work on nonlinear differential elmination which is a continuation
of the present project. Here we propose to do linear algebra in spaces S of
analytic functions parametrized in the following form:

f1(α1(z)) g1(z) + . . .+ fk(αk(z)) gk(z), αi, gj fixed analytic, (1)

where z = (z1, . . . , zn) ∈ Cn. To avoid trivialities, it is assumed that the αj

take values in spaces of dimensions smaller than n. Three main problems are
considered:
Recognition: Decide wheter a given function belongs to S.
Explicit recognition: Find one resp. all sets of functional parameters
f1, . . . , fk in the affirmative case.
Description by PDEs: Find a linear PDE-system having S as its set of
solutions.
The third problem already indicates how to approach the first two problems.
The methods employed are the chain rule, which seems to be somewhat ne-
glected in differential algebra and Janet bases and differential elimination.
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Here is an easy example to demonstrate the main ideas: Prove the func-
tional equation for the exponential function: exp(z1 + z2) = exp(z1) exp(z2).
We prodeed in three steps to answer Is exp(z1 + z2) of the form f(z1, z2) =
f1(z2) exp(z1) with analytic f1?
Characterize these functions f by the PDE u1(z1, z2)− u(z1, z2) = 0.
exp(z1 + z2) satisfies this PDE, hence is of this form.
f1(z2) = exp(z1 + z2)/ exp(z1) for any z1; choose z1 = 0 to obtain
f1(z2) = exp(z2).
Similarly the addition formulars for sin and cos can be proved. To deal with
the general problem, the three steps have to be adjusted appropriately.

2. Representabilty

Definition 2.1. 1.) Ω ⊂ Cn open and connected. K :=M(Ω) denotes the
field of meromorphic functions on Ω.
2.) g1, . . . , gk are non-zero analytic C-valued functions on Ω (not necessarily
distinct). The tuple of all gi is referred to as g.
3.) For each i, 1 ≤ i ≤ k, there is a ν(i) < n with ν(i) (functionally
independent) analytic functions αi,j : Ω → C, j = 1, . . . , ν(i), sometimes
taken together as αi : Ω → Cν(i) : z �→ (αi,1(z), . . . , αi,ν(i)(z)) such that the
Jacobian has rank ν(i) throughout Ω. The k-tuple of the αi is referred to as
α.
4.) The analytic function u : Ω→ C is called (linearly) (α, g)-representable,
if there exist functions fi : αi(Ω) → C such that fi ◦ αi is analytic for
i = 1, . . . , k and

u(z) = f1(α1(z))g1(z) + · · ·+ fk(αk(z))gk(z) (2)

for all z ∈ Ω.
Unfortunately the concept of (α, g)-representability cannot be expressed

by differential equations alone, since topological problems arise. Therefore
the concept of essential (α, g)-representability is introduced to focus on the
local issues: It essentially means that one has a dense open subset of Ω such
that the function is (α, g)-representable around any point of this subset. The
key observation now concerns the cases k = 1:

Lemma 2.2. Assume k = 1. u is locally (α1, g1)-representable if and only if u
satisfies a certain system of n−ν(1) first order linear pde’s with coefficients in

2
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K. The left ideal generated by these equations in the ring R := K�∂1, . . . , ∂n�
will be denoted by I(α1, g1).

Theorem 2.3. The analytic function u : Ω→ C is locally (α, g)-representable
if and only if u satisfies a certain system of linear pde’s with coefficients in
K =M(Ω). The pde’s of the system can be chosen to generate the intersec-
tion I(α, g) of the left ideals I(αi, gi) in K�∂1, . . . , ∂n� describing the locally
(αi, gi)-representable functions as in Lemma 2.2.

Computing the intersections of the ideals I(αi, gi) naively turned out to be
quite time consuming. For the actual computation we use an implementation
of the Janet-algorithm. However it is worthwhile to introduces jets to deal
with equation 2 and its differential consequences of which one can extract
generators for I(α, g) more efficiently: Taking

uµ ←→ ∂µu, µ ∈ (Z≥0)
n

fi,η ←→ (∂ηfi) ◦ αi, η ∈ (Z≥0)
ν(i), i = 1, . . . , k

as coefficients of the the jet-colums jd(u) resp. jd(α, f) up to order d leads
to the matrix equation obtained from equation 2 by partial differentiation:

jd(u) = Δd(α, g) · jd(α, f). (3)

Example u(x, y) = f1(y + x2) · x+ f2(x+ y2) · y

Δ2(α, g) =




x y 0 0 0 0
0 1 x 2 y2 0 0
1 0 2 x2 y 0 0
0 0 0 6 y x 4 y3

0 0 1 1 2 x2 2 y2

0 0 6 x 0 4 x3 y




u
u(0,1)

u(1,0)

u(0,2)

u(1,1)

u(2,0)

To obtain generators for I(α, g) one has to eliminate the fi,η in equation
3. Various methods are discussed to see how big the differentiation order d
has to be chosen to obtain sufficiently many equations among the u-jets.

To decide (α, g)-representability rather than essential (α, g)-representability
we propose to compute actual representations, which of course is of indepen-
dent interest. The methods for this are slight extension of the ideas presented
above.

3
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3. Applications and Examples

As a first application ask whether a given function u(x, y, z) is repre-
sentable as a sum of analytic functions of two variables:

u(x, y, z) = f1(y, z) + f2(x, z) + f3(x, y).
The characterizing linear PDE is

∂3u

∂x ∂y ∂z
= 0,

For instance for spherical coordinates r, ϕ, θ this leads to three commuting
differential operators

∂r :=
1�

x2 + y2 + z2
(x ∂x + y ∂y + z ∂z), ∂ϕ := −y ∂x + x ∂y,

∂θ :=
1�

x2 + y2
(−xz∂x − yz∂y) +

�
x2 + y2 ∂z.

Hence ∂r ∂ϕ ∂θ characterizes sums of analytic functions depending only on
two of r, ϕ, θ.

As a second application we mention that the methods discussed here can
be used to check whether a symbolic PDE-solver in computer algebra sys-
tems give incomplete or even wrong answers.

As a third application we ask: Is there a representation ρ : R→ GL(3,C)
of the Lie group R with prescribed first row γ(x) := (γ1(x), γ2(x), γ3(x))?

We should have γ(0) = (1, 0, 0). Moreover,

ρ1,1(x+ y) = (ρ(x) ρ(y))1,1,

i.e.
γ1(x+ y) = γ1(x) γ1(y) + γ2(x) ρ2,1(y) + γ3(x) ρ3,1(y).

i.e. check (α, g)-representability of γ1(x+y)−γ1(x) γ1(y) with g := (γ2(x), γ3(x))
and α = (α1, α2) := (y, y) !

References
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INTRODUCTION:

Fifty years ago D.C. Spencer invented the first order operator now wearing his name in or-
der to bring the formal study of systems of ordinary differential (OD) or partial differential (PD)
equations to that of equivalent first order systems. However, despite its importance, the Spencer
operator is rarely used in mathematics today and, up to our knowledge, has never been used in
engineering applications or in mathematical physics.
The purpose of this lecture at the second workshop on Differential Equations by Algebraic Meth-
ods (DEAM2, february 9-11, 2011, Linz, Austria) is first to recall briefly its definition, both in
the framework of systems of OD/PD equations and in the framework of differential modules. The
only notation ”D” respects the two standard ones existing in the literature but no confusion can
be done from the background.
The remaining of the lecture will consist in a series of theorems dealing with explicit and striking
applications. In a rough way, the main goal is to prove that the use of the Spencer operator
constitutes the common secret of the three following famous books published about at the same
time in the beginning of the last century, though they do not seem to have anything in common
at first sight as they are successively dealing with elasticity theory, commutative algebra, electro-
magnetism (EM) and general relativity (GR):

1) E. and F. COSSERAT: ”Théorie des Corps Déformables”, Hermann, Paris, 1909.
2) F.S. MACAULAY: ”The Algebraic Theory of Modular Systems”, Cambridge, 1916.
3) H. WEYL: ”Space, Time, Matter”, Springer, Berlin, 1918 (1922, 1958; Dover, 1952).

More precisely, if K is a differential field containing Q with n commuting derivations ∂i
for i = 1, ..., n, we denote by k a subfield of constants and introduce m differential indeter-
minates yk for k = 1, ...,m and n commuting formal derivatives di with diy

k
µ = ykµ+1i where

µ = (µ1, ..., µn) is a multi-index with length |µ| = µ1+ ...+µn, class i if µ1 = ... = µi−1 = 0, µi �= 0
and µ + 1i = (µ1, ..., µi−1, µi + 1, µi+1, ..., µn). We set yq = {ykµ|1 ≤ k ≤ m, 0 ≤ |µ| ≤ q}
with ykµ = yk when |µ| = 0. We introduce the non-commutative ring of differential operators
D = K[d1, ..., dn] = K[d] with dia = adi + ∂ia, ∀a ∈ K in the operator sense and the differential
module Dy = Dy1 + ...+Dym. If {Φτ = aτµk ykµ} is a finite number of elements in Dy indexed by
τ , we may introduce the differential module of equations I = DΦ ⊂ Dy and the finitely generated
residual differential module M = Dy/I.
Let now X be a manifold with local coordinates (xi) for i = 1, ..., n, tangent bundle T =
T (X), cotangent bundle T ∗ = T ∗(X), bundle of r-forms ∧rT ∗ and symmetric tensor bundle
SqT

∗. If E is a vector bundle over X with local coordinates (xi, yk) for i = 1, ..., n and k =
1, ...,m, we denote by Jq(E) the q-jet bundle of E with local coordinates simply denoted by (x, yq)
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and sections fq : (x) → (x, fk(x), fki (x), f
k
ij(x), ...) transforming like the section jq(f) : (x) →

(x, fk(x), ∂if
k(x), ∂ijf

k(x), ...) when f is an arbitrary section of E. For simplicity, we shall de-
note by the same symbol a vector bundle and its set of local sections. Then both fq ∈ Jq(E) and
jq(f) ∈ Jq(E) are over f ∈ E and the Spencer operator just allows to distinguish them by introduc-
ing a kind of ”difference” through the operator D : Jq+1(E)→ T ∗ ⊗ Jq(E) : fq+1 → j1(fq)− fq+1

with local components (∂if
k(x)− fki (x), ∂if

k
j (x)− fkij(x), ...) and more generally (Dfq+1)

k
µ,i(x) =

∂if
k
µ(x) − fkµ+1i(x). In a symbolic way, when changes of coordinates are not involved, it is some-

times useful to write down the components of D in the form di = ∂i − δi and the restriction of D
to the kernel Sq+1T

∗⊗E of the canonical projection πq+1
q : Jq+1(E)→ Jq(E) is minus the Spencer

map δ = dxi ∧ δi : Sq+1T
∗ ⊗ E → T ∗ ⊗ SqT

∗ ⊗ E. The kernel of D is made by sections such that
fq+1 = j1(fq) = j2(fq−1) = ... = jq+1(f). Finally, if Rq ⊂ Jq(E) is a system of order q on E locally
defined by linear equations Φτ (x, yq) ≡ aτµk (x)y

k
µ = 0 and local coordinates (x, z) for the parametric

jets up to order q, the first prolongation Rq+1 = ρ1(Rq) = J1(Rq)∩Jq+1(E) ⊂ J1(Jq(E)) is locally
defined by the linear equations Φτ (x, yq) = 0, diΦ

τ (x, yq+1) ≡ aτµk (x)y
k
µ+1i + ∂ia

τµ
k (x)y

k
µ = 0

and has symbol gq+1 = Rq+1 ∩ Sq+1T
∗ ⊗ E ⊂ Jq+1(E). If fq+1 ∈ Rq+1 is over fq ∈ Rq,

differentiating the identity aτµk (x)f
k
µ(x) ≡ 0 with respect to xi and substracting the identity

aτµk (x)f
k
µ+1i(x) + ∂ia

τµ
k (x)f

k
µ(x) ≡ 0, we obtain the identity aτµk (x)(∂if

k
µ(x) − fkµ+1i(x)) ≡ 0 and

thus the restriction D : Rq+1 → T ∗ ⊗Rq.

DEFINITION: Rq is said to be formally integrable when the restriction πq+1
q : Rq+1 → Rq is

an epimorphism ∀r ≥ 0 or, equivalently, when all the equations of order q + r are obtained by r
prolongations only ∀r ≥ 0. In that case, Rq+1 ⊂ J1(Rq) is an equivalent formally integrable first
order system on Rq, called the Spencer form.

In actual practice, instead of having a linear differential operatorD : E jq→ Jq(E)
Φ→ Jq(E)/Rq =

F of order q, we have now the first Spencer operator D1 : C0 = Rq
j1→ J1(Rq) → J1(Rq)/Rq+1 �

T ∗⊗Rq/δ(gq+1) = C1 of order one induced byD : Rq+1 → T ∗⊗Rq. More generally, introducing the
exterior derivative d : ∧rT ∗ → ∧r+1T ∗ and the Spencer bundles Cr = ∧rT ∗⊗Rq/δ(∧r−1T ∗⊗gq+1),
the (r + 1)-Spencer operator Dr+1 : Cr → Cr+1 in the second Spencer sequence is induced by
D : ∧rT ∗ ⊗ Rq+1 → ∧r+1T ∗ ⊗ Rq : α ⊗ ξq+1 → dα ⊗ ξq + (−1)rα ∧ Dξq+1 in the first Spencer
sequence.

DEFINITION: Rq is said to be involutive when it is formally integrable and all the sequences

...
δ→ ∧sT ∗ ⊗ gq+r

δ→ ... are exact ∀0 ≤ s ≤ n, ∀r ≥ 0. Equivalently, using a linear change of
local coordinates if necessary in order to have δ-regular coordinates, we may successively solve the
maximum number βn

q = m − α, βn−1
q , ..., β1

q of equations with respect to the jet coordinates of

class n, n− 1, ..., 1 and Rq is involutive if Rq+1 is obtained by only prolonging the β
i
q equations of

class i with respect to d1, ..., di for i = 1, ..., n. In that case one can exhibit the Hilbert polynomial
dim(Rq+r) in r with leading term (α/n!)rn.

We obtain the following theorem generalizing to PD control systems the well known first order
Kalman form of OD control systems where the derivatives of the input do not appear:

THEOREM 1: When Rq is involutive, its Spencer form is involutive and can be modified to a
reduced Spencer form in such a way that β = dim(Rq)−α equations can be solved with respect to
the jet coordinates z1n, ..., z

β
n while z

β+1
n , ..., zβ+α

n do not appear. In this case zβ+1, ..., zβ+α do not
appear in the other equations.

In the algebraic framework already considered, only two possible formal constructions can be
obtained from M , namely homD(M,D) and M∗ = homK(M,K).

THEOREM 2: homD(M,D) is a right differential module that can be converted to a left dif-
ferential module by introducing the right differential module structure of ∧nT ∗. As a differential
geometric counterpart, we get the formal adjoint of D, namely ad(D) : ∧nT ∗ ⊗ F ∗ → ∧nT ∗ ⊗ E∗

where E∗ is obtained from E by inverting the local transition matrices, the simplest example being
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the way T ∗ is obtained from T .

REMARK: Such a result explains why dual objects in physics and engineering are no longer
tensors but tensor densities.

The filtration D0 = K ⊆ D1 = K ⊕ T ⊆ ... ⊆ Dq ⊆ ... ⊆ D of D induces a filtration/inductive
limit 0 ⊆ M0 ⊆ M1 ⊆ ... ⊆ Mq ⊆ ... ⊆ M and provides by duality over K the projective limit
M∗ = R → ... → Rq → ... → R1 → R0 → 0 of formally integrable systems. As D is generated by
K and T = D1/D0, we can define for any f ∈M∗:

(af)(m) = af(m) = f(am), (ξf)(m) = ξf(m)− f(ξm), ∀a ∈ K, ∀ξ = aidi ∈ T, ∀m ∈M

and check dia = adi+∂ia, ξη−ηξ = [ξ, η] in the operator sense by introducing the standard bracket
of vector fields on T . Finally we get (dif)

k
µ = (dif)(y

k
µ) = ∂if

k
µ − fkµ+1i in a coherent way.

THEOREM 3: R =M∗ has a structure of differential module induced by the Spencer operator.

REMARK: When m = 1 and D = k[d] is a commutative ring isomorphic to the polynomial
ring A = k[χ] for the indeterminates χ1, ..., χn, this result exactly describes the inverse system of
Macaulay with −di = δi ([2], §59,60).

DEFINITION: When A is a commutative integral domain and M a finitely generated module
over A, the socle ofM is soc(M) = ⊕socm(M) where socm(M) is the direct sum of all the isotypical
simple submodules of M isomorphic to A/m for m ∈ ass(M) ∩max(A). The radical of a module
is the intersection of all its maximum proper submodules. The quotient of a module by its radical
is called the top.

The secret of Macaulay is expressed by the next theorem:

THEOREM 4: Instead of using the socle ofM over A, one may use duality over k in order to deal
with the short exact sequence 0→ rad(R)→ R→ top(R)→ 0 where top(R) is the dual of soc(M).

However, Nakayama’s lemma cannot be used in general unless R is finitely generated over k
and thus over D. The main idea of Macaulay has been to overcome this difficulty by dealing only
with unmixed ideals when m = 1. As a generalization, one can state:

DEFINITION: One has the purity filtration 0 = tn(M) ⊆ ... ⊆ t0(M) = t(M) ⊆ M where the
dimension of the characteristic variety of Dm is < n − r when m ∈ tr(M) and M is said to be
r-pure if tr(M) = 0, tr−1(M) =M . A 0-pure module is a torsion-free module.

In actual practice, using an involutive Spencer form and δ-regular coordinates, let us define a
differential module Nr by the first order involutive system made up by the equations of class 1+
class 2 + ... +class (n− r) , obtaining therefore epimorphisms Nr+1 → Nr → 0 and Nr →M → 0,
∀0 ≤ r ≤ n with N0 = M .One can prove that the image of the induced morphism t(Nr) → t(M)
is tr(M) with tr+1(M) ⊆ tr(M).

THEOREM 5: The sequence 0 → M → ⊕p∈ass(M)Mp is exact. Moreover the images of all the
localizing morphisms M →Mp are primary modules if and only if M is pure, that is ass(M) only
contains equidimensional minimum primes. Moreover this primary embedding corresponds to a
primary decomposition of I and leads to decompose R into a sum of subsystems.

Theorem 1 and a partial localization providing the exat sequence 0→M → k(χ1, ..., χn−r)⊗M
when M is r-pure, also discovered by Macaulay ([2], §77, 82), lead to the following key result for
studying the identifiability of OD/PD control systems.

THEOREM 6: When M is n-pure the monomorphism of the preceding theorem becomes an
isomorphism (chinese remainder theorem) and the minimum number of generators of R is equal to
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the maximum number of isotypical components that can be found among the various components
of soc(M) or top(R), that is maxm∈ass(M){dimA/msocm(M)}.

EXAMPLE: When n = 1,m = 2, k = R and a is a constant parameter, the OD system
y1xx − ay1 = 0, y2x = 0 needs two generators when a = 0 but only one generator when a �= 0,
namely {ch(x), 1} when a = 1. Setting z = y1 − y2 when a �= 0 brings an isomorphic module
defined by the single OD equation zxxx − azx = 0 for the only z.

Let us now consider the conformal Killing system R̂1 ⊂ J1(T ):

ωrjξ
r
i + ωirξ

r
j + ξr∂rωij = A(x)ωij ⇒ nξkij − δki ξ

r
rj − δkj ξ

r
ri + ωijω

ksξrrs ⇒ ξkijr = 0, ∀n ≥ 3
obtained by eliminating the arbitrary function A(x), where ω is the Euclidean metric when n = 2
(plane) or n = 3 (space) and the Minskowskian metric when n = 4 (space-time). The brothers
Cosserat were only dealing with the Killing subsystem R1 ⊂ R̂1:

ωrjξ
r
i + ωirξ

r
j + ξr∂rωij = 0

that is with {ξk, ξki | ξrr = 0, ξkij = 0} when A(x) = 0 while, in a somehow complementary way,
Weyl was mainly dealing with {ξrr , ξrri}. Accordingly, one has:

THEOREM 7: The Cosserat equations ([1], p 137 for n = 3, p 167 for n = 4):

∂rσ
ir = f i , ∂rµ

ij,r + σij − σji = mij

are exactly described by the formal adjoint of the first Spencer operator D1 : R1 → T ∗ ⊗ R1.
Introducing φr,ij = −φr,ji and ψrs,ij = −ψrs,ji = −ψsr,ij , they can be parametrized by the formal
adjoint of the second Spencer operator D2 : T

∗ ⊗R1 → ∧2T ∗ ⊗R1:

σij = ∂rφ
i,jr , µij,r = ∂sψ

ij,rs + φj,ir − φi,jr

EXAMPLE: When n = 2, lowering the indices by means of the constant metric ω, we just need
to look for the factors of ξ1, ξ2 and ξ1,2 in the integration by part of the sum:

σ11(∂1ξ1 − ξ1,1) + σ12(∂2ξ1 − ξ1,2) + σ21(∂1ξ2 − ξ2,1) + σ22(∂2ξ2 − ξ2,2) + µ12,r(∂rξ1,2 − ξ1,2r)

THEOREM 8: The Weyl equations ([3], §35) are exactly described by the formal adjoint of the
first Spencer operator D1 : R̂2 → T ∗ ⊗ R̂2 when n = 4 and can be parametrized by the formal ad-
joint of the second Spencer operator D2 : T

∗⊗R̂2 → T ∗⊗R̂2. In particular, among the components
of the Spencer operator, one has ∂iξ

r
rj − ξrijr = ∂iξ

r
rj and thus the components ∂iξ

r
rj − ∂jξ

r
ri = Fij

of the EM field with EM potential ξrri = Ai coming from the second order jets (elations). It fol-
lows that D2 projects onto the first set of Maxwell equations described by the exterior derivative
d : ∧2T ∗ → ∧3T ∗ while, by duality, the second set of Maxwell equations thus appears among the
Weyl equations which project onto the Cosserat equations because of the inclusion R1 � R2 ⊂ R̂2.

REMARK: Though striking it may look like, there is no conceptual difference between the
Cosserat and Maxwell equations on space-time. As a byproduct, separating space from time, there
is no conceptual difference between the Lamé constants (mass per unit volume) of elasticity and
the magnetic (dielectric) constants of EM appearing in the respective wave speeds. This result per-
fectly agrees with piezzoelectricity (quadratic Lagrangian in strain and electric fields Aijk�ijEk ⇒
σij = AijkEk) and photoelasticity (cubic Lagrangian Bijkl�ijEkEl ⇒ Dl = (Bijkl�ij)Ek ⇒ refrac-
tion index n(�)) which are field-matter coupling phenomena, but contradicts gauge theory.

EXAMPLE: The free movement of a body in a constant static gravitational field �g is described
by d�x

dt − �v = 0, d�vdt − �g = 0, ∂�g
∂xi − 0 = 0 where the ”speed” is considered as a Lorentz rotation, that

is as a first jet. Hence an accelerometer merely helps measuring the part of the Spencer operator
dealing with second order jets (equivalence principle).

In order to justify the last remark, let G be a Lie group with identity e and parameters a
acting on X through the group action X ×G→ X : (x, a)→ y = f(x, a) and (local) infinitesimal
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generators θτ satisfying [θρ, θσ] = cτρσθτ for ρ, σ, τ = 1, ..., dim(G). We may prolong the graph of
this action by differentiating q times the action law in order to eliminate the parameters in the
following commutative and exact diagram where Rq is a Lie groupoid with source projection αq

and target projection βq when q is large enough:

0→ X ×G −→ Rq → 0
� αq � � βq

X ×G → X × X

The link between the various sections of the trivial principal bundle on the left (gauging proce-
dure) and the various corresponding sections of the Lie groupoid on the right with respect to the
source projection is expressed by the next commutative and exact diagram:

0→ X × G = Rq → 0
a = cst ↑↓↑ a(x) jq(f) ↑↓↑ fq

X = X

Introducing the Lie algebra G = Te(G) and the corresponding Lie algebroid Rq ⊂ Jq(T ), we
obtain the following commutative and exact diagram:

0→ X × G = Rq → 0
λ = cst ↑↓↑ λ(x) jq(ξ) ↑↓↑ ξq

X = X

where the upper isomorphism is described by λτ (x) → ξkµ(x) = λτ (x)∂µθ
k
τ (x) for q large enough.

The unusual Lie algebroid structure on X ×G is described by the formula: ([λ, λ�])τ = cτρσλ
ρλ�σ +

(λρθρ).λ
�τ − (λ�σθσ).λτ which is induced by the ordinary bracket [ξ, ξ�] on T and thus depends on

the action. Applying the Spencer operator, we finally obtain ∂iξ
k
µ(x)− ξkµ+1i(x) = ∂iλ

τ (x)∂µθ
k
τ (x).

CONCLUSION:
In gauge theory, the structure of EM is coming from the unitary group U(1), the unit circle in
the complex plane, which is not acting on space-time while we have explained the structure of EM
from that of the conformal group of space-time, with a shift by one step in the interpretation of
the (second) Spencer sequence involved because the ”fields” are now sections of C1 parametrized
by D1 and thus killed by D2. Accordingly, we may say:

” TO ACT OR NOT TO ACT, THAT IS THE QUESTION ”

and hope future will fast give an answer !.
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The parallel study of the three books quoted in the Introduction is new. However, most of the
individual results presented in this survey lecture can be found through the following references
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SPENCER, D.C.: Overdetermined Systems of Partial Differential Equations, Bull. Am. Math.
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POMMARET, J.-F.: Partial Differential Control Theory, Kluwer, Dordrecht, 2001.
POMMARET, J.-F.: Parametrization of Cosserat Equations, Acta Mech, 215, 43-55 (2010).
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The purpose of the talk is the constructive study of the concept of purity filtration of a
differential module introduced in algebraic analysis and the theory of D-modules. The purity
filtration is a natural filtration of a differential module defined by its submodules formed by
its elements of codimension (or grade) at least r.

The purity filtration was studied by Björk [1, 2] using spectral sequences, by Sato and
Kashiwara [6, 11] using associated cohomology and, more recently, by Pommaret [7, 8] using
modified Spencer forms. Moreover, in a recent “tour de force”, Barakat was able to implement
the computation of the corresponding spectral sequences [3] in a GAP 4 package called homalg
[4], which gives one a way to compute the purity filtration of a differential module.

In this talk, we show how the purity filtration can be simply characterized by means of
basic concepts and tools of module theory and homological algebra, which avoids the use of
sophisticated homological algebra concepts such as spectral sequences, associated cohomology
and Spencer cohomology. Moreover, an effective algorithm for the computation of the purity
filtration is explained [9, 10] and illustrated by means of its implementation in the Maple
package PurityFiltration built upon OreModules [5]. We also use the computation
of the purity filtration of a differential module to show that every linear system of partial
differential equations is equivalent to a particular block-triangular linear system of partial
equations, which allows an integration of the system in cascade by solving equidimensional
homogeneous linear systems [9, 10]. We show that the PurityFiltration package can be
used to find closed-form solutions of many over-/under-determined linear systems of partial
differential equations which cannot be integrated by Maple. Finally, we explain interesting
features of our algorithm using its recent implementation in the AbelianSystems package
of homalg, developed for abelian categories in collaboration with Barakat, which allows us
to start investigating the purity filtration of linear systems over non-regular Auslander rings
appearing, for instance, in algebraic geometry.
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Integration of Liouvillian Functions
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Abstract

A decision algorithm for finding elementary integrals of transcendental Liouvillian functions will
be outlined. Parameters that are linearly involved in the integrand can also be solved for, which
can be used to find linear relations for definite parameter integrals. Examples of indefinite and
definite integrals which can be handled will be given.

1. Introduction

In terms of differential algebra the problem of elementary integration can be stated
as follows. Given a differential field (F,D) and f ∈ F , compute g from some elementary
extension of (F,D) such that Dg = f or prove that no such g exists. This problem has
been solved for various classes of fields F . For rational functions (C(x), d

dx ) such a g
always exists and algorithms to compute it are known already for a long time. Risch’s
original algorithm (Risch (1969)) solves this problem for (F,D) being a transcendental
elementary extension of (C(x), d

dx ). Later this has been extended towards integrands be-
ing transcendental Liouvillian functions by Singer et al. (1985) via the use of regular
log-explicit extensions of (C(x), d

dx ). Also Bronstein (1990, 1997) and several other au-
thors published related results. Our algorithm extends this to handling transcendental
Liouvillian extensions (F,D) of the constants directly without the need to embed them

into log-explicit extensions. For example, this means that
�
xa dx = xa+1

a+1 can be com-
puted without including log(x) in the differential field F . In addition, the algorithm is
more efficient than the result in Singer et al. (1985) by introducing a reformulation of
the Rothstein-Trager criterion and incorporating results from Bronstein (1997).
All fields considered are implicitly understood to be of characteristic zero. Before

discussing the main results recall the following definitions.

Definition 1. Let (K,D) a differential field. A differential field extension (F,D) =
(K(t1, . . . , tn), D) is called a regular Liouvillian extension of (K,D), if

� The research was funded by the Austrian Science Fund (FWF): W1214-N15, project DK6

Email address: clemens.raab@risc.jku.at (Clemens G. Raab).
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(1) all ti are algebraically independent over K,
(2) Const(F ) = Const(K), and
(3) each ti is a Liouvillian monomial over Fi−1 := K(t1, . . . , ti−1), i.e., either

(a) Dti ∈ Fi−1, in this case ti is called primitive over Fi−1, or
(b) Dti

ti
∈ Fi−1, in this case ti is called hyperexponential over Fi−1.

Definition 2. Let (F,D) a differential field. A differential field extension (E,D) =
(F (t1, . . . , tn), D) is called an elementary extension of (F,D) if each ti is elementary over
Ei−1 := F (t1, . . . , ti−1), i.e.
(1) ti is algebraic over Ei−1, or
(2) Dti =

Df
f for some f ∈ Ei−1 (i.e. ti is a logarithm of f), or

(3) Dti
ti
= Df for some f ∈ Ei−1 (i.e. ti is an exponential of f).

We say that f ∈ F has an elementary integral over (F,D) if there exists an elementary
extension (E,D) of (F,D) and g ∈ E such that Dg = f .

2. Parametric integration

We present a decision procedure for the following parametric variant of the problem
of elementary integration.

Problem 3 (Parametric elementary integration). Given (F,D) a regular Liouvillian
extension of its subfield of constants C and f0, . . . , fm ∈ F .
Compute a vector space basis of all (c0, . . . , cm) ∈ Cm+1 such that the linear combination
c0f0 + · · · + cmfm has an elementary integral over (F,D), together with corresponding
g’s from some elementary extension of F such that

c0f0 + · · ·+ cmfm = Dg.

The fact that we consider the parametric problem is not merely a side-effect implied
by Theorem 4, but is also useful in its own right when we deal with definite integrals.
Definite integrals are not only computed via the evaluation of antiderivatives. If the
integral depends on a parameter one can try to compute linear difference/differential
equations that are satisfied by the parameter integral even when no antiderivative of
the integrand is available. This is based on the following principle, sometimes called
differentiating under the integral sign or Creative Telescoping. A relation of the form

c0f0(x) + · · ·+ cmfm(x) = g�(x),

upon integrating over some interval (a, b), gives rise to a relation of the corresponding
integrals

c0

� b

a

f0(x)dx+ · · ·+ cm

� b

a

fm(x)dx = g(b)− g(a).

3. Algorithm

In the following we will discuss some aspects of the algorithm that solves Problem 3.
For more details see Raab (2012). The algorithm follows the general recursive structure of
its precursors proceeding through the transcendental extensions one by one. Integrands

2nd Workshop on Differential Equations and Algebraic Methods

Proc-64



from F = C(t1, . . . , tn) are reduced to integrands from the differential subfield K =
C(t1, . . . , tn−1) and at the same time parts of the integral are computed by solving
auxiliary problems in K, which we do not mention in detail here.
Then a refined version of Liouville’s theorem has to be used for reducing the question of

having an elementary integral over (F,D) to having an elementary integral over (K,D).
Thereby the original problem is reduced to a problem of the same type but over a smaller
field. A special case of the following theorem is already implicitly contained in Singer et al.
(1985). When dealing with non-elementary extensions this naturally leads to a parametric
version of the problem as above even when we started with just one single integrand.

Theorem 4. Assume t is transcendental over (K,D) and C := Const(K(t)) = Const(K).
Let f ∈ K such that f has an elementary integral over (K(t), D), then the following hold.
(1) If t is elementary over K, then f has an elementary integral over K.
(2) If t is primitive over K, then there exists c ∈ C such that f−cDt has an elementary

integral over K.
(3) If t is hyperexponential over K, then there exists c ∈ C such that f − cDt

t has an
elementary integral over K.

Above refinement is crucial to obtain a decision procedure for Liouvillian extensions.
Without it some elementary integrals would not be found. Also Bronstein (1997) pre-
sented generalizations of parts of Risch’s algorithm to certain types of non-elementary
extensions, but he did not consider the appropriate parametric versions needed. So, for
example, with the results given there one does not find the integral

�
(x+ 1)2

x log(x)
+ li(x) dx = x li(x) +

�
2x+ 1

x log(x)
dx = (x+ 2) li(x) + log(log(x)),

where li(x) is the logarithmic integral li(x) =
� x

0
1

log(t) dt.

In some sense our algorithm can be viewed as unification of the algorithms presented
in (Singer et al., 1985, Theorem A1) and Bronstein (1997): On the one hand it is a full
decision procedure for parametric elementary integration over transcendental Liouvillian
extensions. On the other hand it also minimizes the computations done in algebraic
extensions and tries to avoid factorization into irreducibles as much as possible, which
improves the efficiency.
¿From the algorithmic point of view the main improvement compared to the previ-

ous algorithms is in how the necessary restrictions on the linear combinations of the
integrands are determined during computation of the logarithmic part of the integral.
To this end Singer et al. (1985) relies on irreducible factorization of the denominator
in CK[tn] with subsequent partial fraction decomposition. Whereas the algorithm for
the single-integrand case given in Bronstein (1997) avoids computing unnecessary alge-
braic extensions and complete factorization, but does not carry over to the parametric
case. However, reformulating the Rothstein-Trager resultant appropriately we obtained
an algorithm which is parametric, eliminates the need for full factorization, and reduces
computations in algebraic extensions.

4. Examples

First we briefly give an example involving polylogarithms that has an integral in the
same field the integrand is taken from.
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Example Let C = � and F = C(t1, t2, t3, t4), where Dt1 = 1, Dt2 =
1

t1−1 , Dt3 =

− t2
t1
, Dt4 =

t3
t1
. Here the polylogarithms Li2(x) = −

� x

0
log(1−t)

t dt and Li3(x) =
� x

0
Li2(t)

t dt
are represented by t3 and t4 respectively. Then the algorithm computes

�
Li3(x)− xLi2(x)

(1− x)2
dx =

x

1− x
(Li3(x)− Li2(x)) +

log(1− x)2

2
.

Even over regular Liouvillian extensions of more general (K,D) the algorithm also suc-
cessfully computes an antiderivative for some inputs. We illustrate this by the following
example using Bessel functions, where the integral is found in an elementary extension
of the input field.

Example Let K = �(π, n)(θ1, θ2), where Dθ1 = 1, Dθ2 = θ22 − 2n+1
θ1

θ2 + 1, and let

F = K(t1, t2), where Dt1 = (−θ2 + n
θ1
)t1, Dt2 =

2
πθ1t21

. Then (F,D) is a regular Liou-

villian extension of (K,D), where θ2 represents the shift quotient
Jn+1(x)
Jn(x)

, t1 represents

Jn(x), and t2 represents
Yn(x)
Jn(x)

. With this representation the following integral is straight-

forwardly obtained by the algorithm
�

1

xJn(x)Yn(x)
dx =

π

2
ln

�
Yn(x)

Jn(x)

�
.

We conclude with an example of a parameter integral, where we are interested in
computing a linear ODE satisfied by it.

Example Consider the parameter integral Ir(x) =
� π/2

0
(1−x2 sin(t)2)rdt and abbreviate

the integrand by f(r, x, t) := (1−x2 sin(t)2)r. Let C = �(i, r, x) and F = C(t1, t2), where

Dt1 = it1, Dt2 =
2irx2(t41−1)

x2t41+(4−2x2)t21+x2 t2. Then t1 represents e
it and t2 represents f(r, x, t).

We apply the algorithm to fi =
∂if
∂xi for i = 0, 1, 2 to obtain

x(1− x2)f2 + (2(r − 1)x2 + 1)f1 + 2rxf0 =
d
dt

�
rx sin(2t)(1− x2 sin(t)2)r−1

�
,

which translates to the following ODE for the parameter integral

x(1− x2)I ��r (x) + (2(r − 1)x2 + 1)I �r(x) + 2rxIr(x) = 0.

Note that the specializations r = ± 1
2 give the complete elliptic integrals E(x) and K(x).
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1. Introduction

The aim of this (ongoing) work is to develop methods of symbolic com-
putation for certain sets of analytic functions of several complex variables.
A central question is whether such a set S, which is given in terms of a
parametrization, has an implicit description in terms of partial differential
equations and inequations. In Plesken and Robertz (2010), this problem was
solved for parametrizations of the form

f1(α1(z)) g1(z) + . . .+ fk(αk(z)) gk(z), αi, gj fixed analytic, (1)

where z = (z1, . . . , zn), and methods were presented which compute parame-
ters f1, . . . , fk realizing a given u ∈ S; cf. the extended abstract of W. Plesken
in this collection. Here we concentrate on sets S of bilinear expressions

f1(α1(z)) g1(β1(z)) + . . .+ fk(αk(z)) gk(βk(z)), αi, βj fixed analytic. (2)

At the time of writing, more general results have been found than were
presented in the talk.

Whereas in the linear case (1) an implicit description in terms of linear
partial differential equations can always be computed, in the case (2) the
use of inequations cannot be avoided in general. The differential Thomas
decomposition into simple systems (Thomas (1937); Bächler et al. (2010)) is
a valuable tool in this context.

Email address: daniel@momo.math.rwth-aachen.de (Daniel Robertz)
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Among the possible applications of the work in this project we mention
improvement of symbolic solving of PDEs, in particular discussion of solu-
tions of a given form as above.

Related elimination problems for ordinary differential equations have been
treated in Gao (2003), Rueda and Sendra (2010).

2. Differential Elimination

The process of finding differential polynomials (Kolchin (1973)) in one
differential indeterminate that vanish under substitution of all functions in
S, which are all given as in (2), is a nonlinear differential elimination problem:
from

∂|µ|u

∂zµ
− ∂|µ|

∂zµ

�
k�

i=1

(fi ◦ αi) · (gi ◦ βi)

�
= 0, µ ∈ (Z≥0)

n, (3)

we would like to derive consequences that are polynomials in the uµ :=
∂|µ|u
∂zµ

.
One way to proceed is to fix an upper bound d on the order of differen-

tiation, define the ideal I generated by the left hand sides in (3), |µ| ≤ d,
where all (∂η fi) ◦ αi and (∂ζ gj) ◦ βj are replaced by algebraically indepen-
dent symbols, and compute the intersection of I with the polynomial ring
in the jet variables uµ, |µ| ≤ d. This subproblem can be solved by standard
elimination methods in commutative algebra, but is computationally very
difficult in general. We apply the “elimination by degree steering” method
developed in Plesken and Robertz (2008). As a termination criterion for the
differential elimination one has to show that the differential system does not
admit more analytic solutions than are given in S.

3. Examples

In work by Neuman, Rassias, Šimša and several others (cf. Rassias and
Šimša (1995) and the references therein), some generalizations of Wronskian
determinants have been developed to characterize certain decomposable func-
tions. We found new determinantal implicit descriptions of certain sets S of
analytic functions given as in (2). In general, the use of these determinantal
descriptions require partitioning the given set S by imposing inequations,
as is demonstrated by the following two examples. Note also that parame-
ters realizing a function in S are not uniquely determined in general (e.g.,
(x+ 1)y + yz = xy + y(z + 1) in the second example).

2
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Proposition 3.1. The set S = {f1(w)f2(x)+f3(y)f4(z) | fi analytic} admits
the following implicit description in terms of partial differential equations and
inequations. Define the following subsets of S (where each fi is an arbitrary
analytic function and f �

i denotes its first derivative):

S1 := {f1(w)+f3(y)} ∪ {f1(w)+f4(z)} ∪ {f2(x)+f3(y)} ∪ {f2(x)+f4(z)},
S2 := {f1(w)+f3(y)f4(z) | f �

3 �= 0 �= f �
4} ∪ {f2(x)+f3(y)f4(z) | f �

3 �= 0 �= f �
4},

S3 := {f1(w)f2(x)+f3(y) | f �
1 �= 0 �= f �

2} ∪ {f1(w)f2(x)+f4(z) | f �
1 �= 0 �= f �

2},
S4 := {f1(w)f2(x)+f3(y)f4(z) | f �

1 �= 0, f �
2 �= 0, f �

3 �= 0, f �
4 �= 0}.

Then S = S1� . . .�S4 and Si equals the set of analytic solutions of (Σ0,Σi),

Σ0 : uw,y = uw,z = ux,y = ux,z = 0, Σ1 : uw ux = 0, uy uz = 0,

Σ2 : uy,z �= 0, uw ux = 0,

����
uy uy,y

uy,z uy,y,z

���� = 0,
����

uz uy,z

uz,z uy,z,z

���� = 0,

Σ3 : uw,x �= 0, uy uz = 0,

����
uw uw,w

uw,x uw,w,x

���� = 0,
����

ux uw,x

ux,x uw,x,x

���� = 0,

Σ4 : uw,x �= 0, uy,z �= 0,

������

u uw uy

ux uw,x 0
uz 0 uy,z

������
= 0.

Proposition 3.2. The set S = {f1(x)f2(y)+f3(y)f4(z) | fi analytic} admits
the following implicit description in terms of partial differential equations and
inequations. Define the following subsets of S (where each fi is an arbitrary
analytic function and f �

i denotes its first derivative):

S1 := {f1(x) + f3(y)} ∪ {f2(y) + f4(z)},
S2 := {f1(x)+f3(y)f4(z) | f �

3 �= 0 �= f �
4},

S3 := {f1(x)f2(y) + f4(z) | f �
1 �= 0 �= f �

2},
S4 := {f2(y) (f1(x) + f4(z)) | f �

1 �= 0 �= f �
4},

S5 := {f1(x)f2(y) + f3(y)f4(z) | f �
1 �= 0 �= f �

2, f
�
3 �= 0 �= f �

4, f2/f3 �= const}.

Then S = S1� . . .�S5 and Si equals the set of analytic solutions of (Σ0,Σi),

Σ0 : ux,z = 0, Σ1 : ux uz = 0, uy,z = ux,y = 0,

3
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Σ2 : uy,z �= 0, ux,y = 0,

����
uy uy,y

uy,z uy,y,z

���� = 0,
����

uz uy,z

uz,z uy,z,z

���� = 0,

Σ3 : ux,y �= 0, uy,z = 0,

����
ux ux,x

ux,y ux,x,y

���� = 0,
����

uy ux,y

uy,y ux,y,y

���� = 0,

Σ4 : ux �= 0, uz �= 0,
����
u ux

uy ux,y

���� = 0,
����
u uy

uz uy,z

���� = 0,

Σ5 :





ux,y �= 0, uy,z �= 0,
����

ux ux,x

ux,y ux,x,y

���� = 0,
����

uz uy,z

uz,z uy,z,z

���� = 0,������

u uy uy,y

ux ux,y ux,y,y

uz uy,z uy,y,z

������
= 0,

����
ux ux,y

uz uy,z

���� �= 0.
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Abstract

The development of differential elimination techniques, similar to the algebraic existing ones, is
an active field of research. We study the implicitization, by differential resultants, of a system
P of n linear ordinary differential polynomial parametric equations (linear DPPEs) in n − 1
differential parameters. We consider a linear perturbation of P and we use it to give an algorithm
that returns an implicitization of P.

Key words: differential polynomial parametric equations, differential resultant, implicitization

1. Introduction

In (3), characteristic set methods were used to solve the differential implicitization
problem, for differential rational parametric equations. In (5), we defined linear complete
differential resultants as a generalization of Carra’Ferro’s differential resultant (1) (in the
linear case) and, we proved that when nonzero the differential resultant gives the implicit
equation of P. As in the algebraic case, differential resultants often vanish under special-
ization, which prevented us from giving an implicitization algorithm in (5). Motivated by
Canny’s method and its generalizations (see references in (2)), in the present work, we
consider a linear perturbation of a given system of linear DPPEs. An extended version
of this work can be found in (4).
Let K be an ordinary differential field with derivation ∂, ( e.g. Q(t), ∂ = ∂

∂t ). Let
X = {x1, . . . , xn} and U = {u1, . . . , un−1} be sets of differential indeterminates over
K. Let N0 be the set of natural numbers including 0. For k ∈ N0, we denote by xik
the k-th derivative of xi and, for xi0 we simply write xi. We denote by K{X} the ring

� Supported by the Spanish “Ministerio de Ciencia e Innovación” under the Project MTM2008-04699-

C03-01
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of differential polynomials in the differential indeterminates x1, . . . , xn. Analogously for
K{U}. As defined in (5), we consider the system of linear DPPEs

P(X,U) =





x1 = P1(U),
...

xn = Pn(U),

(1)

where P1, . . . , Pn ∈ K{U}, with degree at most 1 and not all Pi ∈ K, i = 1, . . . , n. There
exists ai ∈ K and an homogeneous differential polynomial Hi ∈ K{U} such that

Fi(X,U) = xi − Pi(U) = xi − ai +Hi(U).

Given P ∈ K{X ∪ U} and y ∈ X ∪ U , we denote by ord(P, y) the order of P in the
variable y. If P does not have a term in y then we define ord(P, y) = −1. To ensure that
the number of parameters is n − 1, we assume that, for each j ∈ {1, . . . , n − 1}, there
exists i ∈ {1, . . . , n} such that ord(Fi, uj) ≥ 0.
The implicit ideal of the system (1) is the differential prime ideal

ID = {f ∈ K{X} | f(P1(U), . . . , Pn(U)) = 0}.
Given a characteristic set C of ID then n − |C| is the (differential) dimension of ID. If
dim(ID) = n−1 then C = {A(X)} for some irreducible differential polynomial A ∈ K{X}.
We call A a characteristic polynomial of ID and A(X) = 0 an implicit equation of P(X,U).

2. Linear complete differential resultants from linear DPPEs

Linear complete differential resultants were defined in (5). The purpose of this def-
inition was, to adjust the number of differential polynomials needed to compute the
resultant to the order of derivation of the variables u1, . . . , un−1 in F1, . . . , Fn.
For each j ∈ {1, . . . , n− 1}, we define the positive integers

γj := min{oi −O(Fi, uj) | i = 1, . . . , n}, γ :=

n−1�

j=1

γj ,

O(Fi, uj) = ord(Fi, uj), if ord(Fi, uj) ≥ 0 andO(Fi, uj) = 0, if ord(Fi, uj) = −1. LetN =�n
i=1 oi then γ ≤ N − oi, for all i ∈ {1, . . . , n}. The linear complete differential resultant

∂CRes(F1, . . . , Fn) is the Macaulay’s algebraic resultant of the differential polynomial
set

PS :={∂N−oi−γFi, . . . , ∂Fi, Fi | i = 1, . . . , n},
which contains L =

�n
i=1(N − oi − γ + 1) polynomials in the following set V of L − 1

differential variables

V = {uj , uj1 . . . , ujN−γj−γ | j = 1, . . . , n− 1}.
The order u1 < · · · < un−1 induces an orderly ranking on U : ui,j < uk,l ⇔ (j, i) <lex

(l, k). For i = 1, . . . , n and k = 0, . . . , N − oi − γ define de positive integer l(i, k) =

(i− 1)(N − γ)−�i−1
h=1 oi + i+ k in {1, . . . , L}. The complete differential resultant matrix

M(L) is the L × L matrix containing the coefficients of ∂N−oi−γ−kFi as a polynomial

2
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in D[V] in the l(i, k)-th row, where the coefficients are written in decreasing order with
respect to the orderly ranking on U . In this situation:

∂CRes(F1, . . . , Fn) = det(M(L)).

The next matrices will play an important role in this theory.
• Let S be the n× (n− 1) matrix whose entry (i, j) is the coefficient of un−j oi−γn−j in
Fi, i ∈ {1, . . . , n}, j ∈ {1, . . . , n− 1}. We call S the leading matrix of P(X,U).

• Let ML−1 be the L× (L− 1) principal submatrix of M(L). We call ML−1 the principal
matrix of P(X,U).

3. Characterization of n − 1 dimensional systems of linear DPPEs

Let (PS) be the ideal generated by PS in K[X ][V ] and let [PS] be the differential ideal
generated by PS in K{X}. Let A be a characteristic set of [PS] and A0 = A ∩ K{X}.
By (3), ID = [PS] ∩K{X} = [A0]. By (5), Lemma 20, we know that A is a set of linear
differential polynomials.
Let K[∂] be the ring of differential operators with coefficients in K. Given a nonzero

linear differential polynomial B in ID there exist unique differential operators Fi ∈ K[∂],
i = 1, . . . , n such that

B(X,U) =
n�

i=1

Fi(Fi(X,U)).

If B belongs to (PS) ∩ K{X} then deg(Fi) ≤ N − oi − γ, i = 1, . . . , n. We define the
co-order of B in (PS) as the highest positive integer c(B) such that ∂c(B)B ∈ (PS).

Definition 1. Given a nonzero linear differential polynomial B in (PS) ∩ K{X} (with
the previous set up).
(1) We define the ID-content of B as a greatest common left divisor of F1, . . . ,Fn and

denote it by IDcont(B).
(2) There exist Li ∈ K[∂] such that Fi = IDcont(B)Li, i = 1, . . . , n and L1, . . . ,Ln are

coprime. We define the ID-primitive part of B as IDprim(B) =
�n

i=1 Li(xi − ai).
(3) If IDcont(B) ∈ K then we say that B is ID-primitive .

Theorem 2. If rank(S) = n− 1, the following statements are equivalent.
(1) The dimension of ID is n− 1.
(2) There exists a nonzero linear ID-primitive differential polynomial A in (PS)∩K{X}

such that L− rank(ML−1) = c(A) + 1.
In such situation A(X) = 0 is the implicit equation of P(X,U).

4. Perturbed systems of linear DPPEs and implicitization algorithm

Let p be an algebraic indeterminate over K such that ∂(p) = 0. Denote by Kp = K�p�
the differential field extension of K by p. A linear perturbation of the system P(X,U) is
a new system

Pφ(X,U) =





x1 = P1(U) + p φ1(U),
...

xn = Pn(U) + p φn(U),

3
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where the linear perturbation φ = (φ1(U), . . . , φn(U)) is a family of linear differential

polynomials in K{U}. For i = 1, . . . , n, let Fφ
i (X,U) = Fi(X,U)− p φi(U).

Let Dφ be the lowest degree of p in ∂CRes(Fφ
1 , . . . , F

φ
n ) and let ADφ

be the coefficient

of pDφ in ∂CRes(Fφ
1 , . . . , F

φ
n ). We write Dφ = −1 if ∂CRes(Fφ

1 , . . . , F
φ
n ) = 0. If Dφ ≥ 0

then ADφ
is a linear differential polynomial in (PS) ∩ K{X} as well as its ID-primitive

part Aφ. We call Aφ the differential polynomial associated to Pφ(X,U).

Theorem 3. Let us assume Dφ ≥ 0. If rank(S) = n − 1 and Dφ = c(Aφ) then ID has
dimension n− 1 and Aφ(X) = 0 is the implicit equation of P(X,U).

The next perturbation provides a system Pφ(X,U) of degree Dφ ≥ 0. We can assume
on ≥ on−1 ≥ · · · ≥ o1 to define φ = (φ1(U), . . . , φn(U)) by

φi(U) =





un−1,o1−γn−1 , i = 1,

un−i,oi−γn−i
+ un−i+1, i = 2, . . . , n− 1,

u1, i = n.

(2)

We outline the differential implicitization algorithm for linear DPPEs.
• Given the system P(X,U) of linear DPPEs, with rank(S) = n− 1.
• Decide whether the dimension is n−1 and in the affirmative case return a characteristic
polynomial of ID.
(1) Compute Pφ(X,U) with perturbation φ given by (2).

(2) Compute ∂CRes(Fφ
1 , . . . , F

φ
n ), Dφ and ADφ

. If Dφ = 0 RETURN ADφ
.

(3) Compute Aφ and c(Aφ). If Dφ = c(Aφ) RETURN Aφ.
(4) Compute rank(ML−1).
(5) If L− rank(ML−1) > c(Aφ) + 1 RETURN “dimension less than n− 1”.
(6) If L− rank(ML−1) = c(Aφ) + 1 RETURN Aφ.
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Solving Linear Inhomogeneous Differential

Equations.

Fritz Schwarz

Fraunhofer Gesellschaft, Institut SCAI, 53754 Sankt Augustin, Germany

Linear differential equations have been considered extensively in the mathematical

literature, beginning in the second half of the 19th century. For linear homogeneous

ordinary differential equations (ode’s) there exists a fairly complete theory, culminating

in differential Galois theory and algorithms for finding large classes of solutions. Here this

means always a closed form solution in some well defined function space; in particular

numerical or graphical solutions are excluded. For inhomogeneous equations, Lagrange’s

method of variation-of-constants allows finding a special solution if a fundamental system

for the homogeneous equation is known.

For linear partial differential equations (pde’s) the answer is much less complete. For

homogeneous equations factorizations and Loewy decompositions appear to be the best

tool for solving them. However, virtually nothing has been done for solving inhomoge-

neous pde’s. The situation is complicated by the fact that it does not seem to be possible

to adjust Lagrange’s method for pde’s.

Therefore a new approach is suggested that does not rely on Lagrange’s method.

It uses the right divisors that may exist for the differential operator corresponding to

the left-hand side of an equation, and constructs the inhomogeneities for the lower-

order equations corresponding to the factors. In a second step, a special solution for the

originally given equation is generated.

In this way, for reducible second-order equations in two independent variables the

complete answer is obtained. Furthermore, a certain inhomogeneous third-order system

is considered; it may occur when third-order linear homogeneous pde’s in the plane are

solved that are not completely reducible.

Linear second-order ordinary differential equations. Although for ordinary

equations Lagrange’s method of variation of constants allows generating a special solu-

tion for inhomogeneous equations, it is instructive to obtain it from a non-trivial Loewy

decomposition. In this way also the somewhat ad hoc nature of Lagrange’s proceeding

is avoided. The following proposition distinguishes the basic decomposition types; the

proof may be found in Schwarz (2010).
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Proposition 1. Let Ly = R be a reducible linear second-order ode. A special solution
y0 satisfying Ly0 = R may be obtained as follows. Define εi(x) ≡ exp

�
−
�
aidx

�
for

i = 1, 2 and D ≡ d/dx.
i) If L = (D + a2)(D + a1) there holds

y0 = ε1(x)

�
ε2(x)

ε1(x)

�
R(x)

ε2(x)
dxdx. (1)

ii) If L = Lclm(D + a2, D + a1) and a2 �= a1 there holds

y0 = ε1(x)

�
R(x)

ε1(x)

dx

a2 − a1
− ε2(x)

�
R(x)

ε2(x)

dx

a2 − a1
. (2)

In either case, y0 is Liouvillian over the extended base field.

The solution in case i) involves two nested integrations, whereas in case ii) there is
only a single one. This is due to the complete reducibility in the latter case; details may
be found in Chapter 2 of Schwarz (2007).
Linear second-order partial differential equations. The procedure of the pre-

ceding section is generalized now for solving linear inhomogeneous pde’s in x and y for an
unknown function z(x, y). As usual, equations with mixed or unmixed leading derivatives
are distinguished. Equations with leading derivative ∂xx are considered first.

Proposition 2. Let a reducible equation

Lz ≡ (∂xx +A1∂xy +A2∂yy +A3∂x +A4∂y +A5)z = R (3)

be given with A1, . . . , A5 ∈ Q(x, y). Define li ≡ ∂x + ai∂y + bi, ai, bi ∈ Q(x, y) for

i = 1, 2; ϕi(x, y) = const is a first integral of
dy
dx
= ai(x, y); ȳ ≡ ϕi(x, y) and the inverse

y = ψi(x, ȳ); both ϕi and ψi are assumed to be elementary. Furthermore let

Ei(x, y) ≡ exp
�
−
�

bi(x, y)|y=ψi(x,ȳ)dx
����

ȳ=ϕi(x,y)
(4)

for i = 1, 2. A special solution z0(x, y) satisfying Lz0 = R may be obtained by solving
first-order equations. Two cases are distinguished.

i) Decomposition L = l2l1. Defining

r(x, y) ≡ E2(x, y)
�

R(x, y)

E2(x, y)
���
y=ψ2(x,ȳ)

dx
���
ȳ=ϕ2(x,y)

(5)

a special solution is given by

z0(x, y) = E1(x, y)
�

r(x, y)

E1(x, y)
���
y=ψ1(x,ȳ)

dx
���
ȳ=ϕ1(x,y)

. (6)

ii) Decomposition L = Lclm(l2, l1). Defining

r ≡ r0

�
R

a2 − a1

dy

r0
and r0 = exp

�
−
�

b1 − b2
a1 − a2

dy
�

(7)
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a special solution is given by

z0 = E1(x, y)
� r(x, y)
E1(x, y)

���
y=ψ1(x,ȳ)

dx
���
ȳ=ϕ1(x,y)

−E2(x, y)
� r(x, y)
E2(x, y)

���
y=ψ2(x,ȳ)

dx
���
ȳ=ϕ2(x,y)

.

(8)

Both expressions (6) and (8) for the special solution z0(x, y) are Liouvillian over the
extended base field of Lz = R.

The general structure of the special solutions (6) and (8) is similar to that of a second-
order ode; it is more complicated due to the shifted integrals in the expressions Ei(x, y).
The results are similar for second-order equations with leading derivative ∂xy and de-
compositions into principal factors.
If an operator L ≡ ∂xy + A1∂x + A2∂y + A3 does not have a principal divisor, there

may be a non-principal Laplace divisor defined as follows. Let

lm ≡ ∂xm + am−1∂xm−1 + . . .+ a1∂x + a0 and kn ≡ ∂yn + bn−1∂yn−1 + . . .+ b1∂y + b0

be two ordinary operators w.r.t. the variable x or y respectively; ai, bj ∈ Q(x, y) for
all i and j. The ideal �L, lm� is called a Laplace divisor Lxm(L) if L and lm combined
form a Janet basis. A Laplace divisor Lyn(L) is defined analogously. Equations allowing
a Laplace divisor of order 2 or 3 three are considered next.

Proposition 3. Let the equation Lz ≡ (∂xy +A1∂x +A2∂y +A3)z = R be given. If the
corresponding homogeneous equation has a Laplace divisor Lxm(L) = �L, lm� with m = 2
or m = 3, the following linear inhomogeneous ode’s exist.

zxx + a1zx + a0z = r with ry +A1r = Rx + (a1 −A2)R,

zxxx + a2zxx + a1zx + a0z = r with

ry +A1r = Rxx + (a2 −A2)Rx + (a1 − a1A2 +A2
2 − 2A2,x)R.

(9)

If there is a Laplace divisor Lyn(L) = �L, kn� with n = 2 or n = 3, the following linear
inhomogeneous ode’s exist.

zyy + b1zy + b0z = r with rx +A2r = Ry + (b1 −A1)R,

zyyy + b2zyy + b1zy + b0z = r with

rx +A2r = Ryy + (b2 −A1)Ry + (b1 − b2A1 +A2
1 − 2A1,y)R.

(10)

A special solution z0(x, y) is obtained by solving the inhomogeneous equation lmz = r or
knz = r and adjusting the indeterminate elements such that Lz0(x, y) = R.

A special third-order system. The left intersection ideal of two first-order operators
in the plane in general is not principal as has been shown by Grigoriev and Schwarz
(2002). Generically it is generated by two third-order operators that form a Janet basis.
As a consequence, whenever a third-order equation is not completely reducible but allows
only two first-order right factors with a non-principal left intersection, finding the third
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element of a differential fundamental system requires to solve the inhomogeneous third-
order system corresponding to this intersection ideal. A special solution is determined
next.

Proposition 4. Consider the system

L1z ≡ (∂xxx +A1∂xyy +A2∂yyy +A3∂xx +A4∂xy +A5∂yy

+A6∂x +A7∂y +A8)z = R1,

L2z ≡ ∂xxy +B1∂xyy +B2∂yyy +B3∂xx +B4∂xy +B5∂yy

+B6∂x +B7∂y +B8)z = R2.

(11)

It is assumed that the coefficients Ai and Bj satisfy the coherence conditions such that the
left-hand sides form a Janet basis, and that R1 and R2 satisfy the necessary consistency
conditions. Let both L1 and L2 allow first-order right factors li ≡ ∂x+ai∂y+ bi, i = 1, 2;
the Ei(x, y) are again defined by (4). A special solution z0 is given by

z0 = E1(x, y)
�

r(x, y)

E1(x, y)
dx− E2(x, y)

�
r(x, y)

E2(x, y)
dx. (12)

The inhomogeneity r(x, y) obeys the system

rxy +
b1 − b2
a1 − a2

rx +
�
A3 +B3(a1 + a2)− b1 − b2

+2
(a1 − a2)x
a1 − a2

+
a1,ya2 − a2,ya1

a1 − a2

�
ry

+ 1
a1 − a2

��
A3 +B3(a1 + a2) + b1 + b2

�
(b1 − b2)

+2(b1 − b2)x + b1,ya2 − b2,ya1

�
r = −R2 − R1

a1 − a2
,

ryy +
�
B3 +

(a1 − a2)y
a1 − a2

+ b1 − b2
a1 − a2

�
ry

+
�
(b1 − b2)y
a1 − a2

+B3
b1 − b2
a1 − a2

�
r = − R2

a1 − a2
.

(13)

This system has been solved in Proposition 3.

This result allows determining a special solution for (11) that is guaranteed to be
Liouvillian over its extended vase field. If only a single right factor is divided out of L1

or L2, the resulting second-order operators are in general irreducible and the solution
process terminates without a conclusive answer.
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Towards Invariant Solutions for operators

DxDy + aDx + bDy + c

Ekaterina Shemyakova

Western University. Canada.

Abstract

Darboux transformation (DT) of operators of the form L = DxDy + aDx +
bDy + c is a part of the techniques for solving linear and non-linear PDEs.
Darboux formulas allow to construct a DT L → L1 for any non-zero z1 ∈
kerL. Unfortunately, the corresponding transformation of kernels kerL →
kerL1 transforms z1 into 0, and z1 cannot be re-used.

As a first idea on how to overcome this problem, we introduce notion of
X- and Y -invariants, which possess several relevant properties.

Keywords: Darboux tranformation, invariant solution

1. Darboux transformations (DTs)

Let K be a differential field of characteristic zero with commuting deriva-
tions ∂x, ∂y. Let K[D] = K[Dx, Dy] be the corresponding ring of linear
partial differential operators over K. Operators L ∈ K[D] have the gen-
eral form L =

�d
i+j=0 aijD

i
xD

j
y, where aij ∈ K. The formal polynomial

SymL =
�

i+j=d aijX
iY j in some formal variables X, Y is called the symbol

of L. One can either assume field K to be either differentially closed, or sim-
ply assume that K contains the solutions of those PDEs that we encounter
on the way.

DT is a classical tool of super-symmetric quantum mechanics and inte-
grable systems. In these domains, DT is a piece of a large theory involving
either shape invariance or the dressing method, see e.g. Olver (1988) and
Tsarev (2000).

An operator L1 ∈ K[D] is called a generalized DT (gDT) of an operator
L ∈ K[D], if Sym(L) = Sym(L1), and there exist operators N ∈ K[D] and
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M∈ K[D] such that
N ◦ L = L1 ◦M . (1)

If L is a hyperbolic operator of second order,

L = DxDy + aDx + bDy + c , (2)

a, b, c ∈ K, and M of the form M = Dx + m, or M = Dy + m, m ∈ K,
then this is a classical DT considered by Darboux (1889). Two special cases
M = Dx + b andM = Dy + a are known as Laplace transformations.

Theorem 1.1. (Darboux (1889)) Let z1 ∈ kerL for some (2), then operator
M constructed using Darboux Wronskian formulas, that is

M(z) = −

����
z zx
z1 (z1)x

����
z1

,


corresp. M(z) = −

����
z zy
z1 (z1)y

����
z1


 (3)

defines a DT.

Theorem 1.2. (Shemyakova (2012)) Let a DT of (2) is defined by M of
the form M = Dx+m (or M = Dy+m), m ∈ K. Then it is either a Laplace
transformation, or operator M can be constructed using Darboux Wronskian
formulas (3) for some z1 ∈ kerL.

Given an invertible element g ∈ K, a gauge transformation of L ∈ K[D]
is operator Lg = g−1Lg. Functions h = ab + ax − c and k = ab + by − c do
not change under gauge transformations of operators of the form (2), and,
therefore, these two functions are differential invariants of such operators un-
der gauge transformations. There are infinitely many differential invariants.
One can prove that each of them can be generated by algebraic combination
of h and k and their derivatives. Invariants h and k are known as h and k
Laplace invariants. Gauge transformations split operators of the form (2)
into equivalence classes, each uniquely defined by the values of h and k.

2. X- and Y -invariants

Let g ∈ K be an invertible element, consider Lg. We can consider the
corresponding tranformation of kernels, ker(L) → ker(Lg): z �→ z� = zg−1.
So we can consider gauge transformations of pairs (z,L), z ∈ kerL.

2
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Lemma 2.1. Functions r = −b − zx
z
and q = −a − zy

z
are differential

invariants for the pairs (z, L), z �= 0, z ∈ kerL.
Theorem 2.2. Let r �= 0, q �= 0 are constructed using some z �= 0, z ∈ kerL,
then these r and q must satisfy the following equalities:

h− k− ry +

�
k

r

�

x

+ (ln r)xy = 0 , h− k+ qx−
�
h

q

�

y

− (ln q)xy = 0 , (4)

where h and k are Laplace invariants of L.

The coefficients of (4) depend only on Laplace invariants h and k. Thus,
they are the same for operators belonging to the same equivalence class. We
shall call the solutions r and q of (4) X- and Y -invariants, correspondingly.

Lemma 2.3. For every X- (or Y -) invariant r (or q) there is unique (up to a
multiple) z such that z ∈ kerL and r = −b− zx/z (corresp. q = −a− zy/z).

Thus, there is a one-to-one (up to a multiple) correspondence between
solutions r of (4) and solutions of operator L. Each solution r of (4) gives a
unique (up to a multiple) solution for each operator belonging to the equiv-
alence class defined by h and k.

3. X- and Y -invariants under DTs

Let kerX(L) and kerY (L) be the sets of X- and Y - invariants of (2). Let
z ∈ kerL, z �= 0, and r, q be the corresponding X- and Y -invariants. Since
z ∈ kerL, z �= 0, then by Theorem 1.1 operators

M = Dx −
zx
z
= Dx + r + b , M = Dy −

zy
z
= Dy + q + a

define some DTs, which we shall call X- and Y - DTs, correspondingly. X-
and Y - DTs imply R-linear tranformations kerL → kerL1. In turns out that
these transformations can be considered for X- and Y - invariants also.

Theorem 3.1. Let r0 ∈ kerX(L), and L1 be the result of the corresponding
X-DT. Then kerX(L)→ kerX(L1) is defined by

r �→ r +
�r0
r

�
x

r0
r0 − r

.

Analogous formulas are true for Y -invariant q0 under Y -DT.

3

2nd Workshop on Differential Equations and Algebraic Methods

Proc-81



Figure 1: Illustration for Theorem 3.1

Theorem 3.2. Let q0 ∈ kerY (L), and L1 is the result of the corresponding
Y -Darboux transformation. Then kerX(L)/{r0} → kerX(L1) is defined by

r �→ −q0x + h− q0r

q0 − q
,

where q is the corresponding to r Y -invaraint of L, and r0 is the corresponding
to q0 X-invariant of L.
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