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Abstract. Archives are implemented as an extension of Theorema for repre-
senting mathematical repositories in a natural way. An archive can be con-
ceived as one large formula in a language consisting of higher-order predicate
logic together with a few constructs for structuring knowledge: attaching la-
bels to subhierarchies, disambiguating symbols by the use of namespaces,
importing symbols from other namespaces and specifying the domains of cat-
egories and functors as namespaces with variable operations.

All these constructs are logic-internal in the sense that they have a nat-
ural translation to higher-order logic so that certain aspects of Mathematical
Knowledge Management can be realized in the object logic itself. There are a
variety of operations on archives, though in this paper we can only sketch a few
of them: knowledge retrieval and theory exploration, merging and splitting,
insertion and translation to predicate logic.
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1. Introduction

A major goal of Mathematical Knowledge Management (MKM) is the storage of
“mathematical knowledge” in a suitable way:

• In our understanding, a rigorous formalization (typically in a first-order logic
with set theory or in a higher-order logic) is indispensable.
• The knowledge should be reasonably easy to access for retrieval, proving,

simplifing, solving and various other operations.
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By the first of these constraints, the fuzzy notion of “mathematical knowledge” is
made precise as a set of well-formed formulae Φ ⊆ L(Σ) over a signature Σ. But
this brings us into conflict with the second constraint: For a large knowledge base
it is unwise to gather all its symbols into a “flat” signature Σ and all its formulae
into a “flat” assumption set Φ. It is of no help either to use lists instead of sets—
the real problem is that the hierarchical layers present in informal mathematical
practice are discarded.

One way to cope with this problem is to employ logic-external means for
supplying the missing structure in the form of metadata [5], semantic annota-
tions [20, 29], the label tools of [25, 24] or content dictionaries within OMDoc [18].
In this paper we would like to point out an alternative that has a very natural
flavor: By a slight extension of the object language (the Theorema language, a
version of predicate logic), this problem can also be remedied by using special
logic-internal constructs. Namely, instead of having flat assumption sets, the lan-
guage of archives provides labels for specifying a hierarchical structure on the
knowledge base and a hierarchy of namespaces for binding the global symbols in
an associated structure.

We refer to knowledge bases involving these constructs as archives. In fact,
they can be viewed as a single formula in a slight extension of the Theorema

langugage (see Section 2), which is based on the following two design principles:

• Its constructs should be logic-internal in the sense that there is a transparent
translation to the underlying Theorema language.
• As a part of Theorema, it emphasizes a natural style similar to that of the

working mathematician [13].

The framework presented here should only be understood as a first step in the
general direction outlined by these principles.

The benefits of the logic-internal approach become apparent when one con-
siders the logical nature of some “MKM operations”. For example, we might say
(logic-externally): “Assuming the preliminaries of lattice theory and various def-
initions (both contained in suitable theory files), the Jordan-Hölder-Dedekind
Theorem as in [21, p. 494] holds.” Using the logic-internal labels BasicDefs,
LatTheory • Prelim and LatTheory • JHDTheorem, this statement becomes a for-
mula in the object language:

LatTheory • Prelim ∧ BasicDefs⇒ LatTheory • JHDTheorem

Now “using” this theorem just amounts to modus ponens, once the hypotheses
LatTheory • Prelim and BasicDefs are established. (In the logic-external repre-
sentation, this step can only be expressed as a metalevel inference.) It turns out
that logic itself has the means for realizing such labels; one can view them es-
sentially as propositional constants. Likewise namespaces can be given a natural
interpretation within the logic, somewhat similar to the domains of categories and
functors in the sense of [11].

Let us briefly review some other systems operating on structured knowledge
repositories; see also [26]. The largest organized library of mathematics available is
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the MML library of Mizar [29]. Other libraries of mathematics include HELM [15]
and the mathematical databases formalized in OMDoc [18]. The ongoing efforts
for reworking the theory of special functions into an online database in the DLMF
project [23] are another instance of structuring a considerable portion of mathe-
matics. Authoring tools like ActiveMath [22] also contain significant portions of
structured mathematics. Most of these systems employ textual-based retrieval. A
similar mechanism [4], based on HELM, is incorporated into the interactive theo-
rem prover Matita [3]. On a somewhat different line, MathWebSearch [19] allows
to search OMDoc documents up to α-conversion.

Another idea, similar to archives in spirit but using a proof-theoretic approach
to MKM, is presented in [1, 2]. The library of proofs, theorems and tactics are
integrated in the underlying proof logic, where scoping and tactics are represented
in a typed λ-calculus. But the point of emphasis there seems to be more on the
migration between object and metalevels in mathematics. Similar ideas have also
been studied in Theorema under the heading of reflection [17].

The structure of the paper is as follows. We start by summarizing various
MKM-related features of Theorema (Section 2). The structure of archives is de-
scribed in detail within the next two sections. We introduce labels for hierarchical
blocks of formulae and various useful notational conventions for already existing
Theorema constructs (Section 3). Next we discuss namespaces and their relation
to the domains of categories and functors (Section 4). Archives can be manip-
ulated by various operations like loading/saving, combining/splitting/inserting,
basic instances of retrieval and theory exploration (Section 5).

2. Building and Structuring Mathematics in Theorema

Since the language of archives is developed within the Theorema system, let us now
describe some of its features that are particularly interesting from the viewpoint
of MKM. For a general survey of Theorema we refer to [13, 14].

The overall goal of the Theorema system is to provide computer support for
the working mathematician in his routine tasks, supporting the entire process of
mathematical work. Some characteristic features of Theorema are:

• It offers a flexible two-dimensional syntax for presenting formulae naturally.
• Proofs can be generated and presented in a style close to that of textbooks.
• Using a variant of higher-order logic, it allows to specify, verify and use

algorithms in a unified language.
• Theory exploration is preferred over isolated theorem proving.
• Every part of mathematics can be equipped with efficient specialized reason-

ers (like CAD for elementary analysis).
• For specifying and manipulating model classes, Theorema encourages the

usage of so-called categories and functors (see Subsection 2.2 and 2.3).

In the remainder of this section, we explain the logic-external labelling system in
Theorema (Subsection 2.1), operation objects and how they can be assembled in
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a category (Subsection 2.2), and how they can be created by functors (Subsec-
tion 2.3).

2.1. Logic-External Labels

Apart from the newer developments described in this paper, Theorema offers in
its core language various types of (logic-external) labels:

1. Individual formula labels
2. Names for environments like Definition, Theorem, Lemma, . . .
3. Names for nested theories

Here is a fragment of a theory of the natural numbers, consisting of an Axioms

and Definition environment, each of which have labels attached to their formulae:

Axioms["Peano 2, 4", any[m, n],
m+ 6= 0 "p2"

m+ = n+ ⇒ m = n "p4"]

Definition["Addition", any[m, n],
m + 0 = m "a1"

m + n+ = (m + n)+ "a2"]

Theory["NaturalNumbers",

Axioms["Peano 2, 4"]
Definition["Addition"]
. . . ]

A theory may also contain—among plain environments as above—other theories,
thus building up a hierarchical knowledge base (see the example in Subsection 5.2).

In addition to the above way of specifying labels, Theorema also offers a more
convenient interface, in which formulae may be input directly into individual Math-

ematica cells and their accompanying (logic-external) labels in the corresponding
cell tags. This interface includes also various tools for managing labels as well as
simple search facilities, illustrated by the following examples:

4. Search by formula label : Look for all formulae in tuple theory with labels
ending in associative by LabelLookup["*associative", "BN:Tuples"].

5. Search by formula constants : Return all formulae containing is-empty and
≍ by SymbolLookup[{is-empty,≍}, "BN:Tuples", FilterType→ All]).

6. Applicative higher-order pattern matching: Search all formulae in BN:Tuples

using ≍ left of an equality by FormulaLookup[ ≍ = , "BN:Tuples"].

For more details we refer to [24, 27].
The language of archives is a continuation of the features (1)–(6), with labels

now being logic-internal. Moreover, it provides namespaces as a suitable construct
for structuring the constants occurring in various branches of a theory hierarchy.

2.2. Operation Objects and Categories

Theories are the building blocks of mathematics and thus also of archives. A theory
is determined by its symbols (having a certain arity) and the axioms characterizing
them; we call the corresponding model class a category. Note that in this paper
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the notions of categories and functors are meant in the sense of [11, 8] and not
necessarily in the sense of Eilenberg and MacLane (although there will often be a
natural correspondence).

We will show later how categories can be defined succintly in the language
of archives (see Subsection 4.3). An example of a category in plain Theorema is
given by the real vector spaces:

Definition["RealVectorSpace", any[V ],

is-vecspace[V ]⇔ ∀
ǫ
V

[x,y,z]
∀

ǫ
R
[λ,µ]
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
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(
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(
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)
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x +
V

µ ·
V

x
(

λ ∗
R

µ
)

·
V

x = λ ·
V

(

µ ·
V

x
)

1
R
·
V

x = x

]

Underscripted operation symbols like +
V

are a shorthand notation for the

corresponding curried versions like V [+]. The unary predicate is-vecspace is
introduced for deciding whether some V is a vector space or not. Observe that such
a vector space V is represented as a single object—called an operation object—
even though it contains the various constituents ǫ, +, −, ·, 0. Note also that in
Theorema ranges can be described by unary predicates, like R[ǫ] in the above
example; thus R[ǫ][λ, µ] actually means R[ǫ][λ] ∧R[ǫ][µ].

We have to distinguish between the “whole vector space” V and its “carrier”,
which can either be defined by a membership predicate ǫ or by a carrier set. A
similar distinction can be made for the other operations: They can either be real-
ized as functions/predicate symbols of higher-order logic or as mappings/relations
in the sense of set theory. (For simplicity reasons, we will usually refrain from
employing set theory in domains.)

In conjunction with categories and functors, operation objects are also called
“domains”. We will see later that operation objects generalize naturally to the
concept of namespaces (see Subsection 4.2). They allow for an elegant formulation
of the preservation statements typically encountered in relation with categories
and functors. For example, using a suitable definition of direct product (see Sub-
section 2.3), we have is-group[G] ∧ is-group[H ] ⇒ is-group[G ×H ]. Without
using operation objects, this statement would look somewhat as follows:

form-group[ǫ1, +, 0,−] ∧ form-group[ǫ2,⊕,⊙,⊖]⇒ form-group[
dir-prod-carrier[ǫ1, ǫ2], dir-prod-binary[+,⊕], dir-prod-neutral[0,⊙],
dir-prod-unary[−,⊖]]
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This problem becomes more pronounced when dealing with rings or vector spaces
(not to mention that one runs out of symbols for the operations needed).

2.3. Operation Objects and Functors

In a larger archive, one will generally avoid such a proliferation of symbols by using
suitable operation objects in a modular way. Consider for example computation
in the matrix ring informally denoted by 〈Z[x]2×2, +, ∗, . . .〉.

(

x2 − 7 2x + 4
x− 3 x2 + 3

)

+

(

x2 − 3 x− 2
x x2 + 4

)

∗

(

x3 x2 + 7
1− 2x 2x2 − 3x

)

Operation objects realize the principle of generic implementation and thus
avoid code duplication. Without them we need three additions/multiplications: one
for the matrix ring Z[x]2×2, another for the polynomial ring Z[x], and a third for the
coefficient ring Z. This becomes even worse if we want to consider other coefficient
rings like Z, Q, Q(

√
3), C, and other constructions instead of the polynomials and

matrices, e.g. power series.
Such constructions are typical examples of functors—constructing new do-

mains out of given ones. For example, the polynomial functor, written informally as
Pol : R 7→ R[x], sends the coefficient ring R to the ring of polynomials over R. Ob-
serve that this is already a preservation statement for the functor, claiming that it
maps the category Rng of rings to itself, informally expressed by Pol : Rng→ Rng.
Such preservation properties are typical for functors F : If the input domain D

satisfies a certain property P , its output domain F [D] satisfies some property Q.
Viewing the properties as categories, this can also be expressed by saying that the
functor F is a map between the categories P and Q. Similar things can be said
about functors operating on several domains.

Functors have a computational as well as a proving aspect: While the former
amounts to transporting algorithms (e.g. implementing the polynomial arithmetic
in terms of the coefficient operations), the latter can be seen as transporting prop-
erties (e.g. the property of being a ring in the previous example). The resulting
algorithms can of course be implemented in a programming language (e.g. Math-

ematica or Theorema), but for verifying their properties one needs a theorem
prover; the Theorema system is an integrated environment providing both.

Functors can be expressed without extra language constructs, using only
the higher-order predicate language of Theorema. For functors, a special notation
is provided. As an example (mentioned in Subsection 2.2), consider the functor
constructing the direct product of groups(though the input need not be restricted
to groups—but it usually is to ensure nice “preserved” properties):

Definition["DP", any[G, H ],
G×H = Functor[D, any[x, y],

ǫ[x]⇔
(

is-tuple[x] ∧ (card[x] = 2) ∧ ǫ
G

[x1] ∧ ǫ
H

[x2]
)

x +
D

y =

〈

x1 +
G

y1, x2 +
H

y2

〉
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0
D

=
〈

0
G
, 0

H

〉

−
D

x =

〈

−
G

x1,−
H

x2

〉

]]

The expression Functor[D, . . .] is just an abbreviation for the description
quantifier �

D
yielding the desired operation object (“such a D that all the sub-

sequent definitions are satisfied”). In fact, Theorema expands the above formula
(usually before starting a proof or a computation) as follows:

∀
G,H

∀
x,y

(

ǫ
G×H

[x]⇔ is-tuple[x] ∧ card[x] = 2 ∧ ǫ
G

[x1] ∧ ǫ
H

[x2] ∧

x +
G×H

y = 〈x1 +
G

y1, x2 +
H

y2〉 ∧

0
G×H

= 〈0
G
, 0

H
〉 ∧

−
G×H

x = 〈−
G

x1,−
H

x2〉
)

We will see later how the language of archives supports both formulations of func-
tor definitions (see Subsection 4.2).

3. Syntactic Labels for Hierarchical Knowledge Organization

An archive is a single formula in an extension of the Theorema language. Two new
symbols are needed, ⇋ for attaching labels and : for declaring namespaces. We will
explain the usage of these two symbols in this and the next section. We start by
discussing various notational conventions for already existing Theorema language
constructs; they help to make large mathematical knowledge bases more readable
and less redundant (Subsection 3.1). After this, we will turn to using labels for
creating hierarchies of formulae (Subsection 3.2).

The user interface to an archive is a structured notebook, a Mathematica

notebook written with the predefined TheoremaFormalization stylesheet. It will
contain comments (represented by the cell styles Author, Formalizer, Notes) and
nested formula cells (having the cell style Formal〈n〉 with n a natural number from
1 to 9). The title of the notebook (having the cell style Title) is also considered a
formula cell, providing the root label for the underlying label hierarchy. Of course
comment cells do not influence the archive created and are meant only as a help
for the reader.

Loading an archive from a structured notebook is accomplished by the com-
mand LoadArchive, saving correspondingly by SaveArchive. Another straightfor-
ward operation on archives is their translation to plain predicate logic (in the sense
of the Theorema language). In this paper, we represent the output of this transla-
tion in a slightly modified format for ease of readability: If the output formula is
a conjunction, we list only its conjuncts.

We view this translation mainly as a convenient way of specifying a semantics
for archives. Our ultimate goal is not the translation. On the contrary, we prefer
to work directly with the archives for exploiting their organizational annotations
in various tasks of MKM, in particular starting a retrieval on an archive, and
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expanding an archive by a theory exploration. For more details on these and other
operations, see Section 5.

3.1. Blocks and quantifiers

In the language of archives, we can assert a conjunction of several mathematical
formulae by using the ‘normal’ Theorema ∧ or by using blocks: A block is an
“indentation level” in a hierarchy of nested (and hence indented) cells, denoting
the conjunction of its parts. Thus a block consists of one or more formulae, possibly
in turn containing other blocks. An equivalence or implication with a conjunction
on its right-hand side can be broken after the ⇔ or ⇒ with the right-hand side
following as an indented block, as in the following example (assuming here the
domain D and the relation R to be constants):

is-equivalence[D, R]⇔
is-reflexive[D, R]
is-symmetric[D, R]
is-transitive[D, R]

The internal representation of blocks is realized by the TMConjunction con-
nective. There is no semantic difference between the Theorema ∧ symbol and
TMConjunction, but we decided to distinguish between the two for pragmatic rea-
sons. This distinction is somewhat comparable to the sequent calculus, where the
point is to distinguish between φ1, . . . , φn ⊢ φ and φ1 ∧ . . . ∧ φn ⇒ φ, but note
that TMConjunction represents a nested rather than a flat list of formulae. Just
as sequents can be exploited for building more efficient provers, we have the hope
that distinguishing blocks and conjunctions could be useful in a similar vein.

If formulae are preceded by common quantifiers, their structure can be made
more readable by using blocks:

∀
◦
∀
D

is-idempotent[D, ◦]⇔ ∀
x∈D

(x ◦ x = x)

is-associative[D, ◦]⇔ ∀
x,y,z∈D

((x ◦ y) ◦ z = x ◦ (y ◦ z))

is-commutative[D, ◦]⇔ ∀
x,y∈D

(x ◦ y = y ◦ x)

Existential quantifiers can be used in archives just as universal ones, and one
can also combine them into a quantifier prefix before a block of formulae. The
following example is taken from projective geometry:

∀
is-point[p,q]

p 6=q

∃
is-line[l]

is-incident[p, l]
is-incident[q, l]
∀

is-line[m]
(is-incident[p, m] ∧ is-incident[q, m]⇒ m = l)
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∀
is-line[l,m]

l6=m

∃
is-point[p]

is-incident[p, l]
is-incident[p, m]
∀

is-point[q]
(is-incident[q, l] ∧ is-incident[q, m]⇒ q = p)

Remember that in Theorema ranges can be described by unary predicates, like
is-point and is-line in the above example; thus is-point[p, q] actually means
is-point[p] ∧ is-point[q].

As for the existential and universal quantifiers, the language of archives pro-
vides a multi-line variant of the substitution quantifier p←, typically verbalised
as “let” in prefix and “where” in postfix usage. It is easiest to first consider an
example (claiming correctness of Cardano’s formula):

∀
a,b,c

(

x3 + a ∗ x2 + b ∗ x + c = 0
)

p←
x = − p

3∗u
+ u− a

3

p←
p = b− a

3

q = c + 2∗a3−9∗a∗b
27

u =
3

√

− q

2
±

√

q2

4
+ p3

27

One can see from this example that substitution quantifiers can be nested
into each other. They are used for avoiding multiple occurences of large terms,
and/or for ease of readability (e.g. avoiding a large term in an index position).

In Theorema, the substitution quantifier can be used for arbitrary expres-
sions, i.e. both for terms and formulae. The general form is

Λ
p←

x1 = τ1

. . .
xn = τn

and corresponds to the plain Theorema expression where[x1 = τ1, . . . , xn = τn, Λ].

3.2. Labelling Blocks of Formulae

It is often useful to group formulae in a hierarchy similar to the chapters and
sections of a book (in particular if the formalization comes from a textbook in
the first place). In the language of archives, one can achieve this by using labels,
special formulae associated with blocks of formulae via the ⇋ symbol. Cell groups
having ⇋ in their first cell are called packages. The first cell in a package is its
head, the remaining cells make up its body. Obviously, a package body is always a
block (in the sense explained above).

Here is an example of some labels and their associated formulae taken from
one of our formalized notebooks:
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Algebra ⇋

GroupTheory ⇋

Magmas ⇋ ∀
M

is-magma[M ]⇔ ∀
ǫ

M
[x,y]

ǫ
M

[x ◦
M

y]

Semigroups ⇋ ∀
S

is-sgroup[S]⇔
is-magma[S]

∀
ǫ
S
[x,y,z]

(

x ◦
S

y
)

◦
S

z = x ◦
S

(

y ◦
S

z
)

. . .

LatticeTheory ⇋

Posets ⇋ . . .

Chains ⇋ . . .

. . .

For the moment, one should think of the labels Algebra, GroupTheory, . . . as
propositional constants; see below for a more rigorous description. The above pack-
age is then translated into plain Theorema as follows:

Algebra⇔ GroupTheory ∧ LatticeTheory

GroupTheory ⇔ Magmas ∧ Semigroups ∧ . . .

Magmas⇔ ∀
M

(

is-magma[M ]⇔ ∀
ǫ

M
[x,y]

ǫ
M

[x ◦
M

y]
)

Semigroups⇔ ∀
S

(

is-sgroup[S]⇔ is-magma[S] ∧ ∀
ǫ
S
[x,y,z]

(x ◦
S

y) ◦
S

z = x ◦
S

(y ◦
S

z)
)

LatticeTheory ⇔ Posets ∧ Chains ∧ . . .

Posets⇔ . . .

Chains⇔ . . .

In the example above, it was sufficient to refer to Semigroups, Posets, . . .
because it is clear that there are no other packages with these heads. In other
cases, a disambiguation is necessary. For example if the user wants to preserve
a similar structure in all her packages: She wants to investigate algebra, distin-
guishing between the basic and advanced theory. For each important notion, she
wants to write definitions and theorems under a head with the ad-hoc name Defs

and Thms, respectively. In this case, it is advisable to use compound labels like
Posets•Basics, Posets•Basics•Defs rather than atomic ones as in the example
above. Using an obvious input convention, a fragment of such an archive would
look like this:

Posets ⇋ ∀
P

•Basics ⇋

•Defs ⇋

is-poset[P ]⇔
∀

ǫ
P

[x,y,z]

x ≤
P

x
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(

x ≤
P

y ∧ y ≤
P

x

)

⇒ x = y
(

x ≤
P

y ∧ y ≤
P

z

)

⇒ x ≤
P

z

∀
x,y

ǫ
converse[P ]

[x]⇔ ǫ
P
[x]

x ≤
converse[P ]

y ⇔ y ≤
P

x

. . .

•Thms ⇋

is-poset[P ]⇒ is-poset[converse[P ]]
. . .

•Advanced ⇋

•Defs ⇋ ∀
C

is-conn-chain[C, P ]⇔

(

is-tuple[C] ∧ ∀
i=1,...,|C|

ǫ
P

[Ci]∧

∀
i=1,...,|C|−1

covers

[

≤
P

, Ci, Ci+1

])

endpt[C] = C|C|

•Thms ⇋

is-lattice[P ] ∧ is-finite[P ]⇒
∀

C,D
((is-conn-chain[C, P ] ∧ is-conn-chain[D, P ]∧

(endpt[C] = endpt[D])) ⇒ (|C| = |D|))
. . .

Groups ⇋

•Basics ⇋

•Defs ⇋ . . .

•Thms ⇋ . . .

•Advanced ⇋

•Defs ⇋ . . .

•Thms ⇋ . . .

Using the archive above, one would refer to the “advanced theorems” of
the poset package by the compound label Posets•Advanced•Thms. The package
translates to Theorema as follows:

Posets⇔ Posets • Basics ∧ Posets • Advanced
Posets • Basics⇔ Posets • Basics • Defs ∧ Posets • Basics • Thms
Posets • Basics • Defs⇔

∀
P
((is-poset[P ]⇔ ∀

ǫ
P

[x,y,z]
(x ≤

P
x ∧ ((x ≤

P
y ∧ y ≤

P
x)⇒ (x = y))

∧((x ≤
P

y ∧ y ≤
P

z)⇒ x ≤
P

z))) ∧ ∀
x,y

( ǫ
converse[P ]

[x]⇔ ǫ
P
[x]∧

x ≤
converse[P ]

y ⇔ y ≤
P

x) ∧ . . .)

Posets • Basics • Thms⇔ ∀
P
(is-poset[P ]⇒ is-poset[converse[P ]] ∧ . . .)

Posets • Advanced⇔ Posets • Advanced • Defs ∧ Posets • Advanced • Thms
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Posets • Advanced • Defs⇔ ∀
P
∀
C
(is-conn-chain[C, P ]⇔ (is-tuple[C]∧

∀
i=1,...,|C|

ǫ
P
[Ci] ∧ ∀

i=1,...,|C|−1
covers[≤

P

, Ci, Ci+1]) ∧ (endpt[C] = C|C|) ∧ . . .)

Posets • Advanced • Thms⇔
∀
P
((is-lattice[P ] ∧ is-finite[P ]⇒ ∀

C,D
((is-conn-chain[C, P ]∧

is-conn-chain[D, P ] ∧ (endpt[C] = endpt[D]))⇒ (|C| = |D|))) ∧ . . .)
Groups⇔ Groups • Basics ∧ Groups • Advanced
Groups • Basics⇔ Groups • Basics • Defs ∧ Groups • Basics • Thms
Groups • Basics • Defs⇔ . . .

Groups • Basics • Thms⇔ . . .

Groups • Advanced⇔ Groups • Advanced • Defs∧
Groups • Advanced • Thms

Groups • Advanced • Defs⇔ . . .

Groups • Advanced • Thms⇔ . . .

Note that if one uses an atomic label inside a hierarchy of labels, the atomic
one will be treated as if the surrounding hierarchy were not present, but an atomic
label will be considered for compound labels specified via the input convention
exemplified above.

A word of caution about the semantics of compound labels: Since there is
only a limited supply of boolean functions of a fixed arity but no bound on the
number of labels used in a package, the • in a compound label like Groups•Basics
should not be interpreted like having the type Bool × Bool → Bool but rather
String × String → Bool. Atomic labels are then viewed as the degenerate case
String→ Bool.

Quantifiers can be combined with labels in a natural way. As explained be-
fore, quantifiers may be prefixed to blocks; this remains true for those blocks that
form the body of a package. An instance of this usage can be seen in the previous
example after the label Posets•Advanced•Defs and similar places. Quantifiers ap-
pearing in package heads higher up in the hierarchy are distributed to all formulae
in the blocks underneath; this is what happened to the quantifier on P in the
package labelled Posets.

Sometimes existential quantifiers can also be used for introducing local names
for subalgorithms that should only be visible within the package containing the
definition and properties of the main algorithm. Here is an example, where qsort

has auxiliary algorithms left, right and pick:

Tuples ⇋

Sorting ⇋

BubbleSort ⇋ . . .

MergeSort ⇋ . . .

QuickSort ⇋

∃
left,right,pick

qsort[〈〉] = 〈〉
∀

is-non-empty-tuple [X]

qsort[X]=qsort[left[X]] ≍ 〈pick[X]〉 ≍ qsort[right[X]]
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∀
is-tuple[X]

∀
l,r

((l ∈ left[X] ∧ r ∈ right[X])⇒ l ≤ pick[X] ≤ r)

left[X] ≍ 〈pick[X]〉 ≍ right[X]) ≈ X

|left[X]| < |X| ∧ |right[X]| < |X|
PartialCorrectness ⇋ ∀

is-tuple[X]

is-sorted[qsort[X]]
qsort[X] ≈ X

In this example, the names left and right used in the package QuickSort could
also occur in BubbleSort and MergeSort with different meanings (i.e. having
different properties).

4. Namespaces for Structured Symbol Reference

Besides the label hierarchies explained in the previous section, the language of
archives provides another central construct needed for organizing large knowledge
repositories: Namespaces are used as a tool for resolving ambiguity of symbols.
Thus there are altogether three types of symbols in the language of archives:

• Global symbols are practical for notions that are highly important in the
whole of mathematics so that one does not want to refer to them via any
prefixed namespace, e.g. the symbols ∈, ⊆, ∅ of set theory.
• Local symbols are visible only in the subhierarchy of blocks below their point

of introduction, hence they avoid name clashes with symbols used in a parallel
block (see the example immediately above).
• Symbols in a namespace are disambiguated by prefixing symbols with a

“path” providing the necessary context information. In analogy to certain
programming languages we call such a path a namespace.

In the remainder of this section, we will discuss the third type of symbols only.

4.1. Symbols bound to a Namespace

Namespaces are realized in a fashion analogous to the operation objects mentioned
in Subsections 2.2 and 2.3, namely as higher-order functions wrapping the symbols
for distinguishing their different meanings. Consider the following package:

BinRel : 〈is-transitive〉⇋

∀
∼
is-transitive[∼]⇔ ∀

x,y,z
(x ∼ y ∧ y ∼ z ⇒ x ∼ z)

. . .

Its translation to Theorema will be:

BinRel⇔ ∀
∼

(

is-transitive
BinRel

[∼]⇔ ∀
x,y,z

(x ∼ y ∧ y ∼ z ⇒ x ∼ z)
)

∧ . . .

Hence the predicate symbol BinRel[is-transitive] will be distinguished from
other occurences of is-transitive, e.g. in the context of set theory:
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SetTh : 〈is-transitive〉⇋

∀
z

(

is-transitive[z]⇔ ∀
x,y

(x ∈ y ∧ y ∈ z ⇒ x ∈ z)
)

. . .

This will of course be translated to:

SetTh⇔ ∀
z

(

is-transitive
SetTh

[z]⇔ ∀
x,y

(x ∈ y ∧ y ∈ z ⇒ x ∈ z)
)

∧ . . .

In the above example, we have employed the namespaces BinRel and SetTh,
in both cases on the symbol is-transitive. Note that the identifiers BinRel

and SetTh are interpreted as labels as well as namespaces, but their internal
representation is distinct: As explained in Section 3, the labels are actually in-
terpreted as •["BinRel"] and •["SetTh"], respectively. In contrast, the names-
paces occur as function constants in the corresponding internal representation
BinRel[is-transitive] and SetTh[is-transitive].

In general, we can bind a sequence of symbols σ1, . . . , σn to the namespace
associated with a label L, its so-called home namespace, in a block of formulae:

L : 〈σ1, . . . , σn〉⇋

φ1

. . .

φm

This is translated to Theorema as L ⇔ (φ1 ∧ . . . ∧ φm)σ1←L[σ1],...,σn←L[σn]. In

other words, the block is interpreted in the usual way as a conjunction, but with
the specified symbols being replaced by their wrapped correlates L[σ1],. . .,L[σn];
we then say that σ1, . . . , σn are bound to the namespace L. Such packages will be
called wrapped, as opposed to the plain ones considered in Section 3.

For referring to a symbol from a foreign namespace (i.e. a namespace different
from the current home namespace), one normally would have to use its full name
(symbol with the namespace underneath). For improving readability, this can be
abbreviated by “opening” the foreign namespace for “importing” the needed sym-
bols. Let us consider building up the theory of real numbers (with R being the
universe) and stating that certain relations are transitive in the sense of binary
relations defined above. In this case we would write:

Reals : 〈. . . , sin, cos〉⇋

. . .

∀
x

(

sin[x]2 + cos[x]2 = 1
)

. . .

RealRelations ⇋ ∀
x

BinRel : 〈is-transitive〉
is-transitive[<]
∀

a,b
(a ⊏ b⇔ |a− x| < |b− x|)⇒ is-transitive[⊏]

The general situation is as follows: The namespace declaration N : 〈σ1, . . . σn〉
translates a formula φ within its block to φσ1←N [σ1],...,σn←N [σn]. Let us note in
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passing that home namespaces as introduced above can actually be seen as a
shortcut for the following plain package combined with a namespace declaration:

L ⇋

L : 〈σ1, . . . σn〉
φ1

. . .

φm

So home namespaces and foreign namespaces could be identified, but we prefer
to keep the distinction because it may be useful for formula retrieval and related
MKM tasks. We will have to say more about this in Section 5.

4.2. Functors via Namespaces

As mentioned above, namespaces are realized in a similar fashion as the opera-
tion objects of categories and functors. In fact, operation objects are identical to
namespaces from a semantical point of view. The difference is more of a psycho-
logical nature: Operation objects are typically conceived as the domains residing
in a certain category or constructed by a certain functor. As an example consider
the following formula defining the category of semigroups:

∀
S

Semigroup[S]⇔
S : 〈ǫ, ∗〉
∀

x,y

ǫ[x ∗ y]
(x ∗ y) ∗ z = x ∗ (y ∗ z)

Using the same mechanism as explained above, this is translated to:

∀
S

(

Semigroup[S]⇔ ∀
x,y

(

ǫ
S
[x ∗

S
y] ∧

(

x ∗
S

y
)

∗
S

z = x ∗
S

(

y ∗
S

z
))

)

.

But observe that here we have used a variable rather than a constant for opening
a namespace: The symbols ǫ and ∗ are bound to the variable namespace S.

Using compound labels (see Subsection 3.2), it is very natural to build up a
parallel hierarchy of namespaces for binding the miscellaneous symbols introduced
in them. In fact, this is what happens automatically when symbols are bound to
the home namespace corresponding to a certain (atomic or compound) label. The
above fragment from the theory of relations could occur inside a surrounding
hierarchy:

Algebra ⇋

•Relations ⇋

•UnRel : 〈. . .〉⇋ . . .

•BinRel : 〈is-transitive〉⇋

∀
∼

(

is-transitive[∼]⇔ ∀
x,y,z

(x ∼ y ∧ y ∼ z ⇒ x ∼ z)
)

. . .



16 Camelia Rosenkranz, Bruno Buchberger and Tudor Jebelean

Its translation to Theorema reads as follows:

Algebra⇔ (Algebra • Relations ∧ . . .)
Algebra • Relations⇔

Algebra • Relations•UnRel ∧ Algebra • Relations • BinRel ∧ . . .

Algebra • Relations • UnRel⇔ . . .

Algebra • Relations • BinRel⇔

∀
∼

(

is-transitive
Algebra•Relations•BinRel

[∼]⇔ ∀
x,y,z

(x ∼ y ∧ y ∼ z ⇒ x ∼ z)
)

∧ . . .

Namespaces also provide a handy notation for the domains generated by a
functor, where a domain is viewed as a special case of a wrapped package. For
example, one can realize the (multiplicatively written) semigroup of naturals in
terms of the global symbols N,+ and ∈ as follows (note the difference between ∈
and ǫ):

NaturalSemigroup : 〈ǫ, ∗〉⇋ ∀
x,y

ǫ[x]⇒ x ∈ N

x ∗ y = x + y

Such definitions are also called introduction functors since they introduce a
domain without other domains as arguments (in contrast to “normal” functors
like the direct product defined below). Note, however, that introduction functors
may have parameters, i.e. arguments that do not represent domains. An example
would be the n-dimensional real vector spaces (where n ∈ N is a parameter).

A more degenerate example of an introduction functor is given by the zero
group (note the difference between O and 0):

Grp : 〈O〉⇋

∀
g,h

ǫ
O
[g] ⇔ g = 0

O

g +
O

h = 0
O

−
O

g = 0
O

Now we could use O
Grp

for denoting the zero group; similar functors could be defined

for the zero objects of other categories like monoids Mon.
A very common example of a bivariate functor is the direct product intro-

duced in Subsection 2.3, which could be written directly in a package (assuming
that is-tuple, card and the tuple selector are globally defined):

DP : 〈×〉⇋ ∀
G,H

G×H =�
D
∀

x,y

D : 〈ǫ, +, 0,−〉

ǫ[x]⇔
(

is-tuple[x] ∧ (card[x] = 2) ∧ ǫ
G

[x1] ∧ ǫ
H

[x2]
)

x + y = 〈x1 +
G

y1, x2 +
H

y2〉

0 = 〈0
G
, 0

H
〉
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−x = 〈−
G

x1,−
H

x2〉

Here is an equivalent definition of the same functor, which dispenses with the
description quantifier � and is more in the spirit of archives:

DP : 〈×〉⇋ ∀
G,H

G×H : 〈ǫ, +, 0,−〉
∀

x,y

ǫ[x]⇔ is-tuple[x] ∧ card[x] = 2 ∧ ǫ
G

[x1] ∧ ǫ
H

[x2]

x + y = 〈x1 +
G

y1, x2 +
H

y2〉

0 = 〈0
G
, 0

H
〉

−x = 〈−
G

x1,−
H

x2〉

Note that here we have for the first time explicitly used a compound term for de-
noting a namespace. The translation proceeds as usual and results in the following
Theorema formulae:

DP⇔ ∀
G,H

∀
x,y

(

(

ǫ
G×

DP
H

[x]⇔ is-tuple[x] ∧ card[x] = 2 ∧ ǫ
G

[x1] ∧ ǫ
H

[x2]
)

∧

x +
G×

DP
H

y = 〈x1 +
G

y1, x2 +
H

y2〉 ∧ 0
G×

DP
H

= 〈0
G
, 0

H
〉 ∧ −

G×
DP

H
x = 〈−

G
x1,−

H
x2〉

)

Observe that the formula above (except for the label DP ) is also what the
Theorema function FlattenKB would have made out of the earlier definition (see
Subsection 2.3). In fact, the general usage of � is nonconstructive, so it is typically
restricted to very specific settings where it can be eliminated (like Theorema does
in explicit definitions). It is therefore advisable to avoid it, but it may still be used
if desired.

4.3. Categories via Namespaces

Namespace declarations also facilitate the specification of categories, as we have
seen in the example of semigroups. In mathematics, categories are generally built
up by gradual refinement—monoids, groups, abelian groups, rings, etc; this can be
compared to the idea of inheritance in computer science. Consider the following
archive version of a fragment of this refinement chain (omitting the outermost
quantifiers on R, G, D, M):

Ring[R]⇔
R : 〈ǫ, +, 0,−, ∗, 1〉
AbGrp[R]
Monoid[⌈ǫ| → ǫ, ◦| → ∗, 1| → 1⌉]
Distributive[R]

AbGrp[G]⇔
G : 〈ǫ, +, 0,−〉
Group

[⌈

ǫ 7→ ǫ, ∗ 7→ +, 1| → 0, �−1 7→ −
⌉]

∀
ǫ[x,y]

x + y = y + x
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Group[G]⇔
G :

〈

ǫ, ∗, 1, �−1
〉

Monoid[⌈ǫ 7→ ǫ, ◦ 7→ ∗, 1 7→ 1⌉]
∀

ǫ[x]

ǫ
[

x−1
]

x ∗ x−1 = 1

Distributive[D]⇔
D : 〈ǫ, +, ∗〉
∀

ǫ[x,y,z]
(x + y) ∗ z = x ∗ z + y ∗ z

Monoid[M ]⇔
M : 〈ǫ, ◦, 1〉
∀

ǫ[x,y,z]

ǫ[x ◦ y]
ǫ[1]
(x ◦ y) ◦ z = x ◦ (y ◦ z)

In the formulae above, it is sometimes necessary to translate between certain
symbols (e.g. between additive and multiplicative group notation). This is realized
by using theory interpretations written as ⌈σ1 7→ τ1, . . . , σn 7→ τn⌉. The intuitive
meaning of this construct is quite clear: It is the finitely supported function that
maps the symbols σ1, . . . , σn to τ1, . . . , τn and leaves all other inputs unchanged
(this last requirement is only made for definiteness and could be omitted). More
precisely, it could be defined as the following lambda expression:

λ
σ























τ1 ⇐ σ = σ1

...
...

τn ⇐ σ = σn

σ ⇐ True

Its purpose is to build a new operation object with appropriate operations; we
will indicate its usage below. For the Theorema translation, the lambda expressions
for the theory interpretations are retained but the usual replacement for the bound
symbols in a namespace are carried out only in the right-hand sides of the lambda
expression. Thus the formulae above will become:

∀
R

(

Ring[R]⇔ AbGrp[R] ∧ Monoid[⌈ǫ 7→ ǫ
R
, ◦ 7→ ∗

R
, 1 7→ 1

R
⌉] ∧ Distributive[R]

)

∀
G

(

AbGrp[G]⇔ Group[⌈ǫ 7→ ǫ
G
, ∗ 7→ +

G
, 1 7→ 0

G
, �−1 7→ −

G
⌉] ∧ ∀

ǫ
G

[x,y]
x +

G
y = y +

G
x
)

∀
G

(

Group[G]⇔ Monoid[⌈ǫ 7→ ǫ
G
, ◦ 7→ ∗

G
, 1 7→ 1

G
⌉] ∧

∀
ǫ
G

[x]
∀

ǫ
G

[y]
∀

ǫ
G

[z]
(ǫ[x−1] ∧ x ∗

G
x−1 = 1

G
)
)

∀
D

(

Distributive[D]⇔ ∀
ǫ
D

[x,y,z]
(x +

D
y) ∗

D
z = x ∗

D
z +

D
y ∗

D
z
)
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∀
M

(

Monoid[M ]⇔ ∀
ǫ

M
[x,y,z]

(

ǫ
M

[x ◦
M

y] ∧ ǫ
M

[1] ∧
(

x ◦
M

y
)

◦
M

z = x ◦
M

(

y ◦
M

z
)

))

The role of theory interpretations becomes clear when we consider their behavior
in proofs (or MKM tasks). So assume a proof situation in which Group[Q] occurs
in the assumptions. By instantiation and modus ponens on the Group definition
above we obtain (besides the invertibility axiom):

Monoid[⌈ǫ 7→ ǫ
Q
, ◦ 7→ ∗

Q
, 1 7→ 1

Q
⌉]

Writing M for ⌈ǫ 7→ ǫ
Q
, ◦ 7→ ∗

Q
⌉, the definition of Monoid further yields:

∀
ǫ

M
[x,y,z]

(

ǫ
M

[x ◦
M

y] ∧ ǫ
M

[ 1
M

] ∧
(

x ◦
M

y
)

◦
M

z = x ◦
M

(

y ◦
M

z
)

)

.

Since symbols like ǫ
M

are internally represented as M [ǫ] and the like, the rule of

β-reduction and case distinction on the lambda expression above finally leads to:

∀
ǫ
Q
[x,y,z]

(

ǫ
Q
[x ∗

Q
y] ∧ ǫ

Q
[1] ∧

(

x ∗
Q

y
)

∗
Q

z = x ∗
Q

(

y ∗
Q

z
)

)

Let us remark that in Theorema the application of β-reduction and case distinction
can be combined into a single computation step that can be intuitively understood
as applying finitely supported functions to arguments.

5. Basic Operations on Archives

Archives are not an aim in themselves—we would like to use them in various
operations, specifically for knowledge buildup and retrieval, e.g. in the context
of theorem proving and algorithm synthesis. Due to the intricate nature of these
operations, however, we can only give a small flavor of how they could look like in
the frame of archives (see Subsections 5.5 and 5.6).

Starting with basic I/O operations on archives (Subsection 5.1), we consider
next their translation to plain predicate logic (Subsection 5.2). Several operations
for restructuring archives are available, “mixing” them in various ways (Subsec-
tion 5.3) or manipulating their parts (Subsection 5.4).

5.1. Loading and Saving Archives

In order to load an archive saved under the filename Algebra.nb in the home
directory, one uses the command:

archive = LoadArchive["Algebra.nb"]

By this call, the box structure of the notebook "Algebra.nb" is parsed into
a Mathematica expression [30], subsequently stored in the variable archive. The
underlying expression language is that of Theorema [14], extended by the language
features presented in the preceding sections.
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As a second argument, the user can also specify a keyword referring to a label
of the structured notebook, extracting the package headed by the label. Consider
for example loading a “subsection” entitled "BasicProperties":

archive = LoadArchive["Algebra.nb", "BasicProperties"]

For viewing and browsing archives (in particular those generated by the oper-
ations described in Subsections 5.3 and 5.4), an inverse operation to LoadArchive

is needed: the command

SaveArchive[archive, fname]

generates from archive a Mathematica notebook to be stored in the file fname.
The result wil be the canonical box structure of the archive (typically not identical
but equivalent to the original structured notebook).

There are two other I/O commands of lesser importance, mainly intended
for writing and reading intermediate portions of an archive. The corresponding
commands are WriteArchive[archive, fname] and ReadArchive[filename].

5.2. Projecting Archives to Plain Predicate Logic

As we explained already in Sections 3 and 4, the translation of an archive to plain
Theorema involves a partial loss of structure (this is why we call this idempotent
operation a projection). In a sense, an archive is a logical formula plus organiza-
tional annotations: the annotations can be translated to logic but the resulting
formula blurs the distinction between “logic” and “organization”, e.g. one cannot
say in general whether a ⇔ stems from a ⇋.

We have implemented two functions for projecting archives: Besides the trans-
lation to a flat set of formulae (called an assumption list in Theorema) considered
up to now, there is also a possibility of retaining the hierarchical structure encoded
in the labels by rephrasing them as nested Theory environments of Theorema. (As
explained in Subsection 2.1, these constructs are logic-external but otherwise essen-
tially equivalent.) The flat translator is called by ArchiveToTmaTheory[archive],
the other one by ArchiveToAsml[archive].

Here is how the package from the beginning of Subsection 3.2 looks like as a
Theory in Theorema:

Theory["Algebra",

Theory["GroupTheory"]
Theory["LatticeTheory"] ]

Theory["GroupTheory",

Theory["Magmas"]
Theory["Semigroups"]
. . . ]

Theory["Magmas", ∀
M

(is-magma[M ]⇔ ∀
ǫ

M
[x,y]

ǫ
M

[x ◦
M

y]) ]

Theory["Semigroups",
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∀
S

(

is-sgroup[S]⇔ is-magma[S] ∧ ∀
ǫ
S
[x,y,z]

(x ◦
S

y) ◦
S

z = x ◦
S

(y ◦
S

z)
)

]

Theory["LatticeTheory",

Theory["Posets"]
Theory["Chains"]
. . . ]

Let us emphasize again, however, that these translators are mainly provided
for illuminating the semantics of logic-internal labels and namespaces and for con-
necting with other components of the Theorema framework.

5.3. Merging and Joining Archives

Two operations are available for “mixing” archives arch1 and arch2, differing in
how they treat global symbols: While the command MergeArchive[arch1,arch2]

identifies them (meaning the symbols remain global so that they refer to the
same concepts), its analog JoinArchive[arch1,arch2] wraps them into sepa-
rating namespaces whose identifiers are the top-level labels of the archives (thus
creating the corresponding home namespaces). Both operations generate the con-
junction of the original archives.

As an example, consider merging archives GroupTheory and LatticeTheory

as a preparation for asserting the theorem that the subgroups of a given group
form a lattice. In this case, (typically globally defined) set-theoretic symbols like
⊆ and ∩ should of course be identified.

A typical example where joining would be the method of choice is when one
wants to bring together archives like AffineGeometry and ProjectiveGeometry,
where e.g. the predicate symbols is-subspace, is-basis and the function symbol
dimension must be kept apart (despite their obvious intuitive correspondences).

Intuitively, merging is similar to set-theoretic union, whereas joining acts like
a disjoint union. Both operations are subsumed by the following command:

CombineArchive[arch1, arch2, {sym, nmsp1, nmsp2}, . . .]

Again the formulae of the archives are conjoined, with all global symbols remaining
global except for those explicitly specified after arch1 and arch2: The symbol sym
is respectively wrapped into the namespaces nmsp1 and nmsp2 in the subarchives
corresponding to arch1 and arch2.

A situation where this occurs is the following example: Assume we want
to combine two archives TopologicalFields and OrderedFields. In this case,
symbols like is-field should be shared, but one must take care not to confuse
the topological notion is-complete with its order-theoretic namesake. In fact,
both of these will enter into the same type of theorem asserting that R is complete
(in the respective senses), both as an ordered field and as a topological field.



22 Camelia Rosenkranz, Bruno Buchberger and Tudor Jebelean

5.4. Operations on Subarchives

One can refer to subarchives by their labels. In the following archive example,
the label TupleProperties • Concatenation • Definition refers to the formula
defining concatenation:

TupleProperties : 〈is-tuple, is-empty-tuple〉⇋

. . .

Concatenation : 〈≍〉⇋
Definition ⇋

∀
x̄,ȳ

(〈x̄〉 ≍ 〈ȳ〉 = 〈x̄, ȳ〉)

Properties ⇋

∀
is-tuple[X]

(X ≍ 〈〉 = X)

∀
is-tuple[X]

(〈〉 ≍ X = X)

∀
is-tuple[X]

((X ≍ X = X)⇒ is-empty-tuple[X])

∀
is-tuple[X,Y,Z]

((X ≍ Y ) ≍ Z = X ≍ (Y ≍ Z))

. . .

Moreover, one can also access the fine structure within packages by using the
customary position markers (as also provided in Mathematica). For example, the
position TupleProperties• Concatenation • Properties ◦ 3 ◦ 3 ◦ 2 refers to the
subformula is-empty-tuple[X ]. Note that in Theorema a quantifier takes three
arguments: range, condition, and matrix.

The command ArchivePart[arch, pos] extracts from an archive arch the
subformula at position pos, its counterpart ArchiveContext[arch, pos] yields the
surrounding context. Similarly, for inserting archive arch2 into arch1 at the label
position lab, one may use the command InsertArchive[arch1, arch2, lab].

5.5. Retrieval in Archives

We regard retrieval as an integral part of theorem proving [9], typically employing
a drastically reduced set of inference rules (“symbolic computation proving”) for
obtaining the formula needed. Textual search is usually not a sufficient solution
since this will not find equivalent formulae or “simple” consequences. (For efficiency
reasons it may occasionally be useful to apply simpler retrieval mechanisms closer
to textual search, so we have also provided them.)

As an example for the idea “retrieval = symbolic computation proving”,
consider the following proof goal:

a+b
2
6= 0 ∧ c2 + 1 6= 0⇒ a+b

2
∗

(

c2 + 1
)

6= 0

One can retrieve the information required if the archive contains the formula:

∀
x,y

(x ∗ y = 0⇒ x = 0 ∨ y = 0)

But note that this retrieval involves the propositional tautology (A ⇒ B) ⇔
(¬B ⇒ ¬A), handled by suitable steps of “symbolic computation proving”.
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The current implementation should only be understood as a first step in this
direction; it allows Theorema provers to execute four retrieval operations offering
different levels of sophistication:

• The operation ArchiveLookup filters out formulae containing given symbols.
• Using ArchiveMatch allows applicative higher-order patterns.
• Finding functions with desired properties is achieved by SearchFunction.
• If the function is to be synthesized, one may use BuildFunction.

The command ArchiveLookup[arch, {sym1, sym2, . . .}] filters arch for the list
of (object, function, predicate) constants sym1, sym2, . . ., returning all positions (in
the sense introduced in Subsection 5.4) of formulae containing the symbols.

With the help of the option Check, the user can reduce the search space. The
default setting is Check → AllArchive, meaning the check is done in the whole
archive. A more restricted (and faster) search can be accomplished by setting
Check → HomeNamespaces. Then the constant symbols will be checked only in
home namespaces (see Subsection 4.1). This feature is useful if the user has built
the archive in such a way that all crucial properties—in particular, the definitions—
of a symbol are asserted under the label designating its home namespace. A case
in point is the concatenation symbol ≍ introduced in Subsection 5.4.

Another option, named Filtering, can be set either to AndFiltering or
OrFiltering. The latter searches formulae containing at least one of the constant
symbols specified, the former requires them to contain all of them. For example,
the command

ArchiveLookup[arch, {+, ∗}, FilterType → AndFiltering]

returns a list of positions for the formulae containing both + and ∗, for exam-
ple associativity in rings. By subsequently using ArchivePart for each of these
positions, one will obtain the corresponding subarchives or subformulae.

If one wants to search in an archive arch for formulae having a certain “skele-
ton” form, one can use ArchiveMatch[arch, form]. The skeleton may be an arbi-
trary formula of the archive language, having additional metavariables designated
by a superscripted question mark (subsequently transformed to patterns of Math-

ematica to be interpreted by its higher-order applicative matching algorithms).
Suppose, for example, that we want to search for an invariant S? for a fixed equiv-
alence relation ∼. Then we would employ the following skeleton:

∀
a?,b?

(a? ∼ b? ⇒ S?[a?] = S?[b?])

With its default setting MatchSubformulae→ False, matching is restricted
to full Theorema formulae (i.e. the leaves of the ⇋ hierarchy). For descending into
the internal structure of the Theorema formulae, one can set MatchSubformulae→
True. For example, the above skeleton characterizing invariants could occur in the
characteristic property of canonical simplifiers:

∀
x
(σ[x] ∼ x) ∧ ∀

x,y
(x ∼ y ⇒ σ[x] = σ[y])



24 Camelia Rosenkranz, Bruno Buchberger and Tudor Jebelean

As stated above, we see retrieval in its broader sense as a sequence of simple
inferences. This idea is embodied in the two remaining commands SearchFunction
and BuildFunction, which can therefore be seen as issuing a semantic search for
functions specified by certain properties. Whereas the former associates the func-
tions only with specific function constants already present in the archive, the latter
may construct terms denoting the functions. Both types of search are typically
needed in the context of algorithm synthesis [9].

The first type of semantic search is intiated by SearchFunction[arch, form],
where the unknown functions in form are designated as for ArchiveMatch. As
an example, consider the problem of synthesizing the merge-sort algorithm as
described in [12]. At a certain stage one has to come up with two functions on
tuples, f? and g?, such that the concatenation of f?[X ] and g?[X ] is a permuted
version of X . Written in the formalism employed there, this means one takes an
arbitrary but fixed tuple X0 and searches

(f?[X0] ≍ g?[X0]) ≈ X0

in an archive on tuple theory, which will typically contain formulae like:

∀
is-tuple[T ]

((left-part[T ] ≍ right-part[T ]) = T )

∀
is-tuple[T ]

(T ≈ T )

Extracting from the archive all unary function symbols (including here left-part
and right-part) and substituting them for f? and g?, the algorithm will then
proceed to prove the resulting candidate instances by using a suitably restricted
set of inferences. In order to restrict the search space further, various selection
heuristics are studied.

If term construction should be attempted for searching form in arch, one
uses the command BuildFunction[arch, form]. We note that one can also view
this as allowing λ-terms in the bindings for the unknown functions, but we prefer
to see matters from a slightly different viewpoint: For the moment we assume
that form is a quantified formula (without loss of generality, we may assume it in
prenex normal form) containing an occurence of one or more unknown functions,
for example ∀x1

· · · ∀xn
Φ(F ?[x1, . . . , xn]).

The unknown function is replaced by a new existentially quantified vari-
able vF , with the existential quantifier inserted exactly after all quantifiers corre-
sponding to x1, . . . , xk; we obtain ∀x1

· · · ∀xn
∃vF

Φ(vF ) for the example above. This
formula is then transformed by introducing Skolem functions for the universally
quantified variables (each Skolem function having as arguments the existential
quantified variables occuring before the respective universal variable). Finally, the
existential quantifiers are eliminated by introducing metavariables as in [13, §4], on
which first-order unification against the archive arch is applied (after Skolemizing
it in the usual way): In the succesful case, the unifier will contain bindings both
for the universal variables in the assumptions of arch and for the metavariables
in form.
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Consider the following example occurring in a synthesis of the Gröbner ba-
sis algorithm [10]. Omitting restriction predicates like is-power-product and
is-polynomial for the sake of simplicity, the crucial point in the synthesis re-
quires proving

∀
p
∀

g,h
(lp[g] | p ∧ lp[h] | p⇒ F ?[g, h] | p)

with the background archive typically containing a formula like:

∀
p
∀
s,t

(s | p ∧ t | p⇒ lcm[s, t] | p)

Here lp and lcm refer respectively to the leading power product of a polynomial
and to the least common multiple of two power products. Applying the above
procedure, the goal formula becomes lp[g0] | p0 ∧ lp[h0] | p0 ⇒ v∗F | p, while the
archive formula becomes s∗ | p∗ ∧ t∗ | p∗ ⇒ lcm[s∗, t∗] | p∗. This yields the unifier:

{p∗ ← p0, s
∗ ← lp[g0], t

∗ ← lp[h0], v
∗
F ← lcm[lc[g0], lc[h0]]}.

Thus F ?[g, h] has been found to be lcm[lc[g], lc[h]].

5.6. Theory Exploration in Archives

Theory exploration is a specific way of automated knowledge buildup, as opposed
to the usual manual creation of archives by formalizing existing textbooks, articles,
etc. In practice, both methods should be combined for optimal results.

In the current implementation, theory exploration is provided as an experi-
mental feature based on [7] and [13, §2]. We distinguish two types of exploration:

• New propositions are searched by InventPropositions[arch,lib,sym].
• New concepts are created by InventConcepts[arch,lib,sym,new].

Here arch is the archive that should be expanded by the new propositions or
definitions, lib is a library containing suitable invention schemes, sym a list of
concepts from arch to be involved in the new propositions or definitions, and new

a symbol to be defined. Note that lib is also realized as an archive, albeit with a
rather special interpretation.

The algorithm for inventing propositions proceeds as follows: It picks from
lib a proposition scheme, which is then instantiated by the symbols in sym. If
the subsequent attempt at proving the resulting proposition fails, it is discarded
and the algorithm tries another scheme; the succesful propositions are appended
to arch.

Let us illustrate this by a simple example. A type of proposition occurring
frequently in mathematics asserts that a binary operation F respects a binary
relation R. In lib, this could show up as the following proposition scheme:

∀
F
∀
R

Opn-Respects-Rel[F, R]⇔ ∀
a,b,c,d

R[a, b] ∧R[c, d]⇒ R[F [a, c], F [b, d]]
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Assume now that arch is an archive describing the theory of natural numbers,
with definitions and (very few) propositions about + and <. Then the invention
algorithm, with sym containing + and <, will come up with the conjecture that
Opn-Respects-Rel[+, <], which is immediately expanded to the monotonicity of
+ with respect to <. If a sufficiently strong prover is available, this will be added
as a proposition.

The invention of concepts works in a similar fashion, except that the definition
schemes require as an additional argument the new symbol to be defined (and of
course no proof is necessary since we restrict ourselves to explicit definitions). A
typical example of a definition scheme occuring in lib is divide-and-conquer:

∀
is-spc

∀
left,right

∀
mrg
∀
F

Divide-Conquer[is-spc,left,right,mrg, F ]⇔

∀
x
F [x] =

{

x ⇐ is-spc[x]

mrg[F [left[x]], F [right[x]]] ⇐ True

The scenario “Logical Algorithm Retrieval = Symbolic Computation Proving”
of [9] can be described by a background archive arch on tuple theory, containing in
particular the notions is-trivial-tuple, left-split, right-split and merge.
Taking these for sym and merge-sort for new, we obtain a definition of the merge-
sort algorithm.

In principle, one could combine this approach with the BuildFunction com-
mand of Subsection 5.5 for synthesizing the merge-sort algorithm as in the scenario
“Logical Algorithm Retrieval = Algorithm Invention” of [9]. But a full integration
of the synthesis method described in [12] and implemented in [16], is beyond the
scope of the current implementation.

Using labels, theory exploration can also be carried out in a single archive
big-archive. In this case, arch and lib are labels referring to suitable portions
of big-archive. The propositions or definitions generated by the exploration will
then be appended to big-archive under specific labels NewPropositions and
NewDefinitions, respectively.

6. Conclusion

In this paper we have introduced the notions of labels and namespaces, which per-
mit a structured representation of a mathematical knowledge base; we have called
such a knowledge bases an archive. Based on the Theorema language, archives
offer constructs for splitting formulae in multiple cells, with quantifiers ranging
over whole cell groups and labels for attaching names to the groups. This makes
archives very readable and particularly suited for large bodies of mathematical
knowledge.

Symbols can be bound to a namespace, which is typically associated with
the label attached to the cell group containing the symbols. Namespaces provide a



Knowledge Archives in Theorema 27

unified approach for two important issues: (1) domains as used for categories and
functors, and (2) the intuitive usage of “contexts” for resolving ambiguos symbols.

A decisive feature of archives is that all its language constructs, in particular
the symbols ⇋ for attaching labels and : for declaring namespaces, are logic-
internal—they extend Theorema in such a way that there is a natural translation
back to plain Theorema.

We have also introduced various crucial operations on archives, notably math-
ematical knowledge retrieval and theory exploration. A lot of work is still necessary
here. In fact, our present treatment of archives should only be seen as a first step in
developing a logic-internal paradigm for MKM. We hope that such a treatment—
combined with other (more logic-external) approaches—will shed light on some
structural issues of MKM.

Appendix

Grammar of structured notebooks

A structured notebook is a list of Mathematica RowBox structures [30], which we
denote in curly braces by {r1, r2, . . .} as for Mathematica lists. Thus the comma
between r1 and r2 represents the “newline” separating the corresponding cells,
with r1 being the leader of the cell group containing r1, r2, . . .. (The leader is the
first cell of a cell group—it remains visible when the cell group is collapsed.)

We use a variant of EBNF grammar with the following extra conventions:
{. . .}∗ means repeating zero or more times, {. . .}+ one or more times, and {. . .}−
stands for an option (i.e. zero or one times).

We use the following syntactic categories: SNB for structured notebooks, LFM
for labelled formulae, UFM for unlabelled formulae, ETM for extended terms, NSP
for namespace declarations, SUB for substitutions, and QNT for quantifiers. The
terminal symbols Id, Tfm and Ttm stand respectively for the legitimate identifiers
in Mathematica, the formulae and terms in plain Theorema (i.e. contained in a
single cell).

SNB ::= {Title {, LFM}+}

LFM ::= {{•}− Id {: 〈{Id}+〉}− ⇋ {QNT}∗ {, SUB+} {, UFM+}} |

{{•}− Id {: 〈{Id}+〉}− ⇋ {LFM, }+ LFM} |

{QNT}∗ {, LFM+} | UFM

UFM ::= {{QNT}∗ {, UFM}+} | {Tfm (⇔|⇒) {, SUB}− {, UFM}+} |

NSP | Ttm =, ETM | {Tfm, SUB} | Tfm

ETM ::= Ttm | {{ �
Id
}+{QNT}∗ {, UFM}+}

NSP ::= ({•}− Id | Ttm) : 〈{Id}+〉

SUB ::= {p←, {Tfm}+}

QNT ::= (∀ | ∃)
{Id}+

Tfm
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Grammar of archives

An archive is a formula in the following extended Theorema language. We use the
following syntactic categories: ARH for (sub)archives, FRM for unlabelled formulae,
ARV for argument/value pairs, LBL for labels, and QNT for quantifiers. The terminal
symbols are as for the previous grammar, plus the constructors TMConjunction,
TMBinding, TMFiniteFunction and TMArgVal.

ARH ::= LBL ⇋ {QNT}∗ ARH | LBL ⇋ {QNT}∗ TMConjunction[{ARH}+] | FRM

FRM ::= Tfm | TMBinding[Ttm, {Id}+] | TMFiniteFunction[{ARV+}]

ARV ::= TMArgVal[Id,Id]

LBL ::= Id | •Id | TMBinding[{•}− Id, {Id}+]

QNT ::= (∀ | ∃)
{Id}+

Tfm
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