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Abstract. In earlier work presented at CICM, four theorem provers (Is-
abelle, Mizar, Hets/CASL/TPTP, and Theorema) were compared based
on a case study in theoretical economics, the formalization of the land-
mark Theorem of Vickrey in auction theory. At the time of this compari-
son the Theorema system was in a state of transition: The original Theo-
rema system (Theorema 1) had been shut down by the Theorema group
and the successor system Theorema 2.0 was just about to be launched.
Theorema 2.0 participated in the competition, but only parts of the sys-
tem were ready for use. In particular, the new reasoning engines had not
been set up, so that some of the results in the system comparison had
to be extrapolated from experience we had with Theorema 1. In this
paper, we now want to compare a complete formalization of Vickrey’s
Theorem in Theorema 2.0 with the original formalization in Isabelle. On
the one hand, we compare the mathematical setup of the two theories
and, on the other hand, we also give an overview on statistical indica-
tors, such as number of auxiliary lemmas and the total number of proof
steps needed for all proofs in the theory. Last but not least, we present
a shorter version of proof of the main theorem in Isabelle.

1 Introduction

The Theorem of Vickrey [13] formulates a key property of so-called second-price
auctions. In this setting, one considers n ∈ N bidders participating in the auction
of a single indivisible good. Each bidder submits a sealed bid, a bidder with the
highest bid wins, and she has to pay the price given by the maximum of the
remaining bids.

The Theorem of Vickrey provides a bidding strategy for participants in a
second-price auction, namely it says, informally speaking, that truthful bidding,
i. e. bidding the true valuation of the good, is a weakly dominant strategy for
every participant, i. e. for each bidder the payoff is greater or equal to the payoff
resulting from a different bid, and that truthful bidding is also efficient, i. e. it
is guaranteed that the winner is a bidder with maximal valuation of the good.
? The research was funded by the Austrian Science Fund (FWF): P 29498-N31



As part of an effort to implement an auction theory toolbox [5], which should
assist auction designers in the formal verification of properties of the auction
mechanisms they design, four proof assistant systems of different nature (Is-
abelle [11, 14], Mizar [4, 1], Hets/CASL/TPTP [10, 9, 12], and Theorema [15])
were compared with respect to their suitability as a common platform for the
auction theory toolbox [6]. At the time of publication the formalization in Is-
abelle was complete, whereas the Theorema formalization only contained the
formulation of the theorem and all necessary definitions. Due to the complete
redesign and reimplementation of the Theorema system at that time, the proofs
were still missing and, in particular, the intermediate lemmas and their proofs
were not yet known. The assessment of Theorema 2.0 in this comparison was
therefore based on one hand on the user-interface, which allowed to judge the
effort needed by a user to formulate the desired statements and the quality in
which input and output of the system are presented to a user, and on the other
hand on experience we had with the proving mechanisms in the predecessor
system Theorema 1. The main motivations for the current paper are to close
the gap of the missing formalization in Theorema 2.0 and to demonstrate the
suitability of Theorema 2.0 as a platform for future formalization projects.

The definitions of the basic auction theory concepts follow the informal in-
troduction given in [6], which is in turn based on influential auction theory
literature [7, 8]. We then compare the Theorema formalization to the known for-
malization in Isabelle, which was the basis for the original assessment in [6]. We
concentrate on differences and similarities in the structure of the formalization
and in technical details concerning the formalization approaches chosen in the
two systems. Moreover, a new proof in Isabelle is given based on the automati-
cally generated proof of the main theorem in Theorema 2.0.

2 The Two Systems: A User’s Point of View

In this section we want to sketch briefly how a task of “formalizing some part of
mathematics” is carried out typically in the two systems Theorema and Isabelle.
Theorema 2.0 provides a user interface based on Mathematica technology, for
its details we refer to [2], for examples see the screenshots in Fig. 3. When
it comes to proving, Theorema is designed as a multi-method system, i. e., it
provides various proving methods that can be selected by the user depending on
the application domain. Typically, a method consists of a collection of inference
rules and a strategy to apply the rules in order to generate a complete proof in a
fully automated fashion. One of the main improvements in Theorema 2.0 is the
easy customization of pre-defined prove-methods1. Each inference rule can be
deactivated by a single mouse-click and rule-priorities can easily be adjusted via
drop-down menues in the Theorema-GUI. The primary goal in the Theorema
1 It should be noted that not all methods that were implemented in Theorema 1 are al-
ready available in Theorema 2.0. The standard method available, which was used also
in the current formalization, is a natural-deduction-like prover for first-order predi-
cate logic with certain enhancements for Theorema-specific language constructs.
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system is to provide well-curated default settings such that the fully automated
proofs appear as if written by a well-trained mathematician.

In order to prove a formula G w. r. t. a knowledge base K the user has to just
mark the formula G in the notebook, select all formulas that constitute K by
mouse-click in the Theorema-GUI, and configure the prove method if necessary.
All the rest is then done fully automatically, the resulting proof object is stored
in a separate file, and a link to a human-readable presentation of the proof is
put into the notebook. The proof search may fail when no applicable inference
rule is available anymore, when a predefined search-depth is reached, or when
a pre-defined search-time is exhausted. A valuable feature in case of a failed
proof is the possibility to inspect failing proofs in order to come up with an
improved setup for the next prove-run. By reading a failed proof one often gets
the idea, which additional lemma in the knowledge base would help the prover
to succeed (or at least to proceed further). Other possibilities to improve the
setup include the activation/deactivation of certain inference rules (in order to
prevent the prover from running into an undesired path) and the modification
of rule-priorities (in order to force the prover into a desired path). This phase
of fiddling with the prover setup is interactive, sometimes non-trivial, and very
similar to what a mathematician is faced when doing proofs with pencil and
paper (searching for auxiliary knowledge, changing one’s prove strategy, etc.).
A typical approach for getting started with a proof is to let it run with small
search-depth and low search-time with only definitions in the knowledge base.
The proof will probably fail. Then inspect the failing proof and draw conclusions
for an improved setup. If things go well, increase search-depth and search-time.

Proving in Isabelle proceeds interactively, meaning that every step in a proof
must be written down explicitly by the user. One of the main differences to
Theorema (at least at the moment) is that these steps can be huge: one single
application of a powerful proof method like metis could potentially solve goals
that need dozens of steps in Theorema. In that sense, proving in Isabelle could
also be regarded (semi-)automatic: the user outlines the main structure of the
proof and then, for each remaining subgoal, invokes tools like Sledgehammer for
automatically finding relevant facts from the background theory together with
suitable proof methods that close the respective subgoals. We refer to [14] for a
more thorough exposition of working with Isabelle.

3 The Two Formalizations: A Structural Comparison

3.1 The Content of the Formalizations

Fig. 1 shows the structure of the entire theory developed in Theorema.2 The
labels in the graph stand for individual formulas (Di are definitions, Li are
2 Theorema knowledge archives, which will be an efficient way of storing Theorema
formalizations for later use in a structured hierarchical build-up of theories, are
not yet available in the current release of Theorema 2.0. Currently, the formal-
ization of Vickrey’s Theorem is written in one Mathematica/Theorema notebook
containing the statement of all pieces of formalized maths (definitions, lemmas, and
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Fig. 1. The dependency graph of the formalization in Theorema.

Lemmas) and an edge F → G in the graph means ‘formula F is needed in the
proof of formula G’.

In Theorema we use natural numbers 1, . . . , n for the participants in the auc-
tion. We then define the basic auction theory concepts bids, valuations, payments,
and allocations as n-tuples of numbers (Def. D1–D3). In fact, a bid (valuation,
payment) tuple b (v, p) contains non-negative numbers, where bi (vi, pi) repre-
sents participant i’s bid (valuation, payment) of the good. An allocation tuple
x contains exactly one 1 and otherwise 0, where xi = 1 means that participants
i gets the good. Given a valuation v, an allocation x, and a payment p, partici-
pant i’s payoff (Def. D4) is then just vixi − pi, i. e. if she gets the good it is the
difference of her valuation and the payment, if she does not get the good the
payoff is 0.

For truthful bidding we have to use valuations as bids, hence we need a
property stating that a valuation is always also permitted as a bid (Lemma
L1 in Fig. 1).3 Then we show from the definition of allocations that the good
cannot be assigned to more than one bidder (Lemma L2). Next we define the
basic ingredients of a second-price auction, such as the outcome of a second-
price auction and the participant i being winner (or loser) in a second-price
auction (Def. D5–D7). Fig. 1 displays nicely that the two statements in the
main theorem are not proved directly from the definitions, but we introduce one
layer of intermediate lemmas (L3–L8), from which the theorems are then proved.
The proofs of the lemmas in this layer only need the definitions of the concepts
involved, with the only exception being Lemma L4, which states that in a second-
price auction there can be at most one winner. The proof of this statement needs
Lemma L2 in addition to the definitions of a second-price auction and an auction-

theorems). A proof in Theorema 2.0 is represented in a data-structure called proof
object, which contains the information about all logical steps the proof consists of.
Proof objects and additional statistics about the proof run and user and system
settings are stored in separate files. The Theorema formalization thus consists of
the Theorema notebook together with its accompanying files, the current formal-
ization being available for download in zip-format from the Theorema homepage at
www.risc.jku.at/research/theorema/software/Vickrey.zip.

3 This lemma could be omitted also, the four steps of its proof could as well be done
in an extra branch of the proof of the main theorem. We rather see it as a means to
structure the theory.
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Fig. 2. The dependency graph of the formalization in Isabelle.

winner. The proof of the first part of Vickrey’s theorem, truthful bidding being a
weakly dominant strategy, uses above-mentioned Lemma L1, another auxiliary
Lemma L3 (every participant in a second-price auction either wins or loses), and
the 4 key Lemmas L5 to L8, which encapsulate knowledge about payments and
allocations in case of modified bids. Lemmas L5 and L6 cover the cases where
participant i wins with bid bi and wins/loses with a modified bid a. Lemmas L7
and L8 are their counterparts for the case when i loses with bid bi. The second
part of the theorem, efficiency of truthful bidding in a second-price auction, only
needs aforementioned Lemma L4 and some definitions.

The formalization in Isabelle we used for our comparison is the one obtained
from the web-page of the ForMaRE project.4 It was created with Isabelle2013
and unfortunately contains some auxiliary lemmas whose proofs are not valid
in the current version of Isabelle any more.5 A vastly improved version of the
formalization, which is concerned with the more general class of combinatorial
Vickrey-Clarke-Groves auctions, is contained in the Archive of Formal Proofs
(AFP) [3] and thus guaranteed to work in the current version of Isabelle. How-
ever, the AFP-version does not include the formulation of Vickrey’s theorem
that is the subject of the Theorema formalization, thus, it is not suitable as a
reference for our present comparison.

The structure of the formalization in Isabelle, shown in Fig. 2, roughly re-
sembles that of the formalization in Theorema: after proving some general facts
about the maximum of functions over (finite) sets in theory Maximum.thy, and
about vectors of real numbers in Vectors.thy (which does not have a coun-
terpart in Theorema), the authors first introduce a couple of general concepts
related to single-good auctions (e. g. valuations, allocations, bids, etc.) in theory
SingleGoodAuction.thy. From this theory, the only lemma, that is needed later
on in the proofs of the two main theorems, is Lemma L1; this lemma exactly
corresponds to Lemma L1 in the Theorema formalization. Next comes the core
4 www.cs.bham.ac.uk/research/projects/formare/code/auction-theory/isabelle/
5 The proofs of the important theorems are still fine, though.
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theory of the whole formalization: SecondPriceAuction.thy states the property
of being a second-price auction in terms of the vectors of bids and payments and
in addition introduces various other auxiliary notions (e. g. winners and losers of
second-price auctions, as in Theorema). Furthermore, the authors prove several
lemmas, for instance that second-price auctions result in non-negative payments
for all participants (L11), that every second-price auction is also a single-good
auction (L14), what the payoffs of the winner and the losers, respectively, are,
and, most importantly, what the payoff of the winner is if she deviates from her
valuation (L21). Finally, theory Vickrey.thy contains the statements and proofs
of the two main theorems about weakly dominant strategies (Theorem vick-
reyA) and efficiency (Theorem vickreyB) in second-price auctions; the defini-
tions of weakly dominant strategies and efficiency are put into a separate theory
SingleGoodAuctionProperties.thy.

Still, there are also some essential structural differences between the formal-
izations in Theorema and in Isabelle. First, as already indicated above, the latter
one includes theories about vectors of real numbers and about properties of the
maximum of functions over sets. One of these properties, which features a key
role in the proof of vickreyA about weak dominance, is the obvious fact that
changing the value of a function f at x does not change the maximum of that
function f over the set A, provided that x 6∈ A. In Theorema, in contrast, this
property is not stated as a formula on the object level, but on the meta level in
a specific set of simplification rules for ‘max’, which is a built-in construct in the
Theorema language. For more details, we refer to Section 4.

The second main difference is that the ultimate goal of the authors of the
formalization in Isabelle apparently not only was to prove the two Vickrey-
theorems, but to build up an auction theory toolbox that aims at formally check-
ing properties of various—potentially complex—types of auctions. Hence, their
formalization not only consists of definitions and results used in the proofs of the
two theorems, but also many other definitions, lemmas and theorems that are
needed elsewhere. Moreover, several of the definitions/lemmas that are needed
are stated in a more general form than actually required. For instance, the def-
inition of an equilibrium in weakly-dominant strategies is given for arbitrary
classes of single-good auctions in Isabelle, whereas in Theorema it is restricted
to second-price auctions. This is the main reason why the dependency graph of
the Isabelle formalization, shown in Fig. 2, is considerably more complex than
that of the Theorema formalization shown in Fig. 1, although the former already
omits all definitions and lemmas irrelevant for the two main theorems.

Furthermore, a minor structural difference is that the four crucial lemmas
L5–L8 in the Theorema formalization do not have analogues in Isabelle. Instead,
the four cases in the proof of vickreyA they correspond to are proved directly,
without making use of any lemmas of this kind.

3.2 The Size of the Formalizations

In [6] the ‘de Bruijn factor’, i. e. the formalization size divided by the size of an
informal TEX-source, measured after stripping comments and xz-compression,
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was used as criterion for the complexity/effort of the formalization. Theorema
has already been exempted from that part of the comparison at that time due
to the formalization missing the proofs. Still now with all proofs available, we
do not think that measuring a Theorema formalization in terms of megabytes
is the appropriate thing to do. Proofs are generated automatically including
all the formatting of formulas and their nice appearance in the user front-end
(including e. g. hyperlinks, tooltips, etc.). Since they need not be typed manually,
their length in terms of kilo- or megabytes is irrelevant. Rather, a much more
accurate measure for the effort to read and understand a proof is its size in
terms of proof steps.6 In Theorema there is a quite natural notion of proof step,
it is one application of a proof rule. It should be mentioned, however, that not
every proof rule needs to correspond to exactly one inference rule in classical
logic. Theorema allows also specialized proof rules, which might combine several
elementary inferences into a more complex step, or might involve rather complex
computations in the background. Still, proof rules in Theorema are designed
according to the principle that one step in a proof should be just as big that
it can be perceived easily by a reader of a certain target audience. In the case
of Vickrey auctions, we use a standard predicate logic prover enhanced with a
few special rules dealing with tuple operations and the maximum function, hence
targeting an audience that is familiar with the basic rules of logic, tuples and
maximum, not more.

The entire formalization of Vickrey’s Theorem in Theorema consists of 10
proofs with a total number of 171 proof steps. The most involved one is the
proof of the first part of the theorem (truthful bidding is a weakly dominant
strategy) with 41 steps.7 Although the second part of the theorem (efficiency of
truthful bidding in a second-price auction) is pretty straight-forward when given
informally, it is interesting that the formal proof still needs 20 steps, ranking it
as the fourth-biggest of all proofs.

The whole formalization in Isabelle consists of 247 proof steps in total. Note,
however, that in Section 6 we illustrate how this number can be decreased to 185
by modeling the proof of vickreyA exactly after the proof of the corresponding
theorem in Theorema. Counting proof steps in Isabelle is somewhat tricky, espe-
cially if the proofs are written in the Isar language: it is not clear how to count
individual statements, whether to count them as one proof step, several steps, or
not at all. For instance, one could argue that the combination ‘unfolding 〈defs〉
by simp’, which unfolds definitions of constants in the current goal and then
proves it by simplification, counts as two proof steps; the same effect, however,
6 The number of steps is no measure for the effort needed to generate the proof, since
the steps are generated automatically.

7 To get a feeling, how big a 41-step proof is: Theorema’s proof display with natural-
language proof explanation consumes ample space because the explanation of every
proof step starts in a new line and every formula is printed nicely 2D-formatted in
a separate line (see a sample screen-shot of a proof in Fig. 4). In this format the
proof is approximately 5 pages. Its fully automated generation took 110 seconds on
a standard laptop (4 cores 2.20 GHz each), 106 seconds for proof generation plus
4 seconds for subsequent simplification of the generated proof.
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could also be achieved by simply writing ‘by (simp add: 〈defs〉)’, which would
reasonably only count as one single proof step. Keeping these considerations in
mind, it is obvious that there are many different ways of counting proof steps
in Isabelle/Isar, and we do not claim that the counting schema we employed to
arrive at the aforementioned 247 steps is the best one. Still, we believe that it is
the fairest one for comparing proofs in Isabelle to proofs in Theorema. Roughly,
every occurrence of fix, assume, obtain, have, define, unfolding, qed, next
counts as 1 step; every occurrence of of, OF etc. counts as 1 step, too; and every
occurrence of proof, apply and by counts as n steps, where n is the num-
ber of proof methods passed as arguments. Hence, even powerful proof methods
like auto, metis etc. only count as 1 step, although simulating their behavior in
Theorema would require lots of steps there.

4 The Two Formalizations: A Technical Comparison

Besides the structural differences between the two formalizations related to the
different degrees of generality as discussed in the previous section, there are some
technical differences—and similarities—as well.

A second-price auction is some mechanism that, given the number of partic-
ipants n and the bids b, results in an allocation x of the good and a payment
p. In Theorema, we decided to model the participants as natural numbers 1 to
n with the effect that bids, valuations, allocations, and payments can be mod-
eled as n-tuples of numbers, which are a built-in construct in Theorema. For
1 ≤ i ≤ n the ith entry of such a tuple is then just the bid/valuation/alloca-
tion/payment of participant i. The key property of being a second-price auc-
tion outcome is modeled in Theorema as a 4-ary predicate secondPriceAuction

on bids b, allocations x, payments p, and the number of participants n, where
secondPriceAuction[b, x, p, n] expresses that x and p satisfy the properties of a
second-price auction for given b and n. The concepts ‘being winner/loser in a
second-price auction’, ‘being a weakly dominant strategy in a second-price auc-
tion’, and ‘being an efficient allocation’ are also formulated as predicates on the
respective tuples.

In contrast, the formalization in Isabelle makes heavy use of sets. More con-
cretely, a general single-good auction in Isabelle is defined as a 4-tuple (N, b, x, p)
consisting of the set of participants N , their bids b, the allocation x and the pay-
ment p, where bids, allocations, and payments are given as functions from type
nat to type real.8 Special kinds of auctions, like second-price auctions, are then
8 Note that the authors of the formalization in Isabelle introduced a type-synonym
‘vectors’ for such function types, which corresponds exactly to what tuples are in
Theorema. We want to emphasize, however, that the choice of tuples in Theorema is
not system-enforced, it is more a matter of taste. The mathematical representation of
the objects to be studied in Theorema can be chosen freely. In general, using built-in
structures (like tuples) has the advantage of getting system support in computation
and proving. Using non-built structures (like functions as done in Isabelle) would
require to prove auxiliary knowledge about these entities. This knowledge would then
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simply modeled as the sets containing precisely those tuples with the desired
properties—but these properties are now given as 4-ary relations (i. e. functions
whose result type is bool). So, in the end, sets and relations are mixed somewhat
randomly, which in our opinion is counter-intuitive and occasionally leads to
confusion. Instead, using relations exclusively would perhaps be more ‘natural’
and probably even fit better into the context of higher-order logic. Nevertheless,
we shall emphasize that all this is largely a matter of taste; in the end, the dif-
ference between sets and relations boils down to a mere technicality that does
not have a major impact on the formalization.

In Isabelle, the set of participants is not fixed to {1, . . . , n}, but can be
completely arbitrary (as long as it is finite and contains at least two elements).
This is obviously more general, but we do not see any immediate advantage of it.
After all, it is absolutely irrelevant for auction theory what the participants are,
as long as one knows how many there are. Besides the fact that allocations in
Theorema are modeled as tuples and in Isabelle as functions, they differ between
the two formalizations in another respect: the definition of allocations in Isabelle
in principle allows for divisible goods, as the values of an allocation are only
required to be non-negative and to sum up to 1. Only the definition of second-
price auctions incorporates the condition that allocations must allocate the good
to one single participant. In Theorema, allocations need to have this property
from the very beginning, making it slightly more difficult to reuse definitions
and results from the existing formalization in potential future treatments of
other kinds of auctions.

Another technical difference is related to the definition of losers of second-
price auctions: in Theorema, the definition of a loser (i. e. a participant who is not
awarded the good) explicitly requires that her bid be not the unique maximum
among all bids, but at most the tied maximum. In other words: according to the
formalization in Theorema, participant i is a loser iff her allocation and payment
are both 0, and if additionally the tuple of bids b satisfies bi ≤ max(bi←), where
bi is the tuple b at position i, and bi← is the tuple b with position i deleted.
However, this condition turns out to be redundant, since it automatically follows
from the fact that in a second-price auction, by definition, one participant with
the highest bid must be the winner, and all other participants must be losers.
The formalization in Isabelle omits said condition and anything equivalent to it
in the definition of losers and instead proves it as an auxiliary lemma.

Usually, it is tacitly assumed that at least two bidders participate in the
auction, because otherwise the definition of the price as ‘the maximum of the
remaining bids’ does not make sense. In a formal approach, of course, this as-
sumption has to be made explicit. In [6] it has been suggested as an alternative
to overcome this problem by defining max(∅) := 0. We do not consider this a vi-
able choice because it is both unnatural and impractical, because it would mean
that in case of only one participant in the auction, the good would be given
away for free. Rather, we think that the common way of handling a second-price

be part of the formalization, like the knowledge about ‘maximum’ in the Isabelle
formalization.

9



auction is to define the outcome in the special case of only one participant in a
different way without referring to ‘the maximum of the remaining bids’.

In the current state of the Theorema formalization, the assumption n > 1 is
still omitted, and the prover does not yet check the side-condition |t| > 0 when
it encounters an expression such as max[t]. We consider this an open issue in the
current formalization in Theorema, but it does not affect the principal feasibility
of the presented approach. Since ‘max’ is a built-in construct of the Theorema
language, we do not define ‘max’ as part of the auction formalization (as in
Isabelle), rather we rely on available computation and reasoning rules for ex-
pressions involving ‘max’. The Theorema computation engine already contained
algorithms for operations on concrete tuples and, of course, in these algorithms
all necessary side-conditions are really checked, e. g. the expression max[〈〉] does
not evaluate. As a generalization, we provide also symbolic algorithms on tu-
ples, e. g. (ti←x)i = x, and the Theorema reasoning engine uses these algorithms
in order to simplify expressions. In the case of maximum, these algorithms are
then required to check |t| > 0 as soon as they encounter an expression max[t]
with symbolic t. In order to do this, the computation engine needs access to the
current knowledge base in case the computation occurs as part of a proof.

5 The Two Proofs of the Main Theorem

Fig. 3 shows the formulation of Vickrey’s Theorem in the Theorema language.
Roughly, it says, that for all9 n ∈ N, for all valuations v, allocations x, and
payments p
1. using the valuations as bids is an equilibriumWeaklyDominantStrategy and
2. if the auction outcome with these bids conforms to the rules of a second-price

auction then the allocation is efficient.
We want to concentrate on the first part of the theorem. Here b constitutes a
weakly dominant strategy w.r.t. v and n iff b is a bid-tuple of length n, v is
a valuation-tuple of length n, and for all i = 1, . . . , n and for all . . . , see the
definition of equilibriumWeaklyDominantStrategy in Fig. 3. The main part of
this definition expresses that if i bids differently from bi the payoff does not
increase.

During the first phase of the proof, the universal quantifiers are eliminated.
After expanding the definition of equilibriumWeaklyDominantStrategy we are
left with three branches. The first two (v being a bid-tuple of length n and a
9 The universal quantifier for n is not visible locally, neither in the theorem nor in
the definitions, because we use a ‘global universal quantifier’ ∀

n∈N
at the beginning

of the document. This mechanism in Theorema 2.0 is explained in detail in [2].
The Theorema language is untyped. Quantifiers range over all objects that can be
expressed in the Theorema language, i. e. sets, tuples, and various kinds of numbers
available in Mathematica. There are special ranges with limited domain, such as
i = 1, . . . , n for finite integer fragments. The domain can also be restricted using
conditions. All what is needed in the current formalization is essentially first-order.
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Fig. 3. The main theorem and the required definitions in Theorema.

valuation-tuple of length n, respectively) are trivial, the third one corresponds
to the main part of the definition of equilibriumWeaklyDominantStrategy. Es-
sentially by Lemma L3, the two formulas

secondPriceAuctionWinner[B, y, q, i] ∨ secondPriceAuctionLoser[B, y, q, i] (1)
secondPriceAuctionWinner[Bi←vi

, x̄, p̄, i] ∨ secondPriceAuctionLoser[Bi←vi
, x̄, p̄, i] (2)

are derived. In (1) B represents an arbitrary bid, whereas in (2) Bi←vi
represents

the bid B with vi at position i. Now the disjunction (1) gives rise to a case
distinction ‘i wins with an arbitrary bid’ vs. ‘i loses with an arbitrary bid’. In
each branch then the disjunction (2) initiates a case distinction ‘i wins when
bidding her valuation’ vs. ‘i loses when bidding her valuation’. Note that the
order in which (1) and (2) enter the knowledge base is random. Theorema first
distinguishes cases based on (1). Both in Isabelle and in the pencil-and-paper
proof in [6] the cases when bidding her valuation are treated first. However, all
proofs end up with the same four cases. In order to get an impression how a
Theorema proof actually looks, we refer to the screen-shot in Fig. 4. The part of
the proof displayed there corresponds to the case i loses with an arbitrary bid but
wins when bidding her valuation. We see that this branch relies on Lemma lose-
win (L7) and then succeeds by basic rewriting. The remaining three branches
proceed analogously making use of Lemmas L5, L6, and L8, respectively.

In the Isabelle formalization the proof of vickreyA is not very complicated,
but lengthy. It starts by introducing the necessary objects, like an arbitrary, but
fixed participant i and two vectors of bids (where in one case participant i bids
arbitrarily, and in the other case she bids exactly her valuation of the good), and
proving a couple of simple properties of these objects. Then comes the key step
of the proof: the case distinction depending on whether i is allocated the good
if she bids her valuation or not, analogous the hand-written proof in [6]. Here
it is worth noting that Lemma L15 is used in order to infer that a participant
loses if she is not assigned the good, i. e. that x(i) 6= 1 implies x(i) = 0; this
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means that L15 roughly corresponds to Lemma L3 in Theorema. The first case,
where i wins, proceeds by expressing i’s payoff explicitly in terms of her valuation
and the maximum of the remaining bids and by showing that this quantity is
certainly non-negative, whereas the second case proceeds by showing that i’s
payoff is 0. Finally, in either case two further cases are distinguished depending
on whether i wins with her alternative bid, yielding the same four cases as in
Theorema. These four cases are not tackled using separate lemmas analogous
to L5–L8 in Theorema, but proved directly taking into account the previously
obtained properties of the payoff of participant i if she bids her valuation.

All in all, the proof in Isabelle closely follows the proof presented in [6]. It is
considerably longer than the hand-crafted proof mainly because a lot of interme-
diate proof steps are required for inferring simple facts about bids, allocations,
payments and payoffs that are more or less obvious, and hence omitted in [6].

6 A New Proof of vickreyA in Isabelle

The Isabelle proof of Vickrey’s theorem is considerably longer than the corre-
sponding proof in Theorema (even if one counts all the lemmas that are not
proved separately in Isabelle, like L5–L8). This lead to the idea of translating
the Theorema proof to Isabelle, to see whether the Isabelle formalization could
perhaps be shortened; and indeed, with moderate effort we managed to recon-
struct the Theorema proof almost one-to-one in Isabelle. Of course, we did not
start completely from scratch but built upon the existing formalization as much
as possible, which also necessitated a couple of new definitions and lemmas for
establishing the connection to results that we wanted to reuse in our proof. In
particular, we introduced new definitions of winners and losers that exactly re-
semble the definitions in the Theorema formalization, and we also proved another
general result about the maximum of a function over a set, namely
lemma remaining-maximum-le-maximum:

fixes A::"’a set"

and f::"’a ⇒ ’b::linorder"

and a::’a and b::’b

assumes "card A > 1"

shows "maximum (A - {a}) f ≤ maximum A (f(a := b))"

This lemma states that when removing an arbitrary element a from a set A,
the maximum of a function f over that new set is certainly not larger than over
the original set, even if f attains a different value at a. Stating and proving
remaining-maximum-le-maximum was inspired by the formalization in Theo-
rema where, however, the analogue of this lemma is not stated on the theory
level, but instead on the reasoning level as a special inference rule.

Summarizing, the new proof of vickreyA depends on two additional definitions
and seven additional lemmas. If the original proof of the theorem was replaced
by the new one and all lemmas not needed any more were removed, the total
number of proof steps would drop by 25% from 247 to 185, which is only slightly
more than the 171 steps in Theorema.
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next

assume lose1: "spa-loser N b y q i"

from cases2 show ?thesis

proof

assume win2: "spa-winner N (b(i := v i)) x p i"

from lose1 card-N have "∀y’ q’ a. spa-winner N (b(i := a)) y’ q’ i −→
(q i = 0 ∧ y i = 0 ∧ y’ i = 1 ∧ a - q’ i ≥ 0)"

using lose-win by auto

hence "q i = 0 ∧ y i = 0 ∧ x i = 1 ∧ v i - p i ≥ 0" using win2 by auto

hence "q i = 0" and "y i = 0" and "x i = 1" and "v i - p i ≥ 0" by simp_all

show ?thesis unfolding payoff-def

proof -

from ‹q i = 0› ‹y i = 0› ‹x i = 1›

show "v i * y i - q i ≤ v i * x i - p i"

proof (simp del: diff-ge-0-iff-ge)

from ‹v i - p i ≥ 0› show "v i - p i ≥ 0" .

qed

qed

next . . .
qed

Fig. 4. An Isabelle proof and a Theorema proof side by side.
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In Fig. 4 we show the part of the proof, where participant i is assumed to
lose with some arbitrary bid and wins when bidding her valuation, in both sys-
tems.10 In the Isabelle proof, q and y denote the payment- and allocation vectors,
respectively, if i bids arbitrarily, whereas p and x denote the payment- and allo-
cation vectors, respectively, if i bids her valuation; v is the vector of valuations,
and b is some arbitrary vector of bids. cases2 is a local fact corresponding to
A#279 in the Theorema-proof (it expresses that i either wins for loses if she
bids her valuation). The full new proof, together with the original proof and all
auxiliary concepts from the original formalization the proof depends upon, is
available online.11 It works in Isabelle2016-1. For the Theorema proof, it should
be noted that the proof is displayed using Mathematica notebook technology. It
employs lots of interactive GUI-features that are hard to resemble in print, e. g.
all formula labels12 are actually hyperlinks that jump to the point where the
formula has been introduced, labels have tooltips that show the entire formula
when hovered above, and the interface shows a schematic clickable tree represen-
tation of the proof, that allows easy navigation through a proof. For the details
we refer to [2].

7 Conclusion and Future Work

We presented two formalizations of Vickrey’s theorem, one in Theorema and
one in Isabelle. The formalizations are based on the same paper elaboration,
but were done independently of each other in two different proof assistants, with
quite different approaches toward theorem proving (automatic vs. interactive).
The results are surprisingly similar—both in terms of structure and size, if one
takes into account the increased generality of the formalization in Isabelle.

The paper does not aim at arguing why one of the two systems—Theorema or
Isabelle—is better than the other, but we hope to have convinced the reader that
despite their apparent differences both systems enable users to efficiently formal-
ize mathematics with comparable effort and similar outcome. The strengths of
Isabelle clearly are the extensive knowledge base of formal theories one can build
upon, as well as the integrated support by automatic tools like Sledgehammer.
Theorema, on the other hand, offers a quite unique way of presenting proofs
in a form that even inexperienced users can easily comprehend, and also facil-
itates interaction with the system through an intuitive GUI. Summarizing, in
our opinion Isabelle is better suited for experts in interactive theorem proving
who are interested in doing large-scale formalizations efficiently, whereas Theo-
rema 2.0 is more appealing to mathematicians who are not very familiar with
10 The Isabelle proof is spelled out in more detail than necessary, in order to be easily

comparable to the proof in Theorema; a single application of fastforce would suffice.
The aforementioned 185 steps refer to the short version, which is not shown here.

11 www.risc.jku.at/people/amaletzk/Vickrey.zip
12 Definitions, lemmas, and theorems have user-defined labels. Formulas that are gen-

erated automatically during a proof have system-generated labels, where A#. . . and
G#. . . refer to assumptions and goals, respectively.
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proof assistants and to people (e. g. students) who want to learn the concept of
mathematical proof, thanks to its intuitive handling and natural-style presen-
tation of formal content. Of course, Theorema also claims for itself to enable
large-scale undertakings.

As for current and future work, we have already mentioned the need for a
more sophisticated means for checking side-conditions in symbolic tuple com-
putations. The development of Theorema archives to have the possibility to
efficiently store structured formalizations in Theorema language also deserves
high priority.
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