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Abstract

This  report  reviews  the  literature  relevant  for  the  research  project  "Math−Agents:
Mathematical  Journals  as  Reasoning  Agents"  proposed  by  Bruno  Buchberger  as  a
technology transfer project based on the results of the SFB Project "Scientific Comput−
ing", in particular the project SFB 1302, "Theorema". The project aims at computer−
supporting  the  refereeing  process  of  mathematical  journals  by  tools  that  are  mainly
based  on  automated  reasoning  and  also  at  building  up  the  knowledge  archived  in
mathematical journals in such a way that they can act as interactive and active reason−
ing agents later on.  In  this report,  we review current mathematical software systems
with a focus on the availability of tools that can contribute to the goals of the Math−
Agents project.

1 Introduction

1.1 The Goals of the Math−Agents Project

For making this technical report self−contained, we summarize here the goals of the project
"Math−Agents: Mathematical Journals as Reasoning Agents" proposed in [Buchberger07]:

Mathematical knowledge as currently stored by journals (in printed or electronic form) is not
yet  accessible to  any logical  processing. In  the past  three decades,  automated reasoning tech−
niques  and  software−technology  have  matured  to  the  extent  that  it  seems  to  be  possible  to
automate or, at least computer−support, the essential knowledge processing activities mathemati−
cal journals. We have the technology that should enable us to construct reasoning tools and to
re−organize the knowledge contained in any mathematical journal in such a way that questions
of the following type can be answered automatically or, at least, with significant computer−sup−



of the following type can be answered automatically or, at least, with significant computer−sup−
port:

è Originality  |  Is  a  given mathematical result  already "contained" in the journal,
i.e.  can  it  be  derived  from  the  knowledge  in  the  journal  by  "easy"  (automated)
reasoning? 

è Correctness | Is a result in a paper correct, i.e. can it be formally derived from
the available knowledge (using the proof "script" given in the paper)? 

è Importance |  Is  the  result  important,  i.e.  how,  where,  and how often can it  be
used in the context of the available knowledge? 

è Completeness |  Are  all  "easy"  consequences  of  a  given  result  drawn  in  the
available knowledge context?

è Similarity | Search for structurally similar results in all areas of available knowl−
edge! Create a pattern.

è Complete Knowledge | Draw all consequences of the available knowledge using
the currently available reasoners.

è Knowledge Reduction | Given (increasingly sophisticated) automated reasoners,
from  time  to  time,  the  amount  of  mathematical  knowledge  to  be  stored  can  be
reduced  to  the  propositions  whose  proof  is  not  "easy"  (w.r.t.  the  available  auto−
mated  reasoning  power)  whereas  all  other  knowledge  can  be  reproduced  quickly,
by the available automated reasoners, on demand. 

è Generalization |  Extract  the  abstract  structure  from  available  knowledge.  For
this, domains, schemes, functors, categories are important abstraction tools.

è Minimal  Prerequisites |  Analyze  existing mathematical  propositions for  mini−
mal prerequisites necessary in their proof.

è Trace  History |  Generate  the  successive  versions  of  a  given  result  (notion,
proposition, problem, method) in the knowledge base over time. 

è Re−organize knowledge |  Take (a part  of)  the given knowledge and re−struc−
ture it under a particular perspective ("view"). 

è Problem Generation |  What questions can be asked and what problems can be
formulated on the basis of the available knowledge. 

è Etc..
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The  Math−Agent  project  will  be  carried  out  in  the  frame  of  the  Theorema project,  see
[BuchbergerEtAl06,  BuchbergerEtAl00,  BuchbergerEtAl97],  with  the  goal  of  extending  the
Theorema system by adding more tools and more sophisticated tools for mathematical knowl−
edge management towards achieving the goals listed above.

1.2 Logical and Organizational Knowledge Management Tools

In this report,  we consider both logical and organization tools for mathematical knowledge
management. The emphasis in on logical tools.

è Logical  tools:  These are  tools  based  on  formal  logic  and  automated reasoning
and, hence, on the mathematical content of the information processed.

è Organizational tools: These are tools based on non−mathematical aspects of the
information  processed,  like  the  distribution  of  mathematical  knowledge  in  file
systems, nested structuring of mathematical text, accessibility over the web, syntax
standards, formats etc.

1.3 Classes of Mathematical Software Systems

In  the  early  days  of  computing,  mathematical software systems were  basically  libraries of
mathematical  algorithms  −  at  the  beginning  (~  1960)  mainly  numerical  algorithms  but  also
algorithms  of  discrete  mathematics,  later  (~  1965,  1970)  algebraic  algorithms,  and  then  also
logical algorithms (provers, reasoners).

Starting from ~ 1980 some of the algebraic algorithm libraries, like Mathematica,  added a
mathematical  programming  language  and  various  tools  for  producing  mathematical  texts
together  with  formulae.  These  systems were  and  are  often  called  "computer  algebra  systems"
although, typically, they also contain most of the common numerical algorithms.

In parallel (since ~ 1960), but quite independently, systems that contained logical algorithms
("automated provers", more generally "automated reasoners") were developed. In the early days
and until quite recently, most of them concentrated on just one automated proving method, like
resolution.  Also,  computer  algebra  systems  and  reasoning  systems  had  little  interaction  with
each other.

Also  in  parallel,  powerful  graphical  tools  were  developed and  added  to  the  numerical  and
algebraic software systems.

Since approximately 1985,  partly under  the influence of  the second author,  it  was felt  that
computer algebra systems and automated reasoning systems should move closely together and
that, in reasoning systems, an emphasis should be put on multi−method systems that combine,
in  particular,  general  reasoning methods,  like  resolution,  with  special  reasoning methods,  like
cylindrical  algebraic  decomposition.  Also  it  was  felt  that  tools  for  organizing  and  processing
mathematical  knowledge  (definitions,  theorems,  problems,  algorithms)  should  be  added  to
mathematical  software  systems:  See  the  editorial  of  the  Journal  of  Symbolic  Computation
[Buchberger85]; the creation of the Calculemus Research Consortium, see [Buchberger99]; the
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[Buchberger85]; the creation of the Calculemus Research Consortium, see [Buchberger99]; the
keynote  presentation  at  the  "10  Years  of  Mathematica"  Conference  [Buchberger98];  and  the
MKM (Mathematical Knowledge Management) conference series and consortium [Buchberger−
Caprotti01].

Hence, current (general and special purpose) mathematical software systems often combine
(numerical,  discrete,  algebraic,  logical)  algorithm  libraries,  mathematical  programming  lan−
guages, advanced graphics, and some first MKM tools for organizing and processing mathemati−
cal knowledge and, therefore, it is not any more possible and meaningful to classify mathemati−
cal  software  systems  in  numerical  systems,  computer  algebra  systems,  automated  reasoning
systems, etc. Any combination of these features is encountered in current systems. Some of the
systems  focus  on  MKM  tools  only  and  are  meant  to  provide  an  organizational  frame  from
which the mathematical contents (algorithms and knowledge) of other existing systems can be
called.  However,  in  our  view,  none  of  the  current  mathematical  software systems is  yet  truly
comprehensive and universal as a uniform frame for "doing all of mathematics". 

Since  (fortunately)  the  boundaries  between  numerical,  algebraic,  logical  etc.  systems  are
being  blurred,  in  this  report,  we  do  not  group  mathematical  software  systems  into  various
distinct  classes.  Rather,  we  discuss  the  systems  in  alphabetic  order  and,  for  each  system,  we
compile  the  information  that  characterizes  the  main  features  like  type  of  algorithm  libraries,
programming  language,  reasoning  tools,  tools  for  mathematical  knowledge  management  etc.,
see next section.

1.4 The Structure of the Report

The  report  lists  (hopefully  most  of)  the  available  mathematical  software  systems  and,  for
each system, provides the information necessary for judging its appropriateness for the goals to
be pursued in the Math−Agent project.

For each system, the information is structured in the following way:

ç Technical Information on the System

é Name of the System/Project and Website

é Project Leader and Group

é Main Publications

é Implementation Language

é Availability and System Prerequisites (sw and hw)

ç Algorithm Libraries

é Numerical Library

é Discrete Math Library
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é Algebraic Library

é Reasoners

List  and  short  description  of  the  most  important  general  and
special reasoners in the system.

é Graphical Tools and Interfaces

In particular, graphics that supports reasoning.

ç User Language

é Programming Language

Mathematical  language(s)  in  which  the  user  can  formulate  algo−
rithms. (Not the implementation language!)

é Logic Language for the Formulation of Mathematical Knowledge 

Mathematical language(s) in which the user can formulate mathe−
matical knowledge (definitions, theorems, problems).

é Mathematical Syntax

External syntax (syntaxes) for formulating algorithms and knowl−
edge (may be different from the internal syntax!)

ç Mathematical Knowledge Bases

é Available Theories/Knowledge Bases

Are  there  already  (verified)  mathematical  theories  (consisting  of
definitions,  theorems,  problems,  algorithms  etc.)  available  in  the
system?

é Tools for Retrieval in Mathematical Knowledge Bases

Given  a  formula  (definition,  theorem,  problem,  algorithm)  and  a
knowledge  base.  How  can  one  decide  wether  the  formula  is  already
contained in the knowledge base? ...  whether equivalent, similar, etc.
formulae are in the knowledge base?

é Tools for Inventing Mathematical Knowledge
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Is  there support  for  inventing, in the frame of a given knowledge
base,  additional  definitions,  theorems,  problems,  algorithms? How is
the invention supported?  Bottom−up? Top−down (by a kind of "lazy
thinking" mechanism)? In particular, tools for algorithm invention?

é Tools  for  Verifying  Mathematical  Knowledge   (General  Reasoners,
Special Reasoners)

Given a (consistent, verified) knowledge base and a new formula
(axiom, definition, theorem, problem, algorithm). Is there support for
checking  whether  the  new  formula  is  consistent?  true?  true  under
additional  conditions?  etc.  In  particular,  tools  for  algorithm
verification?

é Tools  for  Completion,  Reduction,  Generalization,  Structuring,  Re−
Structuring of Mathematical Knowledge

Given  a  knowledge  base,  complete it  by  drawing  all  "easy  but
interesting"  consequences.  ("Easy",  a  relative  notion:  An  "easy"
consequence  can  be  generated  by  the   "strong"   automated  provers
currently available in the system for the given theory.  "Interesting", a
relative  notion:  An  "interesting"  consequence  cannot  be  drawn  by
"weak"   automated  provers  currently  available  in  the  system for  the
given theory. For example: In the context of elementary analysis, the
PCS  prover  [Buchberger01]  is  a  "strong"  prover,  i.e.  it  combines
quantifier  proving  and  algebraic  inequality  solving  in  a  certain  way
that may be seen as the essence of proving in this area. In contrast, a
conditional rewrite prover that only processes rewrite knowledge like
limit  and  differentiation  rules,  in  this  context,  is  a  "weak"  prover.
More on that see [Buchberger06].

Given a knowledge base, reduce it by eliminating all formulae that
can be derived from others by "easy" provers. If possible, find mini−
mal prerequisites from which the knowledge can be derived.

Given a knowledge base, try to structure and re−structure it either
be organizational means like chapters, sections etc. that are in corre−
spondence  with  mathematical  contents  or  by  mathematical  /  logical
means  like  schemes,  domains,  functors,  categories  (see
[Buchberger96], [Buchberger03]).

é (Verified) Programming of Reasoners, Meta−Programming, Quotation
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Is  it  possible  for  the  user  to  add  reasoners  by  formulating  them
within  the  system?  Does  the  system  give  support  for  proving  the
correctness  of  user−defined reasoners?  Is  there  a  way  to  access   the
meta−level of the system and to go back and forth between the object
and meta−level by an appropriate quoting (or other) mechanism.

é Standardization, Inter−Operability

Can  the  algorithm  and  knowledge  libraries  of  the  system  be
translated  back  and  forth  from  and  to  other  systems?  Do  they  use
standard formats?

é Web Access

Can  the  algorithm  and  knowledge  libraries  of  the  system  be
accessed interactively through the web?

ç Example of a Theory Exploration Session

How does  a  typical  session in  the  system look  like? From which
situation do we start,  what does the user do? What is the result? We
try  to  provide  an  example  of  a  session  that  illustrates  the  most
advanced  features  in  the  direction  of  "mathematical  knowledge
management".  Hence,  the  example  should  not  only  indicate  what  is
possible  in  the  system  but  it  should  also  indicate  that  beyond  the
capabilities shown essentially nothing more sophisticated is possible.

2 ACL2

2.1 Short Description

ACL2  is  a  proof  system  from  the  Boyer−Moore  family,  used  to  construct  mathematical
models of computer hardware and software. It is "a mathematical logic together with a mechani−
cal  theorem  prover"  [ACL2Web].  Its  most  common  uses  are  as  a
programming/specification/modelling  language,  a  formal  mathematical  logic,  or  a  theorem
prover. 

2.2 Technical Information on the System

2.2.1 Name of the System and Website

ACL2 − A Computational Logic for Applicative Common Lisp. (The ACL appears twice in
the extended name, that’s why the 2 in ACL2.)
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http://www.cs.utexas.edu/users/moore/acl2/

2.2.2 Project Leaders and Group

Matt Kaufmann and J Strother Moore (University of Texas, Austin, USA).
Various  other  people  contributed  to  ACL2  by  writing  documentation,  tutorials,  porting  to

other operating systems, etc. (see the acknowledgments page on [ACL2Web].

2.2.3 Main Publications

Kaufmann, M. and Moore, J., An Industrial Strength Theorem Prover for a Logic Based on
Common Lisp, IEEE Transactions on Software Engineering, vol. 23, no. 4, pp. 203−213, 1997.

Kaufmann, M., and Manolios, P., and Moore, J. Computer−Aided Reasoning: An Approach,
Kluwer Academic Publishers, June, 2000, ISBN 0−7923−7744−3.

Kaufmann,  M.,  and  Manolios,  P.,  and  Moore,  J.,  editors.  Computer−Aided  Reasoning:
ACL2 Case Studies, Kluwer Academic Publishers, June, 2000, ISBN 0−7923−7849−0.

2.2.4 Implementation Language

With the exception of a small amount of Common Lisp functions (mainly for bootstraping),
ACL2 is written in its own formal language [KaufmannMoore06].

2.2.5 System Availability and Prerequisites

The system is freely available under the GNU General Public License from its website. 

ACL2  runs on Unix, Linux, Windows, and Macintosh operating systems. For other distribu−
tions, the system can be built in one of the following Common Lisp implementations: Allegro,
GCL  (Gnu  Common  Lisp),  Lispworks,  CLISP,  CMU  Common  Lisp,  SBCL,  OpenMCL,  and
MCL (Macintosh Common Lisp).

2.3 Algorithm Libraries

The system has no libraries of algorithms as computer algebra systems have.

2.3.1 Reasoners

The  ACL2  prover  is  rule  driven.  The  prover  uses  three  important  techniques:  induction,
rewriting and inequality chaining (linear arithmetic). Choosing the induction argument is done
by a variety of heuristics. Users can also specify the induction scheme, when necessary. Defini−
tions and proved theorems are turned into rewriting rules of one of the three technique kinds −
induction, rewriting, arithmetic. The users can specify which kind of rule to be generated, or if
no rule should be generated at all.

8



2.3.2 Graphical Tools and Interfaces

The  Emacs  editor  is  typically  used  to  edit  forms,  which  then  are  submitted  to  ACL2  via
Emacs’s *shell* buffer. There are a couples of utilities for Emacs like speeding up the interac−
tion with the system and infix printing.

2.4 User Language

2.4.1 Programming Language

ACL2, i.e. a subset of applicative Common Lisp.

2.4.2 Logic Language for the Formulation of Mathematical Knowledge 

ACL2  logic.  The  logic  of  ACL2  is  first−order  with  total  recursive  functions  providing
mathematical induction on the ordinals up to Ε0, and two extension principles. It has no quantifi−
ers and is un−typed, in the sense that the syntax is un−typed.

2.4.3 Mathematical Syntax

The syntax of ACL2 (i.e. the one of Common Lisp).

2.5 Mathematical Knowledge Bases

The  ACL2  distribution  includes  a  set  of  ‘‘books’’.  Books  are  a  collections  of  definitions
and/or  theorems  and/or  other  commands  that  extend  the  system’s  reasoning  capabilities.  To
become a book, such a collection of definitions, theorems and commands must be certified by
the system. During certification, books may also be compiled, speeding up the execution of the
functions (definitions, theorems, commands) defined in it. Books can be included into an ACL2
session using an include_book command (without certifying them). Including a certified book
into the current session guarantees that the error−free inclusion produces a consistent extension
of a consistent logic.

2.5.1 Available Theories and Knowledge Bases

The theories available in books are not systematically organized, rather independent pieces
of  mathematics which  often  may  be  composed for  the  purpose  of  a  work  session.  The list  of
theories below is, most probably, not complete, as with each ACL2 workshop − 6 until now −
more ‘‘books’’ with mathematical content are created.

* Arithmetic: contains theorems about absolute value, factorial function, integer division and
related function, sum of a list of numbers, rules for arithmetic equality, a proof of the binomial
theorem, arithmetic equality and inequality rules, rationals, floating point arithmetic support.

* Support for reasoning about real numbers using non−standard analysis.
* Integer hardware specification: integer arithmetic suitable for hardware modelling
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* Integer hardware specification: integer arithmetic suitable for hardware modelling
* Ordinals
* Finite set theory
* Data structures: lists, suited to the analysis of recursive, data−parallel algorithms, etc.

2.5.2 Tools for Retrieval in Mathematical Knowledge Bases

2.5.3 Tools for Inventing Mathematical Knowledge

2.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The  system’s  reasoner  (see  the  corresponding  subsection  in  the  ’Algorithm  Libraries’
section).

2.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

2.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

Within  the  ACL2  system,  users  can  write  their  own  simplifiers which,  before  being  used,
must be proved correct by the system.

Each theorem that was proved is transformed to a rule − unless the user explicitly forbid this
− which is then used by the system’s reasoner.

2.5.7 Standardization, Inter−Operability

2.5.8 Web Access

2.6 Example of a Theory Exploration Session

The ACL2 system interacts with users by a read−eval−print loop. The input language is case
insensitive.

The example shown below is taken from the on−line tour available on the system’s website.
For readability, we have marked the system’s answers with ’>>’ (see below).

Define an append function:

ACL2 !>(defun app (x y)
  (cond ((endp x) y)
        (t (cons (car x) 
                 (app (cdr x) y)))))

10



>> The admission of APP is trivial, using the relation O< (which
>> is known to be well−founded on the domain recognized by O−P)
>> and the measure (ACL2−COUNT X). We observe that the type of APP 
>> is described by the theorem (OR (CONSP (APP X Y)) (EQUAL (APP X Y) Y)). 
>> We used primitive type reasoning.

>> Summary 
>> Form: ( DEFUN APP ...) 
>> Rules: ((:FAKE−RUNE−FOR−TYPE−SET NIL)) 
>> Warnings: None 
>> Time: 0.03 seconds (prove: 0.00, print: 0.00, other: 0.03) 
>> APP

Comments about the system’s answer above: In order to be accepted by the system, recursive defini−
tions  must  have  the  termination  property.  Termination  must  be  proved  before  admitting  the  definition.
The proof,  shortly  presented in  the  first  paragraph of  the  above  output,  is  done  by  ACL2’  reasoner  by
induction on the size of X, using the standard ordering on ordinals less than Ε0. The induction scheme is
automatically chosen and involves elaborate heuristics. The ’Rules’ listed in the ’Summary’ of the proof
are the ones involved to obtain the proof. 

Evaluate APP on some sample input:

ACL2 !>(app nil ’(x y z))
>> (X Y Z)

ACL2 !>(app ’(1 2 3) ’(4 5 6 7)) 
>> (1 2 3 4 5 6 7)

ACL2 !>(app (app ’(1 2) ’(3 4)) ’(5 6)) 
>> (1 2 3 4 5 6)

ACL2 !>(app ’(1 2) (app ’(3 4) ’(5 6))) 
>> (1 2 3 4 5 6)

ACL2!>(let ((a ’(1 2)) 
(b ’(3 4)) 
(c ’(5 6))) 

(equal (app (app a b) c) 
(app a (app b c)))) 

>> T
 

The last examples in this list suggests that the APP function may be associative. We write a theorem
about this:

ACL2!>(defthm associativity−of−app
(equal (app (app a b) c)

              (app a (app b c))))

and after submitting this to the system we get the following output:

>> Name the formula above *1.

>> Perhaps we can prove *1 by induction. Three induction schemes are 
>> suggested by this conjecture. Subsumption reduces that number to 
two. 
>> However, one of these is flawed and so we are left with one viable 
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>> However, one of these is flawed and so we are left with one viable 
>> candidate.

>> We will induct according to a scheme suggested by (APP A B). If we 
>> let (:P A B C) denote *1 above then the induction scheme we’ll use 
>> is 
>> (AND 
>> (IMPLIES (AND  (NOT (ENDP A)) 
>> (:P (CDR A) B C)) 
>> (:P A B C)) 
>> (IMPLIES (ENDP A) (:P A B C))). 
>> This induction is justified by the same argument used to admit APP, 
>> namely, the measure (ACL2−COUNT A) is decreasing according to the 
relation 
>> O< (which is known to be well−founded on the domain recognized 
>> by O−P). When applied to the goal at hand the above induction 
>> scheme produces the following two nontautological subgoals.

Simplification of the Induction Step to T(rue):

>> Subgoal *1/2
>> (IMPLIES (AND (NOT (ENDP A))
>>               (EQUAL (APP (APP (CDR A) B) C)
>>                      (APP (CDR A) (APP B C))))
>>          (EQUAL (APP (APP A B) C)
>>                 (APP A (APP B C)))).

>> By the simple :definition ENDP we reduce the conjecture to

>> Subgoal *1/2’
>> IMPLIES (AND (CONSP A)
>>               (EQUAL (APP (APP (CDR A) B) C)
>>                      (APP (CDR A) (APP B C))))
>>          (EQUAL (APP (APP A B) C)
>>                 (APP A (APP B C)))).

>> But simplification reduces this to T, using the :definition APP, the
>> :rewrite rules CDR−CONS and CAR−CONS and primitive type reasoning.

Simplification of the Base Case to T(rue)

>> Subgoal *1/1
>> (IMPLIES (ENDP A)
>>         (EQUAL (APP (APP A B) C)
>>                 (APP A (APP B C)))).

>> By the simple :definition ENDP we reduce the conjecture to

>> Subgoal *1/1’
>> (IMPLIES (NOT (CONSP A))
>>          (EQUAL (APP (APP A B) C)
>>                 (APP A (APP B C)))).

>> But simplification reduces this to T, using the :definition APP and
>> primitive type reasoning.

End of the proof:
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>> That completes the proof of *1.

>> Q.E.D.

>> Summary
>> Form:  ( DEFTHM ASSOCIATIVITY−OF−APP ...)
>> Rules: ((:REWRITE CDR−CONS)
>>         (:REWRITE CAR−CONS)
>>         (:DEFINITION NOT)
>>         (:DEFINITION ENDP)
>>         (:FAKE−RUNE−FOR−TYPE−SET NIL)
>>         (:DEFINITION APP))
>> Warnings:  None
>> Time:  0.27 seconds (prove: 0.10, print: 0.05, other: 0.12)
>>  ASSOCIATIVITY−OF−APP

When  the  theorem  is  proved,  it  is  also  transformed  to  a  rewrite  rule  and  can  be  used  in
further proving.

3 ActiveMath

3.1 Short Description

ActiveMath  is  an  interactive  learning  environment  for  mathematics  [LibbrechtMelis06],
based  on  an  extension  of  OMDoc.It  is  web|based  and  user|adaptive.Its  building  blocks  are
content items holding both mathematical expressions and text (that can contain hyperlinks); they
are  annotated  with  mathematical  and  pedagogical  attributes  and  relations  (i.e.metadata).  For
managing,  referencing  and  searching  mathematical  information,  it  mainly  uses  the  OMDoc
level of definitions, examples and theorems.

3.2 Technical Information on the System

3.2.1 Name of the System and Website

ActiveMath. http://www.activemath.org/

3.2.2 Project Leaders and Group

The  project  leader  is  Erica  Melis.   The  group  members  are:  George  Goguadze,  Martin
Homik, Bruce McLaren, Paul Libbrecht, Alberto Gonzalez Palomo, Oliver Scheuer, Ian Tsigler,
Dimitra Tsovalzi, Stefan Winterstein.
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3.2.3 Main Publications

Paul Libbrecht, Erica Melis, Methods for Access and Retrieval of Mathematical Content in
ActiveMath, Proceedings of ICMS|2006, Ed. Nobuki Takayama, Andres Iglesias, Jaime Gutier−
rez, LNCS 4151, Springer Verlag GmbH.

E. Melis, J. Siekmann, ActiveMath: An Intelligent Tutoring System for Mathematics, Sev−
enth International Conference Artificial Intelligence and Soft Computing (ICAISC).

E.  Melis,  J.  Büdenbender,  G.  Goguadze,  P.  Libbrecht,  M.  Pollet,  C.  Ullrich,  Knowledge
Representation and Management in ActiveMath, Annals of Mathematics and Artificial Intelli−
gence,  Special  Issue  on  Management  of  Mathematical  Knowledge,  Proceedings  of  the  first
Conference on  Mathematical  Knowledge Management   MKM’01,  volume 38,  no.  1−3,  pages
47−64.

3.2.4 Implementation Language

Active Math is implemented as a Java−based web application. Its search engine is based on
Lucene, a full|text search engine written in Java. 

3.2.5 System Availability and Prerequisites

ActiveMath  has  an  open  source  license  for  non−commercial  applications.  Demo  freely
available online. Upon request, the full ActiveMath can be downloaded free of charge.

For locally installing ActiveMath one needs:
−  a  relatively fast  machine with  at  least  512  Mb of  RAM,  and  about  1  Gb of  free

disk space; 
− Java JDK 5; 
− and a Subversion ( http://subversion.tigris.org/ ) client.

For running the online available demo one needs:
− Firefox, at  least version 1.5 or Internet Explorer 6 (other browsers may work,but

are not their primary target).Cookies and Javascript need to be enabled.
− Java Plug−in for your browser    
− screen size:1024x768 or better.      
− a fast Internet connection (DSL).

3.3 Algorithm Libraries

The ActiveMath exercises execute algorithms from Computer Algebra Systems (CAS) like
Yacas  [Yacas],  Maxima  [Maxima],  WIRIS  [WIRIS].   The  called  libraries  cover  the  domains
listed in Mathematical Knowledge Bases / Mathematical Theories.
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3.3.1 Numerical, Discrete, Algebraic, etc. Libraries

3.3.2 Reasoners

The  concept  mapping  tool  iCMap  contains  restricted  versions  of  propositional  reasoning
about . For details see Graphical tools.

3.3.3 Graphical Tools and Interfaces

The  input  for  the  search  for  a  mathematical  term/formula using  the  graphical  input  editor
WIRIS [WIRIS], a Java application with two−dimensional syntax. The search itself is made on
OMDoc objects. For more details see Mathematical Knowledge Bases / Tools for Retrieval in
Mathematical Knowledge Bases.

iCMap  [MelisEtAl05]  is  an  interactive  visual  tool,  helping  students  discover  relations
between mathematical concepts.

Students  can  play  with  notions  borrowed  from  the  existing  ActiveMath  courses,  creating
links  between  them,  and  validating  them (after  the  validation,  the  program colors  the  correct
edges in green, and the incorrect ones in red).
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For more details on iCMap see Mathematical Knowledge Bases/ Tools for Verifying Mathe−
matical Knowledge.

3.4 User Language

3.4.1 Programming Language

3.4.2 Logic Language for the Formulation of Mathematical Knowledge 

3.4.3 Mathematical Syntax

Mathematical knowledge is represented in an extension of the OMDoc format [Kohlhase06].

The  building  blocks  are  content  items,  that   hold  both  mathematical  expressions  and  text
(that can contain hyperlinks). They are annotated with mathematical and pedagogical attributes
and relations. 
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3.5 Mathematical Knowledge Bases

3.5.1 Available Theories

ActiveMath contains (as stated in [Kohlhase06]) large educational contents  for:
Fractions (German)
Differential  Calculus  (German,  English,  Spanish)  at  high|school  and  first  year  university

level
Operations Research (Russian, English),
Methods of Optimization (Russian)
Statistics and Probability Calculus (German),
Matheführerschein (German)
Calculus (a course from the University of Westminster, London).

3.5.2 Tools for Retrieval in Mathematical Knowledge Bases

Search queries can be combinations of :
Text  queries that  allow  exact  phrase  searches  or  fuzzy  searches.The  latter  are  based  on

phonetic and edit−distance fuzziness.
Attribute queries that  check  whether  the  mathematical item has  certain characteristics. For

example,one  can  search  (in  the  current  course)  for  all  items  of  type  ‘‘definition’’,  or  for  all
items having the difficulty ‘‘very easy’’.

Mathematical expression queries that are entered by the WIRIS [WIRIS] input editor.

Mathematical expressions are converted into text (linearizing the tree expression by giving
depth  indication  for  the  components)  and  then  indexed  by  Lucene  [Lucene],  a  full−featured
text−searching  library.  The  actual  search  in  ActiveMath  [LibbrechtMelis06]  treats  both  the
formal and the informal part of an OMDoc document in the same way. By its ranking heuristic,
it sorts the results that the user sees as a list of titles (hyperlinks to the real matches).

3.5.3 Tools for Inventing Mathematical Knowledge

3.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

iCMap [MelisEtAl05] is an interactive concept mapping tool, i.e. a visual representation of
a graph whose nodes are abstract symbols, learning objects and theories (as seen in Algorithm
Libraries/  Graphical  Tools).   The edges  correspond to  relations between nodes.  This  relations
can be :
|  relations existing in  the underlying OMDoc source (the OMDOC element theory has the

purpose of gathering notions, definitions and theorems into theories), .
|  deductive  relations,   like  is_equivalent,  belongs_to.  Two  definitions relating to  the  same

symbol are linked by the is_equivalent edge (are considered equivalent) . Also transitivity rules
are build in for several types of edge (like is_a or belongs_to ).
| added by the author, as template edges.
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The user can construct a concept map and use the validation for all his edges (global verifica−
tion) or only for one (local verification). The verification is made upon the knowledge base and
upon the (independent) authored information existing in the exercise. The user input is matched
with the existing ontologies. For example, if the user draws an edge between a and b , iCMap
checks whether there is a relation (in the above meaning) between the object associated with a
and the object associated with b. 

In case of failure, explanations are given to the user like "This edge has a wrong type", "This
edge is correct, but subsumes several steps. Please elaborate". 

3.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

The ActiveMath community uses plain text−editors for editing the textual part of an OMDoc
document  and  jEDITOQMath  for  editing  the  mathematical  formulae  [Libbrechtgross06].
jEDITOQMath takes most of the mathematical LATEX abbreviations as input and using QMath
[QMath] outputs the corresponding OMDoc file. 

3.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

3.5.7 Standardization, Inter−Operability

ActiveMath uses knowledge represented in OMDoc, and as such, its repositories are reus−
able for other applications using the same representation.

3.5.8 Web Access

A demo version of ActiveMath is accessible via the web, through a browser. 

3.6 Example of a Theory Exploration Session

ActiveMath  is  an  educational  system,  and  as  such  does  supports  learning  sessions.  These
start by logging in and opening a course containing several content items provided by an author.
Unknown concepts or symbols can be linked by the authors to their corresponding content item
(e.g.their definition) and are thus  available to the user. Alternatively, the user can search by the
name of a content item. The courses visible to a user are automatically adapted to his learning
goals, his knowledge and the previous scenarios. Checking the user exercises is done by evaluat−
ing the mathematical input (by a computer algebra system connected to it) and providing corre−
spondingly feedback. 

For  finding  queries  composed  of  text,  metadata  information  (e.g.  if  the  content  item  is  a
definition,  theorem)  and  formulae,  the  user  can  select  the  menu  "Find"  and  choose  the  "Ad−
vanced Find".  E.g.  finding the items that  are theorems and that  contain the approximate word

"convergence" and the term (which is called in ActiveMath formula) S
n

 i2
i=0

.  The result will be a

list of links to files with items that are theorems  and that contain the word "convergence" and
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list of links to files with items that are theorems  and that contain the word "convergence" and

the  term  S
i=0

n
 i2in  .  The  term  S

j=0

n
 j2  will  not  be  identified.  (At  this  moment  the  formula  search

capabilities does not work ~07.11.2007).
For visualizing the concepts learned and their connections, the user can apply iCMap con−

cept maps.  

4 Aldor

4.1 Short Description

Aldor is a programming language with an expressive type system well−suited for mathemati−
cal  computing  and  which  has  been  used  to  develop  a  number  of  computer  algebra  libraries
[AldorWeb].

4.2 Technical Information on the System

4.2.1 Name of the System and Website

Aldor: A Language for Describing Objects and Relationships.
 http://www.aldor.org/

4.2.2 Project Leaders and Group

Leader: Stephen Watt (Ontario Research Centre for Computer Algebra).
Group:  Laurentiu  Dragan,  Oleg  Golubitsky,  Sandy  Huerter,  Marc  Moreno−Maza,  Cosmin

Oancea.

4.2.3 Main Publications

S.M.Watt. Aldor. In Handbook of Computer Algebra J. Grabmeier, E. Kaltofen, V. Weispfen−
ning (editors), Springer Verlag, Heidelberg 2003. pp. 265−270. ISBN 3−540−65466−6.

Stephen M.  Watt,  Peter  A.  Broadbery,  Samuel  S.  Dooley,  Pietro  Iglio,  Scott  C.  Morrison,
Jonathan M. Steinbach, and Robert S. Sutor. AXIOM Library Compiler User Guide. NAG Ltd,
Oxford, 1994.

4.2.4 Implementation Language

The compiler for the Aldor language is C (gcc for the Linux environments).
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4.2.5 System Availability and Prerequisites

The  system  is  available  for  non−commercial  purposes,  under  the  Aldor  Public  License
Version 2.0. If the sources of the system are downloaded, a gcc compiler is needed.

4.3 Algorithm Libraries

4.4 User Language

4.4.1 Programming Language

The Aldor language

4.4.2 Logic Language for the Formulation of Mathematical Knowledge 

4.4.3 Mathematical Syntax

4.5 Mathematical Knowledge Bases

4.5.1 Available Theories and Knowledge Bases

4.5.2 Tools for Retrieval in Mathematical Knowledge Bases

4.5.3 Tools for Inventing Mathematical Knowledge

4.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

4.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

4.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

4.5.7 Standardization, Inter−Operability

The system can compile Aldor code into C and Fortran 77.
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4.5.8 Web Access

4.6 Example of a Theory Exploration Session

These examples are taken from [Watt03]. 

To compute the square root in 6 steps of Newton’s method we can write:

miniSqrt(x: DoubleFloat): DoubleFloat == {
         r := x;
         r := (r*r + x)/(2.0*r);
         r := (r*r + x)/(2.0*r);
         r := (r*r + x)/(2.0*r);
         r := (r*r + x)/(2.0*r);
         r := (r*r + x)/(2.0*r);
         r := (r*r + x)/(2.0*r);
         r
}

This is how a category is defined:

define Logic: Category == BasicType with {
         ~:         % −> %;      ++ Logical complement.
         /\:        (%, %) −> %; ++ Logical ’meet’, e.g. ’and’.
         \/:        (%, %) −> %; ++ Logical ’join’, e.g. ’or’.
         xor:       (%, %) −> %; ++ Exclusive or.
         default (x: %) \/ (y: %): % == ~(~x /\ ~y);
         default xor(x: %, y: %): % == (x /\ ~y) \/ (~x /\ y);
}

where [Watt03]:
− A with expression forms a category;
− BasicType is a previously defined category which this one extends;
− The text beginning with ++ will go into the documentation;
− ’%’ are later replaced by the domain which belongs to the category. E.g. importing

Boolean: Logic will give the operations such as xor: (Boolean, Boolean) −> Boolean;
− define makes the value of Logic public information. This is necessary in order to

know what  operations are  exported when Logic  is  used.  (Usually only  the name and type are
public information.)
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5 ArXiv

5.1 Short Description

ArXiv is an archive for electronic preprints of scientific papers in the fields of mathematics,
physics, computer science and quantitative biology. It can be accessed via Internet and contains
over 400.000 papers.

5.2 Technical Information on the System

5.2.1 Name of the System and Website

arXiv (pronounced ’archive’). http://arxiv.org/

5.2.2 Project Leaders and Group

The e−print  archive was started in  1991 by Paul Ginsparg. The operation of  arXiv is cur−
rently funded by the Cornell University and by the National Science Foundation.

5.2.3 Main Publications

McKiernan, Gerry.  "arXiv.org: The Los Alamos National Laboratory E−Print Server." The
International  Journal  on  Grey  Literature  1  (3):  127−138.  2000.
http://www.public.iastate.edu/~gerrymck/arXiv.org.pdf

Simeon  Warner.  Open  Archives  Initiative  protocol  development  and  implementation  at
arXiv. Expanded version of talk presented at Open Archives Initiative Open Meeting in Washing−
ton, DC, USA on 23 January 2001. Available on arXiv.org as arXiv:cs/0101027v1.

5.2.4 Implementation Language

Over 30,000 lines of Perl running under Linux, and numerous other programs (TEX, ghost−
script, tar, gnuzip, etc.) [Warner01]

5.2.5 System Availability and Prerequisites

Arxhiv.org  (including the mirrors) can be freely accessed over the internet.

5.3 Algorithm Libraries

It is a repository of papers. There are no algorithms to be ran.
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5.4 User Language

5.5 Mathematical Knowledge Bases

5.5.1 Available Theories and Knowledge Bases

The archive contains over  450.000 e−prints (as of  28 November 2007) from the following
domains:  Computer  Science,  Mathematics,  Nonlinear  sciences,  Physics,  Quantitative  biology,
Statistics. Since 2004 there is an endorsement system which is used for submitting papers. I.e.
authors that are submitting must be endorsed by authors which already have submitted to arXiv.
It is a kind of ’peer−reviewing’.

5.5.2 Tools for Retrieval in Mathematical Knowledge Bases

Search  engines  via  available  search  pages  and  portals  (for  example  Front  −
http://front.math.ucdavis.edu/,  Google  scholar,  Windows  Live  Academic,  eprintweb.org).  The
searches are textual, by author, title, scientific category, words in abstract or content. 

5.5.3 Tools for Inventing Mathematical Knowledge

5.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

5.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

5.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

5.5.7 Standardization, Inter−Operability

5.5.8 Web Access

See the ’Tools for Retrieval ...’ subsection above.
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5.6 Example of a Theory Exploration Session

6 CoCoA

6.1 Short Description

CoCoA  is  a  program  to  compute  with  numbers  and  polynomials,  mainly  for  computing
Gröbner Bases. The CoCoA project began in 1987,  as a small Pascal program for Macintosh,
experimenting with Buchberger’s algorithm for Gröbner bases. In a short time the program was
widely used for research and teaching, triggering further implementations, translation into the C
programming language, and porting it to other platforms.

An  important  purpose  of  the  CoCoA  program  is  to  provide  a  "laboratory"  for  studying
computational  commutative  algebra:  it  together  with  Singular  and  Macaulay  2  form  an  elite
group of highly specialized systems having as their main forte the capability to calculate Gröb−
ner bases (citation from [CoCoAWeb]).

6.2 Technical Information on the System

6.2.1 Name of the System and Website

Computations in Commutative Algebra
http://cocoa.dima.unige.it/

6.2.2 Project Leader and Group

Leader:  Lorenzo  Robbiano  (DIMA  −  Dipartimento  di  Matematica,  Università  di  Genova,
Italy)

Group:  John  Abbott,  Volker  Augustin,  L.  Bazzotti,  Anna  M.  Bigatti,  Massimo  Caboara,
Antonio Capani, G. Dalzotto, A. DelPadrone, S. DeFrancisci, Alessandro Giovini, D. La Mac−
chia, Gianfranco Niesi, Dave Perkinson, Alessandro Polverini, F. Rossi, Arndt Willis.

6.2.3 Main Publications

The  CoCoATeam.  CoCoA:  A  System  for  doing  Computations  in  Commutative  Algebra.
Available at http://cocoa.dima.unige.it/ (last checked on 17.10.2007).

A. Capani and  G. Niesi and L. Robbiano. Some Features of CoCoA 3. Comput. Sci. J. of
Moldova, 4(3), pages 296−314,1996.

J. Abbott. Challenges in Computational Commutative Algebra. In W. Decker, M. Dewar, E.
Kaltofen,  and  S.  Watt,  editors,  Challenges in  Symbolic  Computation Software,  Internationales
Begegnungs−  und  Forschungszentrum  fuer  Informatik  (IBFI),  Schloss  Dagstuhl,  Germany,
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Begegnungs−  und  Forschungszentrum  fuer  Informatik  (IBFI),  Schloss  Dagstuhl,  Germany,
2006.

Antonio  Capani.  The  Design  of  the  CoCoA  3  System.  PhD  Thesis,  DISI−TH−2000−02.
Universita  degli  Studi  di  Genova,  Dipartamento  di  Informatica  e  Scienze  dell’Informazione,
February 2000.

See the program’s website for further relevant publications.

6.2.4 Implementation Language

C. The new CoCoA system (version 5, not yet released) is implemented in C++.

6.2.5 System Availability and Prerequisites

Free  to  download  from  the  project’s  website,  under  the  GPL  v3  licence.  The  system  is
available  for  a  multitude  of  platforms:  Linux86,  Macintosh,  SunSolaris,  Dec  Alpha  worksta−
tions, Windows, etc).

No  prerequisites  are  needed.  If  Emacs  modes  are  intended  to  be  used,  then  Emacs  is,  of
course, required.

6.3 Algorithm Libraries

We could not find a complete list of algorithms implemented in the CoCoA system, there−
fore, the list below is probably not complete. 

6.3.1 Numerical Library

Basic  arithmetic  algorithms  on  integer,  rationals,  modular  integers,  together  with  GCD,
composition, and factorization.

6.3.2 Algebraic Library

In [Capani00], where CoCoA 3 is described in detail, it is mentioned that the mathematical
part  of  the kernel  contains: implementation of  basic data structures (coefficients, polynomials,
modules);  advanced algorithms for  computing Gröbner bases,  syzygies,  rezolution (in CoCoA
aka. the "Gröbner Framework"); high level functions like intersection of modules or the Colon
operations; powerful special purpose libraries for computing Poincaré series, computation of the
solutions of  linear algebra problems, management of  toric ideals, and an efficient multivariate
factorizer.

Additional libraries, written as packages in the CoCoAL language are for:
computing in a cyclic algebraic extension;
computing K−algebra homomorphisms and subalgebras;
applying toric ideals to integer programming;
computing  homogeneous  generators  of  an  algebra  of  invariants,  and  for  testing

invariance of a polynomial;
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invariance of a polynomial;
computing the Hilbert−Poincare series of special varieties (Segre, Veronese, Rees);
computing type−vectors associated to Hilbert functions of ideals of points;
package for computing conductor sequence of points;
package for computing normal forms of a matrix, Smith Normal Form (PID)
package for playing  Can’t Stop  and studying strategies;
package for Geometric Control Theory.

6.3.3 Reasoners

There  is  a  package  for  geometrical  theorem−proving  in  euclidean  space  (i.e.  involving
computation).

6.3.4 Graphical Tools and Interfaces

Interacting with the system is made mainly via Emacs (under Linux). For Macintoshes, the
CoCoA  user  interface  is  based  on  Mel  Park’s  PlainText  (v.1.6).  A  graphical  user  interface is
also available, where the documents (text files storing CoCoA commands and programs) can be
processed, commands executed, etc.

6.4 User Language

6.4.1 Programming Language

The CoCoA system has a full−fledged high level programming language, CoCoAL, which is
a  Pascal  like  language.  It  is  complete  with  loops,  branching,  scoping  of  variables,  and
input/output  control  [CoCoAMan].  It  is  strongly  typed,  each  CoCoA  expression  has  a  type.
There  is  a  partial  ordering  defined  on  the  types  which  helps  in  implementing  the  notion  of
subtype.

6.4.2 Logic Language for the Formulation of Mathematical Knowledge

As  the  system is  for  computing,  one  cannot  formulate  definitions,  theorems,  etc.  like  in  a
book,  or  like in  a  proving assistant. The users can formulate (i.e.  define,  program) algorithms
using the CoCoAL language, and compute with them.

6.4.3 Mathematical Syntax

The  syntax  to  formulate  algorithms is  the  one  of  the  CoCoAL,  i.e.  the  programming lan−
guage available to the user.
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6.5 Mathematical Knowledge Bases

6.5.1 Available Theories and Knowledge Bases

6.5.2 Tools for Retrieval in Mathematical Knowledge Bases

6.5.3 Tools for Inventing Mathematical Knowledge

6.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

6.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

6.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

6.5.7 Standardization, Inter−Operability

6.5.8 Web Access

A  general  interface  between  people  and  CASs  (CoCoA  in  this  case)  is  described  in
[Capani00, Chapter 6]. The interface is based on the idea of session management, and is imple−
mented using the  client−server capabilities given by  WWW. The user  runs some webbrowser
with automatic client−server capabilities and submits queries to a machine that runs CoCoA via
cgi−applications. We have found no later proof of the further development of this interface, or
of its use.

6.6 Example of a Theory Exploration Session

The  examples  below  are  taken  from  the  CoCoA  manual  [CoCoAMan,  chapter  2].  The
system’s output lines can be differentiated from the ones typed in by the user by the fact that
they have no semicolon at the end, and a line is printed immediately after them. For readability
we have changed the output’s font color to blue, but this is NOT a feature of the CoCoA sys−
tem.  The text following the two dash symbols (’−−’) is seen as comments by the system, and
therefore not processed. For readability, we have marked the system’s answers with ’>>’

6.6.1 Some basic examples

Arithmetic with CoCoA
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(2+3)(1+1);−−multiplication,as usual
>>10
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2^10;
>>1024
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2+2/3;
>>8/3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1.5+2.3;−−decimals are converted to fractions
>>19/5
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Mod(27,5);
>>2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2*3;
>>6
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fact(4);
>>24
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Defining variables:

A:=3;
2A;
>>6
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Variable names must start with capital letter, otherwise an error occurs.

b:=7;
>>ERROR:parse error in line 12 of device stdin
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
>>7
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
B:=7;
A^2+B;
>>16
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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6.6.2 Lists

L:=[2,3,‘‘a string’’,[5,7],3,3];−−L is now a list
L[3];−−here is the 3rd component of L
>>a string
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
L[4];−−the 4th component of L is a list,itself
>>[5,7]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Append(L,‘‘new’’);
L;
>>[2,3,‘‘a string’’,[5,7],3,3,‘‘new’’]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[X^2|X In 1..5];−−a useful way to make lists
>>[1,4,9,16,25]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[1,2] >< [3,4] >< [5];−−Cartesian product:use a greater−than
−−sign ‘‘>’’ and a less−than sign ‘‘<’’ to make
−−the operator ‘‘><’’.
>>[[1,3,5],[1,4,5],[2,3,5],[2,4,5]]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6.6.3 Rings, Polynomials, Groebner Bases

When a CoCoA session is started, the default ring R = Q[x,y,z] is used automatically. This
can  be  changed with  the ’Use’  command.  Below we show how to  create the Z/(5)[a,b,c]  (the
coefficient ring of integers mod 5). Once constructed, the user can do various operations within
this ring. There are ways to use more than one ring at once.

Use S::=Z/(5)[a,b,c];
F:=a−b;
I:=Ideal(F^2,c);
I;
>>Ideal(a^2−2ab+b^2,c)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
J:=Ideal(a−b);
I+J;
>>Ideal(a^2−2ab+b^2,c,a−b)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Minimalized(It);−−find a minimal set of generators for I+J
>>Ideal(a−b,c)

Let  r  be  a  root  of  the  equation  x7 - x - 1 over  the  rationals.  The  minimal  polynomial  of
H4 r - 1L � r3  can  be  found  by  computing  the  reduced  Groebner  basis  of  the  ideal
H x7 - x - 1, x3 y - 4 x + 1L  with  respect  to  the  lexicographic  term−ordering  with  x  >  y.  The
computed  Groebner  basis   has  two  elements,  the  second  one  being  a  univariate  polynomial
which is the minimal polynomial for r.

Use R::=Q[x,y],Lex;
Set Indentation;−−to improve the appearance of the output
G:=GBasis(Ideal(x^7−x−1,x^3y−4x+1));
G;
>>[1602818757152090759440/34524608236181199361x−4457540/58757644
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>>[1602818757152090759440/34524608236181199361x−4457540/58757644
81y^7

− 47746460716124220/34524608236181199361y^6+
890175715271333840/34524608236181199361y^5−
1992534667352220/34524608236181199361y^4−
55943894513139464160/34524608236181199361y^3−
56473654361333280980/34524608236181199361y^2−
27971979712025453040/34524608236181199361y−

400704689288022689860/34524608236181199361,1/16384y^7−5/16384y^6
+147/16384y^4+5/128y^3−31/16384y^2+17/128y−20479/16384 ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Len(G);
>>2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F:=16384*G[2];−−clear denominators
F;
>>y^7−5y^6+147y^4+640y^3−31y^2+2176y−20479
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Factoring a ring can be done as below:

Use R::=Q[x,y];
F:=x^12−37x^11+608x^10−5852x^9+36642x^8−156786x^7+−984128x^5+143
7157x^4−1422337x^3+905880x^2−333900x
Factor(F);
>>[[x−2,1],[x−4,1],[x−6,1],[x−3,2],[x−5,3],[x−1,4]]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F:=(x+y)^2*(x^2y+y^2x+3);
F;
>>x^4y+3x^3y^2+3x^2y^3+xy^4+3x^2+6xy+3y^2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Factor(F);−−multivariate factorization
>>[[x^2y+xy^2+3,1],[x+y,2]]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Use Z/(37)[x];
>>Factor(x^6−1);[[x−1,1],[x+1,1],[x+10,1],[x+11,1],[x−11,1],[x−1
0,1]]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6.6.4 User−Defined Functions

The syntax of a user defined function is:

Define<FunctionName>(<argument list>)<Commands>EndDefine;

For example, a function that tests wether a given parameter is prime or not looks like:

Define IsPrime(X)−− a more complicated function
If Type(X)<>INT Then Return Error(‘‘Expected INT’’) EndIf;
I:=2;
While I^2 £X Do

If Mod(X,I)=0 Then Return False EndIf;
I:=I+1;

EndWhile;
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EndWhile;
Return TRUE;

EndDefine;−−end of function definition

A test execution of the above defined function:

IsPrime(4);
>>FALSE

7 Coq

7.1 Short Description

Coq  is  a  proof  assistant  for  the  logical  framework  known  as  the  Calculus  of  Inductive
Constructions. The Coq project started in 1984 as an implementation of the Calculus of Construc−
tions,  at  INRIA−Rocquencourt.  The  originators  of  the  project  were  Thierry  Coquand  and
Gérard Huet. The first release of the system was made in 1989, and in 1991 was extended to the
Calculus of Inductive Constructions. Nowadays, the system is developed under the coordination
of the LogiCal project [LogiCal].

On  their  website,  the  Coq  team  state  that  "Coq  is  a  formal  proof  management  system".
Proofs done with the system are checked mechanically, by a relatively small kernel. The system
also comes with  a  functional  programming language,  provides both  interactive proof  methods
and  (semi)decision  algorithms,  and  also  has  a  protocol  for  connecting  to  external  computer
algebra systems or theorem provers [CoQWeb].

7.2 Technical Information on the System

7.2.1 Name of the System and Website

The Coq proof assistant. http://coq.inria.fr/
In French, "coq" means rooster, and it sounds like the initials of the Calculus of Construc−

tions CoC on which it is based. (In fact, the first implementation was named CoC).

7.2.2 Project Leader and Group

The  development  of  the  system is  coordinated by  the  LogiCal  project  [LogiCalWeb].  The
leader of  this project is Giles Dowek (Laboratoire d’Informatique (LIX), École polytechnique,
France).

As  the  project  has  already  a  long  history  of  development,  the  project  group  has  modified
along the years. As of 2006, the people that contributed to the last release are (according to their
reference  manual  [CoQMan]):  Nicolas  Ayache,  Bruno  Barras,  Yves  Bertot,  Pierre  Castéran,
Jacek Chrzaszcz,  Claudio Sacerdoti  Coen,  Pierre Corbineau, Pierre Courtieu, Jean−Christophe
Filliâtre, Julien Forest,  Benjamin Grégoire,  Hugo Herbelin,  Pierre Letouzey,  Assia Mahboubi,
Benjamin  Monate,  Julien  Narboux,  Jean−Marc  Notin,  Christine  Paulin,  Laurent  Théry,  Mat−

31



Benjamin  Monate,  Julien  Narboux,  Jean−Marc  Notin,  Christine  Paulin,  Laurent  Théry,  Mat−
thieu Sozeau.

7.2.3 Main Publications

The CoQ Reference Manual. http://coq.inria.fr/doc/toc.html (last checked on 10.10.2007)

Y. Bertot and P. Castèran. Interactive Theorem Proving and Program Development: Coq’−
Art: The Calculus of Inductive Constructions, ISBN 3−540−20854−2, Springer, 2004.

7.2.4 Implementation Language

Written in Objective Caml (with a bit of C) [OCaml].

7.2.5 System Availability and Prerequisites

Distributed under the GNU Lesser General Public Licence Version 2.1 (LGPL).

The  system  can  be  downloaded  form  the  Coq  website.  Binaries  are  available  for  various
operating systems (Linux, FreeBSD, MacOsX, Windows). If users opt for the system’s sources
they need to compile them with Objective Caml.

7.3 Algorithm Libraries

The Coq system does not have libraries of numerical or symbolic algorithms implemented in
an execution−efficient way, as, for example, are implemented in CASs. 

7.3.1 Reasoners

The Coq’s reasoner can be called either in interactive mode or proof editing mode.

The  logical  reasoning  within  Coq  is  done  via  tactics  (built  from  atomic  tactics  and  tactic
expressions,  or  tacticals,  i.e.  tactic  combinators).  There  are,  at  least,  three  levels  of  atomic
tactics. The simplest one implements basic rules of the logical framework. The second level is
the one of derived rules which are built by combination of other tactics. The third one imple−
ments heuristics or decision procedures to build a complete proof of a goal [CoQTut]. Before a
tactic is applied to a goal, the system checks whether some preconditions are satisfied. 

During  proof  development,  at  each  stage,  there  is  a  list  of  goals  to  prove,  which  at  the
beginning has only one element: the proposition to prove itself. The list of goals is updated with
each tactic application. Each goal has associated a local context ~ a number of hypotheses ~
which is empty at the beginning. 

Finished  proofs  can  be  stored  as  defined  constants  in  the  environment  (because  of  the
Curry−Howard  isomorphism).  Coq  stores  proofs  as  terms  (i.e.  proof  terms)  of  Calculus  of
Inductive Constructions.
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The tactics in the Coq system cover areas like of propositional and predicate logic, equality
(Leibnitz equality), induction (on booleans, natural numbers, on functions defined by primitive
recursion, inductive families). Generalized pattern matching is also supported (see [CoQMan],
Addendum to the Reference Manual).

There are tactics which, when called, try to do more than one proof step without user interfer−
ence. The most used is the auto tactic, which implements a Prolog−like resolution procedure to
solve the current goal. By default, auto uses the local context of the current goal and the hints of
the  database  named  core.  The  power  of  the  auto  tactic  can  be  increased  by  adding
lemmata/theorems as hints to be used by the auto tactic.

Coq contains also other specific tactics, like:
~  congruence which  implements  a  decision  procedure  for  ground  equalities  with

uninterpreted symbols.
~ omega, which is an automatic decision procedure for Presburger arithmetic.
~  ring,  which  solves  equations  upon  polynomial  expressions  of  a  ring  (or  semi−

ring) structure.
~ fourier, for solving linear inequations on real numbers using Fourier’s method.
~ autorewrite for rewriting according to given  rewriting rule bases.

For a detailed description of the system’s tactics and tactical language see [CoQMan].

7.3.2 Graphical Tools and Interfaces

CoqIde and Pcoq are two graphical user interfaces to Coq. In CoqIde the user input is given
in  one  window and  Coq’s  answers  are  displayed in  a  different  window.  Pcoq offers  multiple
fonts and colors to display formulas and commands, provides a way to structurally edit formu−
lae  and  commands,  makes  adding  new  notation  easy.  It  also  supports  the  ’proof  by  pointing’
method [BertotKahnThery94]. 

Other  graphical  interfaces for  Coq are  ProofGeneral  (a  generic  interface for  proof  systems
based on Emacs) and Emacs modes.

7.4 User Language

7.4.1 Programming Language

Gallina is the specification language of Coq. It is used both to develop formalizations and to
prove specifications of programs [CoQMan]. The language combines predicate calculus, prolog
and recursion equations in a logically sound way [Huet92]. See also the subsection below.

For writing new tactics one can use the LTac language [Delahaye00], or the Objective Caml
language, the language in which the Coq system is written.
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7.4.2 Logic Language for the Formulation of Mathematical Knowledge 

The language used to develop formal axiomatizations is called Gallina. Such a development
consists of a sequence of declarations and definitions. During a formalization session, the user
can call Coq commands which are not part of the formal development, but are used for informa−
tion requests (for example). [CoQMan]

A  declaration associates  a  name (identifier)  with  a  specification.  Basically,  there  are  three
kinds  of  specifications:  logical  propositions,  mathematical  collections,  and  abstract  types
[CoQMan].

See some examples in the "Example of a Theory Exploration Session" section below.

7.4.3 Mathematical Syntax

The  syntax  used  is  the  syntax  of  Gallina.  See  the  "Programming  Language"  and  "Logic
Language for the Formulation of Mathematical Knowledge" subsections above.

7.5 Mathematical Knowledge Bases

7.5.1 Available Theories and Knowledge Bases

Coq’s standard library contains the following [CoQWeb]:
* Init: The core library (automatically loaded when starting Coq)
* Logic: Classical logic and dependent equality
* Arith: Basic Peano arithmetic
* NArith: Binary positive integers
* ZArith: Binary integers
* QArith: Rational numbers
* Reals: Formalization of real numbers
* Sets: Sets (classical, constructive, finite, infinite, powerset, etc.)
* Relations: Relations (definitions and basic results)
* Wellfounded: Well−founded Relations
* Setoids
* Bool: Booleans (basic functions and results)
* Lists: Polymorphic lists, Streams (infinite sequences)
* FSets: Modular implementation of finite sets/maps using lists
* IntMap: An implementation of finite sets/maps as trees indexed by addresses
* Strings  Implementation of string as list of ascii characters
* Sorting: Axiomatizations of sorts.

There  are  several  contributions  to  the  library  made  by  users  [CoQWeb]  in   Mathematics
(Logic,  Algebra,  Real  Analysis  and  Topology,  Geometry,  Arithmetic  and  Number  Theory,
Combinatorics and Graph Theory, Category Theory), Computer Science (Lambda−Calculi et al,
Formal Languages Theory and Automata, Decision Procedures and Certified Algorithms, etc.),
Logical Puzzles and Entertainment. For a complete list and a description of these libraries see
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Logical Puzzles and Entertainment. For a complete list and a description of these libraries see
the project’s website.

Another  significant  corpus  of  formalized  mathematics  is  stored  into  the  C−CoRN  library
(The  Constructive  Coq  Repository  at  Nijmegen)  [C−CoRNWeb].  Because  it  is  independent
from the Coq system, we treat this library as a separate entity in the chapter about C−CoRN.

7.5.2 Tools for Retrieval in Mathematical Knowledge Bases

For  loaded  libraries  (i.e.  knowledge  is  available  in  the  local  context),  some  Coq  search
commands are provided. For example, Search and SearchAbout look for name and type of all
theorems  and  objects  in  the  current  context,  respectively,  whose  statements  contain  a  given
identifier.  SearchPattern and  SearchRewrite involve  patterns  in  their  search  for  theorems,
Locate displays the full name of the given identifier, together with the name of the module (file)
where it is defined.

Another search tool for the Coq standard library and the user contribution library is Whelp.
This is an experimental searching and browsing tool and requires a browser to work. Whelp was
developed as part of the HELM and MoWGLI projects, at the University of Bologna [AspertiEt−
Al04].  The  Whelp  search  commands  ~  given  in  Coq  top−level  or  CoqIde  ~  will  open  a
browser  window  displaying  the  search  results.  The  search  expression  can  involve  regular
expressions (when searching for names), patterns (where holes in the pattern are represented by
the underscore character), valid identifiers, or terms (when searching for statements that can be
used to prove the term by instantiation). See [AspertiEtAl04] for more on this search tool.

7.5.3 Tools for Inventing Mathematical Knowledge

7.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The Coq’s reasoner checks every piece of mathematical knowledge that is worked on with
the system. Theorems can be added to the local context only if they have a successful proof (i.e.
a correct type). The contributions to the library also must be successfully checked by Coq.

7.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

7.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

LTac,  the  tactic  language  of  Coq,  allows  users  to  write  their  own  tactics.  The  tactics  are
checked by the Coq type checker which verifies that the term built by a tactic is of the theorem
type the user wants to apply it to [Delahaye00].

Additionally, the system has a Quote tactic, which is used to do proofs by reflection [Co−
QMan, 10.7].
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7.5.7 Standardization, Inter−Operability

There  is  a  Coq  package,  written  by  David  Delahaye  and  Micaela  Mayero,   that  imports
Maple computation tools. It exports, from Maple, the functions simplify, factor, expand, normal
and  provides Coq tactics with  the same names (i.e.  Simplify, Factor,  etc.).  The manipulations
done by these (imported) tactics are proved with the Field tactic [CoQMan, 20]. Given a term t,
if t’  is the simplified/factorized term, in order to replace t by t’  one must prove that t = t’, which
is  done  by  the  Field  tactic.  For  this  reason,  for  the  term t  to  Simplify,  Factorize,  etc.,  a  field
theory must be declared for its type.

There  is  an  OpenMath phrasebook for  the  Coq library,  but  we’ve  found no  reference to  a
publication about this. 

7.5.8 Web Access

The  Coq  library  can  be  browsed on−line  on  the  Helm website  (http://helm.cs.unibo.it/). A
web  interface  to  Coq  has  been  implemented  by  Loïc  Pottier  and  is  available  at
http://wims.unice.fr/wims/wims.cgi?module=U3/logic/logicoq  .  Using  this  interface,  one  can
insert the content of a Coq file and submit it for verification. It is only usable for small problems.

Another  web  based  GUI  to  CoQ  is  described  in  [Kaliszyk06]  and  can  be  tried  at
http://prover.cs.ru.nl/ .

7.6 Example of a Theory Exploration Session

Where not otherwise stated, the examples are taken from [CoQTut]. The system outputs are
marked with ’>>’

7.6.1 Basics

Starting the system (command line)

unix:~>coqtop
>> Welcome to Coq 8.0 (Mar 2004)
>> Coq<

Leaving the system is done with the Quit command.

Declare a natural number n:

Coq<Variable n:nat.
>> n is assumed

Let’s declare that n is positive:

Coq<Hypothesis Pos_n:(gt n 0).
>> Pos_n is assumed
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7.6.2 Simple Logic Proof

Declare some variables of type Prop:

Coq<Variables A B C:Prop.
>> A is assumed
>> B is assumed
>> C is assumed

Let us now prove that (A −> B −> C) −> (A −> B) −> A −> C. This is done by using the
command Goal followed by the conjecture we want to verify:

Coq<Goal (A ®B®C) ®(A ®B) ®A®C.
>> 1 subgoal

>> A:Prop
>> B:Prop
>> C:Prop
>>   ===========================
    
>>     (A ®B®C) ®(A ®B) ®A®C

Now we find ourselves in the proof mode, with the goal displayed under the line. Tactics are
now available  to  the  user.  For  instance,  the  intro  tactic  is  applicable  to  any  goal  which  is  an
implication, by moving the left part of the implication to the list of local hypotheses:

Coq<intro H.
>> 1 subgoal

>> A:Prop
>> B:Prop
>> C:Prop
>> H:A ®B®C
>>   ===========================
    
>>     (A ®B) ®A®C

Several introductions may be done in one step:

Coq<intros H’ HA.
>> 1 subgoal

>> A:Prop
>> B:Prop
>> C:Prop
>> H:A ®B®C
>> H’:A ®B
>> HA:A
>>   ============================
  
>>   C
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The current goal, may be obtained from hypothesis H, provided that A and B are true. We
use the apply tactic, and we end with two subgoals (the current goal has the local context, i.e.
local assumptions, listed in full):

Coq<apply H.
>> 2 subgoals

>> A:Prop
>> B:Prop
>> C:Prop
>> H:A ®B®C
>> H’:A ®B
>> HA:A
>>   ============================
  
>>   A
>> subgoal 2 is:
    
>>     B

The current goal is available as the HA hypothesis:

Coq<exact HA.
>> 1 subgoal

>> A:Prop
>> B:Prop
>> C:Prop
>> H:A ®B®C
>> H’:A ®B
>> HA:A
>>   ============================
  
>>   B

Now H’ applies:

Coq<apply H’.
>> 1 subgoal

>> A:Prop
>> B:Prop
>> C:Prop
>> H:A ®B®C
>> H’:A ®B
>> HA:A
>>   ============================
  
>>   A

And we may now conclude the proof as before, with exact HA. We can also just state that
the current goal is solvable from the current local assumptions:
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Coq<assumption.
>> Proof completed.

The  proof  is  now finished.  We may  either  discard  it,  by  using  the  command Abort which
returns  to  the  standard  Coq  top−level  loop  (we  remind  here  that  we  were  in  a  proof  mode)
without  further  ado,  or  else  save  it  as  a  lemma  in  the  current  context,  under  name  say
trivial_lemma:

Coq<Save trivial_lemma.
>> intro H.
>> intros H’ HA.
>> apply H.
>> exact HA.
>> apply H’.
>> assumption.
>> trivial_lemma is defined

7.6.3 Simple Search

Coq<Require Import ZArith.
Coq<SearchAbout[Zmult Zplus "distr"].
>> weak_Zmult_plus_distr_r:
>> forall (p:positive) (n m:Z),
>> (Zpos p*(n+m))%Z=(Zpos p*n+Zpos p*m)%Z
>> Zmult_plus_distr_r:
>> forall n m p:Z,(n*(m+p))%Z=(n*m+n*p)%Z
>> Zmult_plus_distr_l:
>> forall n m p:Z,((n+m)*p)%Z=(n*p+m*p)%Z
>> OmegaLemmas.fast_Zmult_plus_distr_l:
>> forall (n m p:Z) (P:Z ®Prop),
>> P (n*p+m*p)%Z ®P ((n+m)*p)%Z

Coq<Require Import Arith.
Coq<SearchPattern (_+_=_+_).
>> plus_comm: forall n m:nat,n+m=m+n
>> plus_Snm_nSm:forall n m:nat,S n+m=n+S m
>> plus_assoc: forall n m p:nat,n+(m+p)=n+m+p
>> plus_permute: forall n m p:nat,n+(m+p)=m+(n+p)
>> plus_assoc_reverse:forall n m p:nat,n+m+p=n+(m+p)
>> plus_permute_2_in_4:forall n m p q:nat,n+m+(p+q)=n+p+(m+q)

A  pattern  that  requires  that  the  same expression  must  occur  on  two  different  places  in  an
expression:

Coq<SearchPattern (?X1 + _ = _ + ?X1).
>> plus_comm: forall n m:nat,n+m=m+n

Show the full name of the given identifier (nat) and (consequently) the Coq module in which
is definded.:

39



Coq<Locate nat.
>> Inductive Coq.Init.Datatypes.nat

8 C−CoRN

8.1 Short Description

The Constructive Coq Repository at Nijmegen, C−CoRN, aims at building a computer based
library of  constructive mathematics, formalized in  the theorem prover  Coq [C−CoRNWeb].  It
aims  at  being  a  test−bed  for  investigating  the  process  of  formalizing  mathematics  and  how
digitally stored formalized mathematics can be interacted with, managed. The knowledge in this
library  is  formalized  constructively,  because  of  practical  reasons  (the  authors  are  well
acquainted  with  the  Coq  system)  and  because  constructive  mathematics  offers  executable
algorithms for  the functions that are proved to exist.  The project grew out  of  the FTA project
(the  Fundamental  Theorem  of  Algebra  project)  whose  achieved  goal  was  to  formalize  the
constructive proof of the FTA theorem, together with all the knowledge needed for this proof.

8.2 Technical Information on the System

8.2.1 Name of the System and Website

The Constructive Coq Repository at Nijmegen.
http://c−corn.cs.ru.nl/index.html

8.2.2 Project Leaders

Henk Barendregt and Herman Geuvers (Foundations of Mathematics and Computer Science,
Radboud University, Nijmegen, The Netherlands).

The following people have, until now, contributed to the C−Corn library: Henk Barendregt,
Vince Bárány, Luís Cruz−Filipe, Herman Geuvers, Mariusz Giero, Rik van Ginneken, Dimitri
Hendriks,  Sébastien Hinderer,  B.  W.  M.  Kirkels,  Pierre Letouzey,  Iris  Loeb,  Lionel  Mamane,
Milad  Niqui,  Russell  O’Connor,  Randy  Pollack,  Nickolay  V.  Shmyrev,  Bas  Spitters,  Dan
Synek, Freek Wiedijk, Jan Zwanenburg.

8.2.3 Main Publications

L. Cruz−Filipe. Constructive Real Analysis: a Type−Theoretical Formalization and Applica−
tions, PhD Thesis. University of Nijmegen, April 2004.

Other,  project  related  publications  deal  with  formalizing  mathematics  and  not  the  system
description.  A  list  of  these  publication  can  be  seen  at  the  project’s  website  (http://c−
corn.cs.ru.nl/pub.html).
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8.2.4 Implementation Language

None. The library is a collection of text files.

8.2.5 System Availability and Prerequisites

The library can be freely downloaded from the website.

None mentioned, but as it is used together with the Coq system, the same system prerequi−
sites as for Coq are to be considered.

8.3 Algorithm Libraries

8.4 User Language

We  only  note  here  that  the  library  was  created  using  the  Coq  system,  using  the  tactics
defined there. The authors of the library also created new Coq tactics using the LTac language
available in Coq. See the section on the Coq system description.

8.5 Mathematical Knowledge Bases

We  only  list  here  the  theories  and  knowledge  bases  available  in  the  system.  For  the
(possibly) available tools for mathematical knowledge management see the section on CoQ.

8.5.1 Available Theories and Knowledge Bases

The  C−CoRN  library  has  over  3000  formalized  lemmas  and  over  800  definitions.  The
available theories are (according to their website):

Algebraic Hierarchy: An axiomatic formalization of the most common algebraic structures,
including setoids, monoids, groups, rings, fields, ordered fields, rings of polynomials, real and
complex numbers.

Model  of  the  Real  Numbers:  Construction  of  a  concrete  real  number  structure  satisfying
the previously defined axioms.

Fundamental  Theorem  of  Algebra:  A  proof  that  every  non−constant  polynomial  on  the
complex plane has at least one root.

Real  Calculus:  A  collection  of  elementary  results  on  real  analysis,  including  continuity,
differentiability, integration, Taylor’s theorem and the Fundamental Theorem of Calculus.

8.5.2 Web Access

The library can be browsed on−line on the Helm website (see the chapter on Helm of this
report).
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8.6 Example of a Theory Exploration Session

See the section on Coq.

9 DLMF

9.1 Short Description

DLMF or the Digital Library of Mathematical Functions [MillerYoussef03] intends to be
the (online and printed) successor of  Abramowitz and Stegun’ s  ‘‘Handbook of  Mathematical
Functions’’  [AbramowitzStegun65],  a  standard  reference  for  engineers  throughout  several
decades.  The  project,  headed  by  the  National  Institute  of  Standards  and  Technology  (NIST),
creates documents coded in LaTeX, using special macros for producing a handbook on paper as
well  as  a  dynamic  website.This  website  will  provide  mathematical  formulae,  3D  interactive
graphics,  methods  of  computation,  references,  links  to  software,  and  an  equation  search
capability.

9.2 Technical Information on the System

9.2.1 Name of the System and Website

DLMF (Digital Library of Mathematical Functions)
http://dlmf.nist.gov

9.2.2 Project Leaders and Group

DLMF is an international project, with members from USA and European Universities, and
it does not have a general project leader.

General Editor:
Dan Lozier, Mathematical and Computational Sciences Division, ITL , NIST.

Mathematics Editor:
 Frank  Olver,  Institute  for  Physical  Science  and  Technology,  University  of  Mary−

land, College Park, Maryland.
Physical Sciences Editor: 

Charles Clark, Electron and Optical Physics Division, Physics Laboratory, NIST.
Information Technology Editor:

Ron Boisvert, Mathematical and Computational Sciences Division, ITL, NIST.
Associate Editors:
Associate Editors for Special Functions

Dick Askey,University of Wisconsin,Madison.
Nico Temme,CWI,Amsterdam.

Associate Editors for Physics
Michael Berry,University of Bristol,U.K.
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Michael Berry,University of Bristol,U.K.
 Leonard Maximon,George Washington University.
Associate Editor for Chemistry
 Bill Reinhardt,University of Washington,Seattle.
Associate Editor for Combinatorics and Number Theory

Morris Newman,University of California,Santa Barbara.
Associate Editor for Computer Algebra

Peter Paule,Johannes Kepler University,Linz
Associate Editor for Statistics
        Ingram Olkin,Stanford University.

9.2.3 Main Publications

Bruce Miller and Abdou Youssef, Technical Aspects of the Digital Library of Mathematical
Functions, Annals of Mathematics and Artificial Intelligence, Volume 38, pp. 121−136, 2003.

Qiming  Wong  and  Bonita  Saunders,  Web−Based  3D  Visualization in  a  Digital  Library  of
Mathematical Functions, in Proceedings of Web3D 2005 (10th International Conference on 3D
Web Technology), ACM SIGGRAPH, 2005.

9.2.4 Implementation Language

For  the  3D  graphics  of  DLMF  the  Virtual  Reality  Modeling  Extensible  3D  Language
(VRML/X3D) has been used. All other functionalities seem to be programmed in Java.

9.2.5 System Availability and Prerequisites

Mock−up available online. By 2008, the whole project will be available online. 
For viewing the VRML graphics, one needs a VRML browser such as BS Contact, Cortona,

Cosmoplayer.

9.3 Algorithm Libraries

The user has no direct contact to an algorithm library.
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9.3.1 Reasoners

9.3.2 Graphical Tools and Interfaces

Most chapters of the DLMF will have a "Graphs and Visualization" section with 2D and 3D
figures.  The user  will  interact with the 3D images by using MathViewer  [WongSaunders05].
MathViewer is a VRML/3D application that allows on top of customary VRML browser con−
trols (rotate, zoom, pan that permit the examination of a 3D object from an arbitrary direction)
also more advanced capabilities. The three main controls are:

Cutting Plane Control:  helps the user examine the intersection of  a plane with a function
surface as the plan moves through the surface.

Axis and Labels Control: the user can select the axis and labels preferred.
Color  Map  Control:  used  for  manipulating  the  colors  of  the  visualizations  of  the

real|valued or complex|valued functions.
Scale Control: that manages the screen length of the surface in the x,y and z direction.

Also  several  viewpoints  of  the  objects  are  available:  "back",  "right",  "front",  "left"  and
"top".

For several examples, please check  http://ovrt.nist.gov/projects/vrml/dlmf/ (last checked on
26.11.07).

9.4 User Language

9.4.1 Programming Language

9.4.2 Logic Language for the Formulation of Mathematical Knowledge 

It is not clear which logical language is used. 

9.4.3 Mathematical Syntax

The mathematical formulae are stored, for now, in LATEX(according to their website). There
are two versions for presenting them on the web:
| An HTML version  that is generated by a combination of hand written HTML and HTML

generated  from  LaTeX  (using  images  for  mathematical  formulae  or  terms)  by  a  customized
version of LaTex2HTML.
|  A  XML/MathML  version  that  is  generated  by  a  translator  (LaTeXML)  conceived  and

implemented as part of the DLMF project. The mathematical formulae here are represented by
content  MathML.  This  translation is  a  semi|automatical one,  most  ambiguities  in  the  sources
can be eliminated by augmenting the LaTeX source with e.g. declarations of variable types. 
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9.5 Mathematical Knowledge Bases

9.5.1 Available Theories and Knowledge Bases

 Mathematical functions from the following theories are included:

Algebraic and Analytic Methods
Asymptotic Approximations
Numerical Methods
Elementary Functions
Gamma Function
Exponential Integral, Logarithmic Integral, Sine and Cosine Integrals
Error Functions, Dawson’ s Integral, and Fresnel Integrals
Incomplete Gamma and Related Functions
Airy and Related Functions
Bessel Functions
Struve and Related Functions
Confluent Hypergeometric Functions
Parabolic Cylinder Functions
Legendre Functions and Associated Legendre Functions
Hypergeometric Function
Generalized Hypergeometric Functions and Meijer G − Function
q − Hypergeometric Functions
Orthogonal Polynomials
Elliptic Integrals
Theta Functions
Riemann Theta Functions
Jacobian Elliptic Functions
Weierstrass Elliptic and Modular Functions
Bernoulli and Euler Numbers and Polynomials
Zeta and Related Functions
Functions of Number Theory
Combinatorial Analysis
Mathieu Functions and Hill’ s Equation
Lamé Functions
Spheroidal Wave Functions
Heun Functions
Painlevé Transcendents
Functions of Matrix Argument
Coulomb Wave Functions
3 j, 6 j, 9 j Symbols
Integrals with Coalescing Saddles
Statistical Methods & Distributions
Computer Algebra
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9.5.2 Tools for Retrieval in Mathematical Knowledge Bases

The equation search capability in DLMF is understood as a layer on top of textual search.
Mathematical information is preprocessed in the following way [Youssef05, Youssef04]:

| Textualization: The mathematical information is transformed into structured text.
For example, xa + yb - t  is encoded as x super a endsuper plus y sub b endsub minus t.
| Flattening and scoping: The scope of quantifiers (linguistic constructs that bind variables)

is  made  explicit  and  their  (typically  two|dimensional)  syntax  is  linearized  as  in  the  previous
step.

For example, Ù0
1
ydy  becomes integral sub 0 endsub super 1endsuper integrand y endinte−

grand dy.
|  Normalization:  The mathematical equation is  brought  into a  normal form with respect to

certain algebraic and notational rules.
For example, a b-1 c d-1  has the normal form frac {ac} {bd}, and x_ 2^3 and x^3 _ 2 both

have the normal form  x sub 2 endsub super 3 endsuper.   

The  preprocessed  mathematical  information  is  then  indexed  by  the  underlying  text  search
system.  A  query  (input  in  a  simplified  LaTeX|like  query  language)  goes  through  the  same
process as above and triggers a search in the index [Youssef07, YoussefShatnawi06].

Besides this equation search, one can also search for keywords like ‘‘Bessel Function’’. 

9.5.3 Tools for Inventing Mathematical Knowledge

9.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

9.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

9.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

9.5.7 Standardization, Inter−Operability

The DLMF project is a web|based project, as such can be accessed easily over the internet
(Its graphics, though, require the use of VRML|capable browsers).

9.5.8 Web Access

For now, a mock−up of DLMF is available online at the webpage mentioned above.
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9.6 Example of a Theory Exploration Session

The user of DLMF can browse the whole library of mathematical functions available or can
search for a function, either by its name "Bessel function" or by an equation (for more details
see Mathematical Knowledge Bases /  Tools for  Retrieval in Mathematical Knowledge Bases).
Once the function is found, one can see the actual formula and  its properties (where it is refer−
enced, informations about its components) and in several cases 2D or 3D visualizations of the
function with MathView (see Mathematical Knowledge Bases/Graphical Tools). 

For  example,  Euler’s Beta function BHa, bL = Ù0
1
ta-1H1 - tLb-1

 dt =
GHaL GHbL
����������������������

GHa+bL  includes among
its properties: 

Notations: 
B(a,b): Beta function,  
G(z):  Gamma function  (with  a  link  to  the  file  containing  the  definition  of  Gamma

function), 
a: real or complex variable and b: real or complex variable
 (with a link to the file containing the definition of real variable and complex vari−

able), 
Referenced By: the link to the formulae that are using the function  (in this case Euler Beta

Integral)

 The webpage is not yet fully functional online, so we can not give a more detailed example.

10 FDL

Note: It is recommended that the chapter on Nuprl is read before this one.

10.1 Short Description

The FDL project aims at creating a digital library of algorithms and constructive mathemat−
ics usable for program and software construction. It has, therefore, two complementary goals: a)
create  a basic logical infrastructure for a global digital library (a Logical Library), and b) create
new formal computational content using the logical library.

The library contains definitions, theorems, theories, proof methods, and articles about topics
in computational mathematics, as well as books assembled form all these. The objects stored are
created  with  the  proving  systems  MetaPRL  [Metaprl],  Nuprl  [NuPRLBook]  and  PVS
[OwreEtAl96].

Currently, only an FDL prototype is available.
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10.2 Technical Information on the System

10.2.1 Name of the System and Website

Formal Digital Libraries. http://www.nuprl.org/FDLproject/

10.2.2 Project Leaders and Group

The leader of the project is Robert L.Constable (Dean of Faculty of Computing and Informa−
tion Science, Computer Science Department, Cornell University).

The  group  working  on  the  FDL  project  consists  of:  Stuart  Allen,   Rich  Eaton,  Christoph
Kreitz, Lori Lorigo, Eli Barzilay, Alexei Kopylov, Jason Hickey, Xin Yu, James Caldwell, John
Cowles, Vitali Khaikine,  Christoph Jechlitschek.

10.2.3 Main Publications

Stuart  Allen,  Mark Bickford,  Robert  Constable,  Richard Eaton,  Christoph Kreitz,  and Lori
Lorigo. FDL: A Prototype Formal Digital Library − Description and Draft Reference Manual.
Technical report,  16 June 2004. Department of  Computer Science, Cornell−University, Ithaca,
NY, 14853−7501.

10.2.4 Implementation Language

The FDL library is  implemented as a  distributed system and as a transactional database of
formal mathematics using the notion of abstract object identifiers. The implementation language
is (as in the Nuprl case) Lisp and ML.

10.2.5 System Availability and Prerequisites

Same as Nuprl (see the corresponding chapter).

10.3 Algorithm Libraries

10.4 User Language

As  a  system  that  has  emerged  from  Nuprl,  see  the  corresponding  part  of  the  chapter  on
Nuprl for more details.
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10.5 Mathematical Knowledge Bases

10.5.1 Available Theories and Knowledge Bases

The contents of the FDL library are represented by a common basic data structure: objects.
Objects are abstract terms that are associated with a kind,  a variety of properties,  and possibly
with extra data [AllenEtAl02]. 

In addition to the theories which come from the Nuprl system (see the respective chapter of
this  document),  the  system  contains  libraries  from  the  PVS  system  (the  theories  from  PVS
prelude, the complete libraries on bitvectors, finite sets, arrays, number and graph theory, real
analysis,  etc.  −  status as of  2003),  and MetaPRL [Metaprl].  FDL also contains a collection of
formal  algorithmic  knowledge  −  algorithms together  with  proofs  of  their  correctness  (see  the
website for more details).

10.5.2 Tools for Retrieval in Mathematical Knowledge Bases

Only basic kind of information retrieval are now implemented [AllenEtAl02]:
− Search for lemmata containing a specified list of object names;
− Search for objects modified within a given time specification
− Search for objects by name

10.5.3 Tools for Inventing Mathematical Knowledge

10.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The FDL prototype system is currently connected to the reasoners and inference engines of
Nuprl,  JProver  [SchmittEtAl01],  and  PVS  [OwreEtAl96].  The  connection  is  done  via  API
(Application  Programming  Interface)  modules.  The  intention  is  that  more  and  more  proof
engines will be connected to the library.

10.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

In the FDL prototype there are a number of operations that allow structuring and re−structur−
ing of mathematical knowledge:

− Arrange objects in folders and theories;
− Move and rename object;
− Create links to objects;
− Deactivate and re−activate objects;
− Remove objects and links.

Among the goals of the project mentioned in the project’s description more elaborate library
operations are mentioned to be of use: 

− Pruning the theories around main theorems;
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− Pruning the theories around main theorems;
− Mining a theory for new relationships, connections and proof methods;
− Finding dependencies among theories.

The web interface to the system (see the ’Web Access’ subsection below) also does informa−
tion  analysis,  creating  articles  for  the  web  presenting the  formal  content  at  different  levels  of
detail.

10.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

As a system that has emerged from Nuprl, FDL has means for programming tactics (meta−
programming) and do proofs about them. See the Nuprl chapter.

10.5.7 Standardization, Inter−Operability

Supports  representation  of  terms  in  XML.  It  can  also  communicate  with  various  proof
engines  via  the  MathBus  standard  [MathBus].  Another  data  format  supported  by  FDL  is  the
compressed ASCII format.

10.5.8 Web Access

There is a website where users could browse the content of the library, however, at every try
over  a  period  of  time,  the  respective  pages  have  returned  ’Page  not  found’  errors.
(http://www.nuprl.org/FDLProject/fdl_online.html last checked 21.11.2007).

10.6 Example of a Theory Exploration Session

An FDL session starts with five windows: a navigator , an ML top−loop, a window for the
library, a  refiner,  and the editor process [Kreitz03].  The user  interacts with the library via the
navigator  window  which  has  three  parts:  A  command  zone  which  contains  buttons  (see
[Kreitz03] for a detailed description of these buttons); A statistics zone which displays directory
statistics; A navigation zone which displays a linear portion of the library, one object per line. 

The  ML  Top  Loop  window  provides  a  command  interface  to  the  editor  process,  refiner
process, and library process. 

In  spirit,  the  FDL session windows are  very  similar with  the  Nuprl  set  of  windows.  For  a
detailed on browsing and manipulating the formal content of FDL see [Kreitz03].
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11 GAP

11.1 Short Description

GAP is a system for computational discrete algebra, with particular emphasis on Computa−
tional Group Theory. Has been started in 1986 at Lehrstuhl D für Mathematik at Reinisch−West−
fällische Technische Hochschule  Aachen  (RWTH).  After  1997,  the  development  was  coordi−
nated at the University of St Andrews. Since 2005 there are GAP Centers (at RWTH Aachen,
Technische Universität Braunschweig, Colorado State University in Fort Collins, and Univer−
sity of St. Andrews) which coordinate the further development and maintenance of the system. 

The system provides a  programming language, a library of  thousands of  functions imple−
menting  algebraic  algorithms  written  in  the  GAP  language  as  well  as  large  data  libraries  of
algebraic objects. It used in research and teaching for studying groups and their representations,
rings, vector spaces, algebras, combinatorial structures, and more [GAPWeb].

11.2 Technical Information on the System

11.2.1 Name of the System and Website

GAP − Group, Algorithms and Programming
http://www.gap−system.org/

11.2.2 Project Leader

GAP is an international cooperation of many people, including user contribution. They refer
to themselves as the GAP Group. Part of this group are the GAP authors, Module authors and
maintainers, Support group and the Council group.

There is a GAP Council  consisted of  senior mathematicians and computer scientists which
provide advice for the future developments of GAP and also functions as an editorial board for
GAP  packages  submitted  by  users.  The  current  chair  of  the  council  is  Edmund  Robertson
(University of  St.  Andrews).  The leader of  the consortium that develops GAP is Steve Linton
(University of St. Andrews). 

For a complete list of people in the GAP group see the GAP web site.

11.2.3 Main Publications

V.  Felsch  and  J.  Neubüser.  An  algorithm  for  the  computation  of  conjugacy  classes  and
centralizers  in  p−groups.  Symbolic  and  Algebraic  Computation (proceedings  of  EUROSAM
’79, Marseille, 1979), edited by E. W. Ng, LNCS, Vol. 72, Springer, Berlin, 1979, pp. 452−465. 

Steve  Linton  and  Thomas Breuer.  The  GAP 4  Type  System:  Organising  Algebraic  Algo−
rithms. In Oliver Gloor, editor, ISSAC98:Proceedings of the 1998 International Symposium on
Symbolic and Algebraic Computation, pages 38−45. ACM Press, 1998.
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The  GAP  Manual,  see  website  :  http://www.gap−system.org/~gap/Doc/manuals.html  (last
checked on 08.10.2007)

11.2.4 Implementation Language

It has a kernel, written in C, which provides the user with
* the GAP language,
* an interactive environment for developing and using GAP programs,
* memory management, 
* a set of programming tools for testing, debugging, and timing algorithms, and
* fast versions of time critical operations for various data types.

11.2.5 System Availability and Prerequisites

The system is distributed under the terms of the GNU Public License. The copyright for the
core part of the GAP distribution is by the GAP Group and the copyright of redistributed pack−
ages remains with their authors. The current version is 4.4.9

There are no specific system prerequisites. Runs on Windows, Linux and MacOS operating
systems. Some packages included in the system’s distribution require, however, other software
(like  a  LATEX  installation  for  generating  documentation,  Evince,  Tcl/Tk  for  visualization  of
semigroups).

11.3 Algorithm Libraries

The GAP system has functions for elementary number theory, most of them dealing with the
group of coprime integers. It can compute with integers and rational numbers, Gaussian num−
bers,  p−adic  numbers.  It  also  knows  how  to  handle  elements  of   finite  fields,  (multivariate)
polynomials, rational functions, different kinds of group elements (like permutations, matrices),
as well as many algebraic structures.

A  detailed  list  of  GAP  packages  implementing  various  combinatorial,  algebraic,  discrete,
etc. algorithms can be found at [GAPWeb].

11.3.1 Reasoners

11.3.2 Graphical Tools and Interfaces

XGAP  package is a front end for mathematical operations on subgroup lattices.
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11.4 User Language

11.4.1 Programming Language

The  GAP  programming  language  is  interpreted  and  can  be  compiled.  It  is  an  un−typed
imperative programming language with functions as first class objects and some extra built−in
data  types  such  as  permutations  and  finite  field  elements.  The  language  supports  a  form  of
object−oriented programming, similar to that supported by languages like C++ and Java [GAP−
Web, GAP4Man].

It can be used interactively at the keyboard or to write programs to be saved and then exe−
cuted. Such programs can easily be modified and rerun. The language features:

* Pascal−like control structures,
* automatic memory management including garbage collection,
* streams,
* flexible list and record data types,
* built−in data types for key algebraic objects,
*  automatic  method  selection building on  a  mechanism for  automatically choosing

the  highest  ranked  method  for  a  certain  operation,  depending  on  the  current  state  of  all  its
arguments, so that  GAP objects representing mathematical objects may gain knowledge about
themselves during their lifetime resulting in better methods being chosen later on.

It is possible to compile the interpreted language into C for better performance.

11.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The mathematical knowledge is formulated using the GAP language (un−typed, imperative
programming language).

11.4.3 Mathematical Syntax

The syntax used to formulate algorithms and knowledge is the syntax of the GAP program−
ming language.

11.5 Mathematical Knowledge Bases

11.5.1 Available Theories and Knowledge Bases

The  GAP  system has  a  collection  of  libraries  containing  special  types  of  groups.  Mainly,
these libraries were constructed with the help of algorithms. The libraries contain groups them−
selves (as set of generators) and/or the number of groups of certain orders.

Small Groups Library (by E. A. O’Brien, B. Eick, and H. U. Besche). Contains all groups
of order up to 2000 (except 1024) and some infinite series of groups characterized by the prime
number  decomposition  of  their  orders.  (’Small’  refers  to  group  of  small  order,  i.e.  below  a
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number  decomposition  of  their  orders.  (’Small’  refers  to  group  of  small  order,  i.e.  below  a
certain  bound).  The  algorithms used  to  generate  this  library  were  not  checked  (human  errors
may  occur  in  them,  e.g.  typos).  The  results  were  cross−checked  with  existing  data,  i.e.  with
group classification done by other people [BescheEickOBrien99].

Basic  Groups  Library:  provides  generic  functions  to  construct  cyclic  groups,  abelian
groups,  elementary  abelian  groups,  dihedral  groups,  extraspecial  groups,  alternating  groups,
symmetric groups, Mathieu groups, Suzuki groups, and Ree groups.

Classical  Groups  Library:  provides  generic  functions  to  construct  general  linear  groups,
special linear groups, general unitary groups, special unitary groups, symplectic groups, general
orthogonal  groups,  special  orthogonal  groups,  projective  general  linear  groups,  projective
special  linear groups,  projective general  unitary groups,  projective special  unitary groups,  and
projective symplectic groups.

Perfect Groups Library (by D. Holt, W. Plesken, and V. Felsch): provides, up to isomor−
phism,  a  list  of  all  perfect  groups  whose  sizes are  less than 106(excluding certain  sizes).  The
groups are stored by presentations

Transitive  Permutation  Groups  Library  (  by  A.  Hulpke):  currently  contains  representa−
tives for all transitive permutation groups of degree at most 30.

Primitive  Permutation  Groups  Library  (by  C.  Roney−Dougal  and  many  other  people):
includes primitive permutation groups of degree less than 2500 up to permutation isomorphism

Irreducible  Solvable  Matrix  Groups  Library  (by  M.  Short):  contains  the  irreducible
solvable subgroups of GL(n,q) for qn up to 243. 

IRREDSOL  Library  (by  B.  Hoefling):  provides  a  library  of  all  irreducible  solvable  sub−
groups of GL(n,q), up to conjugacy, for small values of n and q.

Integral Matrix Groups  Library (by W. Plesken, B.  Souvignier, G.  Nebe,  and V. Felsch)
contains  Q−class  representatives  of  all  irreducible  maximal  finite  integral  matrix  groups  of
dimension  up  to  31  and  Z−class  representatives  of  those  among  these  groups  which  are  of
dimension at most 11 or of dimension 13, 17, 19, or 23.

CrystCat Library (by V. Felsch, F. Gähler) provides a catalog of crystallographic groups of
dimensions 2,  3,  and 4  which covers  most  of  the data contained in  the book  Crystallographic
groups of four−dimensional space by H. Brown, R. Bülow, J. Neubüser, H. Wondratschek, and
H. Zassenhaus (John Wiley, New York, 1978).

AClib Library (by K. Dekimpe, B. Eick) contains a library of almost crystallographic groups
and a some algorithms to compute with these groups.

Tables of Marks Library (by G. Pfeiffer and T. Merkwitz): tables of marks for many almost
simple groups.

CTblLib Library (by T. Breuer) contains the GAP Character Table Library
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Lie  Algebras  Library  (by  W.  A.  de  Graaf  and  T.  Breuer)  provides  generic  functions  to
construct  free Lie algebras, full matrix Lie algebras, and simple Lie algebras of types A, B, C,
D, E, F, G, H, K,  S, and W, as well  as the irreducible modules of semisimple Lie algebras in
characteristic 0.

11.5.2 Tools for Retrieval in Mathematical Knowledge Bases

The  libraries  provide  selection  functions  for  retrieving  groups  by  their  properties  (like
order). Some libraries have more retrieval functions, like, in the case of SmallGroups, returning
the catalogue number of  a group G (the order of  the group should be covered by the library).
Further  example:  IRREDSOL  can  identify  in  the  library  a  group  to  which  a  given  one  is
conjugate.

11.5.3 Tools for Inventing Mathematical Knowledge

11.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

11.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

11.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

11.5.7 Standardization, Inter−Operability

One of GAP’s packages (If, written by M. Costantini) has translators to/from the following
systems:

* CoCoA (COmputations in COmmutative Algebra), 
* Macauly 2 (algebraic geometry research), 
* Singular (CAS for Polynomial Computations), 
* Plural (CAS for Non−commutative Polynomial Computations), 
* Kant/Kash (Computational Algebraic Number Theory), 
* Pari/GP (fast computation in number theory), 
* ARIBAS (an interactive interpreter for big integer arithmetic and  multi−precision

floating point arithmetic), 
* Risa/Asir (general purpose CAS), 
*  MuPAD  (mathematical  expert  system  for  doing  symbolic  and  exact  algebraic

computations), 
* Maple (commercial, general purpose CAS),
* Mathematica (commercial, general purpose CAS),
*  YACAS  (general  purpose  CAS  for  symbolic  manipulation  of  mathematical

expressions)
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It also has a package providing an OpenMath phrasebook for GAP (written by M. Constan−
tini  andA.  Solomon)  ,  meant  to  facilitate  communication  with  other  systems  that  understand
OpenMath,  and  a  package  (written  by  R.A.  Wilson,  R.A.  Parker,  S.Nickerson,  J.N.  Bray,
T.Breuer)  that  provides  an  interface  to  the  Atlas  of  Group  Representations  −  a  database  that
comprises representations of  many almost simple groups and information about their maximal
subgroups [AtlasWeb].

11.5.8 Web Access

11.6 Example of a Theory Exploration Session

The examples are taken from the website of Centre for Interdisciplinary Research in Compu−
tational  Algebra  (Circa),  University  of  St.  Andrews  (http://www−circa.mcs.st−
and.ac.uk/gap.html , last checked on 08.10.2007). The (short) listing below gives an idea about
using GAP and its language. The system’s outputs are marked with ’>>’.

11.6.1 Arithmetic

(2+3)*(7−5);
>> 10
2*3/66;
>> 1/11
2^100−1;
>> 1267650600228229401496703205375
Sqrt(99) in Integers;
>> false

11.6.2 Lists

Define a list by range:

r_1:=[1..10];
>> [1.. 10]

5 in r_1;
>> true

Length(r_1);
>> 10

GAP can use ranges to produce an arithmetic progression. For example:

r_2:=[1,3..17];
>> [1,3.. 17]

Display the elements of the list:
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Elements(r_2);
>> [1,3,5,7,9,11,13,15,17]

GAP can also define lists by  enumerating all  its  elements. It  can perform a form of  arith−
metic with lists.

2*[1..9]−1;
>> [1,3,5,7,9,11,13,15,17]

Add or subtract lists −− even of different lengths

[1,2,3]+[4,5];
>> [5,7,3]

11.6.3 Sets

GAP sometimes considers lists as sets, but needs to do some converting before applying the
set operations. Namely, it will only count list of integers as sets if they are ordered increasingly
and have no repetitions.

t:=[1,2,2,3,4,5,6];
>> [1,2,2,3,4,5,6]

IsSet(t);
>> false

Make the list t a set:

tt:=Set(t);
>> [1,2,3,4,5,6]

Take another list:

s:=[1,8,6,2];; ss=Set(s);
>> [1,2,6,8]

Intersection(s,t);
>> [1,2,6]

IsEqualSet(Intersection(s,t),Intersection(ss,tt));
>> true

Union(s,t);
>> [1,2,3,4,5,6,8]
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11.6.4 Loops

Two examples, the second one using a conditional

for i in[1..10] do
Print(i," ");

od;
>> 1 2 3 4 5 6 7 8 9 10

for i in[1,3.. 19] do
if IsPrimeInt(i) then Print(i," is prime ","\n");fi;

od;
>> 3 is prime
>> 5 is prime
>> 7 is prime
>> 11 is prime
>> 13 is prime
>> 17 is prime
>> 19 is prime

11.6.5 Functions

The following code defines a function that simply squares the argument it is given.

squared:=function(n);
return n^2;

end;
>> function(n)... end

If you want to see the function written out fully, you can ask GAP to Print it.

Print(squared);
>> function (n)
>> ;
>> return n^2;
>> end

Call the function we just defined:

squared(12345);
>> 152399025

Another way of defining functions:

cubed:=n ®n^3;
>> function(n)... end

Print(cubed);
>> function (n)
>> return n^3;
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>> return n^3;
>> end

cubed(123456);
>> 1881640295202816

We can produce lists of cubes as follows:

List([1..10],cubed);
>> [1,8,27,64,125,216,343,512,729,1000]

11.6.6 Solving Mathematical Problems

Problem:
Show that the dihedral group of order 24 has a subgroup of order k for every k dividing 24.
Let G be a group of order n which does not have a subgroup of order k for every k dividing

n. Find all such groups of order less than 50.

[Hint:ConjugacyClassesSubgroups(G) will  give  a  list  of  conjugacy  classes  of  subgroups  of  G  and  Representative  will
allow the selection of one subgroup from each conjugacy class.]

Solution:
(The text  between the input  and output  is  not  generated by GAP, but  it’s humanly written

explanations.)

G:=DihedralGroup(24);
>> <pc group of size 24 with 4 generators>

lis:=ConjugacyClassesSubgroups(G);
l:=List(lis,Representative);
>> [Group( <identity>of...)^G,Group( [ f1*f2 ] )^G,Group( [ 
f3*f4 ] )^G,Group( [ f1 ] )^G,Group( [ f4 ] )^G,Group( [ 
f1,f3*f4 ] )^G,Group( [ f1*f2,f3*f4 ] )^G,Group( [ 
f2*f4^2,f3*f4 ] )^G,Group( [ f4,f3 ] )^G,Group( [ f4,f1*f2 ] 
)^G,Group( [ f4,f1 ] )^G,Group( [ f1,f2*f4^2,f3*f4 ] )^G,Group( 
[ f4,f3,f1 ] )^G,Group( [ f4,f3,f1*f2 ] )^G,Group( [ f4,f3,f2 ] 
)^G,Group( [ f4,f3,f1,f2 ] )^G]

List(l,Size);
>> [1,2,2,2,3,4,4,4,6,6,6,8,12,12,12,24]

DivisorsInt(24);
>> [1,2,3,4,6,8,12,24]

Hence there is a subgroup of that order for each divisor. 
For the next part we first loop over group orders up to 50 and then loop over the number of

groups of that order. 
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nfac is the number of distinct divisors of the group order
lis is a list of representatives, one for each conjugacy class of subgroups
nsub is the number of distinct orders of subgroups

for gporder in[2..50] do
for i in[1..NumberSmallGroups(gporder)] do

G:=SmallGroup(gporder,i);
nfac:=Length(DivisorsInt(gporder));
lis:=List(ConjugacyClassesSubgroups(G),Representative);
nsub:=Length(Set(List(lis,Size)));
if nfac<>nsub then Print("Order ",gporder," group 

number ",i,"\n");fi;
od;

od;
>> Order 12 group number 3
>> Order 24 group number 3
>> Order 36 group number 3
>> Order 36 group number 9
>> Order 36 group number 11
>> Order 48 group number 3
>> Order 48 group number 50

Problem: Finding groups with certain properties. 
There are exactly two groups of order p2, p a prime. Both are abelian, one is cyclic. 
Find the smallest value of n such that n is not the square of a prime, yet there are exactly two

groups of order n with both groups abelian and one cyclic.

Solution:
Some easy observations:

1. There is always one cyclic group of order n for every n.  It is abelian so we need
only need to check that for  a given n there are exactly 2 groups and that "IsAbelian" (a GAP
function, a.n.) has the same value for each.

2. We need to jump over the squares of primes. These are precisely the numbers with
2 equal factors.

3.  We  could  jump  over  other  vales  of  n  which  we  know  will  not  work,  such  as
primes. However we don’t bother to write this into our code.

found:=0;;
n:=2;;
while found<5 do

n:=n+1;
if Length(Factors(n))=2 and Factors(n)[1]=Factors(n)[2] then

n:=n+1;
fi;
glist:=AllSmallGroups(Size,n);
ablist:=List(glist,IsAbelian);
if Length(ablist)=2 and ablist[1]=ablist[2] then

found:=found+1;
Print(n,"\n");

fi;
od;
>> 45
>> 99
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>> 99
>> 153
>> 175
>> 207

12 GiNaC

12.1 Short Description

GiNaC is specifically built to be a fast symbolic engine for complex computations in quan−
tum field theory [BauerEtAl02].  The available operations are to  be performed within the C++
language. GiNaC’s main users are physicists

12.2 Technical Information on the System

12.2.1 Name of the System and Website

GiNaC − recursive abbreviation for GiNaC is Not a CAS. 
http://www.ginac.de/

12.2.2 Project Leaders and Group

The project has no named leader. Active coders are: Chris Dams, Vladimir V. Kisil, Richard
Kreckel  (Institute  of  Physics,  Johannes−Gutenberg−University,  Mainz,  Germany),  Alexei
Sheplyakov, Jens Vollinga.

12.2.3 Main Publications

C.  Bauer,  A.  Frink,  and  R.  Kreckel.  Introduction  to  the  GiNaC  Framework  for  Symbolic
Computation  within  the  C++  Programming  Language.  J.  Symbolic  Computation (2002)  33,
1−12.

J.  Vollinga. "GiNaC − Symbolic computation with C++". Nucl.Instrum.Meth. A559 (2006)
282−284. Also available at arXiv.org as arXiv:hep−ph/0510057 v1. 5 Oct. 2005.

12.2.4 Implementation Language

C++
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12.2.5 System Availability and Prerequisites

Distributed  under  the  GPL  licence.  There  are  binary  packages  available  for  a  variety  of
Linux operating systems. As a prerequisite, it needs the CLN library (see the chapter on CLN of
this  document).  If  the  sources  are  downloaded,  a  C++  compiler  should  be  available  on  the
system.

12.3 Algorithm Libraries

12.3.1 Numerical Library

Uses the CLN library, which is a library for efficient computations with all kinds of numbers
in arbitrary precision. See http://www.ginac.de/CLN/ for more details.

12.3.2 Algebraic Library

GiNaC has classes that describe and manipulate algebraic symbols, truncated power series,
symbolic functions, matrices and vectors of expressions, non−commutative objects, polynomial
manipulations, etc.

12.3.3 Reasoners

12.3.4 Graphical Tools and Interfaces

12.4 User Language

12.5 Mathematical Knowledge Bases

12.6 Example of a Theory Exploration Session

We present a small C++ program that uses the GiNaC library [BauerEtAl02]. It implements
the Hermite polynomial:

  1  #include <ginac/ginac.h>
  2  using namespace GiNaC;
  3
  4  ex HermitePoly(const symbol & x, int n)
  5  {
  6       const ex HGen = exp(−pow(x,2));
  7       // uses the identity H_n(x) == (−1)^n exp(x^2) 
(d/dx)^n exp(−x^2)
  8       return normal(pow(−1,n) * HGen.diff(x, n) / HGen);
  9  }
 10
 11  int main(int argc, char **argv)
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 11  int main(int argc, char **argv)
 12  {
 13       int degree = atoi(argv[1]);
 14       numeric value = numeric(argv[2]);
 15       symbol z("z");
 16       ex H = HermitePoly(z,degree);
 17       cout << "H_" << degree << "(z) == "
 18            << H << endl;
 19       cout << "H_" << degree << "(" << value << ") == "
 20            << H.subs(z==value) << endl;
 21       return 0;
 22  }

After compilation, we call it with 11 and 0.8 as command line arguments. As a result it will
print the 11th Hermite polynomial together with its numerically value at z = 0.8:

  1  H_11(z) == 
−665280*z+2217600*z^3−1774080*z^5+506880*z^7−56320*z^9+2048*z^11
  2  H_11(0.8) == 120773.8855954841959

13 HELM

13.1 Short Description

The aim of the HELM project is "to study and develop a technological infrastructure for the
creation and maintenance of  a virtual, distributed, hypertextual library of  formal mathematical
knowledge’’ [AspertiEtAl00]. In a nutshell, it has means to import formal libraries, to transform
their formal content into an intermediate, MathML content representation format, and to make it
available on the internet for browsing and searching. The existing libraries (which we call ’the
Helm  library’)  contain  data  imported  from  the  Coq  and  the  NuPRL  systems.  Important  tools
used by Helm (like search within the library, proof checking) have been developed in the frame
of the European IST project MoWGLI [MoWGLI].

13.2 Technical Information on the System

13.2.1 Name of the System and Website

Hypertextual Electronic Library of Mathematics (HELM), http://helm.cs.unibo.it/

13.2.2 Project Leaders and Group

Leader:  Andrea  Asperti.  Project  members:  Irene  Schena,  Luca  Padovani,  Ferruccio  Guidi,
Claudio Sacerdoti Coen, Stefano Zacchiroli and Enrico Tassi.
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13.2.3 Main Publications

A.Asperti, L.Padovani, C.Sacerdoti Coen, I.Schena. Towards a Library of Formal Mathemat−
ics. Technical Report of TPHOLS’2000  Conference, Portland, Oregon, USA, August 2000.

Andrea Asperti, Claudio Sacerdoti Coen, Enrico Tassi, Stefano Zacchiroli. User Interaction
with the Matita Proof Assistant,  

Journal  of  Automated  Reasoning,  Special  Issue  on  User  Interfaces  for  Theorem  Proving,
Volume 39 ,  Issue 2 , August 2007, pages: 109 − 139.

Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Zacchi−
roli,  A Content Based Mathematical Search Engine: Whelp, Proceedings of  TYPES 2004, Ed.
C. Paulin−Mohring, and B. Werner, LNCS 3839, pages 17~32, Springer Verlag .

13.2.4 Implementation Language

HELM is implemented in PERL, OCaml and Java.

13.2.5 System Availability and Prerequisites

The software developed by HELM is free and can be redistributed and/or modified under the
terms of the GNU General Public License.

To interact with the Whelp search engine a browser is needed.
The  Matita  prover  [Matita]  requires  several  tools  and  libraries:  Caml  (Objective  Caml

compiler,  version  3.09  or  above,  Findlib  version  1.1.1  or  above,  OCamlExpat,  GMetaDom,
OCamlHTTP,  LablGTK version  2.6.0  or  above)  and  MySQL (+OCaml  MySQL)  are  needed.
Also a GTK+ widget for rendering MathML documents [MathML] (GTKMathView, LablGtk−
MAthView)  and  an  extension  for  rendering  texts  with  features  of  source  code  editors  (Gtk−
SourceView , LablGtkSourceView ) are needed. 

The Ocamlnet collection of libraries for application|level Internet protocols is needed. Also
the ulex (Unicode lexer generator for OCaml) and CamlZip (OCaml library to access .gz files is
needed).  For installation details please see the project’s webpage.
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13.3 Algorithm Libraries

13.3.1 Numerical, Discrete, Algebraic, etc., Libraries

13.3.2 Reasoners

Matita [Matita, AspertiEtAl07, AspertiEtAl07a] is a standalone prover, whose development
has been intertwined with the development of the Helm project. It is an interactive, tactic−based
prover. For proving a certain goal, the system automatically retrieves the appropriate assump−
tions from the existing knowledge base. The retrieval is based on the signature and context of
the goal. The basic automation tactic in Matita is the auto tactic, which boils down to an iterated
use  of  apply (modus  ponens).  Other  tactics  which  the  prover  uses  are  intro  ("|introduction),
elim (induction), cut (forward reasoning), simplify.

A  recent  extension  of  the  prover  is  the  addition  of  the  paramodulation  tactic:  taking  an
equational  goal  and using a  given−clause algorithm [NieuwenhuisRubio01],  Matita returns all
known equational facts from the library (and the local context). For more details see [Asperti−
Tassi07].
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13.3.3 Graphical Tools and Interfaces

Whelp  [AspertiEtAl04]  is  a  web−based  application,  allowing  browsing  and  searching  of
mathematical formulae. The initial development was done in  the frame of  the Mowgli  project
[MOWGLI].  The  user  inputs  in  a  textbox her  search query,  and  selects the  search option she
prefers  (locate,  match,  elim  or  hint)  and  gets  back  a  list  of  pages  (each  of  them  containing
MathML elements) that fit the query. For an example of how the search works see the Tools for
Retrieval subsubsection in the Mathematical Knowledge Bases subsection below.

Matita [AspertiEtAl07] is an interactive prover  meant as an interface between the user and
the mathematical knowledge library of  HELM. It  also provides authoring facilities and a user
interface for  browsing,  adding mathematical knowledge,  indexing and searching mathematical
objects in the HELM library.

Matita’s authoring interface functions in a similar fashion to the ProofGeneral [Aspinall00]
generic  interface.  It  contains  a  window  for  script  editing,  one  for  open  goals  that  need  to  be
proved and another one for messages. The rendering of mathematical expressions is done in a
user−friendly manner with a MathML|compliant GTK+ widget, also developed by the HELM
team. 

The mathematical knowledge can be browsed by using hyperlinks. One can  access directly
the mathematical objects ( i.e. definitions, theorems etc.) or  browse through the theories (which
are structured collections of explanatory text and mathematical objects, assembled by an author
for  presentational  purposes).  The  mathematical  information  can  be  viewed  as  raw  semantic
encoding, as MathML formula or presented as  HTML (the HTML is generated on the fly from
the MathML encoding).

The  user  can  add  its  own  document  (written  in  LATEX  or  in  CoQ)  to  the  content  of  the
library.  These  documents  will  be  then  translated  to  MathML,  with  the  help  of  HERMES
[Anghelache04] and a script converting CoQ mathematical formulae to MathML. The indexing
and searching mechanism is done in the same way as in Whelp.

ProofWeb [Kaliszyk06]  is a web interface for  Matita (as well  as Coq and Isabelle), with a
similar functionality as ProofGeneral.

13.4 User Language

13.4.1 Programming Language

The  user  can  formulate  new  proof  scripts  using  the  procedural  proof  language  of  Matita,
which is based on the approach used by the LCF [GordonEtAl79] theorem prover. The tactics
(statements of this language) "are collected in textual scripts that are interpreted one statement
at the time" [AspertiEtAl07]. New tactics are formed from existing tactics and tacticals. 

13.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The underlying logic language presupposed by Helm is the Calculus of Inductive Construc−
tions  (CIC),  the  same  logic  underlying  CoQ.  In  Matita,  the  proof  terms  are  represented  as
Λ|terms of CIC.
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13.4.3 Mathematical Syntax

Helm (and also Matita) uses an extension of content MathML for encoding both mathemati−
cal expressions and proofs [GoguadzeEtAl].

13.5 Mathematical Knowledge Bases

13.5.1 Available Theories

HELM imports libraries from Coq and C−CoRN [AspertiEtAl06], and, experimentally, from
NuPRL.  It  transforms  the  representation  into  an  intermediate  MathML  content  representation
[MathML],  and  makes  it  available  on  the  internet  for  browsing  and  searching.  Among  the
libraries  available  now  online  are:  Constructive  Algebra  (from  C−CoRN  [C−CoRNWeb],
theories necessary for proving the Fundamental Theorem of Algebra), Gröbner Basis, Zermelo|

Frankel  Set  Theory,  Arithmetic,  Booleans,  Reals,  Exact  Real  Arithmetic,  Automata  Theory,
Geometry, etc. See also the sections on Coq and C−CoRN of this document.

13.5.2 Tools for Retrieval in Mathematical Knowledge Bases

Helm’s search engine is called Whelp. It has its own syntax, which, in most of the queries, is
disambiguated into suitable terms of Coq’s Calculus of Inductive Constructions.

Whelp  is  based  on  the  metadata  model  described  in  [GuidiCoen03,  Coen04,  Asperti−
Selmi04].  Metadata is used for  indexing mathematical notions and marking input/output types
as  well  as  the  components  in  the  body  (hypotheses,  conclusion,  consistency  proof  of  the
notion).  For the metadata, only the constant symbols of  the original mathematical formula are
taken into account. For example, from 

"
n:nat

 "
m:nat

"
p:nat

n* Hm+ pL = n* m+ n* p

the  automatically  extracted  metadata  contains  only  the  constants  nat,  =,  *,  +  and  their
position (hypothesis/conclusion) in the formula.

Search is then not performed on the stored knowledge, but only on the metadata. Thus one
may view the metadata as taking the role of indexes in a database, allowing quick searches. The
search facilities described in [AspertiEtAl04] are as follows:

· Locate is the simplest search. The user introduces a string regular expression, and the tool
outputs the list of all formulae that have this string as ‘‘name". 

· Hint retrieves all theorems that can be applied to derive the current goal. This means, given
a  theorem t Þ t2 Þ ¼tn Þ t  and  a  goal  g,  it  checks  whether  there exists a  substitution Θ  such
that  t Θ = g. This is simulated in HELM by metadata filtering.

·  Match amounts  to  reverting  the  operation  of  indexing,  looking  for  terms  matching  the
metadata set, which are automatically computed from the user input. 

· Elim gives the induction axioms for a domain. It is used for inductive proofs of properties
of functions and relations over algebraic types. For example, giving nat as input, will return the
usual induction principle on natural numbers as a result.

The Matita prover uses Whelp for automatically retrieving, from the whole library, a subset
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The Matita prover uses Whelp for automatically retrieving, from the whole library, a subset
of theorems worth considering as assumptions in the process of proving the current goal.

13.5.3 Tools for Inventing Mathematical Knowledge

13.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The Matita prover has proof checking capabilities (implemented by the system kernel which
is a CIC type−checker).

13.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

Matita ensures the consistence of the mathematical library during the formalization by using
the mechanisms of invalidation and regeneration [AspertiEtAl07]. A mathematical concept and
all concepts depending on it are invalidated when the concept is changed or removed,  and need
to be regenerated to verify if they are still valid. 

13.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

13.5.7 Standardization, Inter−Operability

HELM is based on MathML. As such, mathematical knowledge encoded by HELM can be
easily presented on the web, using MathML plug−ins.

The  proof  terms  of  HELM and  CoQ  are  compatible:  mathematical  formulae/terms can  be
exported from CoQ to become part of the library of HELM (and thus Matita).

13.5.8 Web Access

The knowledge base of  HELM can  be  browsed and  searched online,  on  the project’s web
page.

13.6 Example of a Theory Exploration Session

 The  user  can  browse  or  search  online  in  the  knowledge  base  of  HELM  at
http://helm.cs.unibo.it/.  Browsing  is  done  by  listing  the  directories  containing  the  available
mathematical  theories  (there  is  e.g.  a  directory  for  CoQ,  another  for  NuPRL,  yet  another  for
C−CoRN). Each mathematical theory is in its turn a directory, and each mathematical formula is
presented,  using  MathML,  in  a  user|friendly,  two|dimensional  syntax.  Searching  is  done  by
calling the tool Whelp, described above in this section.

We give here an example of a Matita session [Asperti07]. 
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One can define the naturals: 

inductive nat:Set \def
|O:nat
|S:nat \to nat.

and also the sum of natural numbers ( plusHn, mL = 9 m ¬ n = 0
SHp, mL ¬ n = SHpL ) as:

let rec plus n m \def
match n with
[ O \Rightarrow m
| (S p) \Rightarrow S (plus p m)].

The theorem n = 0 + n can be proved by applying the tactics intros (assuming the hypothe−
sis of the statement, in this case n : nat), simplify ( n + 0 is equal to n), reflexivity (n = n), and
qed (that rechecks the proof). 

theorem plus_O_n: \forall n:nat. n=O+n.
intros.simplify.reflexivity.

qed.

For proving that the successor of  n + m is n plus the successor of m one uses induction (the
elim tactic).

theorem plus_n_Sm : \forall n,m:nat. S (n+m) = n+(S m).
intros.elim n.

simplify.reflexivity.
simplify.rewrite < H.reflexivity.

qed.

14 Hol 4

14.1 Short Description

HOL  is  an  automated  proof  system  for  higher  order  logic.  It  is  an  environment  in  which
theorems can be proved and, at the same time, proof tools can be implemented [HolWeb]. Over
the  years  several  versions  of  HOL  were  implemented,  like  HOL88  from Cambridge,  HOL90
from Calgary and Bell Labs, HOL98 from Cambridge, Glasgow and Utah. HOL 4 is a successor
of these, mainly based on HOL98 and incorporating ideas from HOL Light (which has a sim−
pler logical core and has little legacy code, see [HolLightWeb]). There is a HOL2000 initiative
which tries to put together the design of the next generation of HOL prover.
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14.2 Technical Information on the System

14.2.1 Name of the System and Website

Hol 4, Kananaskis 4. http://hol.sourceforge.net/

14.2.2 Project Leaders and Group

There are two project managers: Michael Norrish, Konrad Slind.
The group of developers contain over 20 persons, for a complete and current list of develop−

ers see http://sourceforge.net/project/memberlist.php?group_id=31790 .

14.2.3 Main Publications

M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theorem proving environ−
ment  for  higher  order  logic.  Cambridge  University  Press,  1993.  (Although  a  description  for
Hol88, the book is describing design principles used in the current HOL system.)

14.2.4 Implementation Language

Standard ML (The Moscow ML implementation).

14.2.5 System Availability and Prerequisites

Hol 4 is open source project with a BSD−style licence that allows its free use in commercial
products.  It  is  available  for  the  following  operating  systems:  32−bit  MS  Windows
(NT/2000/XP), All POSIX (Linux/BSD/UNIX−like OSes), Win2K, WinXP. For compiling the
sources one needs a local installation of Moscow ML.
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14.3 Algorithm Libraries

14.3.1 Numerical, Discrete, Algebraic, etc. Libraries

14.3.2 Reasoners

The deductive system of the HOL logic is specified by eight rules of inference: Assumption
introduction,  Reflexivity,  Beta  conversion,  Substitution,  Abstraction,  Type  instantiation,  Dis−
charging an assumption, Modus ponens. In addition to these rules, there are five axioms which
axiomatize the HOL logic [HolLogic].

HOL  4  has  reasoners  for  first  order  logic  (mesonLib  −  model−elimination method  −   and
metisLib − resolution method), a propositional tautology prover, an interface to external binary
decision diagram engines, a symbolic checker, and a library that supports call−by−value evalua−
tion of HOL functions by deductive steps. It also has a rewriting engine  − simpLib − which is
especially recommended during interactive theorem proving.  The arithmetic libraries provided
contain a suite of definitions, theorems, and automated inference support.

14.3.3 Graphical Tools and Interfaces

Interacting with the system is done mainly via Emacs. As the system grew more and more
popular, the interest for graphical interfaces to HOL was high. There are graphical tools imple−
mented by users of the system, we name here just a small subset, pointing the reader to look for
more, if interested. For example xhol [SchubertBiggs94] implements a X Windows based front
end to HOL with a graphical display of the active proof tree. Several users have implemented
window  inferencing  in  HOL.  For  example,  [LangbackaEtAl95]  describes  such  an  interface
which supports window inference: i.e.  point and click to do proof refinement. Another similar
tool was implemented by J. Grundy and is described in [Grundy91].

14.4 User Language

14.4.1 Programming Language

The ML language. HOL Logic constructs can be used.

14.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The logic of HOL is a variant of Church’s simple theory of types.

14.4.3 Mathematical Syntax

The syntax of HOL Logic [HolLogic, HolTut].
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14.5 Mathematical Knowledge Bases

14.5.1 Available Theories and Knowledge Bases

The core theories of  HOL 4  contain notions about  booleans,  pairs,  disjoint sums, numbers
(numerals,  integers,  rationals,  reals,  probability  theory,  n−bit  words),  sequences,  collections
(sets,  multisets,  relations,  finite  maps),  partial  orders,  a  theory  of  polynomials  over  the  reals,
temporal logic, computational tree logic and Μ−calculus.

Along  the  time,  users  of  the  system  have  formalized  big  chunks  of  mathematics  for  the
purpose of proving some specific, interesting theorems. All these formalizations are not central−
ized anywhere. We give here just a few examples of such formalizations.

Real numbers have been formalized in the frame of J. Harrison’s PhD thesis [Harrison96].
The Flyspeck project,  led by T.  Hales, using HOL light,  aims at  formalizing the corpus of

mathematical knowledge to prove The Kepler Conjecture.
For  other  formalizations  see,  for  example,  [Fox05],  [Agerholm94],  [BlackWindley98],

[BowenGordon95] the proceedings of the TPHOL conference series.

14.5.2 Tools for Retrieval in Mathematical Knowledge Bases

14.5.3 Tools for Inventing Mathematical Knowledge

14.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

14.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

14.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

Reflection in HOL is not considered explicitly, though there are means to program inference
rules (i.e. tacticals).

14.5.7 Standardization, Inter−Operability

There are various translators between Hol and other systems. See, for example, [GordonEt−
Al06], which describes an interface to ACL2, [Harrison96a] which describes a Mizar mode for
HOL,  or  [NaumovEtAl01]  which  describes  a  proof  translator  to/from  NuPRL.  In  [Harrison−
Thery93] a general mechanism of linking HOL to a CAS is described. Implementations follow−
ing this description were mainly done to connect HOL to Maple.
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14.5.8 Web Access

14.6 Example of a Theory Exploration Session

Working with HOL4 is  done in  an read−eval−print loop.  Most  of  the users work using an
Emacs  mode  for  HOL4.  The  examples  below  are  taken  from the  tutorial  available  on  HOL4
website. The ML prompt is ’−’, here the user must type her input. The answers from the system
are prompted by ’>’.

Here is the welcome window when starting Hol, and a first command where we add 1 to the
list [2,3,4,5].

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−
       HOL−4 [Kananaskis 4 (built Fri Apr 12 15:34:35 2002)]
       For introductory HOL help, type: help "hol";
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−
[loading theories and proof tools ************* ]
[closing file 
"/local/scratch/mn200/Work/hol98/tools/end−init−boss.sml"]
− 1 :: [2,3,4,5];
> val it = [1, 2, 3, 4, 5] : int list

’it’ is a special variable that stores the last system output.

− val l = it;
> val l = [1, 2, 3, 4, 5] : int list
− tl l;
> val it = [2, 3, 4, 5] : int list
− hd it;
> val it = 2 : int
− tl(tl(tl(tl(tl l))));
> val it = [] : int list

Below we define a function, zip, which converts a pair of lists ([a,b,c,...], [x,y,z, ...]) to a list
of pairs [(a,x), (b, y), (c, z), ...]

− fun zip(l1,l2) =
    if null l1 orelse null l2 then []
    else (hd l1,hd l2) :: zip(tl l1,tl l2);
> val zip = fn : ‘a list * ‘b list −> (‘a * ‘b) list
− zip([1,2,3],["a","b","c"]);
> val it = [(1, "a"), (2, "b"), (3, "c")] : (int * string) list

We want prove "x, x divides 0. For this we open the arithmetic theory and define an arith−
metic rewrite tactic, specialized from the rewriter provided by bossLib.

− open arithmeticTheory;
  ...
− val ARW_TAC = RW_TAC arith_ss;
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− val ARW_TAC = RW_TAC arith_ss;
> val ARW_TAC =
    fn
    : thm list −> term list * term −>
       (term list * term) list * (thm list −> thm)

We define now the predicate ’divides’:

− val divides = Define ’divides a b = ?x. b = a * x’;

Definition has been stored under "divides_def".
> val divides = |− !a b. divides a b = ?x. b = a * x : thm

and with the following command we tell the system to treat ’divides’ as right associative.

− set_fixity "divides" (Infixr 450);

We start now the proof of "x, x divides 0. The ’g’ in the given command tells the HOL proof
manager  to  start  a  new  proof.  The  exclamantion  sign  stands  for  ",  the  question  sign  (further
below in the proof) stands for $.

− g ’!x. x divides 0’;

> val it =
    Proof manager status: 1 proof.
    1. Incomplete:
         Initial goal:
         !x. x divides 0
     : proofs

We expand the definition of ’divides’:

− e (ARW_TAC [divides]);

OK..
1 subgoal:
> val it =
     ?x’. (x = 0) \/ (x’ = 0)

We instantiate the existential quantifier by hand:

− e (EXISTS_TAC ’’0’’);

OK..
1 subgoal:
> val it =
     (x = 0) \/ (0 = 0)

Last, simplify the goal, which finishes the proof.

− e (ARW_TAC []);

OK..
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OK..
Goal proved.
|− (x = 0) \/ (0 = 0)
Goal proved.
|− ?x’. (x = 0) \/ (x’ = 0)
> val it =
     Initial goal proved.
     |− !x. x divides 0

15 HR

15.1 Short Description

HR invents  concepts  and  theorems in  mathematical domains like finite algebras /  groups /
rings, graph theory and number theory.The underlying idea is the formation of new conjectures,
which are then passed to an external resolution theorem prover (usually Otter [McCune94]): If
the proof goes through, the conjecture is adopted as a theorem; otherwise, a model finder (often
MACE [McCune03]) is called for drawing counterexamples from it.

Each  concept  is  an  operation or  a  relation on  the  carrier  set  of  a  certain  model  of  interest
(e.g.a  fixed  finite  group),  represented by  a  combination of  a  "data  table’’  (also  called  Cayley
table  in  the  case  of  groups)  and  a  formula  with  an  indication  of  its  free  variables  (the
"arguments" of  the operation or  relation).  For  example,  the concept  of  multiplication in  Z6  is
described  by  a  table  containing  rows  like  @4, 2, 2D  and  @3, 3, 5D  together  with  the  formula
@n, a, bD : a È nß b È nß a* b = n.

15.2 Technical Information on the System

15.2.1 Name of the System and Website

HR,   http://wwwhomes.doc.ic.ac.uk/~sgc/hr/   (the  earlier  versions  at
http://www.dai.ed.ac.uk/homes/simonco/research/hr/ ).

15.2.2 Project Leaders and Group

HR was developed by Simon Colton.

15.2.3 Main Publications

Simon  Colton,  The  HR  Program  for  Theorem  Generation  Automated  Deduction,  In
CADE−18  :  18th  International  Conference  on  Automated  Deduction,  Copenhagen,  Denmark,
July  27−30,  2002.  Proceedings,  2392,  pages  285−290.
http://www.doc.ic.ac.uk/~sgc/papers/colton_cade02.pdf
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Simon Colton, Alan Bundy and Toby Walsh, T. On the Notion of Interestingness in Auto−
mated  Mathematical  Discovery,  In  International  Journal  of  Human−Computer  Studies,  Aca−
demic Press, 2000. http://www.doc.ic.ac.uk/~sgc/papers/colton_ijhcs00.pdf

Simon Colton, Automated Theory Formation in Pure Mathematics, PhD. Thesis, Department
of  Artificial  Intelligence,  University  of  Edinburgh,  2001.  Distinguished  Dissertations  Series,
Springer Verlag, 2002. ISBN 1852336099.

15.2.4 Implementation Language

HR  is  implemented  in  Java.  The  previous  implementation  of  HR  was  in  prolog  (sicstus
objects). 

15.2.5 System Availability and Prerequisites

The following programs are needed: Otter, MACE, LaTeX, Dot and xgraph. 

15.3 Algorithm Libraries

15.3.1 Numerical, Discrete, Algebraic, etc. Libraries

15.3.2 Reasoners

15.3.3 Graphical Tools and Interfaces

Since  HR was  not  available  for  testing,  we  are  not  aware  how its  graphical  user  interface
looks like/works.

15.4 User Language

15.4.1 Programming Language

15.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

HR deals with first−order mathematical formulae.

15.4.3 Mathematical Syntax

HR has its own custom|tailored syntax.
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15.5 Mathematical Knowledge Bases

15.5.1 Available Theories and Knowledge Bases

In  HR the mathematical domains of  finite algebras/groups/rings, graph theory and number
theory were explored. It is not clear if these theories are further available, for a user to extend or
inspect.

15.5.2 Tools for Retrieval in Mathematical Knowledge Bases

15.5.3 Tools for Inventing Mathematical Knowledge

Concept formation works as follows:

è Initial  concepts  are  given  axiomatically  (like  the  multiplication  in  a  group)  or  by  an
explicit definition (like divisibility in number theory).The corresponding data tables are
either supplied by the user as key examples or generated by MACE[MACE].

è Production  rules  [BundyEtAl98]  are  applied  to  the  existing  concepts.For
example,universal  quantification  (with  respect  to  the  first  argument,say)  produces  an
n - 1−ary predicate from an n−ary one.

è Measures  of  interestingness  are  used  for  ranking  the  concepts  on  a  heuristic  basis
[ColtonEtAl00],  for  instance  "parsimony’’  by  measuring  the  relative  size  of  its  data
table. Note that these measures are recomputed at various stages in the concept/theory
formation cycle.  

è Filtering the eventually accepted concepts works by computing a total score computed
from  various  measures  of  interestingness;these  are  subsequently  used  for  creating
conjectures and new concepts.

Examples of concepts invented in group theory include: Abelian group, cyclic group, order
of elements, central elements.

The next step is theory formation. HR takes the newly obtained concept and forms conjec−
tures about it:   

è  If  the  set  of  models  is  empty,  a  non−existence  conjecture is  made  (i.e.the  concept
definition  is  inconsistent  with  the  axioms).  For  instance,  the  concept  of  non−trivial
idempotent  elements  in  groups  does  not  have  a  model,  thus  the  conjecture
±
a
Ha ¹ id ß a* a = a L.

è  If  the  sets  of  models  coincide  for  the  newly  created  concept  and  an  already  existing
one,an equivalence conjecture is made.In the case of idempotent elements, HR notices
that for all group examples it has, the idempotent elements are the identity, thus generat−
ing the conjecture a* a = a � a = id.
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è If neither of the above two cases applies, HR adds the concept to the theory and looks
for  subsumption conjectures.These are asserted about concepts whose set of  models is
contained in the set of models of the new concept. For each such case, HR conjectures
that the definition of the new concept is implied by the definition of an old one.

The  theories  produced  in  this  fashion  will  include  concepts,  theorems that  relate  concepts
and  proofs  of  these  theorems.  Improvements  of  HR  allow  using  Otter  as  a  filter  for  newly
obtained theorems [ColtonMaple02], inputting initial concepts in Maple format, and substituting
Otter and MACE by humans.

15.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

15.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

15.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

15.5.7 Standardization, Inter−Operability

HR  is  currently  connected  to  the  MathWeb  software  bus  @ZimmerEtAl02D,  being  thus
available  as  a  mathematical  service  to  the  other  system  connected  to  the  software  bus  (like
Blicksem, Otter, Mace, Maple, CoCoA).

15.5.8 Web Access

15.6 Example of a Theory Exploration Session

Since HR was not available for testing, we could not use it in order to generate an exemplify−
ing theory exploration session. 

16 ILTP

Note: It is recommended the reader first looks at the chapter on TPTP of this document.

16.1 Short Description

The Intuitionistic Logic Theorem Proving (ILTP) library provides a platform for testing and
benchmarking  automated  theorem  proving  (ATP)  systems  for  first−order  and  propositional
intuitionistic logic [RathsEtAl07].
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16.2 Technical Information on the System

16.2.1 Name of the System and Website

Intuitionistic Logic Theorem Proving
http://www.iltp.de/

16.2.2 Project Leaders and Group

 Thomas Raths, Jens Otten. Both are from the University of Potsdam, Department of Com−
puter Science, Germany.

16.2.3 Main Publications

Thomas  Raths,  Jens  Otten,  Christoph  Kreitz.  The  ILTP  Problem  Library  for  Intuitionistic
Logic. Journal of Automated Reasoning, 38:261−271, 2007.

16.2.4 Implementation Language

The  library  is  a  collection  of  text  files,  the  syntax  of  the  stored  knowledge  is  the  one  of
Prolog.

16.2.5 System Availability and Prerequisites

To be installed and used, the library needs some version of Prolog available on the operating
system.

16.3 Algorithm Libraries

16.4 User Language

The authors of the library also maintain it. Users who want to add benchmark problems are
advised to send them to the ILTP authors.

16.4.1 Programming Language

Prolog

16.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

First order logic (with formulae written in first order form or conjunctive normal form).
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16.4.3 Mathematical Syntax

First order logic (with formulae written in first order form or conjunctive normal form).

16.5 Mathematical Knowledge Bases

16.5.1 Available Theories and Knowledge Bases

A major source of the problems stored in ILTP come from the TPTP library (see the corre−
sponding chapter in this document). 

The  problems  cover  the  following  domains:  agents,  general  algebra,  computing  theory,
commonsense  reasoning,  geometry,  graph  theory,  group  theory,  homological  algebra,  knowl−
edge  representation,  logic  calculi,  management,  miscellaneous,  natural  language  processing,
number theory, planning, puzzles, set theory, software creation, software verification, syntactic,
topology, constructive geometry, non−clausal group theory, and intuitionistic syntactic. 

16.5.2 Tools for Retrieval in Mathematical Knowledge Bases

Uses the tptp2X utility of TPTP (see the respective chapter).

16.5.3 Tools for Inventing Mathematical Knowledge

Uses the tptp2X utility of TPTP (see the respective chapter).

16.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

16.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

Uses the tptp2X utility of TPTP (see the respective chapter).

16.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

16.5.7 Standardization, Inter−Operability

Uses the tptp2X utility of TPTP (see the respective chapter).
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16.5.8 Web Access

16.6 Example of a Theory Exploration Session

To get a feeling of how ILTP problems look like see the chapter on TPTP.

17 Infty

17.1 Short Description

The  Infty  project  is  a  collaboration of  several  universities  and  research  institutes in  Japan
which investigates and develops new systems for automatic processing of scientific information.
They focus on digitization of scientific documents, user interfaces to scientific information, and
accessibility  (especially  for  the  visual  impaired)  to  scientific  information.  The  underlined
capability of the programs developed in the frame of this project is the treatment of formal text
[KanahoriSuzuki06].

17.2 Technical Information on the System

17.2.1 Name of the System and Website

Infty  Project.  Research  Project  on  Mathematical  Information  Processing  Mathematical
Document Recognition and Analysis, User Interface,Accessibility of Scientific Documents.

http://www.inftyproject.org/en/index.html

17.2.2 Project Leaders and Group

Project leader: Masakazu Suzuki (Faculty of Mathematics and Graduate School of Mathemat−
ics, Kyushu University, Japan)

Project members: Mitsushi Fujimoto (Fukuoka University of Education),  Mamoru Fujiyoshi
(The  National  Center  for  University  Entrance  Examinations),  Toshihito  Kanahori  (Tsukuba
University  of  Technology),  Fukashi  Kawane  (Nihon  University),  Toshihikko  Komada  (Nihon
University),  Christopher  Malon  (Faculty  of  Mathematics,  Kyushu  University),  Nobuyuki
Ohtake  (Tsukuba  University  of  Technology),  Seiichi  Uchida  (Kyushu  University),  Katsuhito
Yamaguchi  (Nihon  University),  Chen  Yuan  (Kyushu  University),  Kenji  Hamada
(DIGITALNAUTS.,Co.Ltd),  Masayuki  Naka  (Tsukuba  University  of  Technology),  Misa
Tachibana (Kyushu University).
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17.2.3 Main Publications

M.Suzuki, T.Kanahori, N.Ohtake, K.Yamaguchi. An Integrated OCR Software for mathemat−
ical  Documents  and  Its  Output  with  Accessibility,  Computers  Helping  people  with  Special
Needs, 9th International Conference ICCHP2004, Paris, July 2004, Lecture Notes in Computer
Sciences 3119, Springer (2004) pp.648−655.

T.Kanahori,  M.Fujimoto  and  M.Suzuki.  Authoring  Tool  for  Mathematical  Documents  −
Infty  −,   3rd  International  Conference  MKM2004,  Bialowieja,  Poland,  2004,  Sept.  Online
Proceeding.

See the project’s website for papers on specific areas of the project.

17.2.4 Implementation Language

Information not available.

17.2.5 System Availability and Prerequisites

The  programs  developed  within  this  system are:  InftyEditor,  InftyReader  and  ChattyInfty.
All run only under Microsoft Windows (InftyReader only under XP!), and need as prerequisite
LATEX  fonts;  ChattyInfty  requires  Internet  Explorer  version  6,  and  the  Microsoft  speech API,
version 4. A scanner is also needed.

With the exception of InftyEditor, the programs is usable free of charge for 30 days after the
installation.  Afterwards,  a  license  must  be  bought  from   Science  Accessibility  Net  :
http://www.sciaccess.net/en/InftyReader/index.html.

See the descriptions of the programs in the Graphical tools subsection below.

17.3 Algorithm Libraries

No mathematical algorithm libraries are available.
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17.3.1 Graphical Tools and Interfaces

InftyEditor is an authoring tool of mathematical documents, which eases the input of mathe−
matical expressions [SuzukiEtAl03].  In its newer version it includes a handwriting recognition
interface.  Mathematical  formulae  written  with  the  InftyEditor  can  be  computed  using  various
computer  algebra  systems  with  an  OpenXM  [MaekawaEtAl01]  communication  controller
[KanahoriEtAl04].

InftyReader is an OCR program that recognizes scanned images of printed scientific docu−
ments (including mathematical formulae).  It  outputs the recognition results in  various formats
(XML for InftyEditor, LATEX, MathML, Braille).

ChattyInfty is a math−expression editor for visually disabled persons to access, to write or to
edit  scientific  documents.  It  is  developed  by  incorporating  a  function  of  speech  output  into
"InftyEditor"  by  making  use  of  Microsoft  speech  API  (description  available  on  the  project’s
website).

17.4 User Language

17.5 Mathematical Knowledge Bases

17.5.1 Available Theories and Knowledge Bases

The Infty project provides databases of mathematical symbols (i.e. characters, words, mathe−
matical expressions) with different fonts, styles, etc. (stored as images, with text data attached to
them)  for  use  in  character  distinctions within  character  recognition programs [SuzukiEtAl05].
There are over 600.000 characters available in these databases.
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17.5.2 Tools for Retrieval in Mathematical Knowledge Bases

17.5.3 Tools for Inventing Mathematical Knowledge

17.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

17.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

17.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

17.5.7 Standardization, Inter−Operability

InftyEditor’s  Input  from  LaTeX  source  and  Output  into  LaTeX,  HTML,  MathML  and
UEBC (Unified English Braille Codes). Via the OpenXM communication protocol [MaekawaEt−
Al01], it can use computer algebra systems for computation [KanahoriEtAl04].

17.5.8 Web Access

On the project’s website, an online recognition test site of InftyReader is available.

17.6 Example of a Theory Exploration Session

18 Isabelle

18.1 Short Description

Isabelle is a generic proof assistant which  allows mathematical formulas to be expressed in
a formal language and provides tools for proving those formulas in a logical calculus. The main
application  is  the  formalization  of  mathematical  proofs  and  in  particular  formal  verification,
which includes proving the correctness of computer hardware or software and proving proper−
ties of computer languages and protocols (description found on their website).
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18.2 Technical Information on the System

18.2.1 Name of the System and Website

Isabelle.  http://isabelle.in.tum.de/  and  http://www.cl.cam.ac.uk/research/hvg/Isabelle/Cam−
bridge/

18.2.2 Project Leaders and Group

Project leaders: Larry Paulson (Cambridge University) and Tobias Nipkow (TU Munich)
Project  group:  Jean  Martina,  Tom  Ridge,  Susmit  Sarkar,  Peter  Sewell,  Rok  Strni<a  (at

Cambridge).  Clemens  Ballarin,  Stefan  Berghofer,  Sascha  Böhme,  Amine  Chaieb,  Florian
Haftmann,  Alexander  Krauss,  Steven  Obua,  Christian  Urban,  Makarius  M.  Wenzel,  Boris
Borisov, Lukas Bulwahn, Tuan Dao, Markus Dörschmidt, Martin von Gagern, Johannes Hölzl,
David Leuschner, Tobias Rittweiler (Munich).

18.2.3 Main Publications

Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL. A Proof Assistant for
Higher−Order Logic. LNCS, vol. 2283, 2002. Springer.

18.2.4 Implementation Language

ML.

18.2.5 System Availability and Prerequisites

The system is free of charge, and the current version is available − as binaries − for Linux
and Mac OS X. To run it, one needs a Standard ML environment (they recommend Poly/ML)
and  the  Proof  General  user  interface  with  a  working  version  of  Emacs.  Optionally  a  LATEX
installation is needed (for document preparations), a Java runtime environment (version 1.4 or
later) for showing graphs, and external theorem provers.
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18.3 Algorithm Libraries

18.3.1 Numerical, Discrete, Algebraic Libraries

18.3.2 Reasoners

Isabelle  has  a  classical  reasoner  which  is  an  ML  functor  that  accepts  certain  information
about logic and returns a suite of  automatic tactics [Paulson07a]. Each tactic takes a collection
of  rules  and  executes  a  proof  procedure.  The  classical  reasoner  contains  generic  tactics,  not
restricted to first−order logic. It can be instantiated for new logics, the Isabelle system includes
the FOL, ZF, HOL and HOLCF logics.

18.3.3 Graphical Tools and Interfaces

Isabelle  has  a  graph  browser  tool  for  visualizing  theory  dependency  graphs.  The  tool  is
written  in  Java  and  can  be  used  both  as  a  standalone  application  and  as  an  applet  [Wenzel−
Berghofer07].  The  graph  browser  has  two  sub−windows:  a  directory  tree  window,  and  the
graph window where the graph itself is displayed. In both windows, nodes (i.e. theories) can be
collapsed or expanded to hide or show information.

There  are  various  graphical  interfaces  to  Isabelle.  The  most  used  is  Proof  General
[Aspinall00],  an  interface  based  on  Emacs.  Within  Proof  General,  the  X−Symbol  package
provides  several  input  methods  to  enter  mathematical  characters  like  �  in  the  text  Another
Isabelle graphical interface is which  XIsabelle [CantOsols99],  which uses the script language
Tcl and the Tk Toolkit, and allows theory browsing, proof by clicking (avoiding to learn Isa−
belle commands), advice on possible proof steps. In [TheryEtAl92] an interface for Isabelle is
implemented using the Centaur programming environment.

18.4 User Language

18.4.1 Programming Language

To extend the Isabelle/Pure logic (see the subsection below) one remains within the Isabelle
system, i.e. the Isabelle/Isar extension which hides the implementation language. To implement
proof procedures, ML is used.
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18.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

Isabelle comes with several logics (which are hierarchies of  theories) already implemented
[Paulson07b]. All of them are formulated within Isabelle’s meta logic, Isabelle/Pure:

− HOL (Higher Order Logic, and not the HOL system) is currently the most devel−
oped object−logic;

− ZF set theory, built on FOL (first−order logic);
− CCL is Martin Coen’s Classical Computational Logic (for deriving programs from

proofs, built upon classical FOL;
− LCF is a version of Scott’s Logic for Computable Functions, built upon classical

FOL;
− HOLCF, a version of lcf, defined as an extension of HOL;
−  CTT  is  a  version  of  Martin−Löf’s  Constructive  Type  Theory,  with  extensional

equality. Universes are not included.
− Cube is Barendregt’s  Λ−cube;

    − several logics based upon the sequent calculus;
− LK is classical first−order logic as a sequent calculus;
− Modal implements the modal logics T, S4, and S43;
− ILL implements intuitionistic linear logic.

18.4.3 Mathematical Syntax

The syntax needed is the one of the logic involved to write the mathematical notions.

18.5 Mathematical Knowledge Bases

18.5.1 Available Theories and Knowledge Bases

The Archive of Formal Proofs is a collection of proof libraries, examples, and larger scien−
tific developments, mechanically checked in the theorem prover Isabelle. It is organized in the
way of a scientific journal. Submissions are refereed. [KleinEtAl07]. The library is under GNU
GPL licence. It  contains formalizations of  theories starting form  AVL Trees, Topology, Lazy
Lists, to Fermat’s Last Theorem for Exponents 3 and 4 and the Parametrization of Pythagorean
Triples  and Hensel’s Lemma. For a complete list of the archive’s content see its website.

Additionally, each of the logics included in Isabelle is stored as a formal theory.
A  growing  library  of  useful  theories  is  distributed  with  the  system.  This  library  currently

contains: 
− Accessible−Part: The accessible part of a relation
− Sets and functions
− Big O notation
− Continuity an iterations of set transformers
− Implementation of natural numbers by integers
− Implementation of finite sets by lists
− Pi and function sets
− Multisets and properties of multisets
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− Multisets and properties of multisets
− Pairs of natural numbers
− Natural numbers with infinity
− Nested environments
− Permutations
− Primality on natural numbers
− Quotient types
− Binary words
− Zorn’s Lemma
− Order on product types, on characters
− Proving equalities in commutative rings
− List prefixes, postfixes, lexicographic orders.

18.5.2 Tools for Retrieval in Mathematical Knowledge Bases

The Archive of Formal Proofs mentioned above has a textual Google powered search.

The Iabelle system has a search engine that help users extract knowledge from the database.
An important limitation of this tool is that it is limited at search in the currently loaded theory.
The engine can search using patterns [NipkowEtAl07]. Some examples of simple patterns:

length
"_ # _ = _ # _"
"_ + _"
"_ * (_ − (_::nat))"

18.5.3 Tools for Inventing Mathematical Knowledge

18.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The Isabelle  reasoner  is  available  for  proving  mathematical knowledge relative to  existing
one.

18.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

18.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

The inference rules that users write can be first proved by Isabelle’s reasoner. The rules are
usually written as theorems, with indications to the system how they should be used in proving:
as rewrite rules, as simplification rules, etc.
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18.5.7 Standardization, Inter−Operability

The system has tools for  translating Isabelle proof  documents into LATEX  ,  and Html,  and
tools  for  code  generating  (for  code  in  functional  programming  languages  −  SML,  OCaml,
Haskell) out of logical specifications. An interface to the CAS Maple is described in [BallarinEt−
Al95].

18.5.8 Web Access

A  web  based  GUI  to  Isabelle  is  described  in  [Kaliszyk06]  and  can  be  tried  at
http://prover.cs.ru.nl/  and  is  actually  an  interface  for  several  provers  (Coq,  Isabelle,  Matita,
Lego  and  Plastic).  Another  web  based  GUI  to  Isabelle  is  described  in  a  recent  master  thesis
[Halvorsen07], but we found no web address to try it out.

18.6 Example of a Theory Exploration Session

Most  of  the  users  of  Isabelle  invoke  the  Proof  General  interface to  the  proving system. A
work session within Iabelle means, actually, creating theories (i.e. a collection of types, func−
tions, theorems). The general format of a theory T is

theory T
imports T1,· · · , Tn
begin
     declarations, definitions, and proofs
end

where T1 , . . . , Tn are  names of existing theories that T is based on, declarations, defini−
tions, proofs are newly introduced concepts and proofs about them. The Tis are parents of T, the
knowledge stored in them is directly available in T [NipkowEtAl07].

The examples in this section are taken from the tutorial on Isabelle/HOL [NipkowEtAl07].
The  theory  ToyList  defined  below  is  based  on  the  PreList  theory,  which  contains  many

things but lists. It defines a datatype list which also introduces two constructors, Nil and Cons.
Then it declares two functions, app(end) and rev(erse). The Cons constructor and app function
have  also  an  infix  notation  (’#’  and  ’@’  respectively).  The  definitions  of  the  two  functions
declared earlier follows, where the infix notation is used.

theory ToyList
imports PreList
begin
datatype ’a list = Nil                        ("[]")
                  | Cons ’a "’a list"         (infixr "#" 65)

consts app :: "’a list => ’a list => ’a list" (infixr "@" 65)
       rev :: "’a list => ’a list"

primrec
"[] @ ys        = ys"
"(x # xs) @ ys = x # (xs @ ys)"

primrec

89



primrec
"rev []         = []"
"rev (x # xs)   = (rev xs) @ (x # [])"

We want now to prove that reversing twice gives back the original ([simp] in the declaration
below tells Isabelle that the theorem, should it be proved, should be used as a simplification rule:

theorem rev_rev [simp]: "rev(rev xs) = xs"

Isabelle’s response will be:

1. rev (rev xs) = xs

We apply the induction tactic on xs:

apply(induct_tac xs)

And the reply from the system is given as a list of 2 goals, one for the base case and one for
the step case:

1. rev (rev []) = []
   
2. ßa list.
      rev (rev list) = list � rev (rev (a # list)) = a # list

We try now to solve the two goals automatically and call

apply(auto)

This will simplify the first goal, and the second one will become:

1. ßa list.
      rev (rev list) = list � rev (rev list @ a # []) = a # 
list

Here it is clear that the prover cannot continue without some additional lemma. We abandon
the proof above and try to prove the lemma:

oops
lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"

To  prove  this  lemma we  use  induction on  the  xs variable,  but,  again,  we  will  see  that  we
need another lemma, which in turn, to be proved will need another lemma. We list here the final
script with all the lemmata − together with the proof tactics. The theorem we wanted to prove
originally is last in this script.

lemma app_Nil2 [simp]: "xs @ [] = xs"
apply(induct_tac xs)
apply(auto)
done
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done

lemma app_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
apply(induct_tac xs)
apply(auto)
done

lemma rev_app [simp]: "rev(xs @ ys) = (rev ys) @ (rev xs)"
apply(induct_tac xs)
apply(auto)
done

theorem rev_rev [simp]: "rev(rev xs) = xs"
apply(induct_tac xs)
apply(auto)
done
end

19 Macaulay 2

19.1 Short Description

Macaulay 2 is a computer algebra system devoted to supporting research in algebraic geome−
try,  commutative  algebra,  and  their  applications  [Macaulay2].  It  aims  at  supporting  efficient
computation with a wide variety of mathematical objects. The system is based on its predeces−
sor, Macaulay, was written by Dave Bayer and Mike Stillman. It is not a version 2 of Macaulay,
but a fresh start. The Macaulay system is not further developed anymore.

19.2 Technical Information on the System

19.2.1 Name of the System and Website

Macaulay 2
http://www.math.uiuc.edu/Macaulay2/

19.2.2 Project Leaders and Group

The authors of the system are: Daniel R. Grayson (Professor Emeritus, retired, Department
of Mathematics, University of Illinois) and Michael E. Stillman (Dept. of Mathematics, Conell
University, Ithaca).

There is no group continuously working on the system (except for the two authors). There
are several contributors to the system: Wolfram Decker, Neil Epstein, Anton Leykin, Harrison
Tsai, Gregory Smith, Amelia Taylor, Carolyn Yackel, Bart Snapp.
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19.2.3 Main Publications

D. Eisenbud, D.R. Grayson, M. Stillman, and B. Sturmfels, editors. Computations in Alge−
braic Geometry with Macaulay 2, Algorithms and Computation in Mathematics Series, Volume
8, ISBN 978−3−540−42230−3. Springer, 2000.

19.2.4 Implementation Language

It has a core of mathematical algorithms implemented and compiled in C++ .

19.2.5 System Availability and Prerequsites

Macaulay 2 is copyright by Daniel R. Grayson and Michael E. Stillman. The system can be
used under the terms of the GNU General Public License, version 2. It is available for a variety
of operating systems.

As  prerequisites,  we  mention  Emacs  (for  Linux),  Emacs  for  Windows  (for  the  Windows
operating system).

19.3 Algorithm Libraries

19.3.1 Numerical Library

Although not specified in the documentation of Macaulay 2, there must be some algorithms
that  do  computations  with  numbers  (especially  integers).  From  other  authors,  the  system
includes  a  package  that  provides  multiple  precision  arithmetic:  the  GNU  MP4  package  by
Torbjörn  Granlund,  John  Amanatides,  Paul  Zimmermann,  Ken  Weber,  Bennet  Yee,  Andreas
Schwab, Robert Harley, Linus Nordberg, Kent Boortz, Kevin Ryde, and Guillaume Hanrot.
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19.3.2 Algebraic Library

The packages that come with Macaulay 2 include:
− a parser for polynomials;
− algorithms for D−modules;
− eliminating specified variables, and computing Sylvester resultant;
−  an  implementation  of  the  Double  Description  Method  (of  Fourier,  Dines  and

Motzkin) for converting between these two basic representations for convex cones;
− computing generic initial ideals of ideals in a polynomial ring;
− integral closures;
− creating lexicographic ideals and lex−plus−powers (LPP) ideals;
− lattice reduction (Lenstra−Lenstra−Lovasz bases);
− compute with points in affine and projective spaces;
− computations with components of ideals, including minimal and associated primes,

radicals, and primary decompositions of ideals;
− algorithms for computing Rees algebras and integral closure of ideals;
− computations in the representation ring of GL(n);
− manipulating simplicial complexes.

The system also incorporates some code from other authors: 
− the package SINGULAR−FACTORY2 which provides for factorization of polyno−

mials (by G.−M. Greuel, R. Stobbe, G. Pfister, H. Schoenemann, and J. Schmidt); 
− the package SINGULAR−LIBFAC3 uses FACTORY to enable the computation of

characteristic sets (by M. Messollen).

19.3.3 Reasoners

19.3.4 Graphical Tools and Interfaces

19.4 User Language

19.4.1 Programming Language

The  Macaulay  2  language  is  an  interpreted  language.  Every  object  has  a  type  (like  Type,
String,  HashTable,  Ring,  etc).  Expressions  can  include  function  calls,  control  structures  (for,
while loops), function definitions, and operator expressions. The engine implements rings, ring
elements,  and  matrices  as  instances  of  low−level  types,  high−level  types  are  based  on  these
ones.
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19.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

Knowledge formulation is reduced to defining (i.e. programming) algorithms and executing
them. The language used for this is the Macaulay 2 language.

19.4.3 Mathematical Syntax

The one of the Macaulay 2 language.

19.5 Mathematical Knowledge Bases

19.5.1 Available Theories and Knowledge Bases

19.5.2 Tools for Retrieval in Mathematical Knowledge Bases

19.5.3 Tools for Inventing Mathematical Knowledge

19.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

19.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

19.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

19.5.7 Standardization, Inter−Operability

The system has functions to  translate expressions from the Macaulay2 language into html,
tex,  mathML.  The  TeXmacs  system (http://www.texmacs.org)  has  an  interface  to  Macauly  2.
This interface allows sending commands to and receiving results from Macauly 2 from within
the TeXmacs editor.

19.5.8 Web Access

19.6 Example of a Theory Exploration Session

The  introductory  examples  are  taken  from  [EisenbudEtAl00,  preface],  the  Gröbner  Bases
examples are taken from the on−line documentation of the system [Macaulay2].
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The  output  is  textual,  and  the  exponents  of  the  variables  are  aligned  with  spaces,  in  the
Macaulay 2 working environment − Emacs. For readability we have typed in the answers using
Mathematica’s 2−dimensional representation.

19.6.1 Introductory Examples

Macaulay  2  behaves  like  a  standard  computer  algebra  system,  such  as  Mathematica  or
Maple: the user enters mathematical expressions at the keyboard, and the program computes the
value of the expression and displays the answer [EisenbudEtAl00].

The  input  prompts are  of  the  form ’i<number> :  ’.  The  output  is  displayed to  the  right  of
labels  of  the  form  ’o<number>  =  ’  and,  additionally,  to  the  right  of  the  labels  of  form
’o<number> : ’ the type of the output is displayed. For example:

i1:3/5+7/11
   68
o1=−−
   55
o1:QQ

(The symbol QQ above denotes the class of all rational numbers).

Define a quotient ring of a polynomial ring R over the rational numbers :

i3:R=QQ[x,y,z]/(x^3−y^3−z^3)
o3=R
o3:QuotientRing

Compute in the ring:

i4:(x+y+z)^3
o4 =

3 x2
 y + 3 x * y2

+ 2 y3
+ 3 x2 z + 6 x * y * z + 3 y2 z + 3 x * z2

+ 3 y * z2
+ 2 z3

o4 :
R

Matrices over the ring are created as:

i5:b=vars R
o5 = È x y z È
o5 : Matrix  R1

< ---R3

i6:c=matrix {{x^2,y^2,z^2}}
o6 = È x2 y2 z2 È
o6 : Matrix  R1

< ---R3

Modules over the ring:
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i7:M=coker b
o7 = cokernel È x y z È
o7 : R - module, quotient of  R1

i8:N=ker c
o8 = image 82< È x 0 -y2 -z2 È

82< È -y -z2 x2 0 È
82< È -y y2 0 x2 È

o8 : R - module, submodule of R

Projective resolutions of modules are done with the command:

i9:res M
o9 = R

0

1
< --R

1

3
< --R

2

4
< --R

3

4
< --R

4

4

o9 : ChainComplex

19.6.2 Computing Gröbner Bases

To compute the  Groebner  basis  of  an  ideal  Hx2 y, xy2 + x3L  in  the  polynomial  ring in  four
variables we proceed as follows:

Define the field:

i1:KK=ZZ/32003
o1=KK
o1:QuotientRing

The polynomial ring is:

i2:R=KK[x,y,z,w]
o2=R
o2:PolynomialRing

and the ideal is:

i3:I=ideal(x^2*y,x*y^2+x^3)
o3 = ideal Hx2 y, x 3

+ x * y2L
o3 : Ideal of R

The Gröbner basis of I under the graded reverse lexicographic order is:

i4:J=gens gb I
o4 = È x2y x3 + xy2 xy3 È
o4 : Matrix R 1

< ---R3

In  Macaulay2,  monomial  orders  are  associated  with  a  polynomial  ring.  For  example,  to
specify the lexicographic order we use:
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i5:R=KK[x,y,z,w,MonomialOrder ÞLex]
o5=R
o5:PolynomialRing

and:

i6:I=substitute(I,R)
o6 = ideal Hx2

 y, x 3
+ x * y2L

o6 : Ideal of R

i7:gens gb I
o7 = È xy3 x2y x3 + xy2 È
o7 : Matrix R 1

< ---R3

The Groebner basis is the same, since this is a small example. The polynomials are sorted in
ascending  monomial  order  by  their  lead  terms,  but  otherwise  the  two  Groebner  bases  are  the
same here.

20 Magma

20.1 Short Description

Magma  is  a  system  designed  to  solve  computational  hard  problems  in  algebra,  number
theory,  geometry  and  combinatorics.  It  provides  a  mathematically  rigorous  environment  for
computing with algebraic,  number−theoretic, combinatoric, and geometric objects.  The design
of Magma emphasizes structural computation, i.e., the ability to construct canonical representa−
tions of structures [MagmaWeb].

20.2 Technical Information on the System

20.2.1 Name of the System and Website

 MAGMA Computational Algebra System
http://magma.maths.usyd.edu.au/magma/
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20.2.2 Project Leader

Magma is produced and distributed by the Computational Algebra Group within the School
of  Mathematics  and  Statistics  of  the  University  of  Sydney.  No  information  about  a  project
leader is available.

The  current  members  of  the  development  team  (not  all  members  of  the  Computational
Algebra  Group  at  Sidney)  are:  Geoff  Bailey,  John  Cannon,  Steve  Donnelly,  Claus  Fieker,
Damien Fisher,  Sergei  Haller,  Michael  Harrison,  Allan Steel,  Damien Stehl’e,  Nicole Suther−
land, Bill Unger, John Voight, Greg White ([MagmaWeb], HTML Help Document, Acknowl−
edgments). Many other mathematicians have contributed to the system. For a complete list see
the webpage.

20.2.3 Main Publications

Wieb Bosma, John Cannon, and Catherine Playoust: The Magma algebra system. I. The user
language., J. Symbolic Comput. 24(3−4), 235−265, 1997.

20.2.4 Implementation Language

It  has  a  kernel  implemented  in  C.  The  rest  of  the  system  is  implemented  in  the  Magma
language (see the User Language subsection below).

20.2.5 System Availability and Prerequisites

Magma  is  a  non−commercial  system,  however,  they  recover  the  costs  of  distribution  and
support  by  charging  its  users.  The  subscription  costs  depend  on  the  processor  type,  users
(students,  institution  types),  country.  It  is  available  for  the  most  used  operating  systems  and
architectures (Linux, Mac OS X, Windows, Sparc Solaris, Macintosh, Alpha).

20.3 Algorithm Libraries

The information about the libraries listed below is taken from [MagmaOverview].

20.3.1 Groups, Semigroups and Monoids Libraries

The group theory is one of the traditional strengths of the Computational Algebra Group at
the University of Sidney. The system offers most of the significant algorithms for finite groups
and finitely represented groups: Permutation groups, Matrix groups, Finitely presented groups,
Generic abelian groups,  Finitely−presented abelian groups,  Polycyclic groups,  Soluble groups,
Finite p−groups, Automorphism groups, Groups defined by rewrite systems, Automatic groups,
Groups with elements given as straight−line programs, Black−box groups, Braid groups, Congru−
ence subgroups of PSL(2, R). The system also offers an extensive machinery for the representa−
tion theory of groups.
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Magma has algorithms for finitely represented semigroups and monoids defined by rewrite
systems.

20.3.2 Rings and Fields

Magma can understand fields (mainly local and global arithmetic fields), and their rings of
integers and valuation rings. Numeric computations are done within these data structures.

·  The rational field Q  and its  ring of  integers Z.  Under  this category,  the system offers
algorithms  for:  Multiple  precision  integer  arithmetic;  Integer  multiplication  and  division  via
classical,  Karatsuba,  Toom  and  Schönhage−Strassen  FFT  methods;  Greatest  common  divisor
via Weber Accelerated GCD and Schönhage algorithms; Extended Greatest common divisor via
Lehmer  and  Schönhage  algorithms;  Alternative  representation  of  integers  in  factored  form;
Arithmetic functions: Jacobi symbol, Euler Φ function, etc.

·  Residue class rings of Z.  Arithmetic; square root, all square roots; Testing elements for:
nilpotency,  primitivity,  regularity,  zero−divisor;  Order  of  a  unit;  Gcd  and  lcm;  Location  of  a
primitive  element;  Unit  group;  Functor  from  additive  group  to  an  object  in  the  category  of
abelian groups; One or all square roots of an element

· Primality and factorization. 

· Univariate polynomial rings. Includes algorithms for: Ring creation and ring operations;
Creation of  special  polynomials; Arithmetic with  polynomials; GCD and factorization; Arith−
metic with ideals; Residue class rings of univariate polynomial rings.

·  Finite  fields.  Contains  algorithms for:  Construction  of  fields,  subfields,  etc.;  Computing
traces  and  norms,  orders  of  elements,  characteristic  polynomials,  etc.;  Roots  and  polynomial
factorization; Discrete logarithms; 

· Galois rings. Creation, basic operations with Galois rings.

·  Number fields and their orders (general number fields, quadratic fields, and cyclotomic
number  fields).  Includes  algorithms  for:  Arithmetic  of  elements,  construction  of  equation,
maximal,  arbitrary  orders;  Computation  of  Hilbert  class  fields;  Orders  and  fractional  ideals;
Invariants; Diophantine equations; Automorphism; Class Field Theory; Quadratic and cycloto−
mic fields.

·  Rational  function fields.  Creation of  rational  function fields,  ring predicates,  arithmetic,
numerator and denominator, evaluation, derivative, etc. 

·  Algebraic  function  fields.  Retrieval  of  information  defining  the  field;  Computation  of
basis;Construction of a function field with an extended constant field; etc.

· Valuation rings.
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·  Real  and complex fields. Arithmetic, square root,  continued fraction expansion of a real
number,  trigonometric  functions,  hyperbolic  functions  and  their  inverses,  logarithm,  diloga−
rithm, exponential, Bernoulli numbers, logarithmic integral, exponential integral, etc.

· Newton polygons. Construction; Finding faces, vertices and slopes; Algorithms for comput−
ing Puiseux expansions

· Local rings and fields. Construction; Arithmetic; Polynomial factorization. 

·  Power  series  rings  and  Laurent  series  rings.  Arithmetic  in  these  fields;  Inversion  of
units;  Derivative,  integral;  Square  root,  valuation;  Exponentiation,  composition,  convolution,
etc.

·  Lazy  power  series  rings.  Creation  of  rings  and  elements;  Arithmetic  of  elements;
Retrieval of coefficients; Printing some specified terms of a series; Simple predicates on series;
Derivative, integral and evaluation of series.

· Algebraically closed fields. Automatic extension of the field by the roots of any polyno−
mial over the field, and operations on conjugates of roots; Basic arithmetic; All standard algo−
rithms for rings over generic fields work over such fields; Minimal polynomial; Simplification
of  the  field;  Construction  of  the  corresponding  absolute  field  together  with  the  isomorphism;
Pruning of useless variables and relations.

20.3.3 Commutative Algebra

Under this title, the Magma system works with the following rings: Multivariate polynomial
rings;  Ideal  theory  of  multivariate  polynomial  rings;  Affine  algebras;  Modules  over  affine
algebras.

The basic computational problems for commutative rings, which the Magma system treats,
include:  A  canonical  form for  elements;  Efficient  arithmetic;  A  canonical  representation (i.e.,
standard basis) for ideals; Arithmetic with ideals; Formation of quotient rings; Ideal decomposi−
tion, i.e., primary decomposition; The study of modules over rings.

20.3.4 Linear Algebra and Module Theory

The system can deal with: Matrix operations;  Vector spaces; Free modules; Modules over
Dedekind domains

·  Matrices.  Magma offers algorithms for:  Representation of  matrices; Arithmetic; Echelon
form and nullspaces; Canonical forms.

· Sparce matrices.

· Vector spaces. Construction; Arithmetic; Subspaces and quotient spaces; Bases; Homomor−
phisms; Quadratic forms.

· Free modules. Basic operations; Homomorphisms.
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·  Modules  over  Dedekind  domains.  Creation  of  modules;  Arithmetic  with  module  ele−
ments;  Submodules  and  quotients  of  modules;  Determinant,  dimension,  pseudo−generators;
Equality of modules, membership; Intersection of submodules; etc.

20.3.5 Lattices and Quadratic Forms

· Lattices. Constructions and operations; Algorithms for investigating properties of lattices;
Reduction of lattices; Automorphisms; Neighbors and Genera; G−lattices.

·  Binary  Quadratic  Forms.  Prime form,  random form;  Reduction  of  forms;  Composition
and powering; Enumeration of reduced forms and reduced orbits; Treatment of fundamental and
nonfundamental discriminants; etc.

20.3.6 Algebras

Defining algebras in Magma is made in terms of finite presentations, structure constants or
as  a  matrix  algebra.  The  algorithms  for  this  area  include  algorithms  for  handling:  Finitely
presented associative algebras;  General  finite dimensional algebras (defined by  structure con−
stants);  Finite  dimensional  associative  algebras  (defined  by  structure  constants);  Quaternion
algebras; Group algebras; Matrix algebras; Finite dimensional Lie algebras (defined by structure
constants); Quantized enveloping algebras (aka quantum groups).

20.3.7 Representation Theory

The main topics covered by this group of algorithms are: Modules over an algebra; K[G]−
modules; Representations of groups; Character theory; Invariant theory.

20.3.8 Homological Algebras

·  Basic  algebras  (finite  dimensional  algebras  over  a  field).  Algorithms:  Creation  from  a
sequence of projective modules and a path tree for each module; Creation of the basic algebra
corresponding to the group algebra of a p−group over GF (p); Arithmetic; Extension and restric−
tion of the coefficient ring; Tensor product; Opposite algebra; etc.

·  Chain  complexes.  Algorithms  for:  Creation  of  a  complex  from  a  list  of  A−modules;
Subcomplexes  and  quotient  complexes;  Operations  on  complexes:  Splice,  shift,  direct  sum;
Exact extensions, zero extensions; Dual of a complex; Homology groups of a complex; Bound−
ary maps; Construction of chain maps between complexes; Composition of chain maps; Image,
kernel and cokernel of a chain map; etc.
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20.3.9 Lie Theory

The  Magma  system  has  algorithms  that  treat:  Coxeter  matrices,  Coxeter  graphs,  Cartan
matrices, Dynkin digraphs, and Cartan names; Root systems; Root data; Coxeter groups; Cox−
eter groups as permutation groups; Reflection groups; Groups of  Lie type; Finite−dimensional
Lie algebras (See section on Algebras).

20.3.10 Algebraic Geometry

Magma  has  machinery  for  studying  general  algebraic  varieties  and  families  of  special
curves. The major categories include: Schemes and maps of schemes; Rational scrolls; Zero−di−
mensional  schemes;  Algebraic  curves;  Function  fields  and  differentials  of  curves;  Divisor
groups and places of curves; Resolution graphs and splice diagrams; Graded rings and geomet−
ric  databases;  Plane  conic  curves  and  general  rational  curves;  Elliptic  curves;  Hyperelliptic
curves;  Module  of  supersingular  points;  Modular  forms;  Modular  symbols;  Brandt  modules;
Modular curves; Modular Abelian Varieties.

20.3.11 Differential Galois Theory

·  Differential  Rings  and  Fields.  Includes  algorithms  for:  Construction  of  the  rational
differential field and the more general differential ring; Coercions, arithmetic and functionality
for elements as for the underlying ring; Changing the derivation of a differential ring.; Extend−
ing the constant ring of a differential ring; Wronskian matrix and Wronskian determinant; The
differential constant field of a rational differential field; Ring and field extensions of differential
rings and fields; Construction of a differential ideal; Quotient rings, rings and field of fractions
of differential rings and fields.

·  Differential  Operator  Rings.  Includes  algorithms for:   Creation  of  a  differential  operator
ring;  Coercion,  arithmetic  and  simple  predicates  for  elements;  Accessing  coefficients  of  ele−
ments;  Changing  the  derivation of  a  differential  operator  ring;  Changing  the  operator  ring  by
extending  the  constant  ring;  Making  a  differential  operator  monic;  Adjoint  of  an  operator;
Applying  an  operator  to  an  element  of  its  base  ring;  Euclidean  algorithms,  left  and  right
(extended) GCD, (extended) left LCM; Companion matrix of an operator; etc.

20.3.12 Finite Incidence Structures

The  algorithms  in  this  category  include:  Counting  functions;  Partitions  and  tableaux;
Graphs ~ directed and undirected; Networks; Incidence structures; Designs; Finite planes;
Incidence geometry.
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20.3.13 Error Correcting Codes

The coding theory module in Magma treats linear codes over finite fields, linear codes over
Galois  rings  (including  special  functionality  for  codes  over  Z4),  additive  codes  over  finite
fields, and quantum stabilizer codes.

20.3.14 Cryptography

Magma  contains  algorithms  for  creating  and  analyzing  pseudo−random  bit  sequences  (in
general  in  the  GF(2)  universe).  Some  functions,  like  Berlekamp−Massey,  apply  also  to
sequences defined on arbitrary rings.

20.3.15 Reasoners

20.3.16 Graphical Tools and Interfaces

20.4 User Language

20.4.1 Programming Language

The  language  in  which  users  can  formulate algorithms is  an  imperative one  with  standard
imperative−style statements and procedures. Among other features of the language we mention
that it has dynamic typing, a simple notation for constructing sets and sequences, operations for
sets and sequences − with emphasis on efficiency.

20.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The system is used for writing (programming) algorithms and execute them. It has no means
of writing down theorems, definitions, etc. in a book− or paper−like style.

20.4.3 Mathematical Syntax

The Magma programming language.
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20.5 Mathematical Knowledge Bases

20.5.1 Available Theories and Knowledge Bases

The theories available in Magma are called ’Mathematical Databases’, and, typically, such a
database  contains  complete  classifications of  structures of  some given  type,  up  to  a  specified
bound. Some of these databases are an integral part of the algorithms in Magma [MagmaOver−
view]. We enumerate below the databases currently available in Magma (state as of 2006). For
details on the content of these databases and on their authors, see [MagmaOverview].

· Group Theory: Small Groups (the same that is available in the GAP system); The ATLAS
Database  (also  included  in  GAP);  Almost  Simple  Groups;  Simple  Groups;  Perfect  Groups;
Transitive Groups; Primitive Groups; Permutation Representations; Irreducible Matrix Groups;
Irreducible Soluble  Groups;  Finite Groups of  Rational  Matrices; Quaternionic Matrix  Groups;
Matrix Representations.

· Number Theory: Cunningham Factorizations; Irreducible polynomials; Conway polynomi−
als; Galois Polynomials.

·  Algebraic Geometry:  Cremona database of  Elliptic Curves;  Stein−Watkins Database of
Elliptic Curves; K3 Surfaces; 3−folds.

· Topology:  Fundamental Groups of 3−manifolds.

·  Incidence  Structures:  Simple  Graphs;  Strongly  Regular  Graphs;  Hadamard  Matrices;
Skew Hadamard Matrices.

·  Linear  Codes:  Best  Known  Binary  Linear  Codes;  Best  Known  F3Linear  Codes;  Best
Known F4Linear Codes.
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20.5.2 Tools for Retrieval in Mathematical Knowledge Bases

20.5.3 Tools for Inventing Mathematical Knowledge

20.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

20.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

20.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

20.5.7 Standardization, Inter−Operability

20.5.8 Web Access

It has an on−line demo page, a calculator, based on code distributed under GPL and origi−
nally written by William Stein. The user can paste a Magma expression in the input field on the
demo page. The output of the Magma computation will be shown in the output field.

20.6 Example of a Theory Exploration Session

The  session  examples  below  are  taken  from  [CannonPlayoust96].  Generally,  the  system
reacts at user inputs, i.e. users type in their commands, ended with ’;’, when a prompt ( ’>’ ) is
available, and the system immediately displays the results.

> 2+6;
8

Not all user inputs cause a response from the system. A missing semicolon tells the system
there is more to be typed in by the user.

>P<x> :=PolynomialRing(IntegerRing());
>P;
Univariate Polynomial Algebra in x over Integer Ring

>(x^6−5*x^2+2)*(17*x^3−1);
17*x^9−x^6−85*x^5+34*x^3+5*x^2−2

>Factorization(x^8−1);
[
<x−1,1>,
<x+1,1>,
<x^2+1,1>,
<x^4+1,1>
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<x^4+1,1>
]

Help about symbols can be obtained by typing ’?’ followed by the word one needs the help
for.

The following example computes the area of the triangle when the lengths a, b, c of its sides
are given (where ’gt’ is ’greater than’):

>a:=6;b:=8;c:=10;
> if ((a+b) gt c) and ((b+c) gt a) and ((c+a) gt b) then
>           s:=(a+b+c)/2;
>           "Area is",Sqrt(s*(s−a)*(s−b)*(s−c)),"square units.";
>else
>           "Triangle is degenerate.";
>end if;
Area is 24.00000000000000000000000000 square units.

When users write longer programs, they can write them in separate files and then load them
with the following command:

load "filename";

Sequences are bracketed with square brackets, and sets with curly brackets. Sets are unor−
dered, and elements can occur only once.

>t:={(−11)^2,(−7)^2,(−5)^2,(−3)^2,3^2,5^2,7^2,11^2};
>q:=[(−11)^2,(−7)^2,(−5)^2,(−3)^2,3^2,5^2,7^2,11^2];
>t, q;

{9,25,49,121}
[121,49,25,9,9,25,49,121]

Another  possibility  to  define  sets/sequences  is  to  use  scoping.  For  example,  t  could  have
been defined also as:

>t:={n^2:n in[−11..11 by 2]|IsPrime(n)};
{9,25,49,121}

A cartezian product can be defined as:

>{ <a,b,c> :a,b,c in[1..10]|a^2+b^2 eq c^2};
{ <6,8,10>, <4,3,5>, <3,4,5>, <8,6,10>}

Users  can  define  both  functions  and  procedures.  Procedures  have  no  return  value.  The
function below computes f Hn, qL = Pi-1

n Hqn - qi-1L:

>f:=func<n,q|&*[q^n−q^(i−1):i in[1..n]]>;
>f(5,3);
475566474240
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Here is a function that returns two values:

>counting:=function(n,r)
>                  x:=Factorial(n);
>                  y:=Factorial(r);
>                  z:=Factorial(n−r);
>                  p:=x div z;
>                  c:=p div y;
>                  return p,c;
>end function;
>per,com:=counting(5,2);
>per,com;
20 10

21 Maple

21.1 Short Description

Maple  [MapleWeb]  is  a  computer  algebra  system,  an  all  purpose  mathematical  tool.  It
contains a computational engine with fully integrated numeric and symbolic computations. 

21.2 Technical Information on the System

21.2.1 Name of the System and Website

Maple. http://www.maplesoft.com

21.2.2 Project Leaders and Group

The system is developed by Maplesoft in Waterloo, Ontario, Canada.

21.2.3 Main Publications

See the system’s manuals.

21.2.4 Implementation Language

The  user  interfaces  of  Maple  (since  version  9)  are  implemented in  C  (Classic  Worksheet)
and Java (Standard Worksheet) respectively.

More  generally,  Maplets  are  Maple−based  applets.  Most  applets  found  on  the  WWW  are
written  in  Java.  Maplets  are  written  in  Maple;  each  Maplet  element  is,  in  turn,  a  Java  Swing
class. The Maple kernel is implemented in C/C++. 

For the Maple libraries the implementation information is not available.
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21.2.5 System Availability and Prerequisites

The system is commercial, available for a variety of platforms.

21.3 Algorithm Libraries

The body of mathematics covered by the system’s algorithms is very large. This subsection
lists  a  part  of  them.  Additionally,  there  are  many  user−written  packages  and  tools  which
(because of time restriction) we do not mention here.

21.3.1 Numerical Library

Maple has algorithms and packages for: Numerical routines, optimized to take advantage of
hardware  specifics,  Approximations (Continued  fractions,  Floating−point  arithmetic),  Discrete
Transforms,  Integer  Functions(e.g.  Gaussian  Integers),  Interpolation and  Curve  Fitting,  Inter−
vals,  Maple Numerics (floating|point arithmetic with  extensions to  symbolic data,  to  complex
numerics), Graph theory, Algorithms for visualization of graphs, Differential geometry, Differen−
tial equation solving, Differential Algebraic equations, Polynomial real root finder, etc.

21.3.2 Discrete Math Library

Examples of  algorithms in this area: Combinatorial functions (e.g.  permutations, combina−
tions,  partitions),  Combinatorial  structures,  Discrete  Transforms  (Fourier,  Inverse  Fourier
Transform), Graph Theory, Summation and Difference Equations.

21.3.3 Algebraic Library

The most important algorithms in this category; Polynomials, Factorization and Root Find−
ing, Gröbner bases, Matrix Polynomial Algebra (algebraic manipulation of matrices of polynomi−
als), Orthogonal Polynomials, Polynomials Ideals, Rational Normal Forms, Skew Polynomials,
etc.  

21.3.4 Reasoners

Written by  a  group of  researchers, there is  a  Maple−PVS interface available which can be
downloaded  from  http://www.dcs.qmul.ac.uk/~hago/Maple−PVS/.  Through  this  interface,  a
Maple user can access PVS from a Maple worksheet and use the PVS proof checking capabili−
ties and libraries [MaplePVS].

21.3.5 Graphical Tools

Maple provides the plots and plottools packages for creating a variety of graphics in 2D and
3D. Animation is also supported.
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21.4 User Language

21.4.1 Programming Language

Maple has its own procedural programming language. 

21.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

Not known

21.4.3 Mathematical Syntax

The syntax of Maple’s programming language.

21.5 Mathematical Knowledge Bases

21.5.1 Available Theories and Knowledge Bases

Tutorials  available  in  Maple:  PolynomialIdeals,  Combinatorics,  Optimization,  Statistics,
Vector Calculus.

There exists several e−books (or interactive books) and study guides created by the Maple
users, using Maple, that have a corpus of mathematical knowledge in them. Mostly are available
for a fee.

Through the Maple−PVS interface [MaplePVS], the PVS libraries are also available.
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21.5.2 Tools for Retrieval in Mathematical Knowledge Bases

21.5.3 Tools for Inventing Mathematical Knowledge

21.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

21.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

21.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

21.5.7 Standardization, Inter−Operability

The  system  has  packages  for  code  generation  (C,  Fortran,  Visual  Basic®,  JavaT,
MATLAB®) and connectivity to Excel®, MATLAB, C,  Java,  Fortran.  The TeXmacs system
(http://www.texmacs.org) has an interface to Maple. This interface allows sending commands to
and receiving results from Maple from within the TeXmacs editor.

21.5.8 Web Access

21.6 Example of a Theory Exploration Session

A Maple session (as in most of the CAS available) is a sequence of input−output actions: the
user  types  in  a  command,  evaluates  it  (send  it  in  to  the  computation  engine)  and  the  system
returns an answer (marked with ’>>’). Here are a few examples:

Some numerical calculations:

2 ^ 100
>> 1267650600228229401496703205376

evalf(2^100)
>> 1.26765 ´ 1030

1/3+2/7
>>

13
������21

Some symbolic computations

3x−x+2
>> 2x+2
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(x+2y+1)(x−2)^2
>> Hx + 2 y + 1L Hx - 2L2

expand(%)
>> x3

- 3 x 2
+ 2 y x 2

- 8 y x + 8 y + 4

Integration

integrate(x^n,x)
>>

xn+1
���������n+1

integrate(1/(x^4−a^4),x)
>> -

1
����4  

ln  Hx+aL
�����������������a3 -

1
����2  

arctan  H x
����a L�����������������������a3 +

1
����4  

ln  Hx-aL
�����������������a3

Sums

sum(i^2,i)
>>

1
����3 x3

-
1
����2  x2

+
1
����6 x

Example of a function definition:

f:=n ®  n!;

or

f :=proc(n) n! end;

22 Mathematica

22.1 Short Description

Mathematica is an all−purpose mathematical software package which integrates numeric and
symbolic calculations, graphics, and has a powerful programming language. 

22.2 Technical Information on the System

22.2.1 Name of the System and Website

Mathematica. http://www.wolfram.com/

22.2.2 Project Leaders and Group

The system is developed by Wolfram Research Inc. IL USA.
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22.2.3 Main Publications

See the sytem’s manuals.

22.2.4 Implementation Language

C/C++, Java and Mathematica’s language.

22.2.5 System Availability and Prerequisites

The product is commercial, available for the most operating systems. For some applications
of Mathematica several other programs must be installed (e.g. some Java virtual machine).

22.3 Algorithm Libraries

The body of mathematics covered by the system’s algorithms is very large. This subsection
lists a part of them.

22.3.1 Numerical Library

Mathematica can do  numerical  evaluation to  any  precision.  The types of  numbers built−in
the  system  are  integers,  reals,  rationals,  and  complex.  The  algorithms  in  this  area  deal  with:
Primes  and  their  distribution,  Integer  factorization,  Divisibility  and  divisors,  Congruences,
Partitions, Representations of sums and powers, Recurrence and sum functions, Digit representa−
tions, Analytic number theory, Algebraic number theory, Combinatorial functions.

22.3.2 Discrete Math Library

The  system  has  algorithms  for  dealing  with:  lists,  tuples,  sets,  permutations,  strings  and
digits, graphs and trees, lattices and knot data, cellular automata and turing machines. 

22.3.3 Algebraic Library

Mathematica has algorithms for: Operations on vectors, matrices, Linear systems, Minimiza−
tion problems, Sparse arrays, etc. It knows how to operate with polynomial elements, polyno−
mial  systems, and has algorithms for  polynomial algebra like: factoring and decomposition of
polynomials, division, finding generic solutions for variables. 

22.3.4 Calculus

Total  and  partial  derivatives,  integration,  integral  transformations,  power  series,  symbolic
solutions to equations, numerical calculus.

112



22.3.5 Reasoners

22.3.6 Graphical Tools

It has a powerful engine for displaying graphics of mathematical objects.

22.4 User Language

22.4.1 Programming Language

The Mathematica language is a symbolic language which covers a broad range of program−
ming paradigms. It provides support for pattern matching, procedural programming, functional
programming, programming by rules.

22.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

22.4.3 Mathematical Syntax

The syntax of the Mathematica programming language. It supports two dimensional input of
mathematical expressions.

22.5 Mathematical Knowledge Bases

22.5.1 Available Theories and Knowledge Bases

The system itself  does  not  have  repositories of  mathematical knowledge.  However,  on  the
company’s  website,  several  repositories  are  available.  The  ones  we  mention  here  are  The
Functions Site and MathWorld. There is also a library of Mathematica−related materials which
contains books, articles, Mathematica programs, etc. together with bibliographical information.
In most of the cases, this information if freely available (see http://library.wolfram.com/).

The  Functions  Site  [FunctionsSite]  contains  over  80000  formulae  defining  functions  from
the  following  categories:  Elementary  Functions,  Constants,  Bessel,  Airy,  Struve  Functions,
Integer  Functions,  Polynomials,  Gamma,  Beta,  Erf,  Hypergeometric  Functions,  Elliptic  Inte−
grals,  Elliptic  Functions,  Zeta  Functions  and  Polylogarithms,  Mathieu  Functions,  Complex
Components, Number Theory Functions, Generalized Functions.
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The MathWorld repository is  an  on−line mathematical encyclopedia developed and main−
tained by Eric Weisstein, with many contributors from the academic world. It  has over 12000
entries  from  the  following  domains:  Algebra,  Applied  Mathematics,  Calculus  and  Analysis,
Discrete  Mathematics,  Foundations  of  Mathematics,  Geometry,  History  and  Terminology,
Number  Theory,  Probability  and  Statistics,  Recreational  Mathematics,  Topology.  For  more
details see [MathWorld].

22.5.2 Tools for Retrieval in Mathematical Knowledge Bases

The Functions Site can be searched either by a google−based search engine or a mathemati−
cal  content−based  search.  The  MathWorld  repository  only  has  a  full−text  search  capability
available.

22.5.3 Tools for Inventing Mathematical Knowledge

22.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

Most of the functions on the Function Site have been verified using the command FullSim−
plify on test equations. 

22.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

22.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

22.5.7 Standardization, Inter−Operability

The system provides translators to LATEX, Html, and MathML. Via MathLink, it  can con−
nect to Java, C/C++, .Net.

22.5.8 Web Access

The company that develops Mathematica, also has a webMathematica product, which allows
users who bought it to create websites with interactive calculations and visualizations, websites
which  integrate  Mathematica.  An  example  of  such  an  interface  can  be  found  at
http://integrals.wolfram.com/ .

A  lot  of  further  information  −  including  a  complete  documentation  of  the  system,  and
technical support − is available on the company’s website.
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22.6 Example of a Theory Exploration Session

A Mathematica session is a sequence of input−output actions: the user types in a command,
evaluates it  (send  it  in  to  the  Mathematica kernel)  and  the  system returns an  answer  (marked
with ’>>’). Here are a few examples:

Some numerical calculations:

2 ^ 100
>> 1267650600228229401496703205376

2^100//N
>> 1.26765 ´ 1030

1/3+2/7
>>

13
������21

Some symbolic computations

3x−x+2
>> 2+2 x

(x+2y+1)(x−2)^2
>> H-2 + xL2 H1 + x + 2 yL

Expand[%]
>> 4 - 3 x 2

+ x3
+ 8 y - 8 x y + 2 x 2 y

Integration

Integrate[x^n,x]
>>

x1+n
���������1+n

Integrate[1/(x^4−a^4),x]
>> -

ArcTan @ x
����a D����������������������2 a3 +

Log@a-xD
������������������4 a3 -

Log@a+xD
������������������4 a3

Sums

Sum[x^(i (i+1)),{i,1,Infinity}]
>>

-2 x 1�4
+EllipticTheta @2,0,x D

���������������������������������������������������������2 x 1�4

Example of a function definition:

f[n_] := n!

or
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f[n_] := n  f[n−1] ; 
f[1] = 1

or

f[n_] := Module[{t = 1, i}, 
For[i =1, i <=n, i++, t *= i];

 t]

23 MathLang

23.1 Short Description

MathLang is a mathematical language and also the associated framework for writing mathe−
matical  texts.  The  mathematical  language  is  developed  from  the  mathematical  vernacular
[Bruijn87] and the weak type theory [KamareddineNederpelt04]. Mathlang allows computerisa−
tion  (i.e.  storing  on  the  computer)  of  mathematical  texts  written  in  a  Common  Mathematical
Language [KamareddineNederpelt04] and provides methods for adding, checking and display−
ing  various  information  aspects  [KamareddineWells07].  One  aspect  is  a  weak  type  system
assigning categories (term, statement, adjective etc.) to parts of text, binds names to meanings,
and checks that a kind of grammatical sense is maintained. Another aspect is combining mathe−
matical  information and  visual  presentation,  associating natural  language text  to  mathematical
information.  A  third  aspect  allows  identifying  chunks  of  text  and  marking  their  roles  (e.g.
theorem, explanation, example, section) and indicating relationships between chunks.  

The  framework  also  helps  the  user  to  formalize  the  mathematical  document,  obtaining  a
document that can be checked by a proof checker (like Mizar and Isabelle).

23.2 Technical Information on the System

23.2.1 Name of the System and Website

MathLang, no website known. The webpage of the Ultra group involved in the development
of MathLang is: http://www.macs.hw.ac.uk/ultra/.

23.2.2 Project Leaders and Group

Leader:  Prof.  Fairouz   Kamareddine  (ULTRA Group,  Heriot−Watt  University,  Edinburgh,
Scotland, UK ). 

Group: Manuel Maarek, Krzysztof Retel and J. B. Wells.
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23.2.3 Main Publications

Fairouz Kamareddine, Manuel Maarek, Krzysztof Retel and Joe Wells, Digitised Mathemat−
ics: Computerisation vs. Formalisation. Review of the National Center for Digitization, Volume
10, pages 1−8, Faculty of Mathematics, Belgrade, Serbia, 2007.

Fairouz  Kamareddine  and  J.B.  Wells,  Computerising  mathematical  texts  in  MathLang,
Second Workshop on Logical and Semantic Frameworks, with Applications, Ouro Preto, Minas
Gerais,  Brazil,  28  August  2007.  ENTCS,  Ayala−Rincon  and  Heusler  (editors).  ISSN:  1571−
0661, January 2008. Elsevier.

23.2.4 Implementation Language

The type checker  that  analyzes the MathLang texts is  implemented in Camlp4 (the parser)
and OCAML (type inferences).  

23.2.5 System Availability and Prerequisites

On request from the system’s authors.

23.3 Algorithm Libraries

23.4 User Language

23.4.1 Programming Language

23.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

Mathematics can be written in the logic chosen by the user. The MathLang system processes
pieces  of  mathematics  expressed  in  Common  Mathematical  Language.  In  certain  cases,
’incorrect’ content can also be processed (like formulae of the kind a = b = c).
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23.4.3 Mathematical Syntax

MathLang is also the mathematical language of the system. It has three aspects:
| The Core Grammatical Aspect (CGa) which provides a kind of grammar for well−formed

mathematics.  It  has  grammatical  categories  and  allows  checking  for  some  basic
well|formedness conditions (e.g. origin of all names and symbols can be tracked).
| The Text and Symbol Aspect (TSa) which allows the integration of normal typesetting and

authoring software (with representations like LaTeX, XML or TEXmacs) with the mathematical
structure represented by CGa.
| The Document Rhetorical Aspect which deals with identifying and relating portions of text

(e.g. a theorem is a chunk of text and so is its proof). 

23.5 Mathematical Knowledge Bases

23.5.1 Available Theories and Knowledge Bases

Using  Mathlang,  parts  of  "A  Compendium  of  Continous  Lattices"  [GierzEtAl80]
(formalized  by  Mizar),  Landau’s  "Foundations  of  Analysis"  [Landau51]  (formalized  by
Automath) and Euclid’s "Elements" were computerized [Heath56].

23.5.2 Tools for Retrieval in Mathematical Knowledge Bases

23.5.3 Tools for Inventing Mathematical Knowledge

23.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

23.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

23.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

23.5.7 Standardization, Inter−Operability

Using  the  informations  from  CGa  and  TSa  (see  User  Language/Mathematical  Syntax),  a
MathLang text can be exported to Mizar, first as a proof sketch with holes and then as a fully
completed proof [KamareddineEtAl07a].
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23.5.8 Web Access

23.6 Example of a Theory Exploration Session

MathLang  is  used  with  TEXmacs,  where  some  macros  have  been  defined  to  be  used  by
authors of MathLang documents. Using these macros, authors can select and annotate pieces of
the mathematical text they are working on. Another way of storing mathematical documents is
by using the XML format. To see how Mathlang can be used by an author we point the reader
to [KamareddineEtAl07b] and [KamareddineEtAl07c].

24 MATHsAiD

24.1 Short Description

MATHsAiD  [McCaslandBundy06]  is  a  system  for  automated  discovery  of  ‘‘interesting’’
mathematical theorems.  Its discovery mechanism comprises two stages: generation and filter−
ing. It operates on equivalence classes of (for now first|order) formulae and terms (equivalence
meaning  respectively  logical  equivalence  and  equality).  Interesting  results  were  obtained  in
group theory, set theory, and arithmetic. An extension for higher|order formulae is planned. 

24.2 Technical Information on the System

24.2.1 Name of the System and Website

Mechanically Ascertaining Theorems from Hypotheses, Axioms and Definitions (MATHs−
AiD).

http://dream.inf.ed.ac.uk/projects/mathsaid/

24.2.2 Project Leaders and Group

The following persons are associated with the project: Alan Bundy, Roy McCasland, Patrick
Smith and Simon Colton.

24.2.3 Main Publications

Roy  McCasland,  Alan  Bundy,  and  Patrick  Smith.  Ascertaining  Mathematical  Theorems,
Electronic  Notes  in  Theoretical  Computer  Science,  Volume  151  (1),  2006,  pp21  −  38.
http://dx.doi.org/10.1016/j.entcs.2005.11.021

Roy McCasland and Alan Bundy. MATHsAiD : a Mathematical Theorem Discovery Tool,
Proceedings  of  SYNASC’  06,  pp17  −  22,  IEEE  Computer  Society  Press,  2006.
http://dream.inf.ed.ac.uk/projects/mathsaid/MTDT.pdf
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Roy  McCasland,  Alan  Bundy,  and  Serge  Autexier.  Automated  discovery  of  inductive
theorems.In   From  Insight  to  Proof:  Festschrift  in  Honor  of  A.Trybulec.  R.Matuszewski  and
P.Rudnicki,  editors,  University  of  Bialystok,  Bialystok,  2007.
http://www.inf.ed.ac.uk/publications/online/1097.pdf

24.2.4 Implementation Language

The interface of MATHsAiD is implemented in Java and its logical engine in Prolog. 

24.2.5 System Availability and Prerequisites

The system is available upon request from Roy McCasland, under a GPL−like licence. For
running  MATHsAiD  an  installation  of  Java  5.0  is  required.  For  now,  because  of  the  Prolog
library that comes with it, MATHsAID works only on Windows.

24.3 Algorithm Libraries

24.3.1 Numerical, Discrete, Algebraic, etc. Libraries

24.3.2 Reasoners

24.3.3 Graphical Tools and Interfaces

MATHsAID  has  a  graphical  user  interface  implemented  in  Java.  The  user  can  input  new
theories (given by axioms/definitions) or add some extra axioms/definitions to existing theories.
Then based on a theory (or a set of axioms in a given theory), the system produces the resulting
theorems. The user can manually insert extra hypotheses and "terms of interest" (the results will
be then filtered, obtaining only theorems containing this terms). 

24.4 User Language

24.4.1 Programming Language

24.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

For now,  the system uses first|order logic for  the formulation of  mathematical knowledge.
An extension towards higher|order terms is planned.

24.4.3 Mathematical Syntax

MATHsAiD has its own custom|tailored syntax.

120



24.5 Mathematical Knowledge Bases

24.5.1 Available Theories and Knowledge Bases

The theories investigated up to now are: Sets, Groups and three different representations of
the natural  numbers:  Positive Integers (with £),  Nstar and Natural  Numbers (focusing on the
induction aspect).

24.5.2 Tools for Retrieval in Mathematical Knowledge Bases

24.5.3 Tools for Inventing Mathematical Knowledge

 MATHsAiD automatically discovers and proves theorems (lemmas, corollaries, etc.) from a
given set of axioms and definitions (supplied by the user). 

Its main components are the automatic hypothesis generator, the theorem generator and  the
theorem filter[McCaslandBundy06].

Given the set of axioms and definitions, the hypothesis generator (HG) builds up:

è a finite sequence 8Hi <i=1
n , where Hi  is a set of hypotheses and 

è a selection of axioms and terms of interest corresponding to each Hi .

This allows the system to concentrate on local aspects of the theory, and thus (in the follow−
ing components)  to  build  theorems in  layers,  rather  than build  them all  at  once.  The HG also
looks at the existing axioms and theorems for finding converses. If such a converse can exist, it
is passed over to the theorem generator that will attempt to prove it. The order of the outputs of
HG matter:  the simpler hypotheses will  be  fed to the theorem generator before more compli−
cated ones will. 

The  theorem generator  takes  as  input  a  set  of  hypotheses  Hk,  asserts  them and  applies  a
forward|chaining  process,  using  the  build|in  first|order  theorem  prover,  deriving  all  conclu−
sions.  Conclusions  satisfying  certain  criteria  (exemplified  below)  are  then  asserted,  then  the
process starts over, until no more new conclusions can be found. The resulting conclusions are
passed over to the theorem filter.

The most important criteria a conclusion has to satisfy is that it should not be a conclusion of
an axiom, the "trivial" conclusion of a theorem or  "trivially derived" from the existing knowl−
edge  (axioms,  theorems).  A  more  detailed  description  of  triviality  is  found  in  [McCasland−
Bundy06].

The theorem filter  takes  these  conclusions,  and  runs  them through a  number  of  tests,  like
irredundancy (checking whether all hypothesis from Hk  are needed to prove the conclusion) or
simplicity (based on a heuristic detailed in [McCaslandetal06]). All conclusions failing a test are
eliminated.

All remaining conclusions are coupled back with Hk, and recorded as theorems.
The  system  was  recently  extended  towards  automated  discovery  of  inductive  theorems

[McCaslandetal07].
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24.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

MathsAid contains an inductive equation prover (used only in the background), as stated in
[McCaslandetal07]. Further details are not known.

24.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

24.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

24.5.7 Standardization, Inter−Operability

24.5.8 Web Access

24.6 Example of a Theory Exploration Session

The user can select a theory, or add a new one: 

122



Then, by clicking on the Theorems tab, he can start an automated discovery on, in this case,
the theory of natural numbers. (or on some of the axioms from the theory of naturals).

The resulting theorems will be:

Theorem 1

Given:a elementOf N;
then:a plusN (successor zeroN)=successor a.

Theorem 2

Given:c elementOf N;b elementOf N;a elementOf N;
then:(a plusN b) plusN c=a plusN (b plusN c).

Theorem 3

Given:a elementOf N;
then:zeroN plusN a=a.

Theorem 4

Given:a elementOf N;b elementOf N;
then:(successor b) plusN a=successor b plusN a.

Theorem 5

Given:b elementOf N;a elementOf N;
then:a plusN b=b plusN a.

Theorem 6

Given:a elementOf N;
then:a timesN (successor zeroN)=a.

Theorem 7

Given:c elementOf N;b elementOf N;a elementOf N;
then:a timesN (b plusN c)=(a timesN b) plusN (a timesN c).

Theorem 8

Given:c elementOf N;b elementOf N;a elementOf N;
then:(b plusN c) timesN a=(b timesN a) plusN (c timesN a).

Theorem 9

Given:c elementOf N;b elementOf N;a elementOf N;
then:(a timesN b) timesN c=a timesN (b timesN c).
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Theorem 10

Given:a elementOf N;
then:zeroN timesN a=zeroN.

Theorem 11

Given:a elementOf N;
then:(successor zeroN) timesN a=a.

Theorem 12

Given:b elementOf N;a elementOf N;
then:a timesN b=b timesN a.

25 Maxima

25.1 Short Description

Maxima  is  an  open−source  computer  algebra  system  based  on  DOE−MACSYMA,  the
oldest computer algebra system. It is It provides both symbolic computation and high−precision
integer and floating−point arithmetic. 

25.2 Technical Information on the System

25.2.1 Name of the System and Website

Maxima. http://maxima.sourceforge.net/index.shtml

25.2.2 Project Leaders and Group

The project is voluntarily developed by a group of 26 people (status as of end of 2007). 

25.2.3 Main Publications

The  Maxima  Reference  Manual.  Version  5.13.0.  Available  at
http://maxima.sourceforge.net/docs.shtml

Paulo Ney de Souza, Richard J. Fateman, Joel Moses, Cliff Yapp. The Maxima Book. 19th
September 2004. Available from http://maxima.sourceforge.net/docs.shtml
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25.2.4 Implementation Language

It  is written in Common Lisp. Additionally has over 26,000 lines of  Fortran, and over 600
lines of C code.

25.2.5 System Availability and Prerequisites

The system is open−source, available freely under GPL. Binaries for Windows and versions
of  Linux are available. If  the system is  compiled from the sources,  some version of  Common
Lisp is needed.

25.3 Algorithm Libraries

Numerical  Libraries:  Numerical  constants,  Manipulation  of  expressions  involving  loga−
rithms, Numerical integration, Fourier transforms, etc., Number theory.

Calculus:  Limits  of  expressions,  Differential  calculus,  Integral  calculus,  Defining  and
solving (differential) equations, Taylor and power series.

Algebra:  Standard  forms  for  polynomials,  and  functions  operating  on  them,  Creating  and
working  with  arrays,  Matrix  operations,  Indicial/Component/Algebraic Tensor  Manipulations,
Symmetries, Groebner bases.

Special functions: Bessel functions of the 1st and 2nd kind, Modified Bessel function of the
1st and 2nd kind, Hermite polynomial ,  Legendre function, Struve H function, Struve L func−
tion, Generalized Hypergeometric function, Gamma function, Incomplete gamma function, Tail
of  incomplete gamma function,  Whittaker functions of  the  1st  and  2nd  kind,,  Complement of
the erf function, Complete elliptic integral of the first kind, Parabolic cylinder function, Elliptic
Functions and Integrals.

There  are  also  contributed  packages,  which  treat  various  specific  mathematical  areas  and
utilities for manipulating mathematical expressions, e.g.: Additional routines for ODEs, Descrip−
tive  statistics,  Jordan  matrices,  Probability  distributions,  Generating  function  of  sequences,
Functions  for  working  with  Groebner  bases,  Implicit  derivatives,  Interpolation  package,
L−BFGS  unconstrained  minimization  package,  Functions  for  linear  algebra,  Least  squares,
Newton’s method, Orthogonal polynomials, Romberg method for numerical integration, Simpli−
fication rules and functions, Linear recurrences, Statistical inference package, Stirling formula,
String processing, Units and dimensions package, Functions for hypergeometric summation.

The system has several plotting packages available: A Maxima−Gnuplot interface,  Graphics
for dynamical systems and fractals, Direction fields plots.
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25.3.1 Reasoners

25.3.2 Graphical Tools and Interfaces

At  its  core,  Maxima  is  a  command  line  system.  There  are  various  graphical  interfaces  to
Maxima some of them widely used, like for example, the Emacs mode for Maxima (which is −
however  −  textual!).  Another  major  mode  for  Emacs  is  Emaxima,  which  allows  the  user  to
insert  Maxima  sessions  and  code  in  a  LATEX  document.  Xmaxima  is  currently  the  default
interface environment on Windows (it is available under Linux, too). It is based on Tcl/Tk, and
acts largely as an enhanced command prompt.

The  TeXmacs  editor  has  a  plugin  for  Maxima,  which  uses  the  TEX  output  Maxima  can
produce.  Another  known  Maxima  interface  is  wxMaxima  based  on  wxWidgets,  which  can
display mathematical formulae in a two−dimensional display format.

25.4 User Language

25.4.1 Programming Language

Maxima has a full programming language which is similar to Pascal and Algol. Semantically
it is similar to Lisp

25.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

None specified.

25.4.3 Mathematical Syntax

Maxima  defines  its  own  syntax  mathematical  syntax.  Mathematical  knowledge  can  be
expressed  by  Maxima  expressions  which  are  atoms  or  lists  consisting  of  an  operator  and  its
arguments.
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25.5 Mathematical Knowledge Bases

25.5.1 Available Theories and Knowledge Bases

25.5.2 Tools for Retrieval in Mathematical Knowledge Bases

25.5.3 Tools for Inventing Mathematical Knowledge

25.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

25.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

25.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

25.5.7 Standardization, Inter−Operability

Maxima  has  a  translator  to  Fortran  and  can  also  output  TEX  strings  (facility  used  by  the
TEXmacs editor).

25.5.8 Web Access

25.6 Example of a Theory Exploration Session

We will present here a very short interaction session with Maxima, without showing all its
capabilities.

Maxima  can  be  used  as  a  calculator  (note  that  the  user  input  must  be  ended  with  ’;’,  the
input and output are differently marked):

(%i1) 9+7;
(%o1) 16
(%i2) −17*19;
(%o2) −323
(%i3) 10/2;
(%o3) 5

Previous input can be accessed using the ’%’ symbol:
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(%i4) % − 10;
(%o4) −5
(%i5) %o1 * 3;
(%o5) 48

Expanding a polynomial

(%i1) (x + 3*y + x^2*y)^3;
                          2             3
(%o1)                   (x  y + 3 y + x)
(%i2) expand (%);
       6  3      4  3       2  3       3      5  2       3  2
(%o2) x  y  + 9 x  y  + 27 x  y  + 27 y  + 3 x  y  + 18 x  y
                                         2      4        2      
3
                                 + 27 x y  + 3 x  y + 9 x  y + x

If we want to substitute x with 5/z then:

(%i3) %o2, x=5/z;
           2        3                 2               3
      135 y    675 y    225 y   2250 y    125   5625 y    1875 y
(%o3) −−−−−− + −−−−−− + −−−−− + −−−−−−− + −−− + −−−−−−− + −−−−−−
        z         2       2        3       3       4         4
                 z       z        z       z       z         z
                                             2          3
                                       9375 y    15625 y        
3
                                     + −−−−−−− + −−−−−−−− + 27 y
                                          5          6
                                         z          z

Solving equations:

(%i6) a + b*c = 1;
(%o6)                      b c + a = 1
(%i7) b − a*c = 0;
(%o7)                      b − a c = 0
(%i8) a + b = 5;
(%o8)                       b + a = 5
(%i9) solve ([%o6, %o7, %o8], [a, b, c]);
            25 sqrt(79) %i + 25      5 sqrt(79) %i + 5
(%o9) [[a = −−−−−−−−−−−−−−−−−−−, b = −−−−−−−−−−−−−−−−−, 
            6 sqrt(79) %i − 34       sqrt(79) %i + 11
    sqrt(79) %i + 1        25 sqrt(79) %i − 25
c = −−−−−−−−−−−−−−−], [a = −−−−−−−−−−−−−−−−−−−, 
          10               6 sqrt(79) %i + 34
    5 sqrt(79) %i − 5        sqrt(79) %i − 1
b = −−−−−−−−−−−−−−−−−, c = − −−−−−−−−−−−−−−−]]
    sqrt(79) %i − 11               10
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26 MBase

26.1 Short Description

MBase  is  a  structured  and  distributed  repository  of  mathematical  knowledge  [Kohlhase−
Franke01]. It is implemented as a mathematical service of the MathWeb mathematical software
bus [FrankeKohlhase99],  which is  in  turn built  on top of  OMDoc.  MathWeb connects a wide
range of  mathematical services (including interfaces to Omega, Bliksem, Otter,  SPASS, RDL,
Mace, Maple, CoCoA).

26.2 Technical Information on the System

26.2.1 Name of the System and Website

MBase: A Mathematical Knowledge Base,  http://www.mathweb.org/mbase/

26.2.2 Project Leaders and Group

The  following  persons  are  currently  developing  the  system:  Andreas  Franke,  Michael
Kohlhase and Paul Libbrecht.

26.2.3 Main Publications

M. Kohlhase and H.M.Franke. MBase: Representing Knowledge and Content for the Integra−
tion of Mathematical Software Systems. Journal of Symbolic Computation, 2001, 32, 365−402.

Michael Kohlhase and Andreas Franke. System Description: MBase, an Open Mathematical
Knowledge Base. CADE−17 Proceedings, LNAI 1831, 2000, pp.455−459.

26.2.4 Implementation Language

MBase is based on mOZart/Oz [mOZart],  java (JDBC), a relational data base management
system (the implicit one that comes with the system is MySQL), and on OMDoc.

26.2.5 System Availability and Prerequisites

MBase is distributed under the terms of the GNU General Public License. The whole MBase
application  can be used under Linux or (experimentally) under Solaris. The only other prerequi−
sites are mOZart and MySQL, which come with the system. (At the time of writing this docu−
ment, the system could not be found to be downloaded anymore).
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26.3 Algorithm Libraries

MBase  is  linked  over  the  MathWeb  mathematical  software  bus  to  a  variety  of  computer
algebra systems, like Maple and CoCoA. As such, it has access to the algorithms implemented
in  those  systems.  Also,  libraries  of  some  theorem  provers  (e.g.,  TPS  proving  system
(http://gtps.math.cmu.edu/tps.html,  Wmega)  have  been  translated  to  OMDoc  and  loaded  into
MBase.

26.3.1 Numerical, Discrete, Algebraic, Etc. Libraries

26.3.2 Reasoners

26.3.3 Graphical Tools and Interfaces

26.4 User Language

26.4.1 Programming Language

26.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

26.4.3 Mathematical Syntax

MBases uses the mathematical syntax of OMDoc.

26.5 Mathematical Knowledge Bases

26.5.1 Available Theories and Knowledge Bases

The  theories  covered  in   MBase  are:  Zermelo−Fraenkel  Set  Theory,  Neumann−Bernays−
Goedel  Set  Theory,  Group  Theory,  Rings,  Fields,  Reals,  Integers,  Naturals,  Polynomials,
Calculus, Topology, etc. The online demo of MBase contains several preloaded theories. These
are  imported  from the  OMDoc  libraries  of  Omega,  but  also  from TPS,  and  from  OpenMath
content dictionaries in OMDoc form. (By the time of writing this document, the on−line demo
was not accessible.)
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26.5.2 Tools for Retrieval in Mathematical Knowledge Bases

The online demo of MBase allows browsing through the theories and retrieval facilities like:
(a) textual search on all mathematical elements available in the knowledge base (called Quick−
Search);  (b)  textual  search  restricted  to  names  of  theories,axioms,symbols,definitions  and
theorems;  (c)  pattern  search  for  terms  and  formulae.  The  pattern  matching  mechanism
(applicative higher−order) is inherited from Oz, the underlying programming language.

As  announced  in  [KohlhaseFranke01],  there  are  plans  to  improve  the  system  by  adding
inference  procedures  like  higher−order  matching  and  (logic−internal)  structuring  mechanisms
like theory morphisms.

The queries made are based on the underlying programming language Oz. Oz has a notion
of  "tuple" which consists of  a label and a number of  values, e.g.  foo (a b c) is  a 3|tuple with
label foo. Identifiers starting with lowercase letters (like a, b, c, foo) are constants. The variables
will start with a capital letter (like F, X, Y, Z). The "_" is considered to be an anonymous vari−
able. 

Pattern matching will be performed on the internal representation of terms and formulae (i.e.
on variable−free tuple trees). E.g. foo (a b c) will match foo (X b c) but not foo(_ _) or foo (X b
X).

26.5.3 Tools for Inventing Mathematical Knowledge

26.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

26.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

26.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

26.5.7 Standardization, Inter−Operability

MBase is connected via the MathWeb software bus to a variety of systems, translating back
and forth mathematical libraries in various formats. MBase documents can be accessed by other
systems  using  the  same  syntax,  like  ActiveMath  does,  or  having  export/import  facilities  for
OMDoc, like PVS has.

26.5.8 Web Access

An online demo is available at http://mbase.mathweb.org:8080/mbase/ (currently down).
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26.6 Example of a Theory Exploration Session

Following  the  pattern  syntax  described  at  http://mbase.mathweb.org:8080/Pattern−
Syntax.html, (currently unavailable) we have the following search examples:

·  Searching  for  a  symbol  with  the  exact  name  "pi"  is  done  by:  s(name:  exact("pi")).  (In
MBase, symbols have the label s.)

·  Searching  for  a  symbol  with  the  substring  "cut"  in  the  name  is  done  by:
s(name:substr("cut")).

·  Regular expressions are allowed, e.g.  s (name:regexp(".group$")) looks for symbols that
end with "group" but have more than 5 characters.

· Searching  for the commutativity law F(x, y) = F(y, x) is done by eq(a (F X Y) a (F Y X)),
which is a shorthand for the expanded form a(s(name:regexp(’^=$)|(^[Ee][Qq])’ )) [a (F [X Y])
a (F [Y X])]. 

· Searching for f Ha, aL = a is done by eq(a(F A A) A).
· Searching for the associativity law f Hx, f Hy, zLL = f H f Hx, yL, zL is done by eq( a (F X a(F Y

Z)) a(F a(F X Y) Z)). 

27 MIZAR

27.1 Short Description

Mizar aims at transforming mathematical ideas into journal articles that are readable both by
humans  and  machines,  warranting  consistency  of  the  definitions  and  correctness  of  proofs
[RudnickiTrybulec01].The  mathematical  objects  in  Mizar  are  theorems,  definitions  and
schemes (i.e.  theorems with second−order variables). The main components of  the system are
the Mizar Verifier and the Mizar Mathematical Library (MML). MML is the largest library of
formalized mathematics existing today.

27.2 Technical Information on the System

27.2.1 Name of the System and Website

MIZAR, http://www.mizar.org/.

27.2.2 Project Leaders and Group

The  Mizar  group  is  led  by  Andrzej  Trybulec  and  has  the  following  members:  Grzegorz
Bancerek, Czeslaw Bylinski, Yasushi Fuwa, Mariusz Giero, Adam Grabowski, Pauline N.Kawa−
moto, Artur Kornilowicz, Jaroslaw Kotowicz, Roman Matuszewski, Robert Milewski, Yatsuka
Nakamura,  Adam  Naumowicz,  Krzysztof  Retel,  Piotr  Rudnicki,  Christoph  Schwarzweller,
Yasunari  Shidama,  Bartlomiej  Skorulski,  Josef  Urban,  Katsumi  Wasaki,  Freek  Wiedijk  and
Mariusz Zynel.
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27.2.3 Main Publications

G.Bancerek,and  P.Rudnicki,  Information Retrieval  in  MML.  In  A.  Asperti,  B.  Buchberger
and J. Davenport (eds.), 

Proceedings of the Second International Conference on Mathematical Knowledge Manage−
ment, Springer, 2003, 2594, 119−132.

Y.  Nakamura  et  al.,  Mizar  Lecture  Notes  (4−th  Edition,  Mizar  Version  6.1.12),  Shinshu
University, Nagano, 2002.

P. Rudnicki and A.Trybulec, Mathematical Knowledge Management in Mizar. In B. Buch−
berger. and O. Caprotti (eds.), Proceedings of MKM2001, 2001.

27.2.4 Implementation Language

 Mizar is coded in Pascal using the Free Pascal compiler (compatible with the GNU Pascal
Compiler and Delphi/Kylix).

27.2.5 System Availability and Prerequisites

The  Mizar  system is  available  for  most  of  the  existing  operating  systems (Win32,  Linux,
Solaris, FreeBSD, Darwin/Mac OS). Free disk space of at least 75 MB is needed for the Mizar
processor, the public data base of the Mizar Mathematical Library (MML) and abstracts of the
Mizar articles in the MML.

27.3 Algorithm Libraries

27.3.1 Numerical, Discrete, Algebraic, etc. Libraries

27.3.2 Reasoners

The  only  reasoning  tool  [WiedijkChecker]  involved  in  Mizar  is  the  by  construct
(representing a subproof in a proof of a theorem). It does not cover full first order provability,
but a weaker variant that can be decided fast and is "quite good at reasoning from type informa−
tion, applying equalities, deducing existential statements" [WiedijkMizar].
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27.3.3 Graphical Tools and Interfaces

 MizarMode  [Urban06]  was  developed  as  an  Emacs  authoring  environment  for  Mizar.  It
provides  proof  assistance  functions  by  integrating  the  functionalities  of  MMLQuery,  MoMM
and the Mizar Proof Advisor (see the Tools for Retrieval subsection of this chapter).

Alcor  [Cairns04]  is a graphical user interface usable for  Mizar.  It  provides a textual editor
together with a search tool for keywords. The search can be performed by highlighting words or
by entering text.The list of search results will contain the location (i.e. Mizar reference) and the
type  of  the  items  found.To  see  the  actual  definition,  the  user  clicks  on  the  location,  and  the
required item is displayed, as given in an Mizar abstract (not a full Mizar article). 

27.4 User Language

27.4.1 Programming Language

27.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The logic language underlying Mizar is classical first−order logic with the added capability
of  forming  second−order  schemes.  The  inference  system  is  the  Jakowski  system  of  natural
deduction. Its library of formalized mathematical data, MML, is based on the Tarski−Grothend−
ieck set theory.

27.4.3 Mathematical Syntax

The  Mizar  Language  is  a  formal  language  derived  from  the  mathematical  vernacular
[Bruijn87,  WiedijkVernacular].  A  file  written  according  to  the  Mizar  Syntax  is  called  a
Mizar article (.miz), and has to be accompanied by a vocabulary file (.voc) specifying the
lexical elements (functions, predicates, etc.).

A Mizar article [WiedijkMizar] contains an environ header and a sequence of theorems and
definitions. The header names the other Mizar articles used in the current one as well as some
parsing  details  (vocabularies  needed,  notations  used  and  constructors  involved  ).  The  reserve
statement reservers variables for a certain type. (e.g. reserve a for Real;).

A definition is of the form: 
definition

let arguments;
assume preconditions;
func: pattern −>type means label:statement;
correctness proof;

end;
The keyword pattern represents the way in  which the operation is written (e.g.  log(a,b) or

x−y). In the statement, the  defined object is referred as it. 
The correctness proof has to guarantee, given the preconditions,  the existence and unique−

ness of the defined object.
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ness of the defined object.
In a definition, synonyms and antonyms can be given, and properties like commutativity or

symmetry can be attributed.

A theorem is of the form:
theorem label:statement
proof

proof steps
end;

Among the proof steps,  we find the following rules:  let (for  universal  introduction e.g.  let
var  be type), take (for existential introduction), consider (for existential elimination), per cases
(for  disjunction elimination). Some natural  deduction rules have no Mizar counterpart and are
handled by so|called diffuse steps using by; see the subsection on Reasoners of this chapter for
more details.  For more on syntax see [WiedijkMizar].

27.5 Mathematical Knowledge Bases

27.5.1 Available Theories and Knowledge Bases

As mentioned before, the knowledge base of Mizar is called the Mizar Mathematical Library
(MML). It is the largest library of formalized mathematics available in the world at this time. It
aims at the reconstruction of the core of mathematics. Built on the axioms of Tarski−Grotend−
ieck set theory, its current version (as of November 2007) includes 942 articles, written by 182
authors,  comprising 42694  theorems,  7957  definitions,  728  schemes,  6942  registrations, 5879
symbols, and 1903 keywords.

Several  well−known theorems that were formalized in Mizar  are: Alexander’s Lemma, the
Banach  Fixed  Point  Theorem  for  compact  spaces,  the  Brouwer  Fixed  Point  Theorem,  the
Birkhoff Variety Theorem for many|sorted algebras, Fermat’s Little Theorem, the Fundamental
Theorem  of  Algebra,  the  Fundamental  Theorem  of  Arithmetic,  the  Goedel  Completeness
Theorem, the Hahn−Banach Theorem for complex and real spaces, the Jordan Curve Theorem
for special polygons, the Reflection Theorem of set theory.

The  biggest  formalization  project  is  the  (still  ongoing)  formalization  of  the  textbook  "A
Compendium of Continuous Lattices" [GierzEtAl80]. 

27.5.2 Tools for Retrieval in Mathematical Knowledge Bases

MMLQuery  [BancerekRudnicki03]  is  a  fast  query  language for  MML.  A  set  of  indices
(which  is  their  version  of  metadata)  is  extracted  from the  library,  and  the  user  can  retrieve a
theorem by combining various filters on these indices. Some examples are:

è Getting the names and links to all articles containing NAT in their identifier:
 list of articles | grep−i NAT

è Obtaining all theorems referring to the mode GROUP_2:mode 1:
list of th from (GROUP_2:mode 1 article);
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è Items which are neither notations nor registrations:
list of item | [not notat and not reg];

è Finding all items refering to all constructors from the theorem labelled FUNCT_1:70:
at least*(FUNCT_1:th 70 ref)

The  Mizar  Proof  Advisor  [Urban05a,  Urban06]  accepts  as  input  a  complete  formula  and
outputs a list of theorems that could help in proving the input formula, sorted by their expected
relevance.  It  is  based  on  the  machine  learning  toolkit  SNoW  [CarlsonEtAl99], which  imple−
ments methods (like neural nets, Markov models, bayesian nets, etc) used for processing natural
language.The  proof  advisor  extracts  features  out  of  each  Mizar  formula  (for  now  only  the
signature of  the  formula)  and   guesses  the  relation between these features and  the  theorems /
definitions used in the proof of the formula. Based on these guesses, the system returns theo−
rems and  definitions that  could  be  relevant  for  the  user  input.  The  best  results  were  obtained
using naive bayesian nets. 

Most  of  Mizar  Matches  (MoMM)  is  another  search  tool  for  mathematical  databases  opti−
mized for Mizar [Urban05]. Based on Stephan Schulz’s prover E, its main goal is to eliminate
redundant formulae. The tool translates parts of the MML into its own clausal−like format and
eliminates the ones that can be subsumed by the others, using a kind of typed subsumption.

27.5.3 Tools for Inventing Mathematical Knowledge

27.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The Mizar verifier is a non−programmable and non−tactical verifier [Urban06].  It  operates
like a  compiler,  in  the traditional "write−compile−correct the mistakes" style. It  takes a Mizar
article as input (see the subsection on mathematical syntax of the language, above) and checks
the file for logical errors [BancerekRudnicki03], using a restricted set of natural deduction rules.

27.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

27.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

27.5.7 Standardization, Inter−Operability

MML  articles can be exported to Prolog−based formats for  theorem proving via the Mizar
Problems for  Theorem Proving (MPTP)  [Urban2005a].  Importing facilities for  parts  of  Mizar
are provided by ISAR and HOL.
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27.5.8 Web Access

MMLQuery  can  be  used  interactively  on  the  web  at
http://mmlquery.mizar.org/mmlquery/three.html  (as  of  10.12.07).  The  Journal  of  Formalized
Mathematics [JFM] gathers the articles accepted in MML. It has been published since 1989 and
is now available on the web. 

27.6 Example of a Theory Exploration Session

An example of formalizing a proof in Mizar is the proof that 
�!!!!

2 is irrational.
The proof  proceeds as follows [WiedijkMizar]:

The statement of the problem is:

sqrt 2 is irrational

The definitions assumed:

the definition of sqrt

reserve a for real number;
definition let a;

assume 0 <= a;
func sqrt a −> real number means
:: SQUARE_1:def 4
0 <= it & it^2 = a;
end;

the definition of  irrational

reserve x for set,
m,n for Integer;

definition
func RAT means
:: RAT_1:def 1
x in it iff ex m,n st x = m/n;
end;

definition let r be number;
attr r is rational means

:: RAT_1:def 2
r in RAT;
end;

reserve x for real number;
notation let x;

antonym x is irrational for x is rational;
end;

The proof proceeds as follows:
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environ
vocabulary SQUARE_1,IRRAT_1,ARYTM_3, RAT_1, INT_1;
constructors NAT_1,PREPOWER, PEPIN, MEMBERD;
notations XCLMPLX_0, 

XREAL_0,INT_1,NAT_1,RAT_1,SQUARE_1,IRRAT_1;
registrations XREAL_0,INT_1,MEMBERED;
notations 

XCMPLX_0,XREAL_0,INT_1,NAT_1,RAT_1,SQUARE_1,IRRAT_1;
theorems 

INT_1,SQUARE_1,REAL_2,INT_2,XCMPLX_1,NAT_1,RAT_1,NEWTON;
requirements ARITHM,REAL,NUMERALS,SUBSET;

begin
theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
then consider i being Integer, n being Nat such that
W1: n<>0 and
W2: sqrt 2=i/n and
W3: for i1 being Integer, n1 being Nat st n1<>0 & sqrt 

2=i1/n1 holds n<=n1
by RAT_1:25;

A5: i=sqrt 2*n by W1,XCMPLX_1:88,W2;
C: sqrt 2>=0 & n>0 by W1,NAT_1:19,SQUARE_1:93;
    then i>=0 by A5,REAL_2:121;

               then reconsider m = i as Nat by INT_1:16;
A6: m*m = n*n*(sqrt 2*sqrt 2) by A5
    .= n*n*(sqrt 2)^2 by SQUARE_1:def 3
    .= 2*(n*n) by SQUARE_1:def 4;
    then 2 divides m*m by NAT_1:def 3;
    then 2 divides m by INT_2:44,NEWTON:98;
    then consider m1 being Nat such that

          W4: m=2*m1 by NAT_1:def 3;
   m1*m1*2*2 = m1*(m1*2)*2
   .= 2*(n*n) by W4,A6,XCMPLX_1:4;
   then 2*(m1*m1) = n*n by XCMPLX_1:5;
   then 2 divides n*n by NAT_1:def 3;
   then 2 divides n by INT_2:44,NEWTON:98;
   then consider n1 being Nat such that
W5: n=2*n1 by NAT_1:def 3;
A10: m1/n1 = sqrt 2 by W4,W5,XCMPLX_1:92,W2;
A11: n1>0 by W5,C,REAL_2:123;
     then 2*n1>1*n1 by REAL_2:199;
hence contradiction by A10,W5,A11,W3;
end;

The Mizar Verifier takes this article, compiles it and returns the mistakes. The user improves
the code, and runs the verifier again.
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28 Nuprl

28.1 Short Description

The  Nuprl  system  is  designed  to  give  assistance  with  creation  of  mathematical  theories
(proofs,  formulae,  definitions,  ...).  It  underlines the  computational aspects  of  terms,  assertions
and proofs. In a broader sense, it is a system for implementing mathematics [NuPRLBook]. The
last version of the system (Nuprl 5) is subsumed by − and included into − the FDL project (see
the  respective  chapter  of  this  document).  Most  of  the  system  information  below  is  extracted
from the version 4.xx documentation which is still valid for version 5.

28.2 Technical Information on the System

28.2.1 Name of the System and Website

NuPRL or Nuprl.
PRL is an acronym for "Proof/Program Refinement Logic". Several "PRL" systems, equiva−

lent  in  some sense,  were  implemented, NuPRL (also read "new pearl")  is  the version "nu"  of
one series of PRL systems.

http://www.cs.cornell.edu/info/projects/nuprl/index.html

28.2.2 Project Leaders and Group

The leader of the project is Robert L.Constable (Dean of Faculty of Computing and Informa−
tion Science, Computer Science Department, Cornell University).

The  group  of  members  working  on  NuPRL  consists  of  (including  former  members)  Eli
Barzilay,  David  Basin,  Ralph  Benzinger,  Jim  Caldwell,  Tat−Hung  Chan,  Wilfred  Chen,  W.
Rance  Cleaveland,  Karl  Crary,   Rich  Eaton,  Timothy  G.  Griffin,  Ozan  Hafizogullari,  Mark
Hayden, Jason Hickey, Lori Lorigo, Amanda Holland−Minkley, Paul Jackson, Todd B. Knob−
lock,  Alexey  Kopylov,  Nax  P.  Mendler,  Wojciech  Moczydlowski,  Evan  Moran,  Rod  Moten,
Chetan Murthy, Pavel Naumov, Alexey Nogin, James T. Sasaki, Scott F. Smith, Melissa Tot−
man, Judith Underwood.

28.2.3 Main Publications

The  PRL  Group.  Implementing  Mathematics  with  the  Nuprl  Proof  Development  System.
Computer  Science  Department,  Cornell  University.  October  1995.  Available  at:
http://www.cs.cornell.edu/info/projects/nuprl/book/doc.html (last checked on 16.11.2007).

Jackson,  Paul  B.  "Enhancing  the  Nuprl  Proof  Development  System  and  Applying  it  to
Computational Abstract Algebra," Ph.D. Thesis, Cornell University, TR95−1905. 1995.

Christoph Kreitz. The Nuprl Proof Development System, Version 5. Reference Manual and
User’s  Guide.  (2002)  Available  on−line  at:
http://www.cs.cornell.edu/info/projects/nuprl/html/nuprl5docs.html  (last  checked  on
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http://www.cs.cornell.edu/info/projects/nuprl/html/nuprl5docs.html  (last  checked  on
16.11.2007).

28.2.4 Implementation Language

"The Nuprl implementation consists of more than 100K lines of Lisp and tactic code imple−
mented in ML. Parts of the system consist of legacy codes going as far back as the late 1970’s
(Edinburgh LCF)" [CaldwellCowles02].

28.2.5 System Availability and Prerequisites

The system can be downloaded freely from the project’s website (via ftp). By compiling it, it
can  be  used  under  most  operating  systems.  For  this,  a  licensed  lisp  compiler  will  be  needed
(CMUCL,  Allegro,  etc).  To  run  the  installation  script,  perl  5  is  needed.  Additionally,  but
optional, the Emacs editor is also needed.

28.3 Algorithm Libraries

28.3.1 Numerical/Algebraic/Symbolic/etc. Libraries

28.3.2 Reasoners

Proofs in Nuprl are done interactively. The user states a goal, and then by specifying refine−
ment  tactics  −  by  name  and  possible  parameters  −,  the  goal  is  decomposed  in  a  top−down
manner.  The  number  of  rules  is  very  large,  so  instead  of  remembering each  rule’s  name,  the
system  provides  some  generic  names.  The  proof  editor  −  the  environment  within  the  users
develop  their  proofs  −  will  infer  the  specifically  needed  rule  from  the  local  context.  Some
refinement tactics may be very complicated.

With version 5, users can invoke the MetaPRL refiner, and there’s ongoing work to connect
the system with HOL [GordonMelham93], Mathematica [Wolfram], Isabelle [Paulson07a].

Nuprl can extract programs from correct proofs.

28.3.3 Graphical Tools and Interfaces

The  system  comes  with  its  own  interface.  For  a  description,  see  ’Example  of  a  Theory
Exploration Session’ subsection below for a description.
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28.4 User Language

28.4.1 Programming Language

The system has its own metalanguage, implemented in ML. User can write refinement rules,
tactics, programs, etc. using this language. Additionally, to interact with the system, there is also
a command language that initiates editing of proofs, tactics, etc.

28.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The  logical  language  of  Nuprl  (also  called  the  object  language)  is,  in  principle,  based  on
Martin−Löf’s type theory.  The types available in the system can be grouped into five coarse−
grained  categories:  familiar  types  and  type  constructors  (like  in  the  typed  programming  lan−
guages  ML  or  Pascal);  dependent  functions and  dependent  product  constructors;  quotient  and
set types; propositions as types; recursive types and partial functions.

Users can define various logics and then use them for stating theorems. 

28.4.3 Mathematical Syntax

The syntax of NuPRL’s ML language. See [Kreitz02, Appendix B] for details. The system
also allows to define ones own syntax. 

28.5 Mathematical Knowledge Bases

28.5.1 Available Theories and Knowledge Bases

The  Nuprl  knowledge  base  uses  a  transactional  model  for  entering  and  modifying  objects
(definitions, theorems, etc.) following similar protocols as database systems do. Objects are not
deleted/overwritten, rather a version control mechanism is used [NuPRLBook]. The order of the
objects in the database is important. Referred objects must occur earlier in the library than the
objects referring them.

The kinds of objects that can be stored in the library are four: DEF (define new notations),
THM (proofs  in  tree  form),  EVAL (list  of  bindings −  "let  id  =  term ;;"),  ML (ML programs,
tactics).

Each object in the library has a status associated to it: 
− raw: the object has been changed, but it is not yet checked;
− bad: the object has been checked and errors has been found;
− incomplete (only for proofs): proof contains no errors, but it is not finished;
− complete: object is correct and complete.  [NuPRLBook].
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The knowledge base supports dependency tracking in order to check theorem validity w.r.t.
specific sets of rules, axioms, etc. [NuPRLBook].

The  Nuprl  library  consists  of  a  collection  of  independent  theories  (books).  We  list  them
below:

Nuprl Basics (By Stuart Allen): Explains the basic concepts and methods used for mathemati−
cal expression in Nuprl.

Standard  Resources:  A  library  of  "standard"  Nuprl  objects  (arrays,  rationals,  binary  rela−
tions, booleans, integers, etc.)

Elementary Number Theory: Elementary divisibility theory over the integers, Gcd function
and relation, Chinese remainder theorem.

Lists: Concepts and facts about lists.
Finite automata (Constable et. al): A constructive formalization of part of Aho, Hopcroft &

Ulmann’s book.
Chain Replication Protocol (Mark Bickford)
Event Systems (Mark Bickford)
Graph Theory (Mark Bickford)
Hybrid Protocols (Mark Bickford)
Discrete Mathematics (Stuart Allen)
Fundamental Theorem of Arithmetic (Stuart Allen)
Iterated Binary Operations (Stuart Allen)
Russel’s Paradox (Stuart Allen)
Towers of Hanoi (Stuart Allen)
Classical Propositional Logic (J. Caldwell)
General Automata Theory (Mark Bickford)
The Zeno Paradox (Pavel Naumov)
Simple Imperative Programming (Paul Naumov)
Turing Machine Basics (P. Naumov)
Bar−Type Rules (Karl Cray)
Constructive General Algebra (P. Jackson)
Permutations (P. Jackson)
Finite Multi−sets (P. Jackson)
Constructive Factorization Theory (P. Jackson)
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28.5.2 Tools for Retrieval in Mathematical Knowledge Bases

28.5.3 Tools for Inventing Mathematical Knowledge

28.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

28.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

The Nuprl  version 5 is subsumed by the FDL project which has some tools for structuring
and re−structuring of mathematical content. See the chapter on FDL, in this document.

28.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

Using  the  ML  language,  users  of  Nuprl  can  implement  new  proof  tactics,  which  can  be
checked by the system. (In fact, when tactics are stored into the Nuprl library as ML objects −
see ’Available Theories and  Knowledge Bases’  above  −  they  must  be  checked correct  by  the
system.) The system also supports reflection (see [Barzilay06]).

28.5.7 Standardization, Inter−Operability

The group has done some experiments with integrating PVS [PVSWeb] libraries into Nuprl
[KleinbergEtAl03]. The Nuprl library is also included in the Helm (see the chapter on Helm of
this document) repository of browsable mathematical content.

Various  translator  between  NuPRL  and  other  systems  have  been  implemented.  See,  for
example,  [NaumovEtAl01].  Another  such  example  is  the  interaction  between  NuPrl  and  the
Weyl computer algebra system, described in [Jackson94a].

With version 5, a new design of the system, Nuprl LPE (logical programming environment)
is  to  replace  the  former  monolithic  architecture  of  the  system.  The  central  component  is  a
knowledge  base  to  which  various  components  (proof  engines,  editors,  evaluators,  translators)
can connect.

28.5.8 Web Access

The system has a tool that automatically converts formal, computer−generated mathematical
texts  into  a  set  of  HTML  files.  The  tool  preserves  the  original,  non−linear  text  structure
[Naumov98].  The libraries listed in the ’Available Theories and Knowledge Bases’ subsection
above are generated with this tool, and can be inspected via a web browser.

The Nuprl library is also available for browsing from Helm’s website.
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28.6 Example of a Theory Exploration Session

28.6.1 General Description

The  Nuprl  system  has  six  major  components  [NuPRLBook]:  a  window  manager,  a  proof
editor, a text editor, a library module, a command module, and a function evaluator. Switching
between windows can be done with (combinations of) mouse clicks and keyboard. The window
manager is responsible of providing an interface for creating, inspecting, modifying objects like
definitions,  theorems,  proofs  and  libraries on  a  terminal  screen.  We  will  detail  some of  these
components below.

The windows used in the Nuprl system are: The Command Window, The Library Window,
The Refinement Editor (or the Proof Editor), The Text Editor.

The "P>" prompt in the Command Window tells the user that the command processor waits
for  a  command. There are four groups of  commands: commands that control  the library win−
dow,  commands  that  manipulate  objects,  commands  that  save  work  between  sessions,  and
miscellaneous commands. 

Examples of library commands:

P>   jump object 

causes the library window to redisplay, centering on the specified entry (object is the name
of an object in the library).

P>   move  objects place

objects are moved after the specified place.

Examples of object manipulation commands:

P>   archive  objects

Copies of  each of the objects are made and saved as the old version. (remember that there
are no ways to delete an object.)

P>   check  objects

Each object is checked. If this operation completes without errors, the objects are from now
on available for use in other objects.

Examples of storing result commands:

P>   dump objects {to   filename}
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Write a representation of the object from the current library to the given file. 

P>    load place from file

Read in a file created with the ’dump’ command. The library entries are added at the given
place.  Certain  rules  about  how  to  read  in  the  content  of  the  file  are  taken  into  account.  See
[NuPRLBook].

Among  the  miscellaneous  commands  we  mention  ’exit’  which  terminates  the  current
NuPRL session, and ’shell’ which creates an interactive subshell (only on Linux/Unix versions
of NuPRL)

As mentioned earlier, each object in the library has a status associated to it: 
−  raw:  the  object  has  been  changed,  but  it  is  not  yet  checked;  these  entries  are

marked with ’?’;
−  bad:  the  object  has  been  checked  and  errors  has  been  found;  these  entries  are

marked with ’−’;
− incomplete (only for proofs): proof contains no errors, but it is not finished; these

entries are marked with ’#’;
−  complete:  object  is  correct  and  complete;  these  entries  are  marked  with  ’*’.

[NuPRLBook].

Nuprl  texts  are  sequences  of  characters  stored  internally  as  recursive  trees.  They  are  also
know  as  text  trees  or  T−trees.  The  Nuprl  text  editor  is  a  structure  editor  for  these  trees.  The
modifications to the objects edited with this editor are reflected immediately

For a tutorial on how to use the Nuprl text editor and the Nuprl proof editor see [Jackson94].
We show here only an example of how to create a library (theory) and a proving example from
the predicate logic, both examples taken from [NuPRLBook].

28.6.2 A Proof Example

Nuprl proofs are stored in a Lisp−readable form consisting of: the name of the theorem, its
status (complete, partial, or in error), the sequent term which is the goal of the proof, the tactic
script used to generate the proof,  the extract term of the proof,  and a list of lemma references
made in the proof [CaldwellCowles02].

We show the proof of the following statement as a sequence of windows seen by the user of
the system.

"
A:U1

"
P:A®A®U1

$
y:A

"
x:A

P HxL HyL� "
x:A

$
y:A

P HxL HyL

Proofs  in  Nuprl  are  represented  as  trees.  Each  node  contains  a  sequent  (composed  of  a
numbered list of hypotheses and a goal − preceded by ’>>’) and a rule (if the node is not a leaf).

Some steps in the proof of the statement above have been skipped in this presentation. Note
the  occurrence  of  the  symbols  used  for  raw  and  complete  objects,  ’#’  and  ’*’,   mentioned
before.  The  ’top’  keyword  shows  which  position  in  the  proof  tree  is  displayed  in  the  proof
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before.  The  ’top’  keyword  shows  which  position  in  the  proof  tree  is  displayed  in  the  proof
editor. 

Entering the goal:

,−−−−−−−−−−−−−−−−−−−−−−,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,
|EDIT THM t3           |EDIT main goal of t3                  |
|−−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|?top                  |>>all A:U1.all P:A−>A−>U1.            | 
|<main proof goal>     |       some y:A.all x:A.P(x)(y)=>     |
|                      |       all x:A.some y:A.P(x)(y)       |
|                      ’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
|                                                             |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

After applying the ’intro’ refinement rule, we have two goals:

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,
|EDIT THM t3                                            |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|# top 1 1                                              |
|1. A:(U1)                                              |
|2. P:(A−>A−>U1)                                        |
|>>some y:A.all x:A.P(x)(y)=>all x:A.some y:A.P(x)(y)   |
|                                                       |
|BY intro at U1                                         |
|                                                       |
|1# 1. A:(U1)                                           |
|2. P:(A−>A−>U1)                                        |
|3. some y:A.all x:A.P(x)(y)                            |
|   >>all x:A.some y:A.P(x)(y)                          |
|                                                       |
|2# 1. A:(U1)                                           |
|2. P:(A−>A−>U1)                                        |
|   >>some y:A.all x:A.P(x)(y) in U1                    |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

Here, an elimination step on the third hypothesis is tried:

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,−−−−−−−−−−−−−−−−−,
|EDIT THM t3                           |EDIT rule of t3  |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|−−−−−−−−−−−−−−−−−|
|# top 1 1 1 1                         |elim 3           |
|1. A:(U1)                             |                 |
|2. P:(A−>A−>U1)                       |                 |
|3. some y:A.all x:A.P(x)(y)           |                 |
|4. x:(A)                              |                 |
|>>(some y:A.P(x)(y))                  |                 |
|                                      |                 |
|BY<refinement rule>                   ’−−−−−−−−−−−−−−−−−|
|                                                        |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
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The elimination step requires two new variables (y0and h):

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,
|EDIT THM t3                                     |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|# top 1 1 1 1                                   |
|1. A:(U1)                                       |
|2. P:(A−>A−>U1)                                 |
|3. some y:A.all x:A.P(x)(y)                     |
|4. x:(A)                                        |
|>>(some y:A.P(x)(y))                            |
|                                                |
|BY elim 3 new y0,h                              |
|                                                |
|1# 1. A:(U1)                                    |
|2. P:(A−>A−>U1)                                 |
|3. some y:A.all x:A.P(x)(y)                     |
|4. x:(A)                                        |
|5. y0:(A)                                       |
|6. h:(all x:A.P(x)(y0))                         |
|   >>(some y:A.P(x)(y))                         |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,
|EDIT THM t3                                     |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|# top 1 1 1 1 1                                 |
|1. A:(U1)                                       |
|2. P:(A−>A−>U1)                                 |
|3. some y:A.all x:A.P(x)(y)                     |
|4. x:(A)                                        |
|5. y0:(A)                                       |
|6. h:(all x:A.P(x)(y0))                         |
|>>(some y:A.P(x)(y))                            |
|                                                |
|BY intro y0                                     |
|                                                |
|1*1. A:(U1)                                     |
|2. P:(A−>A−>U1)                                 |
|3. some y:A.all x:A.P(x)(y)                     |
|4. x:(A)                                        |
|5. y0:(A)                                       |
|6. h:(all x:A.P(x)(y0))                         |
|   >>y0 in (A)                                  |
|                                                |
|2# 1. A:(U1)                                    |
|2. P:(A−>A−>U1)                                 |
|3. some y:A.all x:A.P(x)(y)                     |
|4. x:(A)                                        |
|5. y0:(A)                                       |
|6. h:(all x:A.P(x)(y0))                         |
|   >>(P(x)(y0))                                 |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’
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The first generated subgoal, above, is proved immediately (identical with the assumption 5).
We continue with the second subgoal:

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,
|EDIT THM t3                                      |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|*top 1 1 1 1 1 2                                 |
|1. A:(U1)                                        |
|2. P:(A−>A−>U1)                                  |
|3. some y:A.all x:A.P(x)(y)                      |
|4. x:(A)                                         |
|5. y0:(A)                                        |
|6. h:(all x:A.P(x)(y0))                          |
|>>(P(x)(y0))                                     |
|                                                 |
|BY elim h on x                                   |
|                                                 |
|1*1. A:(U1)                                      |
|2. P:(A−>A−>U1)                                  |
|3. some y:A.all x:A.P(x)(y)                      |
|4. x:(A)                                         |
|5. y0:(A)                                        |
|6. h:(all x:A.P(x)(y0))                          |
|   >>x in (A)                                    |
|                                                 |
|2*1. A:(U1)                                      |
|2. P:(A−>A−>U1)                                  |
|3. some y:A.all x:A.P(x)(y)                      |
|4. x:(A)                                         |
|5. y0:(A)                                        |
|6. h:(all x:A.P(x)(y0))                          |
|7. (P(x)(y0))                                    |
|   >>(P(x)(y0))                                  |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

We  have,  again,  obtained  two  subgoals  which  are  identical  with  hypothesis  in  the  local
context (in each case), and the proof is done.

28.6.3 A Library Example

Here is a library with some propositional logic rules. The ’*’ character means that the library
entries are completed. What we see below is the content of the Library Window.

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−,
| Library                                                        
|
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−|
|*C class_prop_begin *********** CLASS PROP ****************  
|
|*t dneg_elim " A: P{i}. ¬¬ A � A                      
|
|*t imp_elim " A: {i}. " B: {i}. (A � B) � ¬ A Þ B  
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|*t imp_elim " A: P{i}. " B: P{i}. (A � B) � ¬ A Þ B  
|
|*t neg_imp_elim " A: P{i}. " B: P{i}. ¬(A � B) � A ß ¬ 
B | 
|*t neg_or_elim " A: P{i}. " B: P{i}. ¬(A Þ B) ) � A ß ¬ 
B| 
|*t neg_and_elim " A: P{i}. " B: P{i}. ¬(A ß B) ) � A Þ ¬ 
B|
|*t pierce " A: P{i}. " B: P{i}. ((P � Q) � P) � 
P |
|*C class_prop_end ***************************************  
|
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−’

Pi  reads as ’propositional universe i’  and is a type for propositions. The subscript i  corre−
sponds  to  the  type  theoretic  tradition  established  by  Bertrand  Russell.  There  is  an  infinite,
cumulative series of types of propositions: P1, P2, P3, ...; Pi  contains all the levels from 1 up to
i−1 , the subscripts are called levels.

To create an own theory, we have to scroll at the bottom of the library and add delimiters for
the new theory:

bottom HL
add_theory _delimiters "user"

Now the Library Window looks like:

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−,
| Library                                                        
|
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−|
|*C class_prop_begin *********** CLASS PROP ****************  
|
|*t dneg_elim " A: P{i}. ¬¬ A � A                      
|
|*t imp_elim " A: P{i}. " B: P{i}. (A � B) � ¬ A Þ B  
|
|*t neg_imp_elim " A: P{i}. " B: P{i}. ¬(A � B) � A ß ¬ 
B | 
|*t neg_or_elim " A: P{i}. " B: P{i}. ¬(A Þ B) ) � A ß ¬ 
B| 
|*t neg_and_elim " A: P{i}. " B: P{i}. ¬(A ß B) ) � A Þ ¬ 
B|
|*t pierce " A: P{i}. " B: P{i}. ((P � Q) � P) � 
P |
|*C class_prop_end ***************************************  
|
|*C user begin ************** USER *******************  
|
|*C user end ***************************************  
|
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−’

Creating definitions and/or theorems is done in two stages. First, we must create a slot in the
library for the new definition/theorem. The command for this is ’create’ with some parameters:
the type of entity we want to add, the place in the library, the name of the entity.

create "not_over_and" thm "user_end"

The command is to be entered into the command window. The Library Window is modified
as follows

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−,
| Library                                                        
|
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−|
|*C class_prop_begin *********** CLASS PROP ****************  
|
|*t dneg_elim " A: P{i}. ¬¬ A � A                      
|
|*t imp_elim " A: P{i}. " B: P{i}. (A � B) � ¬ A Þ B  
|
|*t neg_imp_elim " A: P{i}. " B: P{i}. ¬(A � B) � A ß ¬ 
B | 
|*t neg_or_elim " A: P{i}. " B: P{i}. ¬(A Þ B) � ¬ A ß ¬ 
B| 
|*t neg_and_elim " A: P{i}. " B: P{i}. ¬(A ß B) � ¬ A Þ ¬ 
B|
|*t pierce " A: P{i}. " B: P{i}. ((P � Q) � P) � 
P |
|*C class_prop_end ***************************************  
|
|*C user begin ************** USER *******************  
|
|?t not_over_and [term]                                   
|
|*C user end ***************************************  
|
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−’

After  having  created  the  slot  for  the  new  theorem,  we  have  to  invoke  the  proof  and  text
editors for it. This is done with the ’view’ command:

view "not_over_and"

In addition to the Library (and the Command) window(s), the user sees now a new window,
the proof editor window:

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−,
| EDIT THM not_over_and                |
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−|
|?  top                                |
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|?  top                                |
|<main proof goal>                     |
|                                      |
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’

A click on the ’<main proof goal>’ will open the Nuprl text editor, where the theorem can
be typed in.  We don’t  show this window, here.  The theorem we type in is: "A:P{i}. "B:P{i}.
¬(AßB) � ¬AÞ¬B , and the Library window looks like:

,−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−,
| Library                                                        
|
|−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−|
|*C class_prop_begin *********** CLASS PROP ****************  
|
|*t dneg_elim " A: P{i}. ¬¬ A � A                      
|
|*t imp_elim " A: P{i}. " B: P{i}. (A � B) � ¬ A Þ B  
|
|*t neg_imp_elim " A: P{i}. " B: P{i}. ¬(A � B) � A ß ¬ 
B | 
|*t neg_or_elim " A: P{i}. " B: P{i}. ¬(A Þ B) � ¬ A ß ¬ 
B| 
|*t neg_and_elim " A: P{i}. " B: P{i}. ¬(A ß B) � ¬ A Þ ¬ 
B|
|*t pierce " A: P{i}. " B: P{i}. ((P � Q) � P) � 
P |
|*C class_prop_end ***************************************  
|
|*C user begin ************** USER *******************  
|
|#t not_over_and " A: P{i}. " B: P{i}. ¬(A ß B) � ¬ A Þ ¬ 
B|
|*C user end ***************************************  
|
’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−’

Notice that the mark before the newly introduced theorem is now ’#’ which means that the
object  is  syntactically correct,  but  needs checking (i.e.  a  proof).  This  is  done as shown in  the
subsection ’A Proof Example’ above.

Saving  and  loading  the  theory  is  done  with  the  commands  in  the  Command  Window
described above. (’dump’ , ’load’).
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29 OMDoc

29.1 Short Description

The  Open  Mathematical  Documents  (OMDOC)  format  "is  a  content  markup  scheme  for
(collections  of)  mathematical  documents  including  articles,  textbooks,  interactive  books,  and
courses. OMDoc also serves as the content language for agent communication of mathematical
services on a mathematical software bus" [Kohlhase06]. It is build as an extension of OpenMath
[OpenMath]  that  treats  whole  mathematical  theories.  It  is  based  on  a  three−level  hierarchy
consisting of:

· mathematical formulae (coded in content MathML [MathML] or OpenMath),
· various statements (like definitions, assertions and examples) and
· theories (related by morphisms for expressing e.g. theory inclusion/interpretation).

29.2 Technical Information on the System

29.2.1 Name of the System and Website

Open Mathematical Documents (OMDoc), http://www.omdoc.org/ .

29.2.2 Project Leaders and Group

OMDoc  is  led  by  Michael  Kohlhase  (Jacobs  University  Bremen),  and  has  the  following
members: Paul Libbrecht, Andreas Franke, George Goguadze, Olga Caprotti, Alberto Gonzalez
Palomo, Christoph Lange, and Florian Rabe.

29.2.3 Main Publications

 M.  Kohlhase,  OMDoc.  An  Open  Markup  Format  for  Mathematical  Documents  (version
1.2),   LNAI  4180,  August  2006,  Springer−Verlag  GmbH.
http://www.omdoc.org/pubs/omdoc1.2.pdf

M.  Kohlhase,  OMDoc:Towards  an  Internet  Standard  for  the  Administration,  Distribution
and Teaching of mathematical Knowledge Proceedings of "Artificial Intelligence and Symbolic
Computation", Springer LNAI,2000. http://www.omdoc.org/pubs/aisc00.pdf

M.  Kohlhase,  OMDoc:An  Infrastructure  for  OpenMath  Content  Dictionary  Information
Bulletin  of  the  ACM  Special  Interest  Group  for  Algorithmic  Mathematics  SIGSAM,  2000.
http://www.omdoc.org/pubs/sigsam.pdf

29.2.4 System Availability and Prerequisites

OMDoc is a content markup language, and as such, is available free of charge.
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29.3 Algorithm Libraries

29.4 User Language

29.4.1 Programming Language

29.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

29.4.3 Mathematical Syntax

OMDoc is a markup format and data model for Open Mathematical Documents. It serves as
semantics|oriented representation format and ontology language for mathematical knowledge. 

The  mathematical  formulae are  represented in  OMDoc by  OpenMath  objects  (the  element
OMOBJ).  These have a tree|like representation containing applications (OMA),  binding struc−
tures (OMBIND using OMBVAR to specify the bound variables), variables (OMV), and symbols
(OMS).

The structure of the mathematical statements (definition, axiom, example, theory, lemma) is
made explicit by a set of formal mathematical properties (FMP) and commented mathematical
properties (CMP). E.g. 

<definition for=ø#plusø type=ørecursiveø> 
    <CMP>Addition is defined by recursion on the second argument </CMP> 
    <FMP> X + 0 = 0</FMP> 
    <FMP>X + s(Y ) = s(X + Y )</FMP> 

</definition>
Also  authorship,  title  can  be  specified  in  a  <metadata> tag.  For  more  details  about  the

OMDoc syntax see [Kohlhase06].

29.5 Mathematical Knowledge Bases

29.5.1 Available Theories

Since OMDoc is a markup format it does not have its own libraries of mathematical theories.
However,  ActiveMath,  MBase,  Omega,  SWiM  and  other  systems  (see  chapter  26  in
[Kohlhase06]) use OMDoc for the representation of structured mathematical knowledge.
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29.5.2 Tools for Retrieval in Mathematical Knowledge Bases

MathWebSearch is an online search engine for mathematical expressions developed by the
KWARK team at Bremen [KohlhaseSucan06]. It contains

· knowledge bases obtained by harvesting the internet for content representations of mathe−
matical expressions (currently the OpenMath and the content MathML formats are supported),

·  an  indexing  mechanism using  substitution trees  [Graf96]  that  creates  index  terms for  all
mathematical  expressions  (i.e.for  each  math  element  in  MathML  and  more  or  less  for  each
apply element in OpenMath) and

· a query language for mathematical expressions, realized as a generic extension mechanism
for XML−based representation formats.

The  repositories  of  mathematical  knowledge  that  are  harvested  include  the  ActiveMath
[MelisSiekmann04]  repository,  the  CONNEXIONS  corpus  [CONNEXIONS]  and  the  MBase
system  [KohlhaseFranke01].The  mathematical  expressions  are  interpreted  by  the  indexing
mechanism as first−order terms. The query language is obtained by adding new attributes and
tags to the XML−based languages. For example, the attribute mq:generic is used for matching
any  subterm  in  the  index,  the  attribute  mq:anyorder for  specifying  an  arbitrary  order  of  the
parameters of the current node

The user can input the desired search query in OpenMath  or MathML format.In the former
case,  one  may  also  take  advantage  of  the  WIRIS [WIRIS]  OpenMath  Editor  (a  user−friendly
Java  plug−in  for  editing  mathematical  expressions).  The  standard  term retrieval  algorithm for
substitution  trees  [Graf94]  is  used  as  a  search  algorithm.  The  system  can  find  an  expression
(occurring as a  subexpression in  any statement) up to Α|conversion by adding the mq:generic
attribute to every bound variable in the search query. Searches in informal text are not possible. 

A related OMDoc tool also developed by the KWARK team is a semantic wiki (a wiki with
Semantic  Web  Capabilities)  allowing  in  the  wiki  pages  also  OMDoc  expressions  texts  called
SWiM [Lange07].

29.5.3 Tools for Inventing Mathematical Knowledge

29.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

29.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

29.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

29.5.7 Standardization, Inter−Operability

OMDoc is a XML−based markup format, and as such,  it  is  platform|independent, and can
be | and is | used successfully for communication between applications.
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29.5.8 Web Access

OMDoc itself  can not  be accessed on the web.  The OMDoc repositories from ActiveMath
and MBase can be visualized on the web.  

29.6 Example of a Theory Exploration Session

An example of  an OMDoc document  is  the following fragment, taken from a file dealing
with the natural numbers, 

https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/examples/deussen/nat.numbers.om
doc.

<?xml version="1.0" encoding="utf−8"?>
<!DOCTYPE omdoc PUBLIC "−//OMDoc//DTD OMDoc V1.2//EN" 
"../../dtd/omdoc.dtd"[]>
 <omdoc xmlns:dc="http://purl.org/dc/elements/1.1/" 
xmlns="http://www.mathweb.org/omdoc" xml:id="nat.numbers.omdoc">
      <metadata>
      <dc:title xml:lang="en">Natural Numbers</dc:title>
              <dc:creator role="aut">Barbara Schuett 
Kerber</dc:creator>
               <dc:creator role="aut">Michael 
Kohlhase</dc:creator>
       </metadata>
       <theory xml:id="nat.numbers">
              <symbol name="succ" role="object" scope="global">
                     <metadata>
                    <dc:subject 
xml:lang="de">Nachfolgerfunktion</dc:subject>
                     <dc:subject>successor 
function</dc:subject>
                      </metadata>
                   </symbol>
                   <symbol name="plus" role="object" 
scope="global">
                            <metadata>
                            <dc:subject 
xml:lang="de">Addition</dc:subject>
                                        
<dc:subject>addition</dc:subject>
                             </metadata>
                     </symbol>
                     ¼  
                      <symbol name="nat" role="sort" 
scope="global">
                                        <metadata>
                                        <dc:subject 
xml:lang="de">Natuerliche Zahlen</dc:subject>
                                        <dc:subject>natural 
numbers</dc:subject></metadata>
                       </symbol>
                        ¼

                       <symbol name="comp" role="object" 
scope="global">
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scope="global">
                       <metadata>
                       <dc:subject 
xml:lang="de">Komposition von Funktionen</dc:subject>
                                            
<dc:subject>Composition of functions</dc:subject>
                                  </metadata>
                      </symbol>
                      <definition xml:id="comp.def" for="#comp" 
type="implicit">
                       <FMP>
                                        <OMOBJ 
xmlns="http://www.openmath.org/OpenMath">
                                        <OMBIND>
                                        <OMS cd="quant1" 
name="forall"/>
                                         <OMBVAR>
                                        <OMATTR>
                                        <OMATP>
                                        <OMS 
cd="simpletypes" name="type"/>
                                            <OMA>
                                        <OMS 
cd="simpletypes" name="funtype"/>
                                       <OMV 
name="B"/>

                                             
<OMV name="A"/>
                                                
</OMA>
                                        </OMATP>
                                           <OMV 
name="G"/>
                                         </OMATTR>
                                               <OMATTR>
                                        <OMATP>
                                        <OMS 
cd="simpletypes" name="type"/>
                                         
<OMA>

                                        
<OMS cd="simpletypes" name="funtype"/>
                                        
<OMV name="C"/>
                                        
<OMV name="B"/>
                                        
</OMA>
                                            
</OMATP>
                                        <OMV 
name="F"/>
                                         </OMATTR>
                                                <OMATTR>
                                        <OMATP>
                                        
<OMS cd="simpletypes" name="type"/>
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<OMV name="A"/>
                                       </OMATP>
                                        <OMV 
name="X"/>
                                                
</OMATTR>
                                        </OMBVAR>
                                        <OMA>
                                        <OMS 
cd="relation1" name="eq"/>
                                        <OMA>
                                        <OMA>
                                        <OMS 
cd="basic.algebra" name="comp"/>
                                        <OMV 
name="F"/>
                                        <OMV 
name="G"/>
                                        </OMA>

                                            <OMV 
name="X"/>
                                        </OMA>
                                        <OMA>
                                        <OMV 
name="F"/>
                                        <OMA>
                                        <OMV 
name="G"/>
                                                  <OMV 
name="X"/>
                                        </OMA>
                                        </OMA>
                            </OMA>
                   </OMBIND>
              </OMOBJ>
        </FMP>
</definition>
<symbol name="set−difference" role="object" scope="global">
 <metadata>
 <dc:subject xml:lang="de">einelementige 
Menge</dc:subject>
                      <dc:subject>comp</dc:subject>
           </metadata>
 </symbol>
 <definition xml:id="set−difference.def" for="#set−difference" 
type="implicit">
 <FMP>
 <OMOBJ xmlns="http://www.openmath.org/OpenMath">
                      <OMBIND>
                                        <OMS cd="quant1" 
name="forall"/>
                                        <OMBVAR>
                                        <OMATTR>
                                            <OMATP>
                                        <OMS 
cd="simpletypes" name="type"/>
                                          <OMA>
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                                          <OMA>
                                             <OMS 
cd="simpletypes" name="funtype"/>
                                               <OMV 
name="A"/>
                                                   
<OMS cd="truthval" name="bool"/>
                                        </OMA>
                                                </OMATP>
                                               <OMV 
name="G"/>
                                            </OMATTR>
                                            <OMATTR>
                                        <OMATP>
                                        <OMS 
cd="simpletypes" name="type"/>
                                        <OMV 
name="A"/>
                                        </OMATP>
                                        <OMV name="X"/>
                                        </OMATTR>
                                    </OMBVAR>
                                    <OMA>
                                        <OMS cd="logic1" 
name="equivalent"/>
                                        <OMA>
                                        <OMS 
cd="basic.algebra" name="set−difference"/>
                                        <OMV name="G"/>
                                        <OMV name="H"/>
                                        <OMV name="X"/>
                                        </OMA>
                                        <OMA>
                                        <OMS cd="logic1" 
name="and"/>
                                        <OMA>
                                        <OMV name="G"/>
                                        <OMV name="X"/>
                                        </OMA>
                                        <OMA>
                                        <OMS cd="logic1" 
name="not"/>
                                        <OMA>
                                        <OMV name="H"/>
                                        <OMV name="X"/>
                                        </OMA>
                                   </OMA>
                              </OMA>
                         </OMA>
                    </OMBIND>
         </OMOBJ></FMP>
        </definition>
   </theory>
</omdoc>
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Its corresponding fragment of XHTML document ( taken from 
https://svn.omdoc.org/repos/omdoc/branches/omdoc−1.2/examples/deussen/nat.numbers.xhtml 
):

Natural Numbers

Barbara Schuett Kerber, Michael Kohlhase

Concept succ
Concept plus
¼

Concept nat
¼

Concept comp
Definition
forall G,F,X eq(comp(F,G)(X), F(G(X)))
Concept set−difference
Definition
forall G,X equivalent(set−difference (G,H,X), and (G(X), 
not(H(X))))

30 Omega

30.1 Short Description

Wmega  is  an  interactive  theorem  prover  and  a  mathematical  assistant  tool.  It  focuses  on
proof  development  in  mathematical  domains  at  a  user|friendly  level  of  abstraction.  It  is  a
modular system containing a proof data structure (PDS) and several subsystems, e.g. a distrib−
uted knowledge base (MBase),  a  user  interface (LWUI),  an explanation module (P.rex),  and a
mathematical  web service that connects Wmega with external systems (MathWeb/MathServe).
It is based on knowledge|based proof planning [Bundy91]: the proof of a theorem is planned at
an  abstract  level  and  an  outline of  the proof  is  found.  The outline (the abstract  proof  plan)  is
then expanded recursively and a proof within a logical calculus is constructed. 

30.2 Technical Information on the System

30.2.1 Name of the System and Website

The Wmega System, http://www.ags.uni−sb.de/~omega/software/omega/index.html

30.2.2 Project Leaders and Group

Leader:  Prof.  Jörg  Siekmann.  Group  members:  Serge  Autexier,  Christoph  Benzmüller,
Dominik  Dietrich,  Armin  Fiedler,  Andreas  Franke,  Helmut  Horacek,  Henri  Lesourd,  Marvin
Schiller, Ewaryst Schulz, Frank Theiss and Marc Wagner.
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30.2.3 Main Publications

Jörg Siekmann, Christoph Benzmüller, and Serge Autexier. Computer Supported Mathemat−
ics with OMEGA, Journal of Applied Logic, special issue on Mathematics Assistance Systems
4(4), December, 2006

M. Kohlhase and H.M.Franke, MBase: Representing Knowledge and Content for the Integra−
tion of Mathematical Software Systems, Journal of Symbolic Computation, 2001, 32, 365−402.

A.  Fiedler,  P.Rex:  An  interactive proof  explainer,  In   Automated Reasoning~1st Interna−
tional Joint  Conference,  Rajeev Goré,  Alexander Leitsch, and Tobias Nipkow (eds.),   IJCAR
2001,  LNAI 2083, pp. 416−420, Siena, Italy, Springer Verlag, 2001.

30.2.4 Implementation Language

The user interface of Wmega (LOUI) is implemented in the concurrent constraint program−
ming  language  mOZart/Oz  [mOZart].  P.rex  is  implemented  in  a  goal|directed  production
system,  Lisp  based,  ACT−R  [AndersonLebiere98].  MBase  is  based  on  mOZart/Oz,  java
(JDBC), a relational data base management system (like Oracle), and on OMDoc.

The proof  data  structure (PDS),  the  interactive prover  and  the  knowledge bases in  Wmega
are implemented in Allegro Lisp.

30.2.5 System Availability and Prerequisites

WMEGA is distributed under the GNU General Public License. For running LWUI mOZart
is needed, and for running Wmega, Allegro Common Lisp is needed.  For using MBase, Java is
needed.

30.3 Algorithm Libraries

Wmega  is  linked  over  the  MathWeb  [FrankeKohlhase99]  mathematical  software  bus  to  a
variety  of  computer  algebra  systems,  like  Maple  and  CoCoA.  As  such,  it  has  access  to  the
algorithms implemented in those systems (see the respective chapters in this document).
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30.3.1 Numerical, Discrete, Algebraic, Etc. Libraries

30.3.2 Reasoners

The  basis  for  interactive  theorem  proving  in  Wmega  is  made  by  the  inference  system
together  with  tactics  (sequences  of  rule  applications).  Wmega’s  inference  mechanism  is  an
interactive  theorem  prover  based  on  a  higher−order  natural  deduction  sorted  version  of
Church’s  simply  typed  Λ|calculus.  To  prove  a  conjecture,  a  proof  plan  for  a  proof   is  con−
structed and then the proof planner uses it to guide the construction of the proof itself. (A proof
plan is an outline or plan of a proof, containing methods and tactics.)

The  tactics  usually  depend  on  a  certain  theory  (e.g.  tactics  for  polynomial  multiplication),
and, for avoiding an unsound logic calculus, every tactic has to be expandable to rules. Thus, a
fully expanded proof (without open nodes) that is verified by the Wmega proof checker will be
correct, since the natural deduction calculus is correct. 

The Proof Plan Data Structure (PDS) represents proofs and proof plans at various levels of
granularity and abstraction. It is a directed acyclic graph, with open nodes (unjustifid proposi−
tions that need to be proved) and closed nodes (propositions that are already proved).

During the proof development the PDS is modified either by the user of Wmega, the proof
planner MULTI or the suggestion mechanism W|ANTS (which can also call external systems)
until  a  proof  plan  is  found.  After  a  proof  plan  is  found,  it  is  expanded  by  sub|methods  and
sub|tactics into  lower  levels  of  abstraction until  a  proof  at  the logical  calculus level  is  found.
Now,  this  proof  (actually  the  PDS)  can  be  checked  by  the  proof|checker  [Cheikhrouhou−
Sorge00]. 

The  proof  plans  are  classified  with  respect  to  a  taxonomy of  mathematical  theories  in  the
mathematical knowledge base MBASE [KohlhaseFranke01]. There are different styles of proof
development  in  Wmega:  tactical  theorem  proving,  interactive  island  proof  planning  or  fully
automated proving (using the proof planner MULTI).

(1) The tactical theorem prover is a general purpose interactive theorem prover at the calcu−
lus level. (It is called tactical since it builds on tactics~macro−steps embedding a sequence of
inference steps).  (See an  example  of  a  proof  of  "

�!!!!
2  is  irrational"  done  using  tacticals in  the

Example section of this chapter).
(2) Interactive island planning takes as input the proof plan. The user also provides the main

subgoals, called islands, together with their assumptions. The details of the proof (down to the
logic  level)  are  filled  in  (ideally)  automatically,  by  using  the  external  systems  interfaced  to
Wmega. If this is not possible, additional user input is required, and the island approach will be
applied  once  again.  The  proofs  have  now  a  level  of  abstraction  similar  to  the  one  found  in
mathematical textbooks. (See an example of a proof of "

�!!!!
2  is irrational" done using interactive

island planning in the Example section of this chapter).
(3)  The  proof  planner  MULTI  [MeierMelis05,  MelisEtAl08]  uses  a  so|called  blackboard

architecture [EngelmoreMorgan88]. The modification and refinement of the proof plan is made
there  automatically.  The  knowledge sources  (i.e.  components)  of  MULTI  solve  a  problem by
putting  the  current  solution  state  on  the  blackboard,  where  all  other  knowledge  sources  of
MULTI  can  access  it  and  develop  it  further.  Using  MULTI,  an  automatically  planned  and
expanded proof of  "

�!!!!
2  is irrational" was obtained [SiekmannEtAl03].
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30.3.3 Graphical Tools and Interfaces

LWUI [SiekmannEtAl99] is the graphical user interface of Wmega. It combines a graphical
display of information in a proof graph, a selective term browser with hypertext facilities, proof
and proof  plan presentation in  natural  language,  and an editor for  adding and maintaining the
knowledge base. It is realized in an agent−based client|server architecture.

P.rex  [Fiedler01]  is  an  interactive,  user|adaptive  proof  explanation  system  connected  to
Wmega. It  has its own specification language (TWEGA) for  proofs and mathematical theories
(containing  e.g.  axioms,  definitions,  and  theorems  along  with  proofs).  A  dialog  planner
(goal|directed  production  system)  chooses  a  degree  of  abstraction  for  each  proof  step  to  be
explained, based on assumptions about the users knowledge. It  can also adapt by accepting at
any  time  user  interactions,  entering  clarification  dialogs  for  updating  its  user  model  and  for
modifying the explanation correspondingly. The system chooses an explanation adapted to the
knowledge  of  the  user  and  reacts  flexibly  to  the  users  interactions.  The  dialog  plan  is  then
passed through the sentence planner  (that plans the internal structure of  the sentences) to the
surface realizer.  The latter displays the sentences on the user interface, also allowing the user
to enter remarks, requests and questions.

The development graph manager Maya [AutexierEtAl02] and the generic mediator between
text  editors  and  proof  assistants  PLATO [WagnerEtAl06]  present  also  graphical  interfaces  in
the Wmega system.

30.4 User Language

30.4.1 Programming Language

The search for proofs is done at a level of abstractions defined by tactics and methods.

30.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The language of Wmega, POST (Partial Functions Order Sorted Type Theory), is a variant
of simply|typed higher order Λ|calculus with sorts.

30.4.3 Mathematical Syntax

Wmega has its own custom−tailored syntax (Lisp based) that is exported to OMDoc docu−
ments (which is the mathematical syntax of MBase).
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30.5 Mathematical Knowledge Bases

30.5.1 Available Theories and Knowledge Bases

MBase (see the chapter on MBase in this document) is the main knowledge base available to
Wmega.  It  is  a  structured  and  distributed  repository  of  mathematical  knowledge.  It  is  imple−
mented as a mathematical service of the MathWeb mathematical software bus, which is in turn
built  on top of  OMDoc.  MathWeb connects a wide range of  mathematical services (including
interfaces to Wmega, Bliksem,  Otter,  Mace,  Maple,  CoCoA).  The theories covered in  MBase
are:  Zermelo−Fraenkel  Set  Theory,  Neumann−Bernays−Goedel  Set  Theory,  Group  Theory,
Rings, Fields, Reals, Integers, Naturals, Polynomials, Calculus, Topology, etc. 

30.5.2 Tools for Retrieval in Mathematical Knowledge Bases

Wmega uses the retrieval facilities of MBase (for the knowledge imported from MBase).

The MathWeb [FrankeKohlhase99] software bus, searches~on the internet~a web service
capable of solving a given mathematical problem. It does this, by classifying the mathematical
services to which it has access by the description of the problem they solve (i.e. inputs, output,
pre/postconditions). Since 2003 MathWeb was no longer maintained, and MathServe [Zimmer−
Autexier06] emerged as its successor.

30.5.3 Tools for Inventing Mathematical Knowledge

30.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

There  are  three  different  styles  of  proof  development  in  Wmega:  tactical  theorem proving,
interactive island proof planning or fully automated planning (using the proof planner MULTI).
For more details please see the section on Reasoners of this chapter, as well as the referenced
papers.
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30.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

30.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

30.5.7 Standardization, Inter−Operability

Wmega is connected via the MathWeb software bus to a variety of systems, translating back
and  forth  mathematical  libraries  in  various  formats.  Its  syntax  is  translated  into  OMDoc,  the
syntax of MBase. OMDoc documents can be accessed by other systems using the same syntax,
like ActiveMath, or having export/import facilities for OMDoc like PVS.

30.5.8 Web Access

After the user installs locally mOZart, the graphical interface LWUI can be launched locally,
and it will connect over the internet to an Wmega server, enabling a restricted usage of Wmega.

30.6 Example of a Theory Exploration Session

Following  [Wiedijk06],  we  consider  the  formalization of   the  "
�!!!!

2  is  irrational"  problem.
The statement of the problem in Wmega is:

(th~defproblem sqrt2−not−rat
(in real)
(conclusion (not (rat (sqrt 2))))
(help "  

�!!!!2 is not a rational number"))

The definitions of rational (rat) and sqrt are:

(th~defdef rat
(in rational)
(definition

(lam (x num)
(exists−sort (lam (y num)
(exists−sort (lam (z num)

(= x (frac y z))) int\0)) int)))
(sort)
(help "The set of rationals, constructed as fractions a/b of 
integers.")) 

(th~defdef sqrt
(in real)
(definition

(lam (x num) (that (lam (y num) (= (power y 2) x)))))
(help "Definition of square root."))
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For  proving  the  theorem,  some definitions and  theorems are  needed,  like  the  definition of
even, the theorem that 2 is a common divisor of even numbers, etc. : 

(th~deftheorem even−on−integers
(in real)
(conclusion

(forall−sort (lam (x num)
 (equiv (evenp x)

(exists−sort (lam (y num)
  (= x (times 2 y))) int))) int))

(help "An integer x is even, iff an integer y exists so 
that x=2y."))

(th~deftheorem square−even
(in real)
(conclusion

(forall−sort (lam (x num)
(equiv (even (power x 2)) (evenp x)))
int))

(help "x is even, if x2  is even."))

(th~deftheorem even−common−divisor
(in real)
(conclusion

(forall−sort (lam (x num)
(forall−sort (lam (y num)

(implies (and (evenp x) (evenp y))
(common−divisor x y 2)))

int))
int))

(help "If x and y are even, then they have ÷2÷ as a common 
divisor."))

The theorem can be proved in two styles: by a proof script [Wiedijk06] using tacticals, or,
interactively by using an Emacs session. We present here the proof script proof style.

DECLARATION DECLARE ((CONSTANTS (M NUM) (N NUM) (K NUM)))
RULES NOTI default default
MBASE IMPORT−ASS (RAT−CRITERION)
TACTICS FORALLE−SORT default default ((SQRT 2)) default
TACTICS EXISTSE−SORT default default (N) default
TACTICS ANDE default default default
TACTICS EXISTSE−SORT (L7) default (M) default
TACTICS ANDE* (L8) (NIL)
OMEGA−BASIC LEMMA default ((= (POWER M 2) (TIMES 2 (POWER N 
2))))
TACTICS BY−COMPUTATION (L13) ((L11))
OMEGA−BASIC LEMMA (L9) ((EVENP (POWER M 2)))
RULES DEFN−CONTRACT default default default
OMEGA−BASIC LEMMA (L9) ((INT (POWER N 2)))
TACTICS WELLSORTED default default
TACTICS EXISTSI−SORT (L15) ((POWER N 2)) (L13) (L16) default
MBASE IMPORT−ASS (SQUARE−EVEN)
TACTICS ASSERT ((EVENP M)) ((SQUARE−EVEN L10 L14)) (NIL)
RULES DEFN−EXPAND (L17) default default
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RULES DEFN−EXPAND (L17) default default
TACTICS EXISTSE−SORT default default (K) default
TACTICS ANDE (L19) default default
OMEGA−BASIC LEMMA default ((= (POWER N 2) (TIMES 2 (POWER K 
2))))
TACTICS BY−COMPUTATION (L23) ((L13 L22))
OMEGA−BASIC LEMMA default ((EVENP (POWER N 2)))
RULES DEFN−CONTRACT default default default
OMEGA−BASIC LEMMA (L20) ((INT (POWER K 2)))
TACTICS WELLSORTED (L26) ((L21))
TACTICS EXISTSI−SORT default ((POWER K 2)) (L23) default default
TACTICS ASSERT ((EVENP N)) ((SQUARE−EVEN L6 L24)) (NIL)
MBASE IMPORT−ASS (EVEN−COMMON−DIVISOR)
OMEGA−BASIC LEMMA (L20) ((INT 2))
TACTICS WELLSORTED (L28) (NIL)
TACTICS ASSERT (FALSE) ((EVEN−COMMON−DIVISOR L10 L6 L12 L17 L27 
L28)) (NIL)
RULES WEAKEN default default

31 OpenMath

31.1 Short Description

OpenMath is an extensible standard for representing mathematical knowledge together with
their semantics. There can be different encodings of objects following the OpenMath standard.
The most used one is the XML encoding. It  needs to be said, that OpenMath largely overlaps
with MathML recommendation of the W3C, however, as MathML is concerned with the presen−
tation of  mathematical objects,  OpenMath is  concerned with their  semantics (content).  Open−
Math objects can be embedded into MathML objects. One of the intentions of OpenMath is that
mathematics encoded using this  standard to  be  communicated between mathematical systems.
A number of systems (some of them described in this document, like ActiveMath and GAP) can
translate their mathematical objects into OpenMath.

31.2 Technical Information on the System

31.2.1 Name of the System and Website

OpenMath. http://www.openmath.org/index.html.
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31.2.2 Project Leaders and Group

The  OpenMath  Society,  based  in  Helsinki,  Finnland,  coordinates  the  OpenMath  activites.
The Society is coordinated by an elected executive committee. The current OpenMath member
group  consists  of  the  following  persons:  Heikki  Apiola,  Ernesto  Barreiro,  Stephen  Braham,
Stephen  Buswell,  Antonio  Capani,  Arjeh  M.  Cohen,  Olga  Caprotti,  David  Carlisle,  Stephane
Dalmas,  James  Davenport,  Stan  Devitt,  Mike  Dewar,  Angel  Diaz,  Andreas  Franke,  Marc
Gaëtano, George Goguazde, Gaston Gonnet,  Vilya Harvey, Tanemember Huuskonen, Michael
Kohlhase,  Stephane  Lavirotte,  Paul  Libbrecht,  Bruce  Miller,  William  Naylor,  Yves  Papegay,
Manfred  Riem,  Mika  Seppälä,  Elena  Smirnova,  Clare  So,  Andrew  Solomon,  Andreas  Strot−
mann,  Bob  Sutor,  Richard  Timoney,  Carlo  Traverso,  Sarah  Turner,  Stephen  Watt,  Renaud
Rioboo,  Sebastian  Xambo,  Hans  Cuipers,  Christine  Müller,  Normen  Müller,  Florian  Rabe,
Christoph Lange, Patrick Ion, Sam Dooley, Robert Miner, Margret Hitchcliffe, Odd Bringslid,
Lionel Mamane, Masakazu Suzuki, Matti Pauna.

31.2.3 Main Publications

The OpenMath Society,  The OpenMath Standard. Version: 2.0.  Editors: S.Buswell,  O.Ca−
protti,  D.P.Carlisle, M.C.Dewar,  M.Gaëtano and  M.Kohlhase.  June 2004.  (Available from the
society’s webpage.)

31.2.4 Implementation Language

There are libraries which help develop OpenMath documents.  Most  of  them are written in
Java, C and C++.
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31.2.5 System Availability and Prerequisites

31.3 Algorithm Libraries

31.3.1 Numerical, Discrete, Algebraic, etc. Libraries

31.3.2 Reasoners

31.3.3 Graphical Tools and Interfaces

There are a number of programs designed to help a user edit OpenMath content. We shortly
describe some of them, and point the reader to the OpenMath website for further information.

CD Editor is a program with a graphical user interface for editing OpenMath Content Dictio−
naries (described in the subsections below).

The JOME OpenMath Editor, written in Java, helps users create and manipulate OpenMath
(and  MathML)  objects.  It  has  its  own  project  page  on  sourceforge.net.  Another  Java  written
component which translates linear input into OpenMath (or MathML) is the proprietary STARS/−
MathWriter (uses XML encodings).

In  addition  to  these,  there  is  an  OpenMath/OMDoc  Emacs  Mode  for  creating  OpenMath
objects.

31.4 User Language

31.4.1 Programming Language

31.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The OpenMath standard allows formulating mathematics in any logic the user chooses.
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31.4.3 Mathematical Syntax

Mathematical notions are represented as labelled trees which are called OpenMath objects or
OpenMath  expressions.  There  are  three  kinds  of  OpenMath  (OM)  expressions:  basic  objects,
derived  objects,  and  compound  objects  (recursively  defined  from  basic  objects  and  derived
objects).

Basic OM objects are either integer, IEEE floating point number, character string, bytearray,
variable,  or  symbol  objects.  From  all  these,  symbols  are  of  more  interest.  They  contain  of  a
name,  a  Content  Dictionary  name,  and  (optionally)  a  Content  Dictionary  base  URI.  Content
Dictionaries  (CDs  for  short)  contain  the  definitions  of  symbols,  and,  optionally,  additional
properties about the symbols, in formal and non−formal description (see examples in the Exam−
ple subsection).

Derived OM objects are used for embedding non−OM objects into an OM object.
Compound  OM  objects  are  recursively  created  from  basic  and  derived  OM  objects  by

application, attribution, binding, error (i.e. creating objects that signal errors).
Content  Dictionaries  are  collections  of  related  symbols  together  with  their  meanings.  To

define a symbol into a CD the following fields are used: the symbol name, a description in plain
text,  a  set  of  the defined symbol’s properties −  in  plain text  (a.k.a.  Commented Mathematical
Properties,  CMP),  a  set  of  the  defined  symbol’s  properties  −  encoded  in  OM  (a.k.a.  Formal
Mathematical Properties,  FMP),  one or  more usage examples −  encoded in  OM.  Of  all  these
fields,  the  first  two are  required.  CPM and  FMP often come in  pairs  and  can be seen also as
usage examples (which, in practise, is done). Related CDs can be grouped together to form CD
Groups. Extra information can be associated with CDs, like  type information or style sheets for
rendering OM encodings.

Different encodings of OM objects are possible. The most used one is the XML encoding. In
their document describing the OM standard, the OM Society also describes a binary encoding.

For more on the OpenMath syntax we direct the reader to [OpenMath].

31.5 Mathematical Knowledge Bases

31.5.1 Available Theories and Knowledge Bases

The  mathematical  content  available  in  OpenMath  is  stored  in  Content  Dictionaries.  Cur−
rently  they  contain  encodings  for  linear  algebra,  polynomials,  group  theory,  transcedental
functions, functional operators, units and dimensions, list functions, sets, combinatorics. There
are  a  number  of  contributed  CDs,  and  authors  are  encouraged  to  encode  mathematics  with
OpenMath and submit their encodings to the society.
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31.5.2 Tools for Retrieval in Mathematical Knowledge Bases

31.5.3 Tools for Inventing Mathematical Knowledge

31.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

31.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

31.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

31.5.7 Standardization, Inter−Operability

There are various stylesheets to convert OpenMath to MathML and OMDoc (and back), as
well as stylesheets for translating MathML to TEX or RTF. 

OpenMath is supported by several frameworks and systems as a data exchange format. The
IAMC  framework  (Internet  Accessible  Mathematical  Computation  −
http://icm.mcs.kent.edu/research/iamc.html)  supports  OpenMath  as  a  data  exchange  format
between the systems linked to it. The Logic Broker Architecture [ArmandoZini00] provides the
infrastructure for reasoning systems to cooperate. Another system which connects mathematical
reasoners  is  MathWeb.  Here,  the  systems  communicate  via  a  common  software  bus  and  use
OMDoc  to  exchange  information.  OpenXM  (http://www.openxm.org)  is  a  debian  package
which  offers  "infrastructure for  mathematical  communication".  They  propose  their  own  stan−
dard for mathematical computations (OpenXM−RFC) and promise they will support the Open−
Math standard soon. Other methods to link computational engines are based on Java, for exam−
ple JavaMath, which links computation systems, in particular Maple and GAP, via an API and
using OpenMath.

In addition to all  these, there are small pieces of  software, called "phrasebooks", which do
symbol translations between OpenMath and the following systems: Axiom, Gap, Mathematica,
CoCoA. Possibly other systems have phrasebooks defined for them, too.

31.5.8 Web Access

31.6 Example of a Theory Exploration Session

The OpenMath Standard [OpenMath] describes two encodings: the XML encoding and the
binary encoding. We give here only some examples of the XML encoding.

A variable x is encoded as: <OMV name="x"/> , where OMV means OpenMath variable.
The  sin  function,  defined  in  one  of  OpenMath’s  CDs  −  "transc1"  is  encoded  as:  <OMS

name="sin" cd="transc1"/>.
To encode the sin symbol as an OpenMath object we have to write it as:
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<OMOBJ>
    <OMS name="sin" cd="transc1"/>
</OMOBJ>

If  we want to encode the function application sin(x) we will  use the OMA tag (OpenMath
Application) in the following way:

<OMOBJ>
    <OMA>
      <OMS name="sin" cd="transc1"/>
      <OMV name="x"/>
    </OMA>
</OMOBJ>

Here  is  how  the  sin function  is  defined  in  the  transc1 CD.  The  first  part  of  the  CD  sin
definition contains the name of the symbol (sin) it’s role (it is an application, i.e. function), and
a textual description of it.

<CDDefinition>
<Name> sin </Name>
<Role>application</Role>
<Description> 

This symbol represents the sin function as described in 
Abramowitz and Stegun, section 4.3. It takes one argument.
</Description>

A commented mathematical property (CMP) is encoded as:

<CMP>
sin A = − sin(−A)

</CMP>

And the formal mathematical property (FMP) which encodes the commented property above
is as follows. (Note the use of the unary−minus symbol which is defined in the arith1 CD and
of the eq symbol which is defined in the relation1 CD.)

<FMP>
  <OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0" 
cdbase="http://www.openmath.org/cd">
    <OMA>
      <OMS cd="relation1" name="eq"/>
      <OMA>
        <OMS cd="transc1" name="sin"/>

<OMV name="A"/>
      </OMA>
      <OMA>
        <OMS cd="arith1" name="unary_minus"/>

<OMA>
  <OMS cd="transc1" name="sin"/>
  <OMA>
    <OMS cd="arith1" name="unary_minus"/>
    <OMV name="A"/>
  </OMA>
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  </OMA>
</OMA>

      </OMA>
    </OMA>
  </OMOBJ>
</FMP>
</CDDefinition>

32 Plural

Note: It is recommended that the chapter on the Singular system is read before this one.

32.1 Short Description

 Plural is a kernel extension of Singular, which is designed for considerably fast computa−
tions within the class of non−commutative polynomial algebras [Plural].

32.2 Technical Information on the System

32.2.1 Name of the System and Website

Plural. http://www.singular.uni−kl.de/plural/

32.2.2 Project Leaders and Group

The  development  of  the  system  is  coordinated  by  Gert−Martin  Greuel,  Viktor  Levan−
dovskyy, and Hans Schönemann (all from Department of Mathematics, University of Kaiserslau−
tern).  Contributions to  the  system were  made by  F.J.  Lobillo,  C.  Rabelo,   Yuriy  Drozd,  Ole−
ksander Khomenko, Oleksandr Motsak, and Lesya Bodnarchuk.

32.2.3 Main Publications

32.2.4 Implementation Language

C/C++

32.2.5 System Availability and Prerequisites

Free software, distributed under the terms of the GNU General Public License (version 2 of
the License). Downloadable from the project’s website, it’s available as a binary program for a
variety of Unix platforms, Windows, MacOs X, and others.
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32.3 Algorithm Libraries

The  system is  built  as  an  offspring  of  Singular,  by  modifying  the  Singular  kernel  to  deal
with non−commutative algebra. I addition to the Singular libraries (see the respective section of
this document) Plural has some specific libraries that come with the system. We mention these
libraries below.

32.3.1 Algebraic Library

In addition to the Singular libraries, Plural comes with the following libraries:
− Definitions of important G−algebras;
− Central character decomposition of a module;
− General tools for noncommutative algebras;
− Procedures for calculating the Gelfand−Kirillov dimension;
− Quantum matrices, quantum minors and symmetric groups.

32.3.2 Reasoners

32.3.3 Graphical Tools and Interfaces

32.4 User Language

See the section about the Singular section. Plural uses the same language as Singular.
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32.5 Mathematical Knowledge Bases

32.5.1 Available Theories

32.5.2 Tools for Retrieval in Mathematical Knowledge Bases

32.5.3 Tools for Inventing Mathematical Knowledge

32.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

32.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

32.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

32.5.7 Standardization, Inter−Operability

32.5.8 Web Access

32.6 Example of a Theory Exploration Session

See  the  section  about  the  Singular  system  to  get  the  feeling  how  a  session  within  Plural
looks like.

33 PVS

33.1 Short Description

PVS is  an  environment  for  formal  specification and  verification.  The  system consists  of  a
specification language, a number of predefined theories, a type checker, an interactive theorem
prover and a symbolic model checker, various utilities including a code generator and a random
tester,  formalized  libraries.  The  PVS  system  is  successfully  used  in  areas  like  requirement
checking,  hardware  verification,  verifications  of  practical  fault−tolerant  systems,  compiler
correctness [OwreEtAl98].
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33.2 Technical Information on the System

33.2.1 Name of the System and Website

PVS Prototype Verification System. http://pvs.csl.sri.com/index.shtml

33.2.2 Project Leaders and Group

The system is developed at SRI International, California, Computer Science Laboratory.
Principal investigator: John Rushby. Group members: Patrick Lincoln, Sam Owre, Natarajan

Shankar, Ashish Tiwari.

33.2.3 Main Publications

Owre, S. and Rushby, J.M. and Shankar, and N., "PVS: A Prototype Verification System",
in  11th  International  Conference  on  Automated  Deduction (CADE),  vol.  607,  1992,  pp.
748−752.

33.2.4 Implementation Language

Common Lisp. (Currently they have ported to CMU Common Lisp, which is freely avail−
able. However, they also provide binaries compiled with Allegro Common Lisp).

33.2.5 System Availability and Prerequisites

The system is available under the GPL licence. Pre−built binaries are available for various
Linux/Unix  systems,  however  Allegro  Lisp  or  CMU  Lisp  should  be  installed  on  the  system.
Users can build (compile) the system themselves for other versions of Lisp (e.g. Common Lisp),
too. 

33.3 Algorithm Libraries

33.3.1 Numerical, Discrete, Algebraic, Etc. Libraries

The system does not have a library of algorithms as CASs have. The solution used to evalu−
ate expressions like sin(13/25) is semantic attachments to refer to the (lisp) programs attached to
predicate  or  function  symbols.  Only  ground  expressions  (i.e.  do  not  have  higher−order  or
uninterpreted  terms,  and  are  formed  from  boolean  and/or  integer  types)  are  evaluated.  For
details on how programming attachments in PVS works, see [CrowEtAl01].
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33.3.2 Reasoners

The PVS system has a proof checker that is meant to support the efficient development of
readable proofs [OwreEtAl02]. It implements a set of powerful inference rules, a mechanism to
compose them into proof  strategies, a mechanism to rerun proofs.  The inference rules include
propositional and quantifier steps, beta−reduction, equality replacement, use of lemmata, etc.

33.3.3 Graphical Tools and Interfaces

PVS uses Gnu or XEmacs to provide an integrated interface to its specification language and
prover. The Emacs front−end uses various buffers for the proof interaction, theories, help, etc. It
also  have  an  optional  graphical  proof  tree  window  implemented  in  Tcl/Tk.  There’s  also  the
possibility to view theory hierarchies graphically, again, using Tcl/Tk.

33.4 User Language

33.4.1 Programming Language

To write algorithms as semantical attachments, the Lisp language is used. 

33.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The  logic  language  of  PVS  (also  called  the  ’specification  language’)  is  a  strongly  typed
higher−order with a rich type system [OwreEtAl02]. The terms of the language are constructed
using function application, lambda abstraction, record and tuple construction. For details about
PVS’s language see [OwreEtAl99].

33.4.3 Mathematical Syntax

The syntax of the specification language.

33.5 Mathematical Knowledge Bases

33.5.1 Available Theories and Knowledge Bases

The  PVS  system  as  is  provides  a  rather  small  library  of  formal  content,  most  of  it  being
needed  for  doing  prototype  specification  checks.  The  ’prelude’  library,  distributed  with  the
system,  contains  formalizations of  the  basic  mathematical  concepts,  such  as  sets,  bags,  func−
tions, relations, equality, ordering, numbers, etc. This library is built in to PVS. External librar−
ies  contain  formalizations  of  finite  sets,  floor,  div/mod,  bitvectors,  coalgebras,  real  analysis,
graphs, temporal logics, quaternions, Μ−calculus.
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The many users of the system, in course of their work, do create a large body of knowledge.
One example of a large body of formalization in PVS is the Nasa Langley PVS libraries [Nasa−
Langley]  which  contains theories from algebra,  complex numbers,  logarithm, exponential  and
hyperbolic functions, topology, trigonometry − just to name a few. However, the many user−cre−
ated libraries are not centralized or coordinated in anyway.

33.5.2 Tools for Retrieval in Mathematical Knowledge Bases

The system has a simple search mechanism accessible via the library browsing commands
(search for declarations of a given symbol, declarations which refer an identifier/declaration).

33.5.3 Tools for Inventing Mathematical Knowledge

33.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The PVS proof checker.

33.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

33.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

33.5.7 Standardization, Inter−Operability

The system supports LATEX output for the libraries content. The libraries have been included
into FDL.

33.5.8 Web Access

33.6 Example of a Theory Exploration Session

The examples in this section are taken from  [OwreEtAl99].
 The  PVS system consists  of  a  specification language,  a  parser,  a  type−checker,  a  prover,

specification libraries, and various browsing tools. 

33.6.1 Specification Definitions Example

The specification language permits modularity and allows reuse by theory parametrization.
A  specification  theory  is  a  sequence  of  declarations  which  give  names  for  types,  constants,
variables, axioms and formulae.
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We give here an example of how to naively encode various set−theoretic operations.

sets_ [T: TYPE] : THEORY 
BEGIN 

set: TYPE = SETOF[T] 
member(x:T,a:set): bool = a(x) 
union(a,b:set): set = { x:T | member(x,a) OR 

member(x,b) }
intersection(a,b:set): set = { x:T | member(x,a) AND 

member(x,b) }
difference(a,b:set) : set = { x:T | member(x,a) AND NOT 

member(x,b) }
add(x:T,a:set) : set = { y:T | x = y OR member(y,a) }
singleton(x:T) : set = { y:T | y = x }
subset?(a,b:set) : bool = (FORALL (z:T) : member(z,a) 

=> member(z,b)) 
strict_subset?(a,b:set) : bool = subset?(a,b) AND a /= 

b 
empty?(a:set) : bool = (FORALL (x:T) : NOT member(x,a))
emptyset: set = { x:T | FALSE } 
fullset: set = { x:T | TRUE } 
extensionality: LEMMA

FORALL (a,b: set): 
(FORALL (x:T): member(x,a) = member(x,b)) => (a 

= b) 
END sets_

The theory above is parametrized by T, so all the predicates are over the type T. The exten−
sionality  for  sets  can  be  proved  from  the  extensionality  for  functions,  so  the  extensionality
axiom for sets is stated as a lemma.

Infinite  sequences  of  elements  of  some  type  T  are  formalized  as  functions  from  natural
numbers into T

sequences_[T: TYPE] : THEORY 
BEGIN 

sequence : TYPE = [nat−>T] 
nth(seq: sequence, n: nat): T = seq(n) 
suffix(seq:sequence, n:nat): sequence = 

(LAMBDA (i:nat): seq(i+n)) 
first(seq: sequence): T = nth(seq, 0) 
rest(seq: sequence): sequence = suffix(seq, 1) 

END sequences_
 

groups [G : TYPE,
e : G,
o : [G,G−>G],
inv : [G−>G] ] : THEORY

BEGIN
  ASSUMING
    a, b, c : VAR G
    associativity :  ASSUMPTION  a o (b o c) = (a o b) o c
    unit : ASSUMPTION  e o a = a AND a o e = a
    inverse : ASSUMPTION inv(a) o a = e AND a o inv(a) = e
  ENDASSUMING
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  ENDASSUMING

  left_cancellation: THEOREM a o b = a o c IMPLIES b = c
  right_cancellation: THEOREM b o a = c o a IMPLIES b = c
 
END groups

sum2: THEORY
BEGIN
  n : VAR nat
  f,g : VAR [nat −> nat]

  sum(f,n) : RECURSIVE nat =
    IF n = 0 THEN
      0
    ELSE
      f(n−1) + sum(f, n − 1)
    ENDIF
  MEASURE n

  sum_plus : LEMMA
    sum((lambda n : f(n) + g(n)), n)
   = sum(f,n) + sum(g,n)

  square(n) : nat = n * n

  sum_of_squares : LEMMA
    6 * sum(square, n+1) = n * (n+1) * (2*n + 1)

  cube(n) : nat = n * n * n

  sum_of_cubes : LEMMA
    4 * sum(cube, n+1) = n*n*(n+1)*(n+1)

END sum2

33.6.2 Proof Checker Example

Goals and subgoals in PVS are represented as sequents of the form  G È− D. During proving,
PVS builds up a tree of  sequents. We present here an example using quantifiers. We define a
theory which contains one theorem we want to prove.

predicate: THEORY 
BEGIN 

T : TYPE 
x, y, z: VAR T 
P, Q : [T −> bool]

pred_calc: THEOREM 
(FORALL x: P(x) AND Q(x)) 
IMPLIES (FORALL x: P(x)) AND (FORALL x: Q(x))

END predicate
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Here is the proof script used to prove pred_calc (the script is edited with Emacs − the stan−
dard editor for PVS).

pred_calc :
 |−−−−−−−−−− 
{1} (FORALL x: P(x) AND Q(x)) IMPLIES (FORALL x: P(x)) AND 
(FORALL x: Q(x))

Rule?

the "Rule?" prompt above points out  where the system waits for  user  input.  We choose to
apply the (flatten) rule. 

Rule? (flatten)
Applying disjunctive simplification to flatten sequent, 
this simplifies to: 
pred_calc :

 {−1} (FORALL x: P(x) AND Q(x)) 
|−−−−−−−−−− 

 {1} (FORALL x: P(x)) AND (FORALL x: Q(x))
 
Rule? 

Notice that PVS marks the formulae in the sequent’s antecedent with negative numbers.
Here we choose now to split the goal, then − on the first subgoal − we will skolemize and

instantiate universally.

Rule? (split) 
Splitting conjunctions, 
this yields 2 subgoals: 
pred_calc.1 :

 [−1] (FORALL x: P(x) AND Q(x)) 
|−−−−−−−−−− 

 {1} (FORALL x: P(x))

Rule? (skolem 1 "X") 
For the top quantifier in 1, we introduce Skolem constants: X 
this simplifies to: 
pred_calc.1 :

 [−1] (FORALL x: P(x) AND Q(x)) 
|−−−−−−−−−−

 {1} P(X)
 
Rule? (inst −1 "X") 
Instantiating the top quantifier in −1 with the terms: X 
this simplifies to: 
pred_calc.1 :

 {−1} P(X) AND Q(X) 
|−−−−−−−−−−

 [1] P(X)
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 Rule? (prop) 
By propositional simplification,

This completes the proof of pred_calc.1. 

In both the skolemization and instantiation steps above, we have specified the formula and
the  variable  to  skolemize/instantiate.  For  the  second  branch  of  the  proof  we  let  the  system
choose  suitable  formulae,  variables  and  substitution  terms  by  using  the  (skolem!)  and  (inst?)
rules. Notice how the newly created terms are named:

pred_calc.2 :

 [−1] (FORALL x: P(x) AND Q(x)) 
|−−−−−−−−−−

 {1} (FORALL x: Q(x))

Rule? (skolem!) 
Skolemizing, 
this simplifies to: 
pred_calc.2 :

 [−1] (FORALL x: P(x) AND Q(x)) 
|−−−−−−−−−−

 {1} Q(x!1)

Rule? (inst?) 
Found substitution: 
x gets x!1, 
Instantiating quantified variables, 
this simplifies to: 
pred_calc.2 :

 {−1} P(x!1) AND Q(x!1)
 |−−−−−−−−−−
 [1] Q(x!1)

 Rule? (prop) 
By propositional simplification,

This completes the proof of pred_calc.2.
Q.E.D. 

Finally,  we  point  out  that  the  reason  for  which  the  formulae numbers  occur  sometimes in
square sometimes in curly brackets is the following: the PVS checker marks the formulae that
were affected/newly created by a proof step with curly brackets. The square brackets mark the
formulae that were left unchanged by the proof step.
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34 QED

34.1 Short Description

The QED project aims at building a computer system which was to represent mathematical
knowledge  and  techniques.  It  was  recognized  in  the  QED  Manifesto  (written  by  anonymous
authors)  that  it  was  to  be  a  cooperation  of  many  mathematicians,  computer  scientists  and
research agencies. Among the list of reasons for undertaking such an effort we mention: rigor−
ous, incremental representation of mathematical knowledge which would make it usable to scan
and search for specific or relevant results; key component for systems that do verification and
synthesis of both software and hardware parts; framework for carrying out proofs in academic
education; preserve mathematics from corruption; noise level reduction by avoiding redundan−
cies, duplications, etc.; improve the coherence of mathematical knowledge.

The  system  would  build  up  on  a  ’root  logic’,  but  would  also  be  accepting  other  logics
provided there are methatheorems available to share proofs between logics. It was expected that
the full foundation of the system could be expressed in a few pages of mathematics. The knowl−
edge to be stored in the system are to be checked, different, independent basic checkers being
supported by QED. The system would only be focused on formalizing and checking mathemat−
ics, and not discovering new theorems.

Though the project has been dormant since some time, several projects and systems (many
of  them  described  also  in  this  report)  can  be  seen  as  trying  to  achieve  some  of  the  goals
expressed in the QED Manifesto [QEDMan].

34.2 Technical Information on the System

34.2.1 Name of the System and Website

The QED Project. http://www−unix.mcs.anl.gov/qed/

34.2.2 Main Publications

The QED Manifesto. In Automated Deduction − CADE 12, Springer−Verlag, Lecture Notes
in Artificial Intelligence, Vol. 814, pp. 238−251, 1994.
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35 Singular

35.1 Short Description

Singular is a Computer Algebra System for polynomial computations with special emphasis
on the needs of commutative algebra, algebraic geometry, and singularity theory [Singular]. Its
main  computational objects  are  polynomials,  ideals  and  modules over  a  large variety  of  rings
[GreuelPfister06]. It implements one of the fastest algorithm for computing Gröbner bases. The
problems in non−commutative algebra can be tackled with Singular’s offspring, Plural (see the
corresponding section in this document).

35.2 Technical Information on the System

35.2.1 Name of the System and Website

Singular. http://www.singular.uni−kl.de/

35.2.2 Project Leaders and Group

The project is  coordinated by Gert−Martin Greuel,  Gerhard Pfister, and Hans Schönemann
(all from Department of Mathematics, University of Kaiserslautern).

The  project  group  currently  consist  of:  Michael  Brickenstein,  Wolfram Decker,  Alexander
Dreyer,  Anne  Frühbis−Krüger,  Kai  Krüger,  Viktor  Levandovskyy,  Oleksandr  Motsak,  Oliver
Wienand

For former member of the team and other contributors to the system see the webpage.

35.2.3 Main Publications

G.−M.  Greuel,  G.  Pfister.  SINGULAR  and  Applications.  Jahresbericht  der  DMV  108
(2006), 167−196.

C.  Lossen,  H.  Schönemann.  21  Years  of  Singular  Experiments  in  Mathematics.  In:  C.
Lossen  and  G.  Pfister  (eds.),  Singularities  and  Computer  Algebra.  Lecture  Notes  of  LMS,
Cambridge University Press, to appear (2005/06). 

35.2.4 Implementation Language

Initially,  the  system  was  programmed  in  Modula−2,  later  it  was  switched  to  C.  Several
libraries of the system are implemented in C++.
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35.2.5 System Availability and Prerequisites

Free software, distributed under the terms of the GNU General Public License (version 2 of
the License). Downloadable from the project’s website, it’s available as a binary program for a
variety of Unix platforms, Windows, MacOs X, and others.

As  a  prerequisite,  we  mention (X)Emacs,  if  it  is  not  wished to  interact with  the system in
terminal window.

35.3 Algorithm Libraries

35.3.1 Algebraic Library

There  is  one  basic  algorithm  which  is  central  in  Singular.  It  is  a  general  standard  basis
algorithm  for  any  monomial  ordering  (including  well−orderings  −  Buchberger’s  algorithm  −
and tangent cone orderings − Mora’s algorithm).

The algorithms implemented in Singular can be grouped as follows (see the manual on the
system’s website [Singular]):

    *  Algorithms to  compute  the  standard  operations  on  ideals  and  modules:  intersection,
ideal quotient, elimination, etc.

    * Different Syzygy algorithms and algorithms to compute free resolutions of modules.
    * Combinatorial algorithms to compute dimensions, Hilbert series, multiplicities, etc.
    *  Algorithms for univariate and multivariate polynomial factorization, resultant and gcd

computations. 

35.3.2 Reasoners

35.3.3 Graphical Tools and Interfaces

35.4 User Language

35.4.1 Programming Language

The  system provides  the  Singular  language,  very  similar  to  the  C  programming language.
The building blocks of the Singular language are expressions, commands and control structures.

35.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

The  system  has  no  means  to  formulate  theorems,  definitions,  etc.  It  is  meant  to  program
algorithms, in the Singular language, and then execute them.
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35.4.3 Mathematical Syntax

The Singular language.

35.5 Mathematical Knowledge Bases

35.5.1 Available Theories and Knowledge Bases

35.5.2 Tools for Retrieval in Mathematical Knowledge Bases

35.5.3 Tools for Inventing Mathematical Knowledge

35.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

35.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

35.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

35.5.7 Standardization, Inter−Operability

Various packages from other system to Singular are available (e.g. from Gap to Singular −
by M. Costantini, from Mathematica to Singular − by M. Kauers and V. Levandosky).

35.5.8 Web Access

35.6 Example of a Theory Exploration Session

The examples below are taken from the on−line manual that can be found on the Singular’s
website.

35.6.1 Introduction

When Singular is started, it prompts the ’>’ character. Every statement has to be terminated
by ’;’ .

>37+5;
42
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All objects have a type, e.g., integer variables are defined by the word int. Assignments are
done by the symbol ’=’ . Note that the output is suppressed. This is the case when assignments
are made.

>int k=2;

Testing  equality  /  inequality  is  done  using  ’==’  /  !=  (or  <>)  −  as  in  C  and  C++,  where  0
represents the boolean value FALSE, any other value represents TRUE.

> k �2;
1

>k¹2;
0

The value of an object is displayed by simply typing its name.

> k;
2

The last displayed (!) result is always available with the special symbol _ .

> 2*_;//the value from k displayed above
4

35.6.2 Declaring Rings

All  the  computations  in  Singular  are  done  within  some  ring.  The  default  one  is
Z/32003[x,y,z]with degree reverse lexicographical ordering.

> ring r=32003,(x,y,z), dp;

The ring Q[a,b,c,d] with lexicographical ordering:

> ring r=0,(a,b,c,d), lp;

The  ring  Z �7@x1, ..., x6D  with  lexicographical  ordering  for  x1, x2, x3  and  degree  reverse
lexicographical ordering for x4, x5, x6:

> ring r=7, (x(1..6)), (lp(3),dp);

35.6.3 Solving Systems of Polynomial Equations

The Singular libraries solve.lib and triang.lib provide several commands for solving systems
of  polynomial  equations  (based  on  a  symbolic−numerical  approach  via  Groebner  bases,  resp.
resultants). In the example below, we show some of these commands at work.
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>LIB "solve.lib";
>ring r=0,x(1..5),dp;
>poly f0=x(1)^3+x(2)^2+x(3)^2+x(4)^2−x(5)^2;
>poly f1=x(2)^3+x(1)^2+x(3)^2+x(4)^2−x(5)^2;
>poly f2=x(3)^3+x(1)^2+x(2)^2+x(4)^2−x(5)^2;
>poly f3=x(4)^2+x(1)^2+x(2)^2+x(3)^2−x(5)^2;
>poly f4=x(5)^2+x(1)^2+x(2)^2+x(3)^2;
>ideal i=f0,f1,f2,f3,f4;
>ideal si=std(i);

The dimension of  the solution set  (0  in  this case) can be read from a Gröbner basis,  w.r.t.
any global monomial ordering

>dim(si);
0

The number of complex solutions (counted with multiplicities) is:

>vdim(si);
108

The given system has a multiple solution at the origin. We use facstd to compute equations
for the non−zero solutions:

>option(redSB);
>ideal maxI=maxideal(1);
>ideal j=sat(si,maxI)[1];//output is Groebner basis
>vdim(j);//number of non−zero solutions (with mult’s)
76

We compute a triangular decomposition for the ideal I. This requires first the computation of
a lexicographic Gröbner basis (we use the FGLM conversion algorithm):

>ring R=0,x(1..5),lp;
>ideal j=fglm(r,j);
>list L=triangMH(j);
>size(L);//number of triangular components
7

> L[1];                    // the first component
_[1]=x(5)^2+1
_[2]=x(4)^2+2
_[3]=x(3)−1
_[4]=x(2)^2
_[5]=x(1)^2

We compute floating point approximations for the solutions (with 30 digits)

>def S=triang_solve(L,30);
//’triang_solve’ created a ring,in which a list rlist of 
numbers (the
//complex solutions) is stored.
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//complex solutions) is stored.
//To access the list of complex solutions,type (if the name R 
was assigned
//to the return value):
setring R;rlist;

>setring S;
>size(rlist);//number of different non−zero solutions
28

>rlist[1];//the first solution
[1]:
      0
[2]:
      0
[3]:
      1
[4]:
      (−I*1.41421356237309504880168872421)
[5]:
      −I

Alternatively, we could have applied directly the solve command:

>setring r;
>def T=solve(i,30,1,"nodisplay");//compute all solutions with 
mult’s
//’solve’ created a ring,in which a list SOL of numbers (the 
complex solutions)
//is stored.
//To access the list of complex solutions,type (if the name R 
was assigned
//to the return value):
setring R;SOL;

>setring T;
>size(SOL);//number of different solutions
4

>SOL[1][1];SOL[1][2];//first solution and its multiplicity
[1]:
      [1]:
            1
      [2]:
            1
      [3]:
            1
      [4]:
            (i*2.449489742783178098197284074706)
      [5]:
            (i*1.732050807568877293527446341506)
[2]:
      [1]:
            1
      [2]:
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      [2]:
            1
      [3]:
            1
      [4]:
            (−i*2.449489742783178098197284074706)
      [5]:
            (i*1.732050807568877293527446341506)
[3]:
      [1]:
            1
      [2]:
            1
      [3]:
            1
      [4]:
            (i*2.449489742783178098197284074706)
      [5]:
            (−i*1.732050807568877293527446341506)
[4]:
      [1]:
            1
      [2]:
            1
      [3]:
            1
      [4]:
            (−i*2.449489742783178098197284074706)
      [5]:
            (−i*1.732050807568877293527446341506)
1

>SOL[size(SOL)];//solutions of highest multiplicity
[1]:
    [1]:
        [1]:
              0
        [2]:
              0
        [3]:
              0
        [4]:
              0
        [5]:
              0
[2]:
      32

Or, we could remove the multiplicities first, by computing the radical:

>setring r;
>ideal k=std(radical(i));
>vdim(k);//number of different complex solutions
29
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>def T1=solve(k,30,"nodisplay");//compute all solutions with 
mult’s
//’solve’ created a ring,in which a list SOL of numbers (the 
complex solutions)
//is stored.
//To access the list of complex solutions,type (if the name R 
was assigned//to the return value):setring R;SOL;
>setring T1;
>size(SOL);//number of different solutions
29

>SOL[1];
[1]:
    1
[2]:
    1
[3]:
    1
[4]:
    (−i*2.449489742783178098197284074706)
[5]:
    (−i*1.732050807568877293527446341506)

36 Theorema

36.1 Short Description

The Theorema is a project and a software system that aims at supporting the entire process
of  mathematical  theory  exploration.  It  is  built  on  top  of  the  computer  algebra  system
Mathematica.

36.2 Technical Information on the System

36.2.1 Name of the System and Website

Theorema.  A  System for  Computer Supported Mathematical Theorem Proving and Theory
Exploration.

 http://www.theorema.org.

36.2.2 Project Leaders and Group

Bruno Buchberger and Tudor Jebelean (Risc−Linz).
Current members of the group are: Adrian Craciun, Besik Dundua, Madalina Erascu, Teimu−

raz  Kutsia,  Florina  Piroi,  Nikolaj  Popov,  Camelia  Rosenkranz,   Markus  Rosenkranz,  Robert
Vajda, Alexander Zapletal, Wolfgang Windsteiger.
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36.2.3 Main Publications

B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N. 
Popov, J. Robu, M. Rosenkranz, W. Windsteiger. Theorema: Towards Computer−Aided Mathe−
matical Theory Exploration. Journal of Applied Logic 4(4), pp.  470−504. 2006. ISSN 
1570−8683.

B. Buchberger, T. Jebelean, W. Windsteiger, T. Kutsia, K. Nakagawa, J. Robu, F. Piroi, A.
Craciun,  N.  Popov,  G.  Kusper,  M.  Rosenkranz,  L.  Kovacs,  C.  Kocsis.  F 1302: THEOREMA:
Proving,  Solving and Computing in  General  Domains.  In:  Special  Research Program (SFB) F
013, Numerical and Symbolic Scientific Computing, Proposal for Continuation, Part I: Progress
Report,  April  2001−September 2003,   P.  Paule,  U.  Langer  (ed.),  pp.  148−170.  October  2003.
Johannes Kepler University Linz, Austria

36.2.4 Implementation Language

The  programming  language  of  Mathematica.  Theorema does  not  call  any  Mathematica
algorithms, unless the user explicitly, and in a controlled way, does this from within the system.

36.2.5 System Availability and Prerequisites

The system is free of charge. It  is distributed as a collection of Mathematica packages. I.e.
Mathematica is needed for running the system. Optionally, external proof systems which Theo−
rema can call should be locally installed.

36.3 Algorithm Libraries

36.3.1 Numerical, Discrete, Algebraic, etc. Libraries

36.3.2 Reasoners

The system has  a  general  higher−order predicate logic  and a  collection of  special  provers,
like  set  theory  prover,  tuple  induction  prover,  polynomial  simplifier,  equational  provers,  etc.
See  the  various  publications  of  the  Theorema group  for  detailed  descriptions  on  each  of  the
reasoners.

36.3.3 Graphical Tools and Interfaces

The Theorema system uses Mathematica’s front−end to  interact  with  the  user,  and,  there−
fore,  takes  advantage of  its  graphical  capabilities (hyperlinks,  colors,  collapsing cells,  etc).  In
addition to this, several graphical tools were implemented:
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Logicographic  symbols  [NakagawaBuchberger01]  provide  means  for  introducing  new
intuitive notation. Logicographic symbols are graphical symbols that carry logical meaning, and
can be used in the proof search mechanism.

Focus Windows [PiroiBuchberger02] is a tool for inspecting completed proofs. Proof steps
are shown in a two−phase style, before and after the inference rule application on some given
proof step in the proof tree. 

Theorema’s interactive proving environment is described in [PiroiKutsia05], and includes a
visualization of the proof tree.

36.4 User Language

36.4.1 Programming Language

The  Theorema language  for  implementing  provers  and  algorithms  is  available,  for  the
moment, only to the project’s members.

36.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

Untyped higher order logic extended with sequence variables. 

36.4.3 Mathematical Syntax

The Theorema language syntax.

36.5 Mathematical Knowledge Bases

36.5.1 Available Theories and Knowledge Bases

There exist several theory formalizations done with Theorema, but these are not centralized.
The  SysteMaThEx  project  (Systematic  Mathematical  Theory  Exploration  with  the  Theorema
System : Case Studies) aims at providing major case studies of computer−supported systematic
theory exploration (see [HodorogCraciun07] and [CraciunHodorog07].

An  environment  for  editing and  building mathematical knowledge libraries is  described in
[PiroiBuchberger04].

36.5.2 Tools for Retrieval in Mathematical Knowledge Bases

A formula search mechanism that involves alpha conversion, and search by formulae contain−
ing  certain  symbols  or  patterns  has  already  been  implemented  (see  [PiroiEtAl07]).  There  is
ongoing  work  to  implement  more  sophisticated  tools  for  mathematical  knowledge  retrieval,
like, for example, retrieval by simple proving (see [Rosenkranz07]).
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36.5.3 Tools for Inventing Mathematical Knowledge

There are two existing tools for inventing mathematical lemmata in Theorema. The first one,
the  cascade  tool,  infers  new  lemmata  from  the  information  generated  by  failing  proofs,  and
recursively calls  the  original  prover  on  the  lemmata inferred.  The ’lazy thinking’  method is  a
systematic  method  for  top−down  synthesis  and  verification  of  lemmata  and  algorithms.  See
[BuchbergerCraciun03], for more details and further references to this paradigm.

Another tool  for  inventing knowledge is described in [Kovacs07]  and treats the generation
of invariants for while−loops, which is a helpful tool for (imperative) program verification

36.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

The Theorema reasoners.

36.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

36.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

There’s  ongoing  work  to  add  facilities  for  implementing  reasoners  within  Theorema.  The
reasoners  are  to  be  first  proved  by  the  system,  before  including  them  in  it.  See  [Giese−
Buchberger07] for more details.

36.5.7 Standardization, Inter−Operability

Besides its  ’internal’  reasoners,  Theorema can  use  ’external’  automated reasoning systems
via  a  special  interface.  The  interface  links  Theorema with  the  external  provers  Bliksem [de−
Nivelle07],  EQP  [McCune−EQP],  E  [Schulz02],  Gandalf  [Tammet97],  Otter   [McCune94],
Scott   [HodgsonSlaney00],  Setheo  [SchumannEtAl90],  Spass  [WeidenbachEtAl99],  Vampire
[RiazanovVoronkov99],  Waldmeister  [HillenbrandEtAl96],  and  with  the  finite  model  and
counterexample  searcher  Mace  [McCune03].  For  more  details  on  the  interface  see  [Kutsia−
Nakagawa01].

36.5.8 Web Access

36.6 Example of a Theory Exploration Session

We show an example of using the set theory prover of the Theorema system. First we load
the  Theorema packages,  then  we  give  some  definitions  of  what  a  relation  is,  its  equivalence
class, factor set, etc. (see below).  The definitions are all given in Theorema’s user language.
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<< Theorema‘

Definition@"is relation", any@RD,
is|relation@RD : � HR Í X �XLD

DefinitionA"class", any@x, RD, class@R, xD := 9a È
aÎX
Xa, x\ Î R=E

DefinitionA"factor set", any@RD, factor|set@RD := 9class@R, xD È
x

x Î X=E;

DefinitionA"is subset set", any@PD, is|subset|set@PD :� "
pÎP

p Í XE

DefinitionA"is reflexive", any@RD,
is|reflexive@RD :� "

xÎX
Xx, x\ Î RE

DefinitionA"is all non empty", any@PD,
is|all|nonempty@PD :� i

k
jjj "

pÎP
p ¹ 8<y{

zzzE

We want to prove the following lemma, which states that if a relation is reflexive, then it’s
factor set is not empty. The ’Prove’ command contains the knowledge that can be used by the
set  theory  prover  (aside  from  its  implemented  inference  rules),  and  some  parameters  which
guide the proof searching process.

Lemma@"one", any@RD,
is|reflexive@RDÞ is|all|nonempty@factor|set@RDDD

Prove@Lemma@"one"D,
using® XDefinition@"factor set"D, Definition@"class"D, Definition@"is relation"D, Definition@"is reflexive"D,

Definition@"is subset set"D, Definition@"is all non empty"D\, by ® SetTheoryPCSProver,
ProverOptions® 8GRWTarget® 8"goal", "kb"<, UseCyclicRules® True, RWExistentialGoal® True,

DisableProver® 8STC, PND<<, SearchDepth® 50, transformBy® ProofSimplifier,
TransformerOptions® 8branches® Proved, steps® Useful<D;

And the content of the proof notebook that shows the proof found by the system is:

Prove:

(Lemma (one))  "
R
His|reflexive@RDÞ is|all|nonempty@factor|set@RDDL ,

under the assumptions:

(Definition (factor set))"
R

i
k
jjjfactor|set@RD := 9class@R, xD È

x
x Î X=y{

zzz ,

(Definition (class))"
R,x

i
k
jjjclass@R, xD := 9a È

a
a Î X ß Xa, x\ Î R=y{

zzz ,
(Definition (is relation))  "

R
His|relation@RD :� R Í X �XL ,

(Definition (is reflexive))  "
R
Jis|reflexive@RD :� "

x
Hx Î X Þ Xx, x\ Î RLN ,

(Definition (is subset set))  "
P

i
k
jjis|subset|set@PD :� "

p
Hp Î P Þ p Í XLy{

zz ,

(Definition (is all non empty)) "
P

i
k
jjis|all|nonempty@PD :� "

p
Hp Î P Þ p ¹ 8<Ly{

zz .
Using built|in simplification rules we can simplify the knowledge base:
FormulaHDefinition His all non emptyLL simplifies to

 (1)  "
P

i
k
jjis|all|nonempty@PD :� "

p
Hp Î P Þ 8< ¹ pLy{

zz .
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We assume

 (2)  is|reflexive@R0D ,
and show

 (3)  is|all|nonempty@factor|set@R0DD .
FormulaH3L, usingHDefinition Hfactor setLL, is implied by :

 is|all|nonemptyA9class@R0, xD È
x

x Î X=E,
which, usingHDefinition HclassLL, is implied by :

is|all|nonemptyA99a È
a

a Î X ß Xa, x\ Î R0=
ÄÄÄÄÄÄÄÄÄ
x

x Î X=E,

which, usingH1L, is implied by :

 (4)  "
p

i

k

jjjjjjjjp Î 99a È
a

a Î X ß Xa, x\ Î R0=
ÄÄÄÄÄÄÄÄÄ
x

x Î X=Þ 8< ¹ p
y

{

zzzzzzzz .

We assume

 (5)  p0 Î 99a È
a

a Î X ß Xa, x\ Î R0=
ÄÄÄÄÄÄÄÄÄ
x

x Î X= ,

and show

 (6)  8< ¹ p0  .

From what we already know follows:

FromH5Lwe know by definition of9Tx È
x
P= that we can choose an appropriate value such that

 (7)  a10 Î X ,

 (8)  p0 = 9a È
a

a Î X ß Xa, a10\ Î R0= .
FormulaH6Lmeans that we have to show that

 (15)  $
p1
Hp1 Î p0L .

FormulaH15L, usingH8L, is implied by :

 (16)  $
p1

i
k
jjjp1 Î 9a È

a
a Î X ß Xa, a10\ Î R0=y{

zzz .
In order to proveH16L we have to show :

 (17)  $
p1
Hp1 Î X ß Xp1, a10\ Î R0L .

Now, let p1 := a10. Thus, for provingH17L it is sufficient to prove :

 (18)  a10 Î X ß Xa10, a10\ Î R0  .

We prove the individual conjunctive parts ofH18L :
Proof of H18.1L a10 Î X :

FormulaH18.1L is true because it is identical toH7L.
Proof ofH18.2L Xa10, a10\ Î R0 :

FormulaH2L, by HDefinition His reflexiveLL, implies :

 (25)  "
x
Hx Î X Þ Xx, x\ Î R0L .

FormulaH18.2L, usingH25L, is implied by :

 (26)  a10 Î X .

FormulaH26L is true because it is identical toH7L.
á
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37 TPTP

37.1 Short Description

The TPTP (Thousands of Problems for Theorem Provers) Problem Library is a library of test
problems for automated theorem proving systems (ATP). The problems part of this library are
expressed  in  the  first  order  logic.  The  main  sources  of  these  problems are  existing  electronic
collections of problems and the ATP literature (see [SutcliffeSuttner99] for bibliography informa−
tion on the sources). Additionally, several other people have contributed problems to the library.

37.2 Technical Information on the System

37.2.1 Name of the System and Website

Thousands of Problems for Theorem Provers. http://www.tptp.org/

37.2.2 Project Leaders

Geoff  Sutcliffe  (Department  of  Computer  Science,  University  of  Miami)  and  Christian
Suttner (Institut für Informatik, TU München)

37.2.3 Main Publications

G. Sutcliffe, and C.B. Suttner: The TPTP Problem Library: CNF Release v1.2.1, Journal of
Automated Reasoning 21(2), 177−203, 1998.

Geoff Sutcliffe, and Christian Suttner: The TPTP Problem Library, Department of Computer
Science, James Cook University, Australia No. 99, February 1999.

37.2.4 Implementation Language

The  library  is  a  collection  of  text  files,  the  syntax  of  the  stored  knowledge  is  the  one  of
Prolog.

37.2.5 System Availability and Prerequisites

The library is freely available, copyrighted (c) 1993−2007,  by Geoff Sutcliffe & Christian
Suttner. Its use and verbatim redistribution are permitted, while modified versions or modified
parts of the library require permission.

To be installed and used, the library needs some version of Prolog available on the operating
system.
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37.3 Algorithm Libraries

37.4 User Language

Remark: the library cannot be modified (and distributed) by others than the copyright hold−
ers (authors). Users can play around with it, but it will only be a local, modified copy.

37.4.1 Programming Language

37.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

First order logic (with formulae written in first order form or conjunctive normal form).

37.4.3 Mathematical Syntax

First order logic (with formulae written in first order form or conjunctive normal form).

37.5 Mathematical Knowledge Bases

TPTP  is  a  repository  of  problems  for  testing  Automated  Theorem  Provers  (ATP).  The
problems are  expressed in  First  Order  Logic,  each problem is  stored in  one file,  in  first  order
form or in conjunctive normal form. The same problem can have different versions depending
on the different formulations, or axiomatization used. Problem versions are alternative presenta−
tions of an underlying abstract problem [SutcliffeSuttner98]. Theory axiomatizations are kept in
separate  axiom  files,  and  included  in  the  problem  files  as  needed  and  appropriate.  On  mode
details about the problem and axiom sets naming, versioning, etc. see the given bibliography.

37.5.1 Available Theories and Knowledge Bases

The current version of the system (as of 30.10.2007) is 3.0.0. The problems of the library are
categorized  in  6  groups:  Logic,  Mathematics,  Computer  Science,  Science  and  Engineering,
Social  sciences,  Other.  We  detail,  below,  for  each  of  these  groups  the  areas  covered  and  the
axiomatizations currently available.

· Logic

*  Combinatory  logic.  Axiomatizations:  Type−respecting  combinators,
Combinators

* Logic calculi. Axiomatizations: Wajsberg algebra axioms, Alternative Wajsberg
algebra,  Propositional  logic  deduction,  Propositional  logic,  Propositional  logic
rules and axioms, Propositional modal logic rules and axioms.
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* Henkin models. Axiomatizations: Henkin model, Henkin model, Henkin model
(equality).

· Mathematics. 

*  Set  theory.  Axiomatizations:  Set  theory  membership  and  subsets,  Set  theory,  Set
theory  based  on  Godel  set  theory,  Set  theory  based  on  NBG  set  theory,  Set  theory
based on NBG set theory, Naive set theory based on Goedel’s set theory.

* Graph theory. Axiomatizations: Directed graphs and paths.

* Algebra. 
Axiomatizations  in  Boolean  Algebra:  Ternary  Boolean  algebra  (equality),

Boolean algebra, Boolean algebra (equality), Boolean algebra (equality). 
Axiomatizations in Robbins algebra: Robbins algebra. 
Axiomatizations in Left distributive algebras: Embedding algebra.
Axiomatizations in Lattices: Lattice theory (equality), Lattice theory, Ortholat−

tice  theory  (equality),  Quasilattice  theory  (equality),  Weakly  Associative  Lattices
theory (equality), Tarski’s fixed point theorem (equality).

Axiomatizations  for  Groups:  Monoids,  Semigroups,  Group  theory,  Group
theory (equality), Group theory (Named groups), Group theory (Named Semigroups).

Axiomatizations for Rings:Ring theory, Ring theory (equality), Alternative ring
theory (equality).

Axiomatizatoin for Homological algebra: Standard homological algebra axioms.

*  General  algebra.  Axiomatizations:  Abstract  algebra  axioms,  based  on  Godel  set
theory,  Median algebra axioms.

* Number theory. Axiomatizations: Number theory, Number theory (equality), Number
theory axioms, based on Godel set theory, Number theory (ordinals) axioms, based on
NBG set theory, Translating from nXXX to RDN notation.

* Topology. Axiomatizations: Point−set topology.

* Analysis. Axiomatizations: Analysis (limits) axioms for continuous functions, Analy−
sis (limits) axioms for continuous functions, A theory of Big−O notation.

*  Geometry.  Axiomatizations:  Tarski  geometry,  Hilbert  geometry,  Simple  curve
axioms,  Hilbert  geometry  axioms,  adapted  to  respect  multi−sortedness,  Apartness
geometry axioms, Ordered affine geometry.

*  Field  theory.  Axiomatizations:  Ordered  field  axioms  (axiom  formulation  glxx),
Ordered field axioms (axiom formulation re)

*  Category  theory.  Axiomatizations:  Category  theory  axioms,  Category  theory
(equality) axioms.

· Computer Science.

*  Computing theory

* Knowledge representation

* Natural Language Processing
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* Planning. Axiomatizations: Blocks world axioms.

* Agents. Axiomatizations: CPlanT system.

* Commonsense Reasoning. Axiomatizations: Standard discrete event calculus axioms.

* Software creation. Axiomatizations: List specification

*  Software  verification.  Axiomatizations:  Program  verification  axioms,  NASA  soft−
ware certification axioms, Cryptographic protocol axioms for messages, Cryptographic
protocol  axioms  for  messages,  Cryptographic  protocol  axioms  for  public,  Priority
queue checker: quasi−order set with bottom element.

· Science and Engineering.

* Hardware creation. Axiomatizations: Definitions of AND, OR and NOT

* Hardware verification. Axiomatizations: Connections, faults, and gates. Axioms from
a VHDL design description.

* Medicine. Axiomatizations: Physiology Diabetes Mellitus type 2. 

· Social sciences.

* Management. Axiomatizations: Inequalities.

· Other.

* Syntactic. Axiomatizations: Synthetic domain theory for EBL.

* Puzzles. Axiomatizations: Mars and Venus axioms, Truthtellers and Liars axioms for
two types of people, Quo vadis axioms, Sudoku axioms.

* Miscellaneous. Axiomatizations: Sets, numbers, lists, etc, that make up the Isabelle/−
HOL library.

37.5.2 Tools for Retrieval in Mathematical Knowledge Bases

There is a script, tptp1T, which help user select lines from either the FOF problem statistics
file or the CNF problem statistics file. The statistic files are (text) files where, for each problem
file,  various problem characteristics are  stored,  like,  for  example,  which connectives and how
many times occur in the formulae of the problem, how many predicates, arities of predicate and
functional symbols, etc. One line in the statistic files corresponds to one problem. Problems can
be  selected  by  domain,  by  number  of  function  symbols,  by  average  number  of  literals  per
clause, etc.

There  are  additional  tools  for  manipulating  and  interogating the  TPTP data  structure.  The
tools can be downloaded from the TPTP website, but they are undocumented.
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37.5.3 Tools for Inventing Mathematical Knowledge

The  TPTP  system  contains  some  generator files  which  are  used  to  generate  instances  of
generic problems. An example of such a problem is the N−queens problem: place N queens on
an NxN chess board such that no queen attacks another. (Note: the satisfiability of the generated
problem may depend on N). The tool used is tptp2X, written in Prolog.

37.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

37.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

The tptp2X program is a multi−functional utility for reformatting, transforming, and generat−
ing TPTP problem files. The transformations are applied directly to formulae, and are [Sutcliffe−
Suttner98]:

ë remove the connectives <=, <~>, ~|, and ~& from FOF problems, by rewriting formulae to
use the other connectives;
ë transform FOF problems to CNF problems, using various algorithms
ë simplify a set of clauses.
ë clausify and then simplify.
ë  convert  a  set  of  first  order  clauses  to  a  set  of  first  order  formulae,  converting  negated

conjecture clauses into a corresponding conjecture.
ë convert a set of first order clauses to a set of propositional clauses, preserving satisfiability.
ë reverse the literal ordering in the clauses of CNF problems.
ë reverse the clause ordering in CNF problems.
ë reverse the formula ordering in FOF problems.
ë randomly reorder the clauses and literals in CNF problems or formulae in FOF problems.
ë reverse the arguments of unit equality clauses in CNF problems.
ë reverse the arguments of randomly selected unit equality clauses in CNF problems.
ë  remove  equality  axioms.  One  can  remove  any  of  the  reflexivity,  symmetry,  transitivity,

function substitution or predicate substitution axioms.
ë add missing equality axioms to problems that contain equality.
ë set the equality axioms in problems that contain equality.
ë convert CNF problems to a pure equality representation.
ë Mark Stickel’s magic set transformation to CNF problems (see reference in the mentioned

article).
ë  replace all  the symbols in the problem by short,  meaningless symbols. Useful when only

interested in the syntax of the problem. The equality atoms are not affected.
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37.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

37.5.7 Standardization, Inter−Operability

Using the tptp2X utility program, problems from the TPTP library can be translated into the
following formats:

 Bliksem [deNivelle07], CARINE [Carine], CLIN−S [Chu94], CoDe, Dedam [Nieuwenhuis−
EtAl97],  DFG  [HähnleEtAl96],  DIMACS  [Dimacs],  EQP  [McCune−EQP],  FINDER
[Slaney92],  GLiDeS  [BrownSutcliffe00],  ILF  [DahnEtAl95],  KIF  [GeneserethFikes92],  lean−
TAP  [BeckertPosegga95],  3TAP  [HähnleEtAl94],  Mace4  [McCune03],  Mathematica  [Wol−
fram],  METEOR  [Astrachan94],  MGTP  [FujitaEtAl92],  OmDoc  [Kohlhase00],  OSCAR
[Pollock90],  Otter  [McCune94],  PROTEIN  [BaumgartnerFurbach94],   PTTP  [Stickel84],
SATCHMO  [GeislerEtAl97],  SCOTT  [HodgsonSlaney00],  SEM  [ZhangZhang96],  SETHEO
[SchumannEtAl90], SPRFN [Plaisted88], THINKER [Pelletier87], old TPTP format [Sutcliffe−
Suttner98], old TPTP format prefix form, FOF and CNF problems to the TPTP format [Sutcliffe−
EtAl03], Waldmeister [HillenbrandEtAl96].

37.5.8 Web Access

On the system’s website there’s an interface, System On TPTP, where users can try to solve
problems using the reasoning systems that understand the library. The interface allows users to
chose which systems to  tackle the problem, give parameters to  the chosen systems, chose the
system’s output format (where possible), etc.

37.6 Example of a Theory Exploration Session

The file format for  the problem and axiom files has three main sections. The first one is a
header section with information for the user. This information is not used by the reasoners that
may work on the problem. The second section is a list of  instructions for axiom files, and the
third is a list of formulae that are specific to the problem or axiomatization [SutcliffeSuttner98].

Here is an example of a problem file, as stored in the TPTP library:

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
% File     : NUM291+1 : TPTP v3.3.0. Released v3.1.0.
% Domain   : Number Theory (RDN arithmetic)
% Problem  : 3 !< 2
% Version  : Especial.
% English  : 

% Refs     : 
% Source   : [TPTP]
% Names    : 

% Status   : Theorem
% Rating   : 0.37 v3.3.0, 0.36 v3.2.0, 0.45 v3.1.0
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% Rating   : 0.37 v3.3.0, 0.36 v3.2.0, 0.45 v3.1.0
% Syntax   : Number of formulae    :  402 ( 375 unit)
%            Number of atoms       :  473 (   5 equality)
%            Maximal formula depth :   19 (   1 average)
%            Number of connectives :   74 (   3 ~  ;   1  |;  
43  &)
%                                         (   3 <=>;  24 =>;   
0 <=)
%                                         (   0 <~>;   0 ~|;   
0 ~&)
%            Number of predicates  :   11 (   0 propositional; 
1−4 arity)
%            Number of functors    :  260 ( 256 constant; 0−2 
arity)
%            Number of variables   :  121 (   0 singleton; 121 
!;   0 ?)
%            Maximal term depth    :    5 (   2 average)

% Comments : 
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
%−−−−Include axioms for RDN arithmetic
include(’Axioms/NUM005+0.ax’).
include(’Axioms/NUM005+1.ax’).
include(’Axioms/NUM005+2.ax’).
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
fof(n3_not_less_n2,conjecture,
    ( ~ less(n3,n2) )).
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

Among the axiom files included by this problem file is Axioms/NUM005+2.ax, we display
here only a part of it:

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
% File     : NUM005+2 : TPTP v3.3.0. Released v3.1.0.
% Domain   : Number Theory
% Axioms   : Sum in RDN format
% Version  : Especial.
% English  : Impements a "human style" addition using RDN 
format. 

% Refs     :
% Source   : [TPTP]
% Names    :

% Status   :
% Syntax   : Number of formulae    :  115 ( 100 unit)
%            Number of atoms       :  164 (   3 equality)
%            Maximal formula depth :   19 (   2 average)
%            Number of connectives :   49 (   0 ~  ;   0  |;  
34  &)
%                                         (   1 <=>;  14 =>;   
0 <=)
%                                         (   0 <~>;   0 ~|;   
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%                                         (   0 <~>;   0 ~|;   
0 ~&)
%            Number of predicates  :    8 (   0 propositional; 
1−4 arity)
%            Number of functors    :   14 (  10 constant; 0−2 
arity)
%            Number of variables   :   86 (   0 singleton;  86 
!;   0 ?)
%            Maximal term depth    :    3 (   2 average)

% Comments : Requires NUM005+0.ax NUM005+1.ax
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
%−−−−Addition entry points
%−−−−pos(X) + pos(Y)
fof(sum_entry_point_pos_pos,axiom,(
    ! [X,Y,Z,RDN_X,RDN_Y,RDN_Z] :
      ( ( rdn_translate(X,rdn_pos(RDN_X))
        & rdn_translate(Y,rdn_pos(RDN_Y))
        & rdn_add_with_carry(rdnn(n0),RDN_X,RDN_Y,RDN_Z)
        & rdn_translate(Z,rdn_pos(RDN_Z)) )
     => sum(X,Y,Z) )   )).

%−−−−neg(X) + neg(Y)
fof(sum_entry_point_neg_neg,axiom,(
    ! [X,Y,Z,RDN_X,RDN_Y,RDN_Z] :
      ( ( rdn_translate(X,rdn_neg(RDN_X))
        & rdn_translate(Y,rdn_neg(RDN_Y))
        & rdn_add_with_carry(rdnn(n0),RDN_X,RDN_Y,RDN_Z)
        & rdn_translate(Z,rdn_neg(RDN_Z)) )
     => sum(X,Y,Z) )   )).

%−−−−pos(X) + neg(Y), X < Y
fof(sum_entry_point_pos_neg_1,axiom,(
    ! [X,Y,Z,RDN_X,RDN_Y,RDN_Z] :
      ( ( rdn_translate(X,rdn_pos(RDN_X))
        & rdn_translate(Y,rdn_neg(RDN_Y))
        & rdn_positive_less(RDN_X,RDN_Y)
        & rdn_add_with_carry(rdnn(n0),RDN_X,RDN_Z,RDN_Y)
        & rdn_translate(Z,rdn_neg(RDN_Z)) )
     => sum(X,Y,Z) )   )).

%−−−−pos(X) + neg(Y), X > Y
fof(sum_entry_point_pos_neg_2,axiom,(
    ! [X,Y,Z,RDN_X,RDN_Y,RDN_Z] :
      ( ( rdn_translate(X,rdn_pos(RDN_X))
        & rdn_translate(Y,rdn_neg(RDN_Y))
        & rdn_positive_less(RDN_Y,RDN_X)
        & rdn_add_with_carry(rdnn(n0),RDN_Y,RDN_Z,RDN_X)
        & rdn_translate(Z,rdn_pos(RDN_Z)) )
     => sum(X,Y,Z) )   )).

%−−−− rest of the file omitted −−−−
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Below we show a  solution example for  the problem given before.  Solution presentation is
system dependent,  the  one  below  is  given  by  the  E−Setheo  system.  Other  systems  may  give
more details of the found proof.

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
% File       : E−SETHEO−−−csp04−SAT
% Problem    : NUM291+1 : TPTP v3.1.0
% Transform  : add_equality
% Format     : oldtptp
% Command    : bin/run−e−setheo−sat %s %d

% Computer   : art04.cs.miami.edu
% Model      : i686 unknown
% CPU        : Intel(R) Pentium(R) 4 CPU 2.80GHz @ 2793MHz
% Memory     : 1000MB
% OS         : Linux 2.4.22−21mdk−i686−up−4GB
% CPULimit   : 600s

% Result     : Theorem 0.4s
% Output     : Assurance 0.4s
% Verified   : 
% Statistics : −

% Comments   : 
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
%−−−−NO SOLUTION OUTPUT BY SYSTEM
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−
%−−−−ORIGINAL SYSTEM OUTPUT
% E−SETHEO csp04 single processor running on host 
art04.cs.miami.edu
% (c) 2004 Technische Universität München
% 
% running in SAT mode.
% 
/home/graph/tptp/TSTP/PreparedTPTP/oldtptp−−−add_equality/NUM/NU
M291+1+eq_rstfp.oldtptp
% copying problem 
/home/graph/tptp/TSTP/PreparedTPTP/oldtptp−−−add_equality/NUM/NU
M291+1+eq_rstfp.oldtptp into workdir
% executing cp 
/home/graph/tptp/TSTP/PreparedTPTP/oldtptp−−−add_equality/NUM/NU
M291+1+eq_rstfp.oldtptp /tmp/NUM291+1+eq_rstfp.ol_PID950dtptp
% returncode 0
% problem: NUM291+1+eq_rstfp.ol_PID950
% time limit information: 600 total (entering statistics 
module).
% problem analysis ...
% testing if first−order ...
% first−order problem
% executing mv /tmp/NUM291+1+eq_rstfp.ol_PID950dtptp 
/tmp/NUM291+1+eq_rstfp.ol_PID950.fof
% returncode 0
% executing 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/eprover 
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/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/eprover 
−−tptp−format −−cnf  −−print−saturated=eigEIGa 
/tmp/NUM291+1+eq_rstfp.ol_PID950.fof | sed ’s/#/%/’ > 
/tmp/NUM291+1+eq_rstfp.ol_PID950dtptp
% returncode 0
% ...clausified.
% executing /home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/dctp 
−preprocessor −nopresubsume −nopreprocess 
/tmp/NUM291+1+eq_rstfp.ol_PID950dtptp > 
/tmp/NUM291+1+eq_rstfp.ol_PID950.p2
% returncode 0
% statistics: 407 2 377 481 5 8 11 0 1 4 260 256 0 2 130 9
% time limit information: 600 total (leaving statistics module).
% selecting schedule ...
% schedule selection: problem is non−horn with equality long 
(class nel).
% schedule:601 150 300 150 702 150 9 150 
% configuring prover ...
% performing schedule ...
% executing cp /tmp/NUM291+1+eq_rstfp.ol_PID950dtptp 
/tmp/NUM291+1+eq_rstfp.ol_PID950.601dtptp
% returncode 0
% entering next strategy 601 with resource 150 seconds.
% time limit information: 600 total / 151 strategy (entering 
wrapper).
% configuration line 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/dctp 
−preprocessor −taut −nosubsume −noeager −resisol −isollimit 2.
% executing mv /tmp/NUM291+1+eq_rstfp.ol_PID950.601dtptp 
/tmp/NUM291+1+eq_rstfp.ol_PID950.601.p2; 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/limit_cpu 151 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/dctp 
−preprocessor −taut −nosubsume −noeager −resisol −isollimit 2 
−fullrewrite −resisol /tmp/NUM291+1+eq_rstfp.ol_PID950.601.p2 > 
/tmp/NUM291+1+eq_rstfp.ol_PID950.601dtptp
% returncode 0
% analyzing results ... 
% time limit information: 599 total / 150 strategy (leaving 
wrapper).
% time limit information: 599 total / 150 strategy (entering 
wrapper).
% configuration line 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/scheme−setheo 
−cons −mate −foldup −dynsgreord 0 −sgindex −indexfoldup .
% executing 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/limit_cpu 150 
/home/graph/tptp/Systems/E−SETHEO−−−csp04/bin/scheme−setheo 
−cons −mate −foldup −dynsgreord 0 −sgindex −indexfoldup  
/tmp/NUM291+1+eq_rstfp.ol_PID950.601dtptp > 
/tmp/NUM291+1+eq_rstfp.ol_PID950.601.log 2>> 
/tmp/NUM291+1+eq_rstfp.ol_PID950.601.wlog
% returncode 0
% analyzing results ... 
% proof found
% time limit information: 599 total / 150 strategy (leaving 
wrapper).
% task NUM291+1+eq_rstfp.ol_PID950 on art04.cs.miami.edu has 
status SUCCESS (proof found by strategy 601) consuming 1 seconds
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status SUCCESS (proof found by strategy 601) consuming 1 seconds
% deleting temporary files.
% e−SETHEO done. exiting
% 
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

The generator files have three header sections, similar with the ones of problem and axiom
files, where the information is replaced with place−holders. The place−holders are filled when
the generator is executed. The generator programs are written in Prolog.

38 Yacas

38.1 Short Description

As described on the system’s website: "Yacas (Yet Another Computer Algebra System) is a
small  and  highly  flexible  general−purpose  computer  algebra  system  and  programming  lan−
guage.  The  language has  a  familiar,  C−like infix−operator syntax.  The distribution contains a
small library of mathematical functions, but its real strength is in the language in which you can
easily  write  your  own  symbolic  manipulation  algorithms.  The  core  engine  supports  arbitrary
precision  arithmetic,  and  is  able  to  execute  symbolic  manipulations  on  various  mathematical
objects by following user−defined rules. "

38.2 Technical Information on the System

38.2.1 Name of the System and Website

Yacas: Yet Another Computer Algebra System. http://yacas.sourceforge.net/homepage.html

38.2.2 Project Leaders and Group

The  project  has  been  started  by   Ayal  Pinkus,  who  is  also  the  main  author  and  primary
maintainer of the system. Many contributions were made by various people. For a complete list
see:  http://yacas.sourceforge.net/homepage.html?recent.html&credits.html  (last  checked
6.12.2007).

38.2.3 Main Publications

Ayal  Z.  Pinkus,  Serge  Winitzki.  YACAS:  A  Do−It−Yourself  Symbolic  Algebra  Environ−
ment.   In Proceedings of  the Joint  International Conferences on Artificial Intelligence, Auto−
mated Reasoning, and Symbolic Computation, LNCS, Vol. 2385. pp. 332 − 336, ISBN:3−540−
43865−3, 2002, Springer−Verlag.
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38.2.4 Implementation Language

C++ and an own scripting language, based on functional language ideas. The script library
contains declarations of transformation rules and of function syntax.

38.2.5 System Availability and Prerequisites

The  system  is  free,  distributed  under  GNU  GPL.  Runs  on  many  platforms  and  operating
systems, including Unix flavors (GNU/Linux and derivatives), Mac OS X, and 32−bit Microsoft
Windows (TM). If the sources are downloaded, a C++ compiler is needed.

38.3 Algorithm Libraries

38.3.1 Numerical Library

Euclidean  GCD  algorithms,  Prime  numbers:  the  Miller−Rabin  test  and  its  improvements,
Factorization of integers, The Jacobi symbol, Integer partitions, Gaussian integers.

Modular  arithmetic,  Factoring  using  modular  arithmetic,  Preparing  the  polynomial  for
factorization,  Definition  of  division  of  polynomials,  Determining  possible  factors  modulo  2,
Determining  factors  modulo  2^n  given  a  factorization  modulo  2,  Efficiently  deciding  if  a
polynomial divides another, Newton iteration.

Basic  methods  in  Numerical  algorithms:   Adaptive  function  plotting,  Surface  plotting,
Parametric  plots,  The  cost  of  arbitrary−precision  computations,  Estimating  convergence  of  a
series,  Estimating  the  round−off  error,  Basic  arbitrary−precision  arithmetic,  Continued  frac−
tions, Estimating convergence of  continued fractions, Newton’s method and its improvements,
Fast evaluation of Taylor series, Asymptotic series for calculations, The AGM sequence algo−
rithms, The binary splitting method

Elementary  functions  in  numerical  algorithms:  Powers,  Roots,  Logarithm,  Exponential,
Calculation  of  Pi,  Trigonometric  functions,  Inverse  trigonometric  functions,  Factorials  and
binomial coefficients, Classical orthogonal polynomials, Series of orthogonal polynomials.

Special  functions  in  numerical  algorithms:  Euler’s  Gamma  function,  Euler’s  constant
gamma,  Catalan’s  constant  G,  Riemann’s  Zeta  function,  Lambert’s  W function,  Bessel  func−
tions, Bernoulli numbers and polynomials, Error function Erf(x) and related functions.

38.3.2 Symbolic Algebra Library

Sparse  representations,  Implementation  of  multivariate  polynomials,  Integration,  Trans−
forms, Finding real roots of polynomials.
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38.3.3 Reasoners

38.3.4 Graphical Tools and Interfaces

The system can be called from within TeXmacs, a WYSIWYG editor (see 
http://www.texmacs.org/). A simple Windows graphical interface for the system is also avail−
able (GUIYacas).

38.4 User Language

38.4.1 Programming Language

To  write  new  algorithms,  they  have  to  be  implemented  in  C++  and  the  Yacas  scripting
language.

38.4.2 Logic Language for the Formulation of Mathematical 
Knowledge 

No logic is specified.

38.4.3 Mathematical Syntax

The  Yacas  syntax:  the  expressions  are  built  up  of  words,  which  are  either  sequences  of
alphabetic characters, numbers, brackets, or built up of mathematical symbols like +, −, *, etc.
Mixing up these characters can be done using the double quotes.
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38.5 Mathematical Knowledge Bases

38.5.1 Available Theories and Knowledge Bases

38.5.2 Tools for Retrieval in Mathematical Knowledge Bases

38.5.3 Tools for Inventing Mathematical Knowledge

38.5.4 Tools for Verifying Mathematical Knowledge  (General 
Reasoners, Special Reasoners)

38.5.5 Tools for Completion, Reduction, Generalization, Structuring, 
Re−Structuring of Mathematical Knowledge

38.5.6 (Verified) Programming of Reasoners, Meta−Programming, 
Quotation

38.5.7 Standardization, Inter−Operability

Yacas can handle input and output in OpenMath and ASCII. It has been linked with R − a
statistic package − through Ryacas.

38.5.8 Web Access

The system can be used on−line on the project’s website, as a Java applet.

38.6 Example of a Theory Exploration Session

Normally,  the  Yacas  system is  used  in  command line  modus.  There  is  also  a  simple  GUI
available, which works under Windows (needs the .Net framework). We show an example of a
Yacas computation session:

In> 0+x
Out> x

In> x+1*y
Out> x+y

In> Sin(ArcSin(alpha))+Tan(ArcTan(beta))
Out> alpha+beta

In> A := {{0,−1},{1,0}}
Out> {{0,−1},{1,0}};
In> PrettyForm(%)
/               \
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/               \
| ( 0 ) ( −1 ) |
|               |
| ( 1 ) ( 0 )   |
\               /
Out> True;
In> IsSkewSymmetric(A);
Out> True;

In> Expand((1+x)^5);
  5         4          3          2
x   + 5 * x   + 10 * x   + 10 * x   + 5 * x + 1

In> Degree(x^5+x−1);
Out> 5;
In> Degree(a+b*x^3, a);
Out> 1;

In> e := Expand((a+x)^4,x)
Out> x^4+4*a*x^3+(a^2+(2*a)^2+a^2)*x^2+
(a^2*2*a+2*a^3)*x+a^4;
In> Coef(e,a,2)
Out> 6*x^2;
In> Coef(e,a,0 .. 4)
Out> {x^4,4*x^3,6*x^2,4*x,1};

39 Conclusions

We have presented in this report a number of mathematical systems which we have analysed
from the MKM point of view, namely, we were interested in wich tools for MKM they provide.
We  tried  to  make  this  collection of  mathematical  software descriptions comprehensive,  how−
ever, since there’s a lot of attention to this subject, there are more and more systems ascending
and under  development,  which makes it  impossible for  such a report  to be complete. We will
continuously update this collection of  software systems and invite the reader to  look at  future
editions of this technical report for up−to−date system descriptions. 
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