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Chapter |

Hot Topics in Symbolic Computation

Peter Paule

Lena Kartashova, Manuel Kauers, Carsten Schneider, Franz Winkler

The development of computer technology has brought forth a renaissance of
algorithmic mathematics which gave rise to the creation of new disciplines
like Computational Mathematics. Symbolic Computation, which constitutes
one of its major branches, is the main research focus of the Research Institute
for Symbolic Computation (RISC).

In the first Section 1, author P. Paule, one finds an introduction to the
theme together with comments on history as well as on the use of the com-
puter for mathematical discovery and proving. The remaining sections of the
chapter present more detailed descriptions of hot research topics currently
pursued at RISC.

Section 2, author F. Winkler, introduces to algebraic curves; a summary of
results in theory and applications (e.g., computer aided design) is given. Sec-
tion 3, author M. Kauers, reports on computer generated progress in lattice
paths theory finding applications in combinatorics and physics. Section 4,
author C. Schneider, provides a description of an interdisciplinary research
project with DESY (Deutsches Elektronen-Synchrotron, Berlin/Zeuthen).
Section 5, author E. Kartashova, describes the development of Nonlinear
Resonance Analysis, a new branch of mathematical physics.

The Renaissance of Algorithmic Mathematics

“The mathematics of Egypt, of Babylon, and of the ancient Orient was all
of the algorithmic type. Dialectical mathematics-strictly logical, deductive
mathematics-originated with the Greeks. But it did not displace the algo-
rithmic. In Euclid, the role of dialectic is to justify a construction-i.e., an
algorithm. It is only in modern times that we find mathematics with little
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or no algorithmic content. [...] Recent years seem to show a shift back to a
constructive or algorithmic view point.”

To support their impression the authors of [DH81] continue by citing P.
Henrici: “We never could have put a man on the moon if we had insisted
that the trajectories should be computed with dialectic rigor. [...] Dialectic
mathematics generates insight. Algorithmic mathematics generates results.”

Below we comment on various aspects of recent developments, including
topics like numerical analysis versus symbolic computation, and pure versus
applied mathematics. Then we present mathematical snapshots which-from
symbolic computation point of view-shed light on two fundamental mathe-
matical activities, discovery (computer-assisted guessing) and proving (using
computing algebra algorithms).

A Bit of History

We will high-light only some facets of the recent history of algorithmic math-
ematics. However, we first need to clarify what algorithmic mathematics is
about.

Algorithmic vs. Dialectic Mathematics

About thirty years ago P.J. Davis and R. Hersh in their marvelous book
[DH81] included a short subsection with exactly the same title. We only
make use of their example (finding \/5) to distinguish between algorithmic
and dialectic (i.e. non-algorithmic) mathematics. But to the interested reader
we recommend the related entries of [DH81] for further reading.

Consider the problem to find a solution, denoted by v/2, to the equation
2 =2.

Solution 1

Consider the sequence (z,),,~; defined for n > 1 recursively by

1 2
xn+1:§ xn"'x_ )

with initial value 1 = 1. Then (mn)nzo converges to v/2 with quadratic
rapidity. For example, x4 = ZTZ = 1.414215. . . is already correct to 5 decimal

places. Note, the algorithm can be carried out with just addition and division,
and without complete theory of the real number system.
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Solution 2
Consider the function f(z) = 22 — 2 defined on the interval from 0 to 2.
Observe that f is a continuous function with f(0) = —2 and f(2) = 2.

Therefore, according to the intermediate value theorem, there exists a real
number, let’s call it v/2, such that f(v/2) = 0. Note, the details of the
argument are based on properties of the real number system.

Solution 1 is algorithmic mathematics; solution 2 is the dialectic solution.
Note that, in a certain sense, neither solution 1 nor solution 2 is a solution
at all. Solution 1 gives us a better and better approximation, but no z,, gives
us an exact solution. Solution 2 tells us that an exact solution exists between
0 and 2, but that is all it has to say.

Numerical Analysis vs. Symbolic Computation

Readers interested in the relatively young history of symbolic computation
are refered to respective entries in the books [GCL92] and [vzGG99]. Con-
cerning the first research journal in this field, [vaGG99] says, “The highly
successful Journal of Symbolic Computation, created in 1985 by Bruno Buch-
berger, is the undisputed leader for research publication.” So in 1981 when
the book [DHS81] appeared, symbolic computation was still at a very early
stage of its development. This is reflected by statements like: “Certainly the
algorithmic approach is called for when the problem at hand requires a nu-
merical answer which is of importance for subsequent work either inside or
outside mathematics.”

Meanwhile this situation has changed quite a bit. Nowadays, symbolic com-
putation and numerical analysis can be viewed as two sides of the same medal,
i.e. of algorithmic mathematics. In other words, until today also symbolic
computation has developed into a discipline which provides an extremely
rich tool-box for problem solving outside or inside mathematics. Concerning
the latter aspect, in view of recent applications, including some being de-
scribed in the sections of this chapter, symbolic computation seems to evolve
into a key technology in mathematics.

In fact there are numerous ‘problems at hand’ which for subsequent (e.g.
numerical) work greatly benefit from simplification produced by symbolic
computation algorithms. As a simple example, let us consider the problem of
adding the first n natural numbers, i.e., to compute the sum

xn::1+2+---+n:Zk.
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Solution A

Consider the sequence (xn)n21 defined for n > 1 recursively by
Tn+1 =xn +n+1,

with initial value 1 = 1. In other words, this computes the sum =z, by
carrying out n — 1 additions. For example, x4 = 23 +4 = (z2+3) +4 =
((x1+2)+3)+4 =10.

Solution B

Apply a symbolic summation algorithm (e.g., Gosper’s algorithm imple-
mented in most of the computer algebra systems) to simplify the sum; i.e.,
which finds that for n > 1,

1
Ty = En(n +1).

Instead of carrying out n — 1 additions, this computes the sum z,, by one
multiplication and one division by 2. For example, z, = %4 -5 = 10. In
other words, a symbolic computation reduces the numerical task from n — 1
operations (additions) to 2!

There are many problems for which better solutions would be obtained
by a proper combination of numerical analysis with symbolic computation.
Such kind of research was the main theme of the Special Research Program
SFB F013 Numerical and Symbolic Scientific Computing (1998-2008), an ex-
cellence program of the Austrian Science Funds FWF, pursued by groups at
RISC, from numerical analysis and applied geometry at the Johannes Ke-
pler University (JKU), and at the Johann Radon Institute of Computational
and Applied Mathematics (RICAM) of the Austrian Academy of Sciences.
Starting in October 2008 this initiative has been continued at the JKU in
the form of the Doctoral Program Computational Mathematics, another ex-
cellence program of the FWF.

Pure vs. Applied Mathematics

Efforts in numerical analysis and symbolic computation to combine math-
ematics with the powers of the computer are continuing to revolutionize
mathematical research. For instance, as mentioned above, a relatively young
mathematical field like symbolic computation is growing more and more into
the role of a key technology within mathematics. As a by-product the dis-
tinction between ‘pure’ and ‘applied’ mathematics is taking on a less and less
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definite form. This stays quite in contrast to a period in the younger history
of mathematics.

G. H. Hardy (1877-1947).
From http://en.wikipedia.org/wiki/File:Ghhardy@72. jpg

The famous mathematician G.H. Hardy (1877-1947) insisted that all of
the mathematics he created during his life time was of no use at all. In
the concluding pages of his remarkable Apology [Har40] he wrote, “I have
never done anything ‘useful’. No discovery of mine has made, or is likely
to make, directly or indirectly, for good or for ill, the least difference to
the amenity of the world. I have helped to train other mathematicians, but
mathematicians of the same kind as myself, and their work has been, so far
at any rate as I have helped them to it, as useless as my own. Judged by all
practical standards, the value of my mathematical life is nil.” During that
time a pervasive unspoken sentiment began to spread, namely that there is
something ugly about applications. To see one of the strongest statements
about purity, let us again cite G.H. Hardy [Har40], “It is undeniable that a
good deal of elementary mathematics [...] has considerable practical utility.
These parts of mathematics are, on the whole, rather dull; they are just the
parts which have least aesthetic value. The ‘real’ mathematics of the ‘real’
mathematicians, the mathematics of Fermat and Euler and Gauss and Abel
and Riemann, is almost wholly ‘useless’.”

This attitude, often called Hardyism, was “central to the dominant ethos
of twentieth-century mathematics” [DH81]. Only towards the end of the sev-

FIGURE 1
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enties this credo began to soften up.due to the beginning evolution of com-
puter technology. Bruno Buchberger has been one of the pioneers in this
development. Since he became JKU Professor in 1974 he has been pushing
and promoting the central role of computer mathematics. With the rapid
dissemination of computer technology such ideas were taken up. Attractive
positions were created, and the reputation of ‘applied’ mathematics was in-
creasing. Starting with this process in the U.S.A., the full wave of this de-
velopment came back to Europe with some delay. Let me cite from a recent
article [Due08] of Gunter Dueck, who in 1987 moved to IBM from his position
of a mathematics professor at the university of Bielefeld: “Rainer Janssen
(mein damaliger Manager bei IBM und heute CIO der Muenchner Rueck)
und ich schrieben im Jahre 1991 einen Artikel mit dem Titel ‘Mathematik:
Esoterik oder Schluesseltechnologie?’ Dort stand ich noch echt unter meinem
Zorn, als Angewandter Mathematiker ein triviales Nichts zu sein, welches
inexakte Methoden in der Industrie ganz ohne Beweis benutzt und mit Mil-
lioneneinsparungen protzt, obwohl gar nicht bewiesen werden kann, dass die
gewaehlte Methode die allerbeste gewesen ist.”

Nowadays the situation is about to change fundamentally. Things have
been already moved quite a bit. For example, today ‘hardyists’ would say
that working in algorithmic mathematics is almost impossible without run-
ning into concrete applications! Conrete examples can be found in the sec-
tions below, in particular, in Section 4 which describes the use of symbolic
summation in particle physics.

To be fair to Hardy one should mention that despite his ‘hardyistic’ state-
ments, he was following with interest modern developments, for example,
that of computing machines. In particular, he was appreciating the work of
Alan Turing. Thanks to Hardy’s recommendation, the Royal Society awarded
Turing 40 English pounds for the construction of a machine to compute the
zeros of the Riemann zeta function [dS04].

Before coming to the mathematical part of this section, another quote of
G. Dueck [Due08]: “Damals forderten Rainer Janssen und ich, dass Math-
ematik sich als Schluesseltechnologie begreifen sollte. [...] Ja, Mathematik
ist eine Schluesseltechnologie, aber eine unter recht vielen, die alle zusammen
multi-kulturell ein Ganzes erschaffen koennen. Die Mathematik muss sich mit
freudigem Herzen diesem Ganzen widmen - dem Leben. Sie muss sich nach
aussen verpflichtet zeigen, den Menschen und dem Leben etwas Wichtiges zu
sein und zu bringen.” It is exactly this attitude that one can find at a place
like the Softwarepark Hagenberg.
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Computer-Assisted Discovery and Proving

First we comment on computer-assisted guessing in the context of mathe-
matical discovery. Then we turn to the activity of proving, more precisely,
to proving methods where computer algebra algorithms are used. Here we
restrict to this special type of computed-assisted proving; for general mathe-
matical proving machines like the THEOREMA system developed at RISC,
see Chapter ?7.

1.Q. Tests, Rabbits, and the Golden Section

Let us consider the following problem taken from an I.Q. test [Eys66, Aufgabe
13, Denksport I fuer Superintelligente| from the sixties of the last century:

Continue the sequence 1,1,2,3,5,8,13,21.

In the 21st century we let the computer do the problem. To this end we load
the RISC package GeneratingFunctions written by C. Mallinger [Mal96a]
in the computer algebra system Mathematica:

In[1]:= <GeneratingFunctions.m

In the next step we input a little program that can be used to solve such 1.Q.
tests automatically:

In[2]:= GuessNext2Values[Li_] := Module[{rec},
rec = GuessRE[Li,c[k],{1,2},{0,3}];
RE2L[rec[[1]1],c[k],Length[Lil+1]]
Finally the problem is solved automatically with
In[3]:= GuessNext2Values[{1, 1,2,3,5,8,13,21}]
Out[3]= {1,1,2,3,5,8,13,21,34,55}

To produce additional values is no problem:
In[4]:= GuessNext2Values[{1, 1,2,3,5,8,13,21,34,55}]
Out[4]= {1,1,2,3,5,8,13,21,34,55,89,144}

Note. The same automatic guessing can be done in the Maple system;
there B. Salvy and P. Zimmermann [SZ94] developed the poineering pack-
age gfun which has served as a model for the development of Mallinger’s
GeneratingFunctions.

What is the mathematical basis for such automatic guessing? The answer
originates in a simple observation: Many of the sequences (z,), -, arising in

1.2
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practical applications (and in 1.Q. tests!) are produced from a very simple
pattern; namely, linear recurrences of the form

Pa(n)Tntd + pa-1(N)Tntd—1+ - +po(n)zn =0,  n>0,

with coefficients p;(n) being polynomials in n. So packages like Mallinger’s
GeneratingFunctions try to compute-via an ansatz using undetermined
coeflicients-a recurrence of exactly this type. For the 1.Q. example above
a recurrence is obtained by

In[5]:= GuessRE[{1, 1,2, 3,5,8,13,21}, £ [k]]
Out[5]= {{-f[k]-f[14+k]+£[24+k]==0,f[0]==L1,f[1]==1},0gf}

Since only finitely many values are given as input, the output recurrence
fnt+2 = fn+1+ fn (n > 0) can be only a guess about a possible building prin-
ciple of an infinite sequence. However, such kind of automated guessing is
becoming more and more relevant to concrete applications. For instance, an
application from mathematical chemistry can be found in [CGP99] where a
prediction for the total number of benzenoid hydrocarbons was made. Three
years later this predication was confirmed [VGJ02]. Recently, quite sophisti-
cated applications arose in connection with the enumeration of lattice paths,
see Section 3, and also with quantum field theory, see Section 4.

In 1202 Leonard Fibonacci introduced the numbers f,. The fact that
f() = fl = 1, and

frnt2 = foy1 + fa, n >0,

in Fibonacci’s book was given the following interpretation: If baby rabbits
become adults after one month, and if each pair of adult rabbits produces
one pair of baby rabbits every month, how many pairs of rabbits, starting
with one pair, are present after n months?

A non-recursive representation is the celebrated Euler-Binet formula

1 1+\/5 n+1 1_\/5 n+1
fn:% ( 9 ) _< 5 ) R n > 0.

The number (1 ++/5)/2 ~ 1.611803, the golden ratio, is important in many
parts of mathematics as well as in the art world. For instance, Phidias is said
to have used it consciously in his sculpture.

Mathematicians gradually began to discover more and more interesting
things about Fibonacci numbers f,,; see e.g. [GKP94]. For example, a typical
sunflower has a large head that contains spirals of tightly packed florets,
usually with fs = 34 winding in one direction and fg = 55 in another.

Another observation is this: Define g,, as a sum over binomial coefficients
of the form
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" /n—k
m=> (")
k=0
From the values go = 1, g1 = 1, g0 = 2, g3 = 3, g4 = 5, and g5 = 8 it
is straight-forward to conjecture that the sequence (g,),~, is nothing but
the Fibonacci sequence (fy,), > In the next subsection we shall see that
nowadays such statements can be proved automatically with the computer.

Pi, Inequalities, and Finite Elements

We have seen that linear recurrences can be used as a basis for auto-
mated guessing. Concerning symbolic computation, this is only the begin-
ning. Namely, following D. Zeilberger’s holonomic paradigm [Zei90b], the
description of mathematical sequences in terms of linear recurrences, and
of mathematical functions in terms of linear differential equations, is also of
great importance to the design of computer algebra algorithms for automated
proving.

For example, consider the sequence (gn), -, defined above. To prove the
statement

fn:gn; n >0,

in completely automatic fashion, we use the RISC package Zb[PS95a], an
implementation of D. Zeilberger’s algorithm [Zei90a]:

In[6]:= <Zb.m

In[7]:= Zb[Binomial [n-k,k],{k,0,Infinity},n,2]
Out[7]= {SUM|[n] + SUM[1 4+ n] — SUM[2 + n] == 0}

The output tells us that g, = SUM[n] indeed satisfies the same recurrence as
the Fibonacci numbers. A proof for the correctness of the output recurrence
can be obtained automatically, too; just type the command:

In([8]:= Prove[]

For further details concerning the mathematical background of this kind of
proofs, see e.g. Zeilberger’s articles [Zei90b] and [Zei90a] which were the
booster charge for the development of a new subfield of symbolic computa-
tion; namely, the design of computer algebra algorithms for special functions
and sequences. For respective RISC developments the interested reader is
refered to the web page

http://www.risc.uni-linz.ac.at/research/combinat

For various applications researchers are using such algorithms in their daily
research work-sometimes still in combination with tables. However, there are
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particular problem classes where symbolic (and numeric) algorithms are going
to replace tables almost completely.

Concerning special sequences the most relevant table is N. Sloane’s hand-
book [Slo73], [Slo94]. Sloane’s home page provides an extended electronic
version of it; also symbolic computation algorithms are used to retrieve in-
formation about sequences .

Concerning special functions one of the most prominent tables is the
‘Handbook’ [AS64] from 1964. Soon it will be replaced by its strongly re-
vised successor, the NIST Digital Library of Mathematical Functions; see
http://dlfm.nist.gov. The author of this section is serving as an associate
editor of this new handbook (and author, together with F. Chyzak, of a new
chapter on computer algebra) that will be freely available via the web.

We expect the development of special provers will intensify quite a bit.
By special provers we mean methods based on computer algebra algorithms
specially tailored for certain families of mathematical objects. Special function
inequalities provide a classical domain that so far has been considered as
being hardly accessible by such methods. To conclude this section we briefly
describe that currently this situation is about to change.

Consider the famous Wallis product formula for :

2 2 4 46 6 8 8
133 55 779

This product is an immediate consequence (n — o0) of the following inequal-
ity (JohnWallis, Arithmetica Infinitorum, 1656):

2n Cn
<< >0
Ml o =D

24n+1 27’l -2
T ot 1 (n) '

In analysis one meets such inequalities quite frequently. Another example,
similar to that of Wallis, is

where

i<an<—7
dn — ~3n+1

1 /2n 2
an.:24—n n .

We shall prove the right hand side, i.e. a, < 1/(3n + 1), (the left hand
side goes analogously) to exemplify the new Gerhold-Kauers method [GKO05]
for proving special function/sequence inequalities. As proof strategy they
use mathematical induction combined with G. Collins’ cylindrical algebraic

decompostion (CAD). First observe that

v
=

where
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(2n + 1)2 1 (2n+1)2
anp+1 = An < ’
(2n+2)2 = 3n+1(2n+2)?

where for the inequality the induction hypothesis is used. In order to show
that this implies a,4+1 < 1/(3n +4), it is sufficient to establish that

1 (2n+1)2 1
3In+1(2n+2)2 ~ 3n+4’

But this step can be carried out automatically with any implementation of
Collins” CAD; for instance, in Mathematica:

. 1 (2n+1)? 1
In[9]:= Reduce (5~ Bnt2)2 < g™

Out[9)= -3 <n<-1]|-1<n<-3%|[n>0

The Gerhold-Kauers method already found quite a number of non-trivial
applications. They range from new refinements of Wallis’ inequality [PP08]
like

32n2 +32n + 7 <
42n+1)(4n+3) —

to a proof of the long-standing log-concavity conjecture of V. Moll [KP07].
Further applications and details about the method are given in [Kau08].

We want to conclude by referring to results that emerged from numerical-
symbolic SFB collaboration in the context of finite element methods (FEM).
In order to set up a new FEM setting, J. Schoeberl (RWTH Aachen, formerly
JKU) needed to prove the following special function inequality:

16(n+1)(2n+1)
32n2 4+ 56m + 25’

< n>0

n
_ ’
™

D (4 +1)(2n — 25 + 1)Py;(0) Py () > 0

j=0

for =1 < 2z <1, n > 0, and with P;(z) being the Legendre polynomials.
Using the Gerhold-Kauers method together with RISC symbolic summation
software, V. Pillwein [Pil07] was able to settle this conjecture. Remarkably,
there is still no human proof available!

Last but not least, we mention a recent collaboration of J. Schoeberl
with C. Koutschan (RISC), which led to a new tool for engineering applica-
tions in the context of electromagnetic wave simulation. Formulas derived by
Koutschan’s symbolic package HolonomicFunctions resulted in a significant
speed-up of numerical FEM algorithms e.g. for the construction of antennas
or mobile phones. The method is planned to be registered as a patent.
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Rational Algebraic Curves — Theory
and Application

What is a Rational Algebraic Curve ?

A plane algebraic curve C is the zero locus of a bivariate square-free polyno-
mial f(xz,y) defined over a field K i.e.

¢ = {(avb)|f(avb):0}

More specifically, we call such a curve an affine curve, and the ambient plane
the affine plane over K, denoted by A%(K). By adding points at infinity
for every direction in the affine plane, we get the projective plane over K,
denoted by P?(K). Points in P?(K) have (non-unique) projective coordinates
(a :b:c) with (a,b,c) # (0,0,0). In projective space only the ratio of the
coordinates is fixed; i.e. if A # 0 then (a : b : ¢) and (Aa : Ab : Ac) denote
the same point in P?(K). A projective plane curve C is the zero locus of a
homogeneous bivariate square-free polynomial F(x,y, z) over K; i.e.

C = {(a:b:¢)|F(a,b,c)=01}.

An algebraic curve in higher dimensional affine or projective space is the
image of a birational map from the plane into this higher dimensional space.
In this paper we concentrate on plane algebraic curves. Algebraic curves in
higher dimensional space can be treated by considering a suitable birational
image in the plane.

For more detailled information on the topics treated in this paper we refer
to [SWa08]. Most of the material for this survey has been developped by the
author together with J.Rafael Sendra.

Some plane algebraic curves can be expressed by means of rational
parametrizations, i.e. pairs of univariate rational functions. For instance, the
tacnode curve (cf. Figure 2) defined in A%(C) by the polynomial equation

fla,y) =22" =327y +y* —2y° +y* =0
can be represented as
3 —6t24+9t—2 2 —4t+4 e
2t — 1683 +40t2 — 32t + 97 2t4 — 16¢3 + 402 — 32t 4+ 9 '

However, not all plane algebraic curves can be rationally parametrized, for
instance the elliptic curve defined by f(x,y) = 23 + ¢ — 1 in A?(C).

Definition 1. The affine curve C in A%(K) defined by the square—free poly-
nomial f(x,y) is rational (or parametrizable) if there are rational functions
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The Tacnode curve

X1(t), x2(t) € K(t) such that for almost all ty € K (i.e. for all but a finite

number of exceptions) the point (x1 (o), x2(to)) is on C, and for almost every

point (xo,y0) € C there is a o € K such that (zo,y0) = (x1(t0), x2(t0)). In

this case (x1(t), x2(t)) is called an affine rational parametrization of C.
Analogously we define projective rational curves.

Some Basic Facts

Fact 1. The notion of rational parametrization can be stated by means of
rational maps. More precisely, let C be a rational affine curve and P(t) €
K (t)? a rational parametrization of C. The parametrization P(t) induces the
rational map
P:AYK)— C
t —P(t),

and P(AY(K)) is a dense (in the Zariski topology) subset of C. Sometimes, by
abuse of notation, we also call this rational map a rational parametrization

of C.

Fact 2. Every rational parametrization P(t) defines a monomorphism from
the field of rational functions K(C) to K(t) as follows:

FIGURE 2
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p: K(C) — K(t)
R(z,y) — R(P(t)).

Fact 3. Fvery rational curve is irreducible; i.e. defined by an irreducible poly-
nomial.

Fact 4. Let C be an irreducible affine curve and C* its corresponding projec-
tive curve. Then C is rational if and only if C* is rational. Furthermore, a
parametrization of C can be computed from a parametrization of C* and vice
versa.

Fact 5. Let C be an affine rational curve over K, f(x,y) its the defining
polynomial, and P(t) = (x1(t), x2(t)) a rational parametrization of C. Then,
there exists 1 € N such that ves,(HT (t,z), H} (t,y)) = (f(z,y))".

Fact 6. An irreducible curve C, defined by f(x,y), is rational if and only if
there exist rational functions x1(t), x2(t) € K(t), not both constant, such that
Ffx1(t),x2(t)) = 0. In this case, (x1(t),x2(t)) is a rational parametrization
of C.

Fact 7. An irreducible affine curve C is rational if and only if the field of
rational functions on C, i.e. K(C), is isomorphic to K(t) (t a transcendental
element).

Fact 8. An affine algebraic curve C is rational if and only if it is birationally
equivalent to K (i.e. the affine line A1(K)).

Fact 9. If an algebraic curve C is rational then genus(C) = 0.

Proper Parametrizations

Definition 2. An affine parametrization P(t) of a rational curve C is proper
if the map
P:AYK) —C
t — Pt

is birational, or equivalently, if almost every point on C is generated by exactly

one value of the parameter t. We define the inversion of a proper parametriza-

tion P(t) as the inverse rational mapping of P, and we denote it by P~1.
Analogously we define proper projective parametrizations.

Based on Liiroth’s Theorem we can see that every rational curve which
can be parametrized at all, can be properly parametrized.

Fact 10. Every rational curve can be properly parametrized.
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Proper parametrizations can be characterized in many ways; we list some
of the more practically usefull characterizations.

Fact 11. Let C be an affine rational curve defined over K with defining poly-
nomial f(z,y) € Klz,y], and let P(t) = (xa1(t), x2(t)) be a parametrization
of C. Then, the following statements are equivalent:

1. P(t) is proper.

2. The monomorphism @p induced by P is an isomorphism.

ep: K(C) — K(1)
R(z,y) — R(P(t)).

3. K(P(t)) = K(t).
4. deg(P(t)) = max{deg,(f),deg,(f)}

Furthermore, if P(t) is proper and xi1(t) is non-zero, then deg(xi(t)) =
deg, (f); similarly, if x2(t) is non-zero then deg(x2(t))=deg,(f).

Ezxample 3. We consider the rational quintic curve C defined by the polyno-
mial f(z,y) = y° + 22y> — 32%y? + 3 2%y — 22. By the previous theorem, any
proper rational parametrization of C must have a first component of degree
5, and a second component of degree 2. It is easy to check that

t t2
P) = (t2+1’t2+1>

properly parametrizes C. Note that f(P(t)) = 0.

A Parametrization Algorithm

We start with the easy case of curves having a singular point of highest
possible multiplicity; i.e. irreducible curves of degree d having a point of
multiplicity d — 1.

Theorem 4 (curves with point of high multiplicity). Let C be an ir-
reducible projective curve of degree d defined by the polynomial F(x,y,z) =
fa(x,y) + fa—1(z,y)z (fi a form of degree i, resp.), i.e. having a (d — 1)—
fold point at (0:0:1). Then C is rational and a rational parametrization is

P(t) = (_fdfl(]-at)v _tfdfl(]-vt)a fd(]-at))'

Corollary 5. Every irreducible curve of degree d with a (d — 1)-fold point is
rational; in particular, every irreducible conic is rational.

Ezample 6.
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1. Let C be the affine ellipse defined by f(z,y) = 22 + 2z + 2y? = 0. So, a
parametrization of C is P(t) = (=1 + 2¢2, —2¢,1 + 2¢2).
2. Let C be the affine quartic curve defined by (see Figure 3)

fz,y) = 1+2-1522—-29 52 +30 y> 25 23° +a3y+35 y+a'—6 y* +6 2%y = 0 .

C has an affine triple point at (1,1). By moving this point to the origin,

~

y
2,
a~_2 ¥ 2 x
-2
4

FIGURE 3 Quartic C

applying the theorem, and inverting the transformation, we get the rational
parametrization of C

7?(75)_<4+6t3_>25t2+8pr6t4 “*42#—2m3+9ﬁ_1>

—14+6t—t ’ —14+6t4—t

So curves with a point of highest possible multiplicity can be easily
parametrized. But now let C will be an arbitrary irreducible projective curve
of degree d > 2 and genus 0.

Definition 7. A linear system of curves H parametrizes C iff

1. dim(H) =1,

2. the intersection of a generic element in H and C contains a non—constant
point whose coordinates depend rationally on the free parameter in H,

3. C is not a component of any curve in H.
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In this case we say that C is parametrizable by H.

Theorem 8. Let F'(x,y, z) be the defining polynomial of C, and let H(t,x,y, z)
be the defining polynomial of a linear system H(t) parametrizing C. Then, the
proper parametrization P(t) generated by H(t) is the solution in P2(K(t)) of
the system of algebraic equations

pp;(resy (F, H)) =0
pp;(res, (F,H)) =0 [

Theorem 9. Let C be a projective curve of degree d and genus 0, let k €
{d—1,d—2}, and let Sk be a set of kd— (d —1)(d —2) — 1 simple points on
C. Then

Ar(€) N H(k, Y P)

PeSy

(i.e. the system of adjoint curves of degree k passing through Sy ) parametrizes

C.
Ezample 10. Let C be the quartic over C (see Figure 4) of equation
F(x,y,2) = —22y°z — 482222 + dwy2® — 2232 + 23y — 6y* + 48y%2° 4 627,

The singular locus of C is

-6 -4 -2 2 4 6

o FIGURE 4
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Sing(C) ={(0:0:1),(2:2:1),(-2:2:1)},

all three points being double points. Therefore, genus(C) = 0, and hence C is
rational.

We proceed to parametrize the curve. The defining polynomial of Ay (C)
(adjoint curves of degree 2) is

H(z,y,2) = (—2a02 — 2a20) yz + ag2y® — 2ay122 + a1 1zy + a0z
We choose a set S C (C\ Sing(C)) with 1 point, namely S = {(3:0: 1)}. We

compute the defining polynomial of H := A2(C) N H(2,Q), where Q = (3 :
0 : 1). This leads to

3
H(z,y,2) = (—2a02 — 2 a20) yz + a2y’ — 3 azrz + 5 G207y + ag’.
Setting aga = 1,a20 = ¢, we get the defining polynomial
3
H(t,z,y,2) = (=2 —2t)yz +y*> — 3tez + §txy + ta?

of the parametrizing system. Finally, the solution of the system defined by
the resultants provides the following affine parametrization of C

Ot* +3 — 512+t +8 (1623 — 459¢2 + 145¢ + 136
p(t):<12 + +t+ ( + + )>.

1264 — 29713 + 7212 + 8t — 367~ 126t* — 2973 + 7212 + 8¢ — 36

Applications of Curve Parametrization

Curve parametrizations can be used to solve certain types of Diophantine
equations. For further details on this application we refer to [PV00], [PV02].

Curve paramatrizations can also be used to determine general solutions of
first order ordinary differential equations. This is described in [FG04], [FG06].

Many problems in computer aided geometric design (CAGD) can be solved
by parametrization. The widely used Bézier curves and surfaces are typical
examples of rational curves and surfaces. Offsetting and blending of such
geometrical objects lead to interesting problems.

The notion of an offset is directly related to the concept of an envelope.
More precisely, the offset curve, at distance d, to an irreducible plane curve C
is “essentially” the envelope of the system of circles centered at the points of C
with fixed radius d (see Figure 5). Offsets arise in practical applications such
as tolerance analysis, geometric control, robot path-planning and numerical-
control machining problems.

In general the rationality of the original curve is not preserved in the
transition to the offset. For instance, while the parabola, the ellipse, and the
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hyperbola are rational curves (compare Figure 6), the offset of a parabola is
rational but the offset of an ellipse or a hyperbola is not rational.
/ /
\ K)g / /@
= =
FIGURE 6

Offsets to the parabola (left), to the hyperbola (center), to the ellipse (right)

Let C be the original rational curve and let
P(t) = (Pi(t), Pa(t))
be a proper rational parametrization of C.
We determine the normal vector associated to the parametrization P(¢),

namely ) )
N(t) = (=Py(t), Py(t)).
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Note that the offset at distance d basically consist of the points of the form

d
PO T e

Now we check whether this parametrization satisfies the “rational Pythagorean
hodograph condition”, i.e. whether

Py(t)* + Py(t)?,

written in reduced form, is the square of a rational function in t. If the con-
dition holds, then the offset to C has two components, and both components
are rational. In fact, these two components are parametrized as

d d

P(t) + WN(t), and P(t) — WN@),

where Pj(t)2 4+ Py(t)? = a(t)?/b(t)? and m(t) = a(t)/b(t).
If the rational Pythagorean hodograph condition does not hold, then the
offset is irreducible and we may determine its rationality.

Ezample 11. We consider as initial curve the parabola of equation y = 22,

and its proper parametrization
P(t) = (t,1%).

The normal vector associated to P(t) is N(t) = (—2¢,1). Now, we check the
rational Pythagorean hodograph condition

P (t)? 4+ Py(t)*> = 44> + 1,

and we observe that 4t? +1 is not the square of a rational function. Therefore,
the offset to the parabola is irreducible. In fact, the offset to the parabola,
at a generic distance d, can be parametrized as

(t2+ 1 —4dt)(t?> — 1) 5 —* — 2 41 4 32d¢t3
4t (2 +1) ’ 16t2 (2 + 1)

The implicit equation of the offset to the parabola is

—y? + 3222d%y? — 8x2yd? 4 d? + 20x2d? — 3222y> + 8d%y? + 2yax® — Syd? +
48x4d? — 16zy? — 48x2d* + 40zy + 3222y — 16d*y? — 32d*y + 32d%y> — 2* +
8d* + 8y® — 162° + 16d° — 16y* = 0.
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Computer Generated Progress in Lattice
Paths Theory

Modern computer algebra is capable of contributing to contemporary research
in various scientific areas. In this section, we present some striking success of
computer algebra in the context of lattice paths theory, a theory belonging
to the area of combinatorics. A lattice is something like the city map of
Manhattan, a perfect grid where all streets go either north-south or east-west.
A lattice path then corresponds to a possible way a person in Manhattan may
take who wants to get from A to B.

Combinatorics deals with the enumeration (counting) of objects, and enu-
meration questions concerning lattice paths arise naturally: How many ways
are there to get from A to B? How many of them avoid a third point C'
or an entire area of the city? How many go more often north than south?
How many avoid visiting the same point twice? How many have an optimal
length? Starting disoriented at A and randomly continuing the way at each
street crossing, what is the probability of eventually reaching B? What is the
expected length of such a random walk?

These and many other questions have been intensively studied already for
several centuries. Some are completely answered since long, others are still
wide open today. Lattice paths are studied not only for supporting tourists
who got lost in the middle of New York, but they are also needed in a great
number of physical applications. For example, the laws governing the diffusion
of small molecules through a crystal grid depend on results from lattice paths
theory.

Paths in the Quarter Plane

We consider lattice walks confined to a quarter plane. A quarter plane may
be imagined as a chess board which at two of its four sides (say, the right
and the upper side) is prolonged to infinity. The prolongation removes three
of the chess board’s corners, only its lower left corner remains. This corner is
the starting point of our paths.

Let us imagine that there is a chess piece which is able to move a single
step north (N), south (S), west (W), or east (E) at a time. Then, among
all the possible paths that this chess piece can perform, we are interested in
those where the chess piece ends up again at the board’s corner, the starting
point of the journey. The number of these paths depends, of course, on the
number n of steps we are willing to make. With n = 2 steps, there are only

two possible paths: (0,0) 5 (1,0) ¥ (0,0) and (0,0) 5 0,1) 5, (0,0). For
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FIGURE 7
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Ee (i e
e, G e
B =

All closed Manhattan walks with four steps

n = 3 steps, there are no such paths, and it is easy to see that there are no
such paths whenever n is odd. For n = 4 steps, there are ten paths, they
are depicted in Figure 7. For n = 40 steps, there are exactly as many as
160599 522947 154 548 400 different paths.

That last number can obviously not be obtained by simply writing down
all the possible paths. (Not even the fastest computer would be able to finish
this task within our lifetime.) The number for n = 40 was obtained by means
of a formula which produces the number a,, of paths for any given number n
of steps. According to this formula, we have

e el € G I

and a, = 0 if n is odd. This is a classical result and it can in fact be proven
by elementary means.

In order to fully understand the combinatorics of our chess piece, it is not
sufficient to know the numbers a,,. For a complete knowledge, it is also neces-
sary to know the number of paths that the chess piece can take starting from
the corner (0,0) and ending at an arbitrary field (i,j). We can denote this
number by ay, ;,; and have, for example, a40,6,4 = 2 482 646 858 370 896 735 656
paths going in n = 40 steps from the corner to the field in the 6th column
and the 4th row.
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It cannot be expected that there is a simple formula for a,, ; ; as there is for
Gn = an,0,0- In a sense, the numbers a, ; ; are “too complicated” to admit a
formula. But among the sequences which do not have a simple formula, some
are still more complicated than others. Combinatorialists have invented a
hierarchy of classes for distinguishing different levels of “complicatedness”.
For a sequence ay, ; 5, they consider the formal infinite series

This series is called rational or algebraic or holonomic, depending on whether
it satisfies certain types of equations whose precise form need not concern us
here. The only thing relevant for now is that these notions create a hierarchy

rational series C algebraic series C holonomic series C all series.

A modern research program initiated by Bousquet-Melou and Mishna [BM02,
Mis07, BMMOS] is the classification of all the series arising from the lattice
paths in the quarter plane performed by chess pieces with different step sets
than N, S, W, E.

Computer Algebra Support

Thanks to research undertaken recently by members of RISC (M. Kauers
and C. Koutschan) in collaboration with A. Bostan (France) and D. Zeil-
berger (USA), we are now in the fortunate situation that the combina-
torial analysis of lattice paths is completely automatized: there are com-
puter programs which, given any set S of admissible steps drawn from
{N,S,E,W,NW,NE, SW, SE}, produce a formula for the number of paths
that a chess piece can do, if it starts in the corner, is only allowed to make
steps from S, and wants to return to the corner after exactly n steps. Also
for the more general problem of finding out to which class a series f(¢,x,y)
describing the full combinatorial nature of the chess piece belongs, there are
computer programs available.

Unlike a traditional combinatorialist who would try to derive such formulas
from known facts about lattice paths, the computer follows a paradigm that
could be called guess’n’prove. This paradigm, which proves useful in many
other combinatorial applications of computer algebra, can be divided into the
following three steps:

1. Gather. For small values of n, compute the number a,, of paths with n
steps by a direct calculation. For instance, for the step set N, S, W, E

23
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taken as example above, a computer is able to find without too much
effort that the sequence (agy) for n =0,1,... starts with the terms

1, 2, 10, 70, 588, 5544, 56628, 613470, 6952660.

2. Guess. Given the initial terms, the computer can next search for formulas
matching them. More convenient than a direct search for closed form ex-
pressions is a search for recurrence equations matching the data, since this
can be done by algorithms reminiscent of polynomial interpolation. Such
algorithms are implemented in widely available software packages, for in-
stance in a package by Mallinger implemented at RISC [Mal96b]. For the
data from our example, this package “guesses” the recurrence equation

(n+2)(n+ 3)agmny1) — 4(2n +1)(2n + 3)az, = 0.

This equation is constructed such as to fit the first nine terms, but there
is a priori no guarantee that it is valid, as we desire, for all n.

3. Prove. Experience says that an automatically guessed formula is always

correct, but experience is not a formal proof. A formal proof can, however,
also be constructed by the computer. We have an algorithm which takes as
input a step set and a conjectured recurrence equation, and which outputs
either a rigorous formal proof of the recurrence equation, or a counter
example. The details of this algorithm are beyond the scope of this text.

There are only two possible reasons for which this guess’n’prove procedure
may fail. The first is that for the particular step set at hand, the corresponding
counting sequence does not satisfy any recurrence. In this case (which may
indeed happen) the computer would indefinitely continue to search for a
recurrence, because it is at present not possible to detect automatically that
no recurrence exists. The second possible case of failure happens when a
counting sequence satisfies only extremely huge recurrence equations (say,
with millions of terms). In this case, although the computer would in principle
be able to discover and to prove this recurrence, it may well be that in
practice it is not, because the necessary computations are too voluminous to
be completed by current computer architectures within a reasonable amount
of time. The fact that such extremely large objects do actually arise induces a
demand for faster algorithms in computer algebra. Such improved algorithms
are therefore a natural subject of ongoing research.

Gessel’s Conjecture

Let us now turn to a different imaginary chess piece. This new chess piece is
able to move a single step left (E) or right (W), or diagonally a single step
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down-left (SE) or up-right (NW). We are interested again in the number of
paths that take this chess piece from the corner of the (infinitely prolonged)
chess board in n steps back to that corner. The counting sequence now starts
as

1,0, 2, 0, 11, 0, 85, 0, 782, 0, 8004, 0, 88044, 0, 1020162, 0

As an example, the eleven paths consisting of four steps are depicted in
Figure 8.

The lattice paths just described were first considered by Gessel and are
now known as Gessel walks. Gessel observed that there appears to hold the

formula,
(§)n(3)n
($)n(2)n

where the notation (z),, stands for the product z(z+1)(z+2)--- (z+n—1),a
variation of the factorial function introduced by Pochhammer. Neither Ges-
sel himself nor any other combinatorialist was, however, able to provide a
rigorous proof of this formula. It became known as the Gessel conjecture
and circulated as an open problem through the community for several years.
Only in 2008, a proof was found at RISC by Kauers, Koutschan, and Zeil-
berger [KZ08, KKZ08|. Their proof relies on heavy algebraic computations
that follow essentially the guess’n’prove paradigm described before.

=
=

gy = 16" (n>0),

All closed Gessel walks with four steps
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The proof of Gessel’s conjecture settles the nature of Gessel walks return-
ing to the starting point. The nature of Gessel walks with arbitrary endpoint
(4,7) is more difficult to obtain. This question was addressed by Bostan and
Kauers [BK09a] after the proof of Gessel’s original conjecture. By extensive
algebraic calculations, they were able to prove that the series f (¢, x,y) encod-
ing the numbers a,, ; ; of Gessel walks with n steps ending at (4, j) is algebraic.
For at least two different reasons, this is a surprising result. First, it was not
at all expected that f(¢,z,y) is algebraic. Combinatorial intuition seemed to
suggest that f(¢,z,y) is perhaps holonomic, or not even that. Second, it was
not to be expected that the intensive computations needed for establishing
the algebraicity of f(t, z,y) were feasible for today’s computers. As they were,
the combinatorial nature of Gessel walks can now be considered as solved.

It is fair to say that the classification of the Gessel walks is the most
difficult classification problem for lattice paths in the quarter plane. Indeed,
all other kinds of paths can be classified by traditional means relying on
group theory [BMMOS]. Gessel’s paths are famous partly because they are
the only ones which appear to resist this group theoretic approach. This
is why the clarification of their nature by means of computer algebra, as
previously described, was highly appreciated by the community.

Lattice Paths in 3D

One of the advantages of a computer algebra approach to lattice paths clas-
sification is that computer programs, once written, can be easily adapted to
related problems. Bostan and Kauers [BK08| applied their programs first de-
veloped for analyzing the Gessel paths to start a classification of lattice paths
in a three dimensional lattice. In analogy to the problem considered before
in 2D, lattice paths were considered which start in the corner of a space that
extends to infinity in now three different directions, that space may be viewed
as a distinguished octant of the usual Cartesian three dimensional space.

In addition to going north (N), south (S), east (E), or west (W), there are
the additional directions up (U) and down (D). Also combined directions such
as NE or SWU are possible. Basic steps are now more conveniently written
as vectors, e.g., (1,—1,0) for NE or (—1,1,1) for SWU. While in 2D, there
were eight basic steps (N, S, E, W, NE, NW, SE, SW), there are now 26 basic
steps in 3D. For any subset S of those, we can imagine a chess piece moving
in 3D that is only allowed to take steps from S, and we may ask how many
paths it can take starting from the corner, making n steps, and ending again
in the corner. For these numbers, call them again a,,, there may or may not
be a simple formula. (Usually there is none.) If, more generally, the number
of paths consisting of n steps and ending at a point (¢, j, k) is denoted ay ; ; &,
we can consider the infinite series
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[c.olENe eI e S ENe o)

f(tvxvy’ Z) = Z Z Zan,i,j,kxiyjzktn
n=0

i=0 j=0 k=0

and may ask whether that series is rational, algebraic, holonomic, or non-
holonomic. The answer will depend on the choice S of admissible steps.

In Figure 9, some step sets S are depicted for which the corresponding
series is algebraic, holonomic, or non-holonomic. For example, the first step
set in the top row is

S:{(_171a1)7 (07_17_1)7 (0,—1,0), (1,0,0), (1,0,1)}.

The distinguished octant to which the paths are restricted is the octant con-
taining (1,1, 1), which corresponds to the top-right-back corner in the dia-
grams of Figure 9. The counting sequence for paths returning to the corner
with S as above starts

1, 0,0, 1, 0, 0, 5, 0, 0, 42, 0, 0, 462, 0, 0, 6006, 0, 0, 87516, 0, 0.
For example, the only possible path with three steps is

(1,0,0) (-1,1,1) (0,-1,-1)
—_— —_—

(0,0,0) (1,0,0) (0,1,1) (0,0,0).

The interested reader may wish to determine the five possible paths with six
steps. He or she will find that this is a much more laborious and error prone
task than for planar lattice paths.

Most of the possible step sets S in 3D lead to series which are not holo-
nomic, only a fraction of them is holonomic or even algebraic. Out of those,
the examples depicted in Figure 9 were chosen such as to illustrate that
the position of a step set in the hierarchy is not necessarily related to what
might be expected intuitively from the geometric complexity of the step set.
For example, the first step set in the third row looks rather regular, yet the
corresponding series is not holonomic. On the other hand, the third step set of
the first row looks rather irregular, yet the corresponding series is algebraic.

Computer algebra was used in the discovery of these phenomena. The
next challenging task is to explain them. As we have seen for Gessel’s walks,
computer algebra is ready to contribute also in these investigations. It will,
in general, be of increasing importance the more the theory advances towards
objects that are beyond the capabilities of traditional hand calculations.
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Some step sets for lattice walks in 3D whose counting sequences
appear to be algebraic (first row), holonomic but not algebraic
(second row), or not holonomic (third row).

Symbolic Summation in Particle Physics

Mathematical algorithms in the area of symbolic summation have been in-
tensively developed at RISC in the last 15 years, see e.g., [PS95b, Mal96Db,
Weg97, PR97, PS03, M06]. Meanwhile they are heavily used by scientists in
practical problem solving.

We present in this section a brand new interdisciplinary project in which
we try to deal with challenging problems in the field of particle physics and
perturbative quantum field theory with the help of our summation technol-
ogy. Generally speaking, the overall goal in particle physics is to study the
basic elements of matter and the forces acting among them. The interaction
of these particles can be described by the so called Feynman diagrams, re-
spectively Feynman integrals. Then the crucial task is the concrete evaluation
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of these usually rather difficult integrals. In this way, one tries to obtain ad-
ditional insight how, e.g., the fundamental laws control the physical universe.

In cooperation with the combinatorics group (Peter Paule) at RISC and
the theory group (Johannes Bliimlein) at Deutsches Elektronen-Synchrotron
(DESY Zeuthen, a research centre of the German Helmholtz association), we
are in the process of developing flexible and efficient summation and special
function algorithms that assist in this task, i.e., simplification, verification and
manipulation of Feynman integrals and sums, and of related expressions. As
it turns out, the software package Sigma [Sch07] plays one of the key roles:
it is able to simplify highly complex summation expressions that typically
arise within the evaluation of such Feynman integrals; see [BBKS07, MSO07,
BBKS08, BKKS09a, BKKS09b].

/@(w)daz

Feynman integrals

Feynman diagrams
Reduction

i) X R R A
(Z—> +Zz_2 Sigma OQZ;JFZI;iZI;
1= 1=

i=1 i=1 Z i=1
2N(N + 1)! o INGHEN+ DN
Simplified sums Feynman sums

From Feynman diagrams to symbolic summation

After sketching the basic summation tools that are used in such computa-
tions, we present two examples popping up at the scientific front of particle
physics.

The Underlying Summation Principles

The summation principles of telescoping, creative telescoping and recurrence
solving for hypergeometric terms, see e.g. [PWZ96], can be considered as
the breakthrough in symbolic summation. Recently, these principles have
been generalized in Sigma from single nested summation to multi-summation
by exploiting a summation theory based on difference fields [Kar81, Sch05,
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Sch08, Sch09]. As worked out, e.g., in [BBKSO07], these methods can help to
solve problems from particle physics.

SPECIFICATION (INDEFINITE SUMMATION BY TELESCOPING). Given an in-
definite sum S(a) = >_y_, f(k), find g(j) such that

fG)=9(G+1) —90) (1)
holds within the summation range 0 < j < a. Then by telescoping, one gets
S(a) = g(a+1) —g(0).

Ezample. For the sum expression

£G) = (2 +k+N+2)jk!(j+k+ N)!
D G+ DGAN+ DG+ h+ DG N+ DIk + N + 1)
+j!k!(J+/f+N) (=51(J) +$1(G+k) + 51+ N) = Si(j+k+N))

2

G+E+DIG+N+DI(k+N+1)! )

involving the single harmonic sums defined by S;(j) := f | T Sigma com-
putes the solution

= GHRHDGENADIRG N (81(G)=$1GHR)-S$1GEN) +1GHFN)) (g

9(j) = ENGHE+D)IGFN+TDIk+N+1)! (3)

of (1); note that the reader can easily verify the correctness of this result by
plugging in (2) and (3) into (1) and carrying out simple polynomial arithmetic
in combination with relations such as S1(j+1) = S1(j) + Jﬁ and (j+1)! =
(7 + 1)j!. Therefore summing (1) over j yields (together with a proof)

Zf _ S1(k)+S1(N)—51(k+N) + (2a+k+N+2)alk!(a+k+N)!
EN(k+N+1)N! (a+k+1)(a+N+1)(a+k+1)! (a+N+1)!(E+N+1)!

(a+1)'k!(a+k+N+1)!(S1(a)=S1(a+k)—Si(a+N)+S1 (a+k+N))
EN(a+k+1)!(a+N+1)!(k+N+1)!

In other words, we obtained the following simplification: the double sum
E?:o f(4) with (2) could be simplified to an expression in terms of sin-
gle harmonic sums. Later we shall reuse this result by performing the limit
a — o0:

> k) + S1(N) — Si(k+ N)
;Of( alLH;QJZ;f kN(k+N+1)N, L@

In most cases this telescoping trick fails, i.e., such a solution g(j) for (1)
does not exist. If the summand f(j) depends on an extra discrete parame-
ter, say IV, one can proceed differently with Zeilberger’s creative telescoping
paradigm.
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SPECIFICATION (DERIVING RECURRENCES BY CREATIVE TELESCOPING).
Given an integer d > 0 and given a sum

S(a,N):=>_ f(N, ) (5)
j=0

with an extra parameter N, find constants co(N),...,cqa(N), free of j, and
g(N, j) such that for 0 < j < a the following summand recurrence holds:

co(N)f(N,j)+ .., ca(N)f(N +d,j) = g(N,j+1) —g(N,j).  (6)
If one succeeds in this task, one gets by telescoping the recurrence relation
co(N)S(a,N)+---+¢cq(N)S(a, N +d) = g(N,a+ 1) — g(N,0).
Ezample. For d = 1 and the summand

S1(j) + S1(N) = S1(j + N)
NG+ N TN

f(Naj) =

Sigma computes the solution co(N) = —N(N +1)2, c1(N)(N + 1)3(N +2),

and JS(1,5) + (=N —1)S(1,N) — jS(1,j + N) — 2

(j+N+1)N!

of (6); again the reader can easily verify the correctness of this computation
by simple polynomial arithmetic. Hence, summing (6) over 1 < j < a gives

g(N,j) =

— NS(N,a) + (1+ N)(2+ N)S(N +1,0) = e v v

n (@+1)(Si(a) + S1(N) = Si(a+ N))
(N+1)2(a+ N + 2)N!

(7)
for the sum (5). Later we need the following additional observation: the limit

S'(N) := alglélo S(N,a) = Z:% i (j)j‘;éliN]iflsll)%!‘k ~

(8)

exists; moreover, it is easy to see that the right hand side of (7) tends in the
(N4+1)S1 (N)+1

(NNt - In other words, the infinite series (8) satisfies

limit a — oo to
the recurrence

(N+1)Si(N)+1

—NS'(N)+ (1+N)2+N)S' (N +1) = (N + 1)3NT

(9)

Summarizing, with creative telescoping one can look for a recurrence of the
form

ao(N)S(N) + -+ + a1 (N)S(N + d) = g(N). (10)



32

4.2

I Hot Topics in Symbolic Computation

Finally, Sigma provides the possibility to solve such recurrence relations in
terms of indefinite nested sums and products.
Ezxample. We use Sigma’s recurrence solver and compute the general solution

1 S1(N)? + So(N)
NN + DN T2N(N + 1N

for a constant c of the recurrence (9). Checking the initial value S'(1) = 1
(this evaluation can be done again by using, e.g., the package Sigma) deter-
mines ¢ = 0, i.e., we arrive at

S'(N) = i S1(4) + S1(N) = $1(G +N) _ Si(N)* + Sa(N).

B JN(G+N+1)N! ON(N +1)! (11)

j=1
More generally, we can handle with Sigma the following problem.

SPECIFICATION (RECURRENCE SOLVING). Given a recurrence of the form
(10), find all solutions in terms of indefinite nested sum and product expres-
sions (also called d’Alembertian solution).

Based on the underlying algorithms, see e.g. [AP94, BKKS09a], the derived
d’Alembertian solutions of (10) are highly nested: in worst case the sums
will reach the nesting depth  — 1. In order to simplify these solutions (e.g.,
reducing the nesting depth), a refined telescoping paradigm is activated. For
an illuminative example see Section 4.3.

One can summarize this interplay of the different summation principles in
the “summation spiral” [Sch04] illustrated in Figure 11.

Example 1: Simplification of Multi-Sums

The first example is part of the calculation of the so called polarized and
unpolarized massive operator matrix elements for heavy flavor production
[BBKO06, BBK07]. Here two—loop Feynman integrals arise which can be re-
formulated in terms of double infinite series by skillful application of Mellin-
Barnes integral representations. One of the challenging sums [BBKO06] in this
context is

= f(N7kﬂj7€)
S(N) = ii e Tk+1) T(EIA=5TG+1-5)IG+1+5) I (k+j+1+N)
- I'(e + 1) \T(:+2+N) PG+H1-5)T(G+2+N)T (k+5+2)
k=0 j=0
i I(k+1) (=5 A4+ (G+14e) D (G+1— ) (k+j+1+5+N) |
T'(k+2+N) TG+ G+2+ 5+ N)T (k+j+2+%) ’

(12)
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definite sum

combination of solutions creative telescoping

simplified solutions recurrence

indefinite su&ation A/S,olving

d’Alembertian solutions

The Sigma-summation spiral

here N is an integer variable and I'(x) denotes the gamma function, see e.g.
[AARO00], which evaluates to I'(k) = (k — 1)! for positive integers k.
Remark. Usually, Feynman integrals (and sums obtained, e.g., by Mellin
Barnes representations) cannot be formalized at the space-time dimension
D = 4. One overcomes this problem by an analytic continuation of the space-
time D = 4 4 ¢ for a small parameter €. Then one can extract the needed
information by calculating sufficiently many coefficients of the Laurent-series
expansion about € = 0.

For instance, in our concrete sum (12) one is interested in the first coeffi-
cients Fo(N), F1(N), Fo(N),... in the expansion

S(N,e) = Fy(N) 4+ F1(N)e + Fy(N)e? + ... (13)

In order to get these components, we proceed as follows. First, we compute,
as much as needed, the coefficients fo(N,k,7), f1(N,k,5),... of the series
expansion

F(N.k,j,e) = fo(N. k. j) + [1(N. k. j)e + fr(N, k. ) + fr(N, b, j)e? + ...

(14)
on the summand level. Then, it follows (by convergence arguments) that for
all ¢ > 0,

Fi(N)=> > fi(N,k,j).
k=0 j=0

Remark. The gamma function I'(x) is analytic everywhere except at the
points x = 0, —1,—2, ..., and there exist formulas that relate, e.g., the deriva-
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tive of the gamma function I'(z + k) w.r.t. 2 with the sums So(k) = 2% | L

for positive integers a. e

Due to such formulas, one can compute straightforwardly the first coef-
ficients f;(N,k,j) in (14) for the explicitly given summand in (12). E.g.,
fo(N,k,j) is nothing else than (2). Thus the constant term Fy(N) =
Yo E;‘io fo(N,k,7) in (13) is given by

= (2j+k+N+2)5'k! (j+k+N)!
N)= Z Z ((j+k+1)(j+N+1)(j+k+1)1(j+N+1),(,HNH)! 1)
k=0 j=0

4 S Ak N)U=51 () 451 (k) +5:1 G+ N) = Sl(a+k+N)))
GHRADIGHNFD)I(R+N+1)!

We are faced now with the problem to simplify (15), so that it can be pro-
cessed further in particle physics. Exactly at that point we are in business
with our summation tools from Section 4.1. First observe that the inner sum
of (15) is equal to the right hand side of (4). Hence with (11) we find that

51( )2 + So(N)
;JZOLN’” NN +1)!

Finally, we add the missing term Z;'io fi(N,0,7) = % (derived by the

same methods as above). To sum up, we simplified the expression (15) to

5( )+3$’2( )
kZOJX;fONkJ NN+

In [BBKO6] the authors derived this constant term and also the linear term

—S1(V)? = 382(N)S1(N) — 895(N)

BN) = 6N(N +1)!

in (13) by skillful application of suitable integral representations.

Contrary, our computations can be carried out purely mechanically with
the computer. Essentially, this enables us to compute further coefficients
in (13) by just pressing a button (and having some coffee in the meantime):

Fy(N) = kZOZOfQ(N k,j) = W (Sl(N)“ + (12¢2 + 5485 (N))S1 (N)?
J

-+ 10453(N)Sl (N) — 485271(]\[)51 (N) -+ 5132(1\7)2 + 36(2.52 (N) -+ 12654(1\7)
— 4853,1(N) - 9651,1,2(N)),

F3(N) = Z Z f3(N, k,5) m (sl (N)® + (20¢2 + 13082 (N))S1(N)?

+ (40¢3 + 38053( ))S1(N)? + (13552 (N)? + 60¢2S2(N) + 51054(N)) S1(N)
—24081,1,3(N) — 24084,1 (N) — 24085,1 (N)S1(N) — 240851,1,2(N)S1(N)
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+160¢2S3(N) + S2(N)(120¢3 + 38053(N)) + 62455 (N)
+ (—12081 (N)? — 12085 (N)) Sa,1(N) + 24052,2,1(N));

here ¢, = > .2, %T denote the zeta-values at r and the harmonic sums [BK99,
Ver99] for nonzero integers r1, ..., r, are defined by
N . k k?1 . k. kr—l . k.
B sign(ry )™ sign(ry,—1)"2 sign(ry, )
Spprn(N) = R > Il ey o (16)
k=1 ko=1 2 kp=1 T

E.g., we find the linear coefficient Fy(N) in 30 seconds, the quadratic coef-
ficient F5(N) in 4 minutes and the cubic coefficient F5(N) in less than one
hour.

Example 2: Solving Large Recurrence Relations

One of the hardest problem that has been considered in the context of Feyn-
man integrals is the calculation of the symbolic Mellin-moments of the un-
polarized 3—-loop splitting functions and Wilson coefficients for deep—inelastic
scattering [MVV04, VMV04, VVMO05]: several CPU years were needed for
this job. In order to get these results, specialized and extremely efficient soft-
ware [Ver99] have been developed. Based on deep insight and knowledge of
the underlying physical problem fine tuned ansatzes for the computations
have been used in addition.

In a recent attempt [BKKS09a, BKKS09b] we explored a different, rather
flexible ansatz in order to determine such coefficients. We illustrate this ap-
proach for the CrN3-term, say F'(N) = Py 2(N), of the unpolarized 3-loop
splitting function; see [BKKS09b, Exp. 1]. Namely, we start with the initial
values F'(i) for i = 3,...,112 where the first ones are given by

1267 54731 20729 2833459 29853949 339184373 207205351 152267426
648 ° 40500’ 20250’ 3472875’ 44452800’ 600112800’ 428652000’ 3638621257 * * *

Then given this data, one can establish (within 7 seconds) by Manuel Kauers’
very efficient recurrence guesser (see also Section 3.2) the following recur-
rence:

(1= N)N(N 4 1)(N® + 15N° + 109N* + 485N3 + 1358 N2 + 2216 N + 1616)F(N)
+N(N+1)(3N7 +48NS+366N° +1740N* +5527 N3 + 11576 N2 + 14652 N +8592) F (N +1)
— (N +1)(3N8 + 54N7 + 457N® 4 2441N° 4 9064N* + 23613N3
+41180N? + 43172N + 20768) F(N + 2)

+ (N +4)3(NS +9N5 + 49N* + 179N3 4 422N? + 588N + 368) F(N + 3) = 0.

35
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We remark that in principle this guess might be wrong, but by rough esti-
mates this unlucky case occurs with probability of about 1075 (if we do not
trust in this result, we should not trust any computation: e.g., undetectable
hardware errors have a much higher chance to happen).

Given this recurrence, we apply the recurrence solver of Sigma: internally,
one succeeds in factorizing the recurrence into linear right hand factors;
see [BKKS09b, Exp. 1]. As a consequence, Sigma finds (within 3 seconds)
the solution

N
(N> + N +2 . ii+j?2+4i:r4i
F(N) = 32 N24+N+2 n 64 ) P (i+1)(2—i+2) (i2+i+2)
9 (N—-1)NN+1) 9 (N —1)N(N +1)
: (52 —3+2) (3% —35°+195* —137% +4452 +85+8)
n ({47 4di+4) Z GIDGT+772F4+4) (jT—4;5F13;2—14;+8)
Jj=1
8 (NP2 Z D@42 (P Ti+2)
=1
3 N—DN(NTD)

Next, we activate our sum simplifier (based on refined telescoping [Sch08])
and end up at the closed form

4(N?+ N +2) ,  8(8N3+13N? 427N + 16)
FN) == sy —ovv W —Sw—ovvr oz W
8 (AN*+4N3 +23N? + 25N +8)  4(N?+ N +2)
- Sa(IN)

9(N —1)N(N +1)3 - 3(N—1)N(N +1)

in terms of the harmonic sums given by (16). At this point we make the fol-
lowing remark: we are not aware of the existence of any other software that
can produce this solution of the rather simple recurrence given above. Sum-
marizing, we determined the CpN2-term of the unpolarized 3-loop splitting
function F(N) = Pyq2(N) by using its first 110 initial values without any
additional intrinsic knowledge.

In order to get an impression of the underlying complexity, we summa-
rize the hardest problem. For the most complicated expression (the C3-
contribution to the unpolarized 3-loop Wilson coefficient for deeply inelastic
scattering, see [BKKS09b, Exp. 6]) M. Kauers could establish a recurrence
of order 35 within 20 days and 10Gb of memory by using 5022 such initial
values; note that the found recurrence has minimal order and uses 32MB of
memory size. Then Sigma used 3Gb of memory and around 8 days in order
to derive the closed form of the corresponding Wilson coefficient. The output
fills several pages and consists of 30 (algebraically independent) harmonic
sums (16), like e.g.,

S_31,1,1,92,21,1,5-2,-21,1,52,-21,1,5-22,1,1,5-2,1,1,2,52,1,1,1,1, 5-2,1,1,1,1-
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In total, we used 4 month of computation time in order to treat all the
problems from [MVV04, VMV04, VVMO05].

These results from [BKKS09a, BKKS09b] illustrate that one can solve
3-loop integral problems efficiently by recurrence guessing and recurrence
solving under the assumptions that sufficiently many initial values (in our case
maximally 5022) are known. In order to apply our methods to such problems,
methods at far lower expenses have to be developed that can produce this
huge amount of initial values. This is not possible in the current state of art.

By concluding, in ongoing research we will try to combine the different
ideas presented in Section 4 to find new, flexible and efficient methods that
will take us one step further to evaluate automatically non-trivial Feynman
integrals.

Nonlinear Resonance Analysis

In recent years (2004-2009) a new area of mathematical physics — Nonlin-
ear Resonance Analysis (NRA) — has been developed at RISC. Its theo-
retical background was outlined in 1998, see [Kar98]. But the way to real-
world applications was still long. In particular, appropriate calculation tech-
niques and mathematical model fitting to physical systems had to be worked
out. This has been achieved under the projects SBF-013 (FWF), ALISA
(OeAD, Grant Nr.10/2006-RU), DIRNOW (FWF, P20164000), and CEN-
REC (OeAD, Grant Nr.UA 04/2009). The main points of this work are briefly
presented below.

What is resonance?

Physical examples

The phenomena of resonance has been first described and investigated by
Galileo Galilei in 1638 who was fascinating by the fact that by “simply blow-
ing” one can confer considerable motion upon even a heavy pendulum. A
well-known example with Tacoma Narrows Bridge shows how disastrous res-
onances can be: on the morning of November 7, 1940, at 10:00 the bridge
began to oscillate dangerously up and down, and collapsed in about 40 min-
utes. The experiments of Tesla [Che93] with vibrations of an iron column
yielded in 1898 sort of a small earthquake in his neighborhood in Manhat-
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tan, with smashed windows, swayed buildings, and panicky people in the
streets.

Nowadays it is well-known fact that resonance is a common thread which
runs through almost every branch of physics and technics, without resonance
we wouldn’t have radio, television, music, etc. Whereas linear resonances
are studied quite good, their nonlinear counterpart was till recently Terra
Incognita, out of the reach of any general theoretical approach. And this
is though nonlinear resonances are ubiquitous in physics. Euler equations,
regarded with various boundary conditions and specific values of some pa-
rameters, describe an enormous number of nonlinear dispersive wave systems
(capillary waves, surface water waves, atmospheric planetary waves, drift
waves in plasma, etc.) all possessing nonlinear resonances [ZLF92]. Non-
linear resonances appear in a great amount of typical mechanical systems
[KMO6]. Nonlinear resonance is the dominant mechanism behind outer ion-
ization and energy absorption in near infrared laser-driven rare-gas or metal
clusters [KBO05]. Nonlinear resonance jump can cause severe damage to the
mechanical, hydraulic and electrical systems [HMKO03]. The characteristic res-
onant frequencies observed in accretion disks allow astronomers to determine
whether the object is a black hole, a neutron star, or a quark star [W.KO06].
The variations of the helium dielectric permittivity in superconductors are
due to nonlinear resonances [KLPG04]. Temporal processing in the central
auditory nervous system analyzes sounds using networks of nonlinear neural
resonators [AJLT05]. The nonlinear resonant response of biological tissue to
the action of an electromagnetic field is used to investigate cases of suspected
disease or cancer [VMMO5], etc.

Mathematical formulation

Mathematically, a resonance is an unbounded solution of a differential equa-
tion. The very special role of resonant solutions of nonlinear ordinary differ-
ential equations (ODEs) has been first investigated by Poincaré [Arn83] who
proved that if a nonlinear ODE has no resonances, then it can be linearized
by an invertible change of variables. Otherwise, only resonant terms are im-
portant, all other terms have the next order of smallness and can be ignored.
In the middle of the 20th century, Poincaré’s approach has been generalized
to the case of nonlinear partial differential equations (PDEs) yielding what
is nowadays known as KAM-theory (KAM for Kolmogorov-Arnold-Moser),
[Kuk04]. This theory allows us to transform a nonlinear dispersive PDE into
a Hamiltonian equation of motion in Fourier space [ZLF92],

i 4 = OM/aj, (17)

where ay is the amplitude of the Fourier mode corresponding to the wavevec-
tor k, k = (m,n) or k = (m,n,l) with integer m,n,l. The Hamiltonian H
is represented as an expansion in powers H; which are proportional to the
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product of j amplitudes ax. For the simplicity of presentation, all the meth-
ods and results below are outlined for the case of non-zero cubic Hamiltonian
‘Hs and 2-dimensional wavevector k = (m,n). A cubic Hamiltonian Hs has
the form

Hz = E Vasatazasdss + complex conj.,
ki.,kz ks

where for brevity we introduced the notation a; = ay, and d33 = d(ky —
ko — k3) is the Kronecker symbol. If Hg # 0, three-wave process is dominant
and the main contribution to the nonlinear evolution comes from the waves
satisfying the following resonance conditions:

w(kl) + w(kg) — w(kg) =0, k;+ky—k;=0, (18)

where w(k) is a dispersion relation for the linear wave frequency. Correspond-
ing dynamical equation yields the three-wave equation:

. dax

1 £ %
P = Y [SVhaadl + Vil ek (19)

ki1,ko

The Hamiltonian formulation allows us to study the problems of various
nature by the same method: all the difference between the problems of climate
variability, cancer diagnostics and broken bridges is hidden in the form of the
coefficients of the Hamiltonian, i.e. Vi and ViL;.

Kinematics and Dynamics

To compute nonlinear resonances in a PDE with given boundary conditions,
one has to find linear eigenmodes and dispersion function w = w(m,n), and
rewrite the PDE in Hamiltonian form by standard methods (e.g. [Arn83],
[ZLF92]). Afterwards two seemingly simple steps have to be performed.

e Step 1: To solve the algebraic Sys. (18) in integers and compute the coef-
ficients V% (they depend on the solutions of the Sys. (18)). This part of
the NRA is called Kinematics.

e Step 2: To solve the Sys. (19), consisting of nonlinear ODEs; this part of
the theory is called Dynamics.

In order to show mathematical and computational problems appearing on
this way, let us regard one example. Let dispersion function have the form
w = 1/v/m? + n? (oceanic planetary waves) and regard a small domain of
wavevectors, say m,n < 50. The first equation of Sys. (18) reads
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(mf +n) ™% + (m3 +n3) V2 = (m3 +n3) "2, (20)

the only standard way would be to get rid of radicals and solve numerically
the resulting Diophantine equation of degree 8 in 6 variables:

(m3 + n3)*(m7 +ni)(m3 +n3) = |(m] + n3)(m3 +n3) —
2
(m3 + n3)(m3 +n3) — (m3 + n3)(m3 + n3) (21)

This means that at Step 1 we will need operate with integers of the order of
(50)8 ~ 4 -10'3. This means also that in physically relevant domains, with
m,n < 1000, there is no chance to find solutions this way, using the present
computers. At Step 2 we have 50 x 50 = 2500 complex variables a;, ai,j =
1,2, ...,50; correspondingly Sys. (19) consists of 2500 interconnected nonlinear
ODEs. This being a dead-end, a search for novel computational methods is
unavoidable.

Kinematics

Two main achievements in this part of our research are 1) The g-class method,
and 2) Topological representation of resonance dynamics which we briefly
present below.

The q-class method. Theoretical results of [Kar98] have been the basis
for the development of a fast computational algorithm to compute non-
linear resonances outlined in [Kar06]. Various modifications of the g¢-class
method have been implemented numerically ([KK06, KK07]) and symboli-
cally ([KM07, KRF107]) for a wide class of physically relevant dispersion
functions. The efficiency of our method can be demonstrated by following ex-
ample. Direct computation has been performed in 2005 by the group of Prof.
S. Nazarenko (Warwick Mathematical School, UK) with dispersion function
w = (m? + n?)"/* for the case of 4-term resonance. For spectral domain
m,n < 128, these computations took 3 days with Pentium 4; the same prob-
lem in the spectral domain m,n < 1000, is solved by the g-class method with
Pentium 3 in 4.5 minutes.

We illustrate how the g-class method works, taking again Eq. (20) as
an example. Two simple observations, based on school mathematics, can be
made. First, for arbitrary integers m, n, the presentation

vm?2+n? =p/q

with integer p and square-free q is unique. Second, Eq. (20) has integer solu-
tions only if in all three presentations

Vmi+ni =pivan, \/m3 403 =pay/aa, \fmi+n3=psyas  (22)



5 Nonlinear Resonance Analysis

the irrationalities q1,qo, q3 are equal, i.e. g1 = q2 = g3 = ¢. This is only a
necessary condition, of course. The number ¢ is called index of a g-class, all
pairs of integers (m,n) can be divided into disjoint classes by the index and
search for solutions is perfored within each class separately. For each class,
Eq. (20) takes a very simple form, pl_1 —|—p2_1 = pg_l, and can be solved in no
time even with a simple calculator.

The general idea of the g-class method is, to use linear independence of
some functions over the field of rational numbers Q and can be generalized
to much more complicated dispersion functions, e.g. w = mtanh \/m? + n?.
Though this approach does not work with rational dispersion functions, sub-
stantial computational shortcuts have also been found for this case ([KKO07]).

a7, SIS0

“*»

(@)
(@)

Example of topological structure, spectral domain |k;| < 50,
each blue vertex corresponds to a pair (m,n) and three
vertices are connected by arcs, if they constitute a resonant

triad. The number in brackets shows how many times the
corresponding cluster appears in the given spectral domain.

Topological representation of resonance dynamics. The classical represen-
tation of resonance dynamics by resonance curves [LHG67] is insufficient for
two reasons. First, one has to fix a certain wavevector (m, n) and therefore this
representation can not be performed generally. Second, no general method
exists for finding integer points on a resonance curve. We have introduced
a novel representation of resonances via a graph with vertices belonging to
a subset of a two-dimensional integer grid. We have also proved that there
exists a one-to-one correspondence between connected components of this
graph and dynamical systems, subsystems of Sys. (19).

The topology for the example above is shown in the Figure 12; the dy-
namical system for the graph component (called resonance cluster in physics)
consisting of 4 connected resonant triads (Figure 12, bottom left) reads (in
real variables)

FIGURE 12
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a1 = (¥1a2a9, a2 = (20109, a3 = (4A409, a4 = (5G30a9,

a5 = Qiragayg, ae = (xjparasg, a7 = 11060s, (23)

ag = a2a6a7 + Agasag, A9 = 34102 + Qea3a4 + Qgasas.

Already this novel representation, both very simple and very informative, has
attracted the attention of the peers of the Wolfram Demonstrations Project,
and we have been invited to participate in the project®.

Dynamics

Two main achievements in this part of our research are 1) explicit com-
putation of dynamical invariants, [BK09b]; and 2) realization that dynam-
ical phase is a parameter of the utmost importance in resonance dynamics
[BK09¢].

Dynamical invariant. In [KLO8] it was shown that the dynamics of bigger
clusters often can be reduced to the dynamics of smaller clusters, consisting
of one or two triads only. Integrability of a triad, with dynamical system

dl = Za;a3, dg = Zafag, d3 = —Zalag, (24)

is a well known fact ([Whi90, LHO4]), and its solution, simplified for the case
of zero dynamical phase, reads

Cg(t) = cn((—t + t()) z+/ 13, 12—3) \/E (25)

Here Cj, j = 1,2,3 are real amplitudes within the standard representation
a; = Cjexp(if;), and t,, 113, I3 are defined by initial conditions. The novelty
of our approach lies in that we show ([BK09D]) that this system as a whole
can be generally described by one time-dependent dynamical invariant of the

form:
_ R 1/2 R R 1/2
F ( arcsin (—Rs—Rz) , (—Rs—Rl)
=7t— .
2V2(Ry — R1)Y2(I75 — Lz log + 135)1/4

Here F is the elliptic integral of the first kind and R;, Rs, Rs,v are explicit
functions of the initial variables B;, j = 1,2,3. The same is true for 2-triad
clusters. With the reduction procedure [KLO08]|, this means in particular that
a resonant cluster consisting of, say, 20 or 100 modes, can theoretically be
described by one dynamical invariant.

Dynamical phase. Another important fact established in our research is
the effect of the dynamical phase ¢ = 6; 4 02 — 03 on the amplitudes a;.
It was a common belief that for an exact resonance to occur, it is necessary

So (26)

L http://demonstrations.wolfram.com /Nonlinear WaveResonances/
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that ¢ is either zero or constant (e.g. [LHGG67, Ped87]). It is evident from the
Figure 13 that this is not true.

Applications

Speaking very generally, there exist two ways of using NRA for practical pur-
poses . Kinematical methods can be used for computing the form of new tech-
nical facilities (laboratory water tank or an airplane wing or whatever else)
such that nonlinear resonances will not appear. Dynamical methods should
be used in case reconstruction of the laboratory facilities is too costly a game,
for instance while studying stable energy states in Tokamak plasma. It costs
hundreds of millions of dollars to construct a new Tokamak. On the other
hand, adjustment of dynamical phases can diminish the amplitudes of reso-
nances (in this case, these are resonantly interacting drift waves) 10 times
and more for the same technical equipment as it is shown in Figure 13.

Color on-line. Plots of the modes’ amplitudes and dynamical
phase as functions of time, for a triad with Z = 1. For each
frame, the dynamical phase ¢(t) is (red) solid, C1(¢) is
(purple) dotted, Ca(t) is (blue) dash-dotted, C3(¢) is (green)
dashed. Initial conditions for the amplitudes are the same for
all frames; initial dynamical phase is (from the left to the
right) ¢ = 0.04 and 0.4. Here, horizontal axe denotes
non-dimensional time; vertical left and right axes denote
amplitude and phase correspondingly.

CENREC

Presently a Web portal for a virtual CEntre for Nonlinear REsonance Com-
putations (CENREC) is being developed at RISC as an international open-
source information resource in the most important and vastly developing area
of modern nonlinear dynamics — nonlinear resonance analysis. CENREC will
contain the following:

FIGURE 13
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1. A MediaWiki-based hypertext encyclopedia with references to the elec-
tronic bibliography and to executable software;

2. An electronically indexed and searchable bibliography, with links to elec-
tronic documents (if freely available);

3. A collection of executable symbolic methods accessible via web interfaces
(http://cenrec.risc.uni-linz.ac.at/portal/).

Highlights of the research on the NRA

Natural phenomena

Intraseasonal oscillations (IOs) in the earth’s atmosphere with periods 30-100
days have been discovered in observed atmospheric data in 1960th. They play
important role for modeling climate variability. All attempts to explain their
origin, including numerical simulations with 120 tunable parameters, failed
[GKLRO04]. We developed a model of I0s based on the NRA; this model
explains all known characteristics of 10s and also predict their appearance,
for suitable initial conditions. The paper on the subject has been published
in the journal Number 1 in general modern physics — Physical Review Letters
(PRL, [KLO7]). The model called a lot of attention of scientific community:
it has been featured in “Nature Physics” (3(6): 368; 2007), listed in PRL
Highlights by “The Biological Physicist” (7(2): 5; 2007), etc.

Numerics

The NRA should be regarded as a necessary preliminary step before any
numerical simulations with nonlinear evolutionary dispersive PDEs. Instead
of using Galerkin-type numerical methods to compute one system of 2500
interconnected nonlinear ODEs for the example regarded in Section 5.2, we
have 28 small independent systems and among them 18 are integrable analyt-
ically in terms of special functions (e.g. in Jacobian or Weierstrass’s elliptic
functions, see [BK09b]). The largest system to be solved numerically consists
of only 12 equations. These theoretical findings are completely general, and
do not depend on the form of dispersion function and chosen spectral do-
main, only the form and the number of small subsystems will change (e.g.
[KLO08, Kar94, KK07]).

Mathematics

Nonlinear resonance analysis is a natural next step after Fourier analysis
developed for linear PDEs. The necessary apparat of a new branch of math-
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ematical physics—definitions, theorems, methods, applications—is already
available. The monograph on the subject, authored by E. Kartashova, will
be published soon by Cambridge University Press. What is still missing, is
an appropriate set of simple basis functions, similar to Fourier harmonics
expli(kx 4+ wt)] for linear PDEs. The form of dynamical invariants gives a
hint that the functional basis of the NRA might be constructed, for instance,
of three Jacobian elliptic functions sn,dn and cn or their combinations. If
this task would be accomplished, the NRA will become necessary routine
part of any university education in natural sciences as is nowadays Fourier
analysis.

References

[AAR00] G.E. Andrews, R. Askey, and R. Roy. Special Functions. Cambridge UP, 2000.

[AJLTO05] F. Almonte, V.K. Jirsa, E.W. Large, and B. Tuller. Integration and segregation
in auditory streaming. Physica D, 212:137-159, 2005.

[AP94] S.A. Abramov and M. Petkovsek. D’Alembertian solutions of linear differential
and difference equations. In J. von zur Gathen, editor, Proc. ISSAC’94, pages
169-174. ACM Press, 1994.

[Arn83] V.I. Arnold. Geometrical methods in the theory of ordinary differential equa-
tions. A Series of Comprehensive Studies in Mathematics. New York Heidel-
berg Berlin: Springer-Verlag, 1983.

[AS64] M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Functions.
United States Government Printing Office, 1964. Reprinted by Dover, 1965.

[BBK06] I. Bierenbaum, J. Bliimlein, and S. Klein. Evaluating two-loop massive op-
erator matrix elements with Mellin-Barnes integrals. Nucl. Phys. B (Proc.
Suppl.), 160:85-90, 2006. Proceedings of the 8th DESY Workshop on Elemen-
tary Particle Theory.

[BBK07] I. Bierenbaum, J. Blumlein, and S. Klein. Two-loop massive operator ma-
trix elements and unpolarized heavy flavor production at asymptotic values
Q% > m?2. Nucl. Phys. B, 780:40-75, 2007. [arXiv:hep-ph/0703285].

[BBKS07] I. Bierenbaum, J. Bliimlein, S. Klein, and C. Schneider. Difference equa-
tions in massive higher order calculations. In Proc. ACAT 2007, volume
PoS(ACAT)082, 2007. [arXiv:hep-ph/0707.4659].

[BBKSO08] I. Bierenbaum, J. Bliimlein, S. Klein, and C. Schneider. Two—-loop massive
operator matrix elements for unpolarized heavy flavor production to o(e).
Nucl. Phys. B, 803(1-2):1-41, 2008. [arXiv:hep-ph/0803.0273].

[BK99] J. Bliimlein and S. Kurth. Harmonic sums and Mellin transforms up to two-
loop order. Phys. Rev., D60, 1999.

[BKO§] Alin Bostan and Manuel Kauers. Automatic classification of restricted lattice
walks. arXiv:0811.2899, 2008.

[BK09a]  Alin Bostan and Manuel Kauers. The full counting function for Gessel walks
is algebraic, 2009. (in preparation).

[BKO9b] M.D. Bustamante and E. Kartashova. Dynamics of nonlinear resonances in

Hamiltonian systems. Europhysics Letters, 85:14004—6, 2009.

[BK09c] M.D. Bustamante and E. Kartashova. Effect of the dynamical phases on the
nonlinear amplitudes’ evolution. Furophysics Letters, To appear in February
2009:1-5, 2009.



I Hot Topics in Symbolic Computation

[BKKS09a] J. Bliimlein, M. Kauers, S. Klein, and C. Schneider. Determining the

closed forms of the O(a?) anomalous dimensions and wilson coefficients from
Mellin moments by means of computer algebra. Technical Report DESY
09-002, SFB/CPP-09-22, Deutsches Elektronen Syncrothron, Zeuthen, 2009.
[arXiv:hep-ph/0902.4091].

[BKKS09b] J. Bliimlein, M. Kauers, S. Klein, and C. Schneider. From moments to func-

[BMO02]
[BMMOS]
[CGPYY]

[Che93]
[DHS1]

[dS04]
[Due08]

[Eys66]
[FG04]

[FGO6]

[GCLY2]

[GKO5]

[GKLRO4]

[GKP94]
[Har40]
[HMKO3]
[Kar81]

[Kar94]

[Kar98]

[Kar06]

tions in quantum chromodynamics. In To appear in Proc. ACAT 2008, volume
PoS(ACAT08)106, 2009. [arXiv:hep-ph/0902.4095].

Mireille Bousquet-Melou. Counting walks in the quarter plane. In Trends
Math., pages 49—-67. Birkhauser, 2002.

Mireille Bousquet-Mélou and Marni Mishna. Walks with small steps in the
quarter plane. ArXiv 0810.4387, 2008.

F. Chyzak, I. Gutman, and P. Paule. Predicting the Number of Hexagonal
Systems with 24 and 25 Hexagons. MATCH, 40:139-151, 1999.

M. Cheney. Tesla Man Out Of Time. Barnes & Noble, 1993.

P.J. Davis and R. Hersh. The Mathematical Experience. Birkhaeuser, Boston,
1981.

Y. du Sautoy. The Music of the Primes. Fourth Estate, London, 2004.

G. Dueck. Mathematik und Weltlaufigkeit. Mitteilungen der DMV, 16:206—
209, 2008.

Hans J. Eysenck. Check Your Own I.Q. Rowohlt, 1966.

R. Feng and X.-S. Gao. Rational General Solutions of Algebraic Ordinary
Differential Equations. In J. Gutierrez, editor, Proc. ISSAC 200/ (Internat.
Symp. on Symbolic and Algebraic Computation), pages 155-162. ACM Press,
New York, 2004.

R. Feng and X.-S Gao. A Polynomial Time Algorithm to Find Rational Gen-
eral Solutions for First Order Autonomous ODEs. J. Symbolic Computation,
41:735-762, 2006.

K.O. Geddes, S.R. Czapor, and G. Labahn. Algorithms for Computer Algebra.
Kluwer, 1992.

S. Gerhold and M. Kauers. A Procedure for Proving Special Function In-
equalities Involving a Discrete Parameter. In Proceedings of ISSAC’05, pages
156-162. ACM Press, 2005.

M. Ghil, D. Kondrashov, F. Lott, and A.W. Robertson. Intraseasonal os-
cillations in the mid-latitudes: observations, theory, and GCM results. Proc.
ECMWE/CLIVAR Workshop on Simulations and prediction of Intra-Seasonal
Variability with Emphasis on the MJO. November 3-6, 2003., pages 35-53,
2004.

R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics.
Addison-Wesley, 2nd edition edition, 1994.

G.H. Hardy. A Mathematician’s Apology. Cambridge University Press, 1940.
K. Horvat, M. Miskovic, and O. Kuljaca. Avoidance of nonlinear resonance
jump in turbine governor positioning system using fuzzy controller. Industrial
Technology, 2:881-886, 2003.

M. Karr. Summation in finite terms. J. ACM, 28:305-350, 1981.

Elena Kartashova. Weakly nonlinear theory in resonators. Physical Review
Letters, 72:2013-2016, 1994.

Elena Kartashova. Wave resonances in systems with discrete spectra. In V.E.
Zakharov, editor, Nonlinear Waves and Weak Turbulence, volume 182 of AMS
Translations 2, pages 95-130. American Mathematical Society, 1998.

E. Kartashova. Fast Computation Algorithm for Discrete Resonances among
Gravity Waves. JLTP (Journal of Low Temperature Physics), 145(1):287-295,
2006.



References

[Kau08]

[KBO5]

[KKO06]

[KKO7]

[KKZ08)

[KLO7]
[KLO8]

[KLPGO4]

[KMO6]
[KMO07]
[KP07]

[KRF*07]

[Kuk04]

[KZ08)

[LHO4]
[LHG67]
[Mo6]

[Mal96a]

[Mal96b]

[Mis07]

[MS07]

Manuel Kauers. Computer Algebra for Special Function Inequalities. In
Tewodros Amdeberhan and Victor Moll, editors, Tapas in Experimental Math-
ematics, volume 457 of Contemporary Mathematics, pages 215-235. AMS,
2008.

M. Kundu and D. Bauer. Nonlinear Resonance Absorption in the Laser-Cluster
Interaction. Physical Review Letters, 96:123401, 2005.

E. Kartashova and A. Kartashov. Laminated wave turbulence: generic algo-
rithms I. IJMPC (International Journal of Modern Physics C), 17(11):1579—
1596, 2006.

E. Kartashova and A. Kartashov. Laminated wave turbulence: generic algo-
rithms III. Physica A: Statistical Mechanics and Its Applications, 380:66—74,
2007.

Manuel Kauers, Christoph Koutschan, and Doron Zeilberger. Proof of Ira Ges-
sel’s lattice path conjecture. Technical Report 2008-08, SFB F013, Johannes
Kepler Universitéat, 2008. (submitted).

E. Kartashova and V. L’vov. A model of intra-seasonal oscillations in the
Earth atmosphere. Physical Review Letters, 98(19):198501, May 2007.

E. Kartashova and V. L¢vov. Cluster Dynamics of Planetary Waves. Europhys.
Letters, 83:50012-1-50012—6, 2008.

A.L. Karuzskii, A.N. Lykov, A.V. Perestoronin, and A.I. Golovashkin. Mi-
crowave nonlinear resonance incorporating the helium heating effect in super-
conducting microstrip resonators. Physica C: Superconductivity, 408-410:739—
740, 2004.

D.A. Kovriguine and G.A. Maugin. Multiwave nonlinear couplings in elastic
structures. Mathematical Problems in Engineering, 2006:76041, 2006.

E. Kartashova and G. Mayrhofer. Cluster formation in mesoscopic systems.
Physica A: Statistical Mechanics and Its Applications, 385:527-542, 2007.
Manuel Kauers and Peter Paule. A Computer Proof of Moll’s Log-Concavity
Conjecture. Proceedings of the AMS, 135(12):3847-3856, December 2007.

E. Kartashova, C. Raab, Ch. Feurer, G. Mayrhofer, and W. Schreiner. Symbolic
Computations for Nonlinear Wave Resonances. In Ch. Harif and E. Pelinovsky,
editors, “Extreme Ocean Waves”. Springer, 2007. (submitted).

B. Kuksin. Fifteen years of KAM for PDE. In AMS Translations 2, volume
212, pages 237-258. American Mathematical Society, 2004.

Manuel Kauers and Doron Zeilberger. The quasi-holonomic ansatz and re-
stricted lattice walks. Journal of Difference Equations and Applications,
14(10):1119-1126, 2008.

P. Lynch and C. Houghton. Pulsation and precession of the resonant swinging
spring. Physica D, 190:38-62, 2004.

M.S. Longuet-Higgins and A.E. Gill. Resonant Interactions between Planetary
Waves. Proc. R. Soc. London, Ser. A, 299:120-140, 1967.

Kauers M. Sum Cracker — A Package for Manipulating Symbolic Sums and
Related Objects. J. Symbolic Computat., 41(9):1039-1057, 2006.

C. Mallinger. Algorithmic Manipulations and Transformations of Univariate
Holonomic Functions and Sequences. Master’s thesis (diplomarbeit), RISC,
Johannes Kepler University Linz, 1996. Available at: http://www.risc.uni-
linz.ac.at/research/combinat.

Christian Mallinger. Algorithmic manipulations and transformations of uni-
variate holonomic functions and sequences. Master’s thesis, RISC-Linz, August
1996.

Marni Mishna. Classifying lattice walks restricted to the quarter plane. In
Proceedings of FPSAC’07, 2007.

S. Moch and C. Schneider. Feynman integrals and difference equations. In
Proc. ACAT 2007, volume PoS(ACAT)083, 2007. [arXiv:hep-ph/0709.1769].



[MVV04]

[Ped87]
[Pil07]
[PPOS]

[PRO7]

[PS95a]

[PS95b]

[PS03]
[PV00]
[PV02]
[PWZ96]

[Sch04]

[Sch05]

[Sch07]
[Sch08]

[Sch09]

[Slo73]
[Slo94]
[SWa08]

[S294]

[Ver99]

[VGJ02]

I Hot Topics in Symbolic Computation

S. Moch, J. A. M. Vermaseren, and A. Vogt. The three-loop splitting functions
in ged: The non-singlet case. Nucl. Phys. B, 688:101-134, 2004. [arXiv:hep-
ph/0403192].

J. Pedlosky. Geophysical Fluid Dynamics. New York Heidelberg Berlin:
Springer-Verlag, 1987.

V. Pillwein. Positivity of Certain Sums over Jacobi Kernel Polynomials. Ad-
vances Appl. Math., 41:365-377, 2007.

P. Paule and V. Pillwein. Automatic Improvements of Wallis’ Inequality. Tech-
nical Report 08-18, RISC Report Series, University of Linz, Austria, 2008.

P. Paule and A. Riese. A Mathematica g-analogue of Zeilberger’s algorithm
based on an algebraically motivated aproach to g-hypergeometric telescoping.
In M. Ismail and M. Rahman, editors, Special Functions, q-Series and Related
Topics, volume 14, pages 179-210. Fields Institute Toronto, AMS, 1997.

P. Paule and M. Schorn. A Mathematica Version of Zeilberger’s Algorithm for
Proving Binomial Coefficient Identities. J. Symb. Comput., 20:673-698, 1995.
P. Paule and M. Schorn. A Mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities. J. Symbolic Comput., 20(5-6):673-698,
1995.

P. Paule and C. Schneider. Computer proofs of a new family of harmonic
number identities. Adv. in Appl. Math., 31(2):359-378, 2003.

D. Poulakis and E. Voskos. On the Practical Solutions of Genus Zero Diopan-
tine Equations. J. Symbolic Computation, 30:573-582, 2000.

D. Poulakis and E. Voskos. Solving Genus Zero Diopantine Equations with at
Most Two Infinity Valuations. J. Symbolic Computation, 33:479-491, 2002.
M. Petkovsek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Wellesley,
MA, 1996.

C. Schneider. The summation package Sigma: Underlying principles and a
rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365—
386, 2004.

C. Schneider. Solving parameterized linear difference equations in terms of
indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799—
821, 2005.

C. Schneider. Symbolic summation assists combinatorics. Sém. Lothar. Com-
bin., 56:1-36, 2007. Article B56b.

C. Schneider. A refined difference field theory for symbolic summation. J.
Symbolic Comput., 43(9):611-644, 2008. [arXiv:0808.2543v1].

C. Schneider. A symbolic summation approach to find optimal nested sum
representations. In Proceedings of the Conference on Motives, Quantum Field
Theory, and Pseudodifferential Operators, To appear in the Mathematics Clay
Proceedings, 2009.

N.J.A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973.
N.J.A. Sloane. The New Book of Integer Sequences. Springer, 1994.

J.R. Sendra, F. Winkler, and S. Pérez-Diaz. Rational Algebraic Curves — A
Computer Algebra Approach, volume 22 of Algorithms and Computation in
Mathematics. Springer-Verlag Heidelberg, 2008.

B. Salvy and P. Zimmermann. Gfun: A Package for the Manipulation of Gener-
ating and Holonomic Functions in One Variable. ACM Trans. Math. Software,
20:163-177, 1994.

J.A.M. Vermaseren. Harmonic sums, Mellin transforms and integrals. Int. J.
Mod. Phys. A, 14:2037-2076, 1999.

Markus Voege, Anthony J. Guttmann, and Iwan Jensen. On the Number of
Benzenoid Hydrocarbons. Journal of Chemical Information and Computer
Sciences, 42(3):456-466, 2002.



References

[VMMO5]

[VMV04]

[VVMO5)

[vzGG99]
[Weg97]
[Whi90]

[W.KO06]

[Zei90a)
[Zei90b]

[ZLF92)

C. Vedruccio, E. Mascia, and V. Martines. Ultra High Frequency and Mi-
crowave Non-linear Interaction Device for Cancer Detection and Tissue Char-
acterization, a Military Research approach to prevent Health Diseases. Inter-
national Review of the Armed Forces Medical Services (IRAFMS), 78:120-132,
2005.

A. Vogt, S. Moch, and J. A. M. Vermaseren. The three-loop splitting func-
tions in gcd: The singlet case. Nucl. Phys. B, 691:129-181, 2004. [arXiv:hep-
ph/0404111].

J. A. M. Vermaseren, A. Vogt, and S. Moch. The third-order gcd corrections
to deep-inelastic scattering by photon exchange. Nucl. Phys. B, 724:3-182,
2005. [arXiv:hep-ph/0504242].

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, 1999.

K. Wegschaider. Computer generated proofs of binomial multi-sum identities.
Diploma thesis, RISC Linz, Johannes Kepler University, 1997.

E.T. Whittaker. A Course in Modern Analysis. Cambridge University Press,
1990.

W.Kluzniak. Quasi periodic oscillations and the possibility of an abserva-
tional distinction between neutron and quark stars. Acta Physica Polonica B,
37:1361-1366, 2006.

D. Zeilberger. A Fast Algorithm for Proving Terminating Hypergeometric
Identities. Discrete Math., 80:207-211, 1990.

D. Zeilberger. A Holonomic Systems Approach to Special Function Identitites.
J. Comput. Appl. Math., 32:321-368, 1990.

V.E. Zakharov, V.S. L’vov, and G. Falkovich. Kolmogorov Spectra of Turbu-
lence. Springer, 1992.






affine rational parametrization, 13 inversion of a proper parametrization, 14

curve parametrizable, 12 proper parametrization, 14
curve parametrizable by a linear system of
curves, 17 rational curve, 12






List of Authors

Michael Affenzeller

Heuristic and Evolutionary Algorithms Laboratory, Upper Austria
University of Applied Sciences
michael.affenzeller@fh-hagenberg.at

Andreas Beham

Heuristic and Evolutionary Algorithms Laboratory, Upper Austria
University of Applied Sciences

andreas.beham@fh-hagenberg.at

Peter Brandl
Media Interaction Lab, Upper Austria University of Applied Sciences
peter.brandl@fh-hagenberg.at

=
>

Bruno Buchberger
777
777

Bruno Buchberger
RISC
JKU Linz

Georg Buchgeher
777
777

Karoly Bésa
Research Institute for Symbolic Computation (RISC), JKU Linz
Karoly.Bosa@risc. jku.at

Bernhard Dorninger
777
777




54 List of Authors

Christina Feilmayr

FAW
7?7

Alois Ferscha
777
?77?

Bernhard Freudenthaler

FAW
777

Adam Gokcezade
Media Interaction Lab, Upper Austria University of Applied Sciences
adam.gokcezade@fh-hagenberg.at

Michael Guttenbrunner

FAW
777

Michael Haller
Media Interaction Lab, Upper Austria University of Applied Sciences
haller@fh-hagenberg.at

Daniel Jabornig

FAW
777
Tudor Jebelean
RISC
JKU Linz
Josef Kiing
FAW
777

Lena Kartashova

RISC
777

Manuel Kauers

RISC
777

Erich Peter Klement
Fuzzy Logic Laboratorium Linz-Hagenberg, Johannes Kepler University
Linz, ep.klement@jku.at




List of Authors 55

Temur Kutsia
RISC
JKU Linz

Thomas Leitner

Institute for Application Oriented Knowledge Processing(FAW), JKU
Linz

Thomas.Leitner@jku.at

Edwin Lughofer
Fuzzy Logic Laboratorium Linz-Hagenberg, Johannes Kepler University
Linz, edwin.lughofer@jku.at

Bernhard Moser
Software Competence Center Hagenberg (SCCH)
Bernhard.Moser@scch.at

Bernhard Moser

Software Competence Center Hagenberg, bernhard.moser@scch.at

Stefan Parzer

FAW
7?7

Peter Paule

RISC
7?7

Josef Pichler
777
?77?

7

Herbert Prahofer
777
7?7

Birgit Proll
FAW
777

Szilard Pall
Software Competence Center Hagenberg (SCCH)
Pall.Szilard@gmail.com

Rudolf Ramler
777




50

List of Authors

Christoph Richter

Research Group Knowledge Media, Upper Austria University of Applied
Sciences

christoph.richter@fh-hagenberg.at

Carsten Schneider

RISC
7?7

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC), JKU Linz
Wolfgang.Schreiner@risc. jku.at

Thomas Seifried

Media Interaction Lab, Upper Austria University of Applied Sciences

thomas.seifried@fh-hagenberg.at

Fritz Stallinger

777
777

Reinhard Stumptner

FAW
777

Wolfram Wo683

FAW
777

Roland Wagner

FAW
777

7

Stefan Wagner

Heuristic and Evolutionary Algorithms Laboratory, Upper Austria
University of Applied Sciences
stefan.wagner@fh-hagenberg.at

Rainer Weinreich
77?
777

Gerhard Weiss

777
777

Volkmar Wieser

Software Competence Center Hagenberg (SCCH)
Volkmar.Wieser@scch.at



List of Authors 57

Wolfgang Windsteiger
Research Institute for Symbolic Computation — RISC, JKU Linz
Windsteiger@risc. jku.at

Franz Winkler

RISC
777

7

Stephan Winkler

Heuristic and Evolutionary Algorithms Laboratory, Upper Austria
University of Applied Sciences

stephan.winkler@fh-hagenberg.at

Wolfram W68 ‘
Institute for Application Oriented Knowledge Processing (FAW), JKU e
Linz W
Wolfram.Woess@jku.at

authorl
?77?
77?7

author?2
777
77?




