Combining Logical and Algebraic Techniques
for Natural Style Proving in Elementary
Analysis

Robert Vajda, Tudor Jebelean and Bruno Buchberger
RISC

Johannes Kepler University
Linz, Austria

Abstract

PCS (Proving-Computing-Solving) [Buchberger 2001] and S-Decomposition [Jebe-
lean 2001] are strategies for handling proof problems by combining logic inference
steps (e.g., modus ponens, Skolemization, instantiation) with rewriting steps (ap-
plication of definitions) and solving procedures based on algebraic techniques (e.g.,
Groebner Bases, Cylindrical Algebraic Decomposition).

If one formalizes the main notions of elementary analysis like continuity, con-
vergence, etc., usually a sequence of alternating quantifier blocks pops up in the
quantifier prefix of the corresponding formula. This makes the proof problems in-
volving these notions not easy. S-Decomposition strategy is especially suitable for
property-preserving problems like continuity of sum, because it is designed for han-
dling problems where the goal and the main assumptions have a similar structure.
During proof deduction, existentially quantified goals and universal assumptions are
handled by introducing metavariables, if no suitable ground instance is known in
advance. For finalizing proof attempts, the metavariables should be instantiated in
such a way that they satisfy the cumulated algebraic constraints collected during
the proof attempt. The instantiation problem is considered to be difficult in the
logical calculus. Appropriate instances can be often found using quantifier elimina-
tion (QE) over real closed fields. In order to obtain witness terms we utilize the QE
method based on cylindrical algebraic decomposition (CAD) [Collins 1975]. How-
ever, the QE method alone is not sufficient. One needs to pre-process the (closed,
quantified) conjectured formula and post-process the resulting CAD-structure after
the call of the QE algorithm.

Key words: automated theorem proving, extended quantifier elimination, CAD,
Groebner Bases
MSC 2000: 68T15, 03B35, 03C10

Preprint submitted to Elsevier 6 April 2007

1 Introduction

In automated reasoning, a calculus given by its inference rules and axioms is
used in order to deduce automatically the goal formula (1) from the assump-
tions (from the ¢;’s).

¢1, 02, o Y

The resolution calculus has only one inference rule and it is a refutational cal-
culus, i.e. the resolution method aims to show the unsatisfiability of the for-
mula set formed by the assumptions and the negation of the goal ({¢1, ¢o, - -,
¢n, 0}). In fact, a pre-processing step is needed for transforming all forumale
involved in the problem to normal form before a contradiction may be deduced
by resolution. Resolution based automatic theorem proving was successful in
many areas (classification of quasigroups, axiomatization of Boolean algebras
etc.), but it turns out to be not sufficiently efficient for practical application
fields like mathematical education or program verification. One main reason
for this appears to be the difficulty of using other mathematical techniques
(e.g., algebraic computation) in conjunction with the resolution method. Also,
with resolution, human readability and human-like inferencing is lost (cf. [12]
for treating elementary calculus problems using resolution). The alternative
would be to use a system of natural deduction. However, there are currently no
efficient strategies for combining natural inference rules into a general prover
for predicate logic.

One promising way for improving the capabilities of natural deduction systems
is to apply a particular strategy with combination of domain-specific decision
methods which are based on algebraic techniques. PCS (Proving-Computing-
Solving) [3] and S-Decomposition [6] are strategies for handling proof problems
by combining logic inference steps (e.g., modus ponens, Skolemization, instan-
tiation) with rewriting steps (application of definitions) and solving procedures
based on algebraic techniques (e.g., Groebner Bases, Cylindrical Algebraic De-
composition).

Email address:
{Robert.Vajda,Tudor.Jebelean,Bruno.Buchberger}@risc.uni-linz.ac.at
(Robert Vajda, Tudor Jebelean and Bruno Buchberger).

2 Logical Reduction and Decomposition

While in a refutation based proving procedure one needs a (complete) unsat-
isfiable set of formulae for deducing a contradiction (the empty clause), we
think that human reasoning usually starts from the definitions of the basic
notions involved and then proceeds by adding the necessary knowledge as the
proof develops.

Therefore, we base our approach on the following scenario:

e at the beginning, the current knowledge contains the basic definitions;

e by logical inferences, some necessary additional facts are identified (conjec-
tures) which appear to be useful for completing the proof;

e these conjectures are proved using additional knowledge from certain the-
ories (e.g., knowledge about constraints-handling over the reals, integers,
etc.) in an algorithmic form.

The latter step can be typically solved by using a computer algebra sys-
tem (but some additional transformations of the expressions involved may
be needed - see below).

More challenging appears to be the reduction of the initial proving problem
to subproblems which can be handled by the algebraic algorithms [3].

In this paper we focus on problems from elementary analysis. The definitions
of the main notions in this theory (like continuity, convergence), usually in-
volve a sequence of alternating quantifiers, which makes the respective proofs
relatively difficult. A typical example is the convergence of a real sequence:

Convergent[f] < F,VesoINVn (n > N = |f[n] — a| <€)
Definition of the unary predicate “Convergent”

The logical reduction of the problem consists in applying the following types
of inference steps:

e Standard rewrite for expanding definitions of predicates and functions: If a
formula contains a subformula like Convergent|[fy], the subformula will be
rewritten using the right hand side of the definition with suitable substitu-
tions.

e Introduction of Skolem constants for handling existential assumptions and
universal goals: They stand for arbitrary but fixed elements, and they will
not change during the current proof.

e Introduction of metavariables for handling universal assumptions and exis-
tential goals: They stand for terms which are currently unknown, and which

have to be determined during the proof.

Additionally, in order to generate polynomial expressions, one may have to
introduce new variables for terms in which (universally quantified) function
symbols occur.

We demonstrate these steps on a simple example from elementary analysis:
Prove that if a real valued sequence f is bounded from above then & f is bounded
from below (& stands for the standard unary 'minus’ operator for sequences).

We trace only the transformations of the goal formula, although in our rea-
soning system we transform proof situations into other proof situations. For
brevity, we omit the usual definitions and the type information. In each step,
the current goal will be implied by the new goal.

V; (BoundedAbove[f] = BoundedBelow[S f])
fr
Ak, Yy (folma] < K1) = 3k (= folno] > Ko)

fr
VKIHKOVQ; (.’L’ <K =-z> Ko)

Example 1

Note that in order to obtain the last formula, we transformed the previous
formula into prenex normal form and we introduced a new variable z (taking
into account the quantification and order of the variables in the prenex normal
form). Now since in the last goal all the variables ranges over the reals, this
formula can be handled by real quantifier elimination methods. It turns out
that this is a valid formula (in the theory of real closed fields).

In the simple example above the number of variables involved in the final re-
duced problem, which was handled by the QE method, was relatively small
(3). However, if we start to investigate other important notions like limit, con-
vergence, continuity, etc. and their interactions with binary operations, the
number of variables can grow rapidly. Since most of the relevant algebraic algo-
rithms have exponential complexity, a problem with 9-12 quantified variables
is usually unfeasible with the current software and hardware. Therefore we
use logical decomposition strategies to reduce the intitial problem to smaller
problems. A typical decomposition step of the S-Decomposition method [6]
is presented in the sequel. Suppose that the main formulae of the proving
problem have similar structure:

Ve Piz] = Q1x], ...,V Polz] = Qulz] b Vi Po[z] = Qolz]

In this case two subproblems are generated:
Q1[z] A AQpxi] F Qolzol,

where ¢ is new Skolem constant and z7, ...z}, are metavariables.

Note that the subproblems are smaller than the original problem. Moreover,
if the formulae Py, Py,..., P, and Qq, Q1 ...,Q,, respectively contain less
variables than the original problem (in other words: the set of variables is
separable), then there is a good chance that the induced subproblems are
already tractable directly with QE or using a different logical decomposition
rule, they could be simplified further.

3 Finding Witness Terms

After the decomposition of the initial problem, in order to finalize the proof
attempt, we have to close each branch of the proof tree. From those branches
which could be validated by the QE method, we need in fact more informa-
tion besides the fact that the generated sentence is valid, namely we need
to extract witness terms for the existentially quantified variables. These wit-
ness terms will be used as values for the metavariables, that is, in order to
instantiate variables in universally quantified assumptions or in existentially
quantified goals. We also say that the found witness term solves the quanti-
fied constraint problem on the corresponding branch. Moreover, since there
can be dependencies among the open branches, it may happen that a partic-
ular instance which solves a QE problem on one branch must be propagated
to another branch.

Turning back to Example 1, we will show that using QE and CAD a suitable
witness, like {Ky < —K;}, can be extracted for the initally existentially
quantified variable Ky in the goal. The extraction of witness terms is closely
related to the problem of extended quantifier elimination.

4 The problem of extended quantifier elimination

The quantifier elimination (QE) problem is a well known problem in logic and
in computer algebra [7, 9, 15] and can be summarized roughly as follows:

Given a first order language L and a first order theory 7', decide if for all
(arbitrarily quantified) formula ¢ there exist a quantifer-free formula ¢ (of
the language L), such that ¢ is T-equivalent to . If this holds, then we say
that the theory T" admits quantifier elimination.

The ‘effective’, algorithmic solution of the above problem consists of giving an
algorithm which constructs for an arbitrary input formula ¢, an equivalent,
quantifier-free formula).

Several important first order theories, like the theory of dense linear orders
with endpoints (DLO1), or algebraically closed fields (ACF), real closed fields
(RCF), etc. admit quantifier elimination, moreover algorithms for carrying out
the effective elimination of quatifiers with their complexity analyis are known
as well.

Since we are aiming to exploit the quantifier elimination for elementary anal-
ysis, from this point on we focus on the theory of RCF and the corresponding
QE problem.

The first QE-algorithm for the reals (with elementary complexity) is based
on Colling’ Cylindrical Algebraic Decomposition (CAD) [1, 4]. Other meth-
ods, like Weispfenning’s virtual substitution method [8, 13] etc. are also used,
but they are less suitable for our purpose (as we explain later). Several pa-
pers reported recently combining CAD with Groebner Bases computations for
speeding up the elimination algorithm [10, 2].

If the input formula of the QE problem is closed (has no free variables), then
the resulting formula contains no variables at all, hence it is a ground formula
(like 1+1 < 0). These formulae are decidable, so the algorithm finally provides
True/False. Now, if the outermost quantifier (block) of a valid closed formula
is an existential (3,¢), and the algorithm, besides the truth value True, pro-
vides an instance a for which ¢,. , is True, then we say that the algorithm
solves the extended quantifier elimination (EQE) [5, 11] problem.

d,2>0A2° =222 —2+2=0 —gp True

o2 >0A2*—222—24+2=0 —pgr {True,z=1}
Example 2: An extended quantifier elimination problem.

Note that the provided instance is in general not unique and in several prob-
lems it could be chosen from an infinite set. If the formula contains free
variables as well, then the instance might be not generic, i.e., for different
assignments of the free variables it may have different instances.

To the author’s knowledge, currently three systems provide implementations

of real QE algorithms: Mathematica', QEPCAD?, and REDLOG?. Only
the REDLOG system provides an implementation for solving the extended
QE problem. Since our reasoning system is implemented in Mathematica and
this system provides efficient implementations of real QE and CAD, we found
it reasonable to use those algorithms in order to implement EQE. However,
we will continue to investigate the possible use of other systems, in particular
REDLOG. Although this system has a different approach to QE (the answers
typically involve new infinitesimal quantities), it appears that a suitable use

of the relevant commands produce the kind of witness terms that are needed
4

The reader should note that our purpose is not to discover or reimplement var-
ious algorithms for CAD, QE, etc., but rather to use them for the improvement
of automated reasoning engines.

5 Extraction of Witness Terms

The pre-processing of input formula consist of the following steps:

1) eliminate terms containing function symbols by introducing new variables,

2) partition the quantifier prefix into alternating quantifier blocks,

3) mark the existentially and universally quantified variables and delete the
quantifiers in the outermost block.

These are the steps of the post-processing of the CAD-expression produced
by the computer algebra algorithm:

—_

transform the CAD into disjunctive normal form,

check projection conditions,

isolate the constraints for the originally existentially quantified variables,
choose a sample value for each existential variable satisfying the constraints.

w N

)
)
)
)

IaN

We demonstrate the steps through another simple example from elementary
analysis:

Prove that if the real valued sequences f and g are convergent, then so is
their sum, f @ g . We did not repeat the formal definition of convergence,
but refer immediately to the first two conjectures which were generated by
our implementation. The initial proof situtation before calling the conjecture

! http://www.wolfram.com/

2 http://www.cs.usna.edu/ gepcad/B/QEPCAD.html

3 http://www.fmi.uni-passau.de/ redlog/

4 We kindly acknowledge the thorough help offered by Thomas Sturm for under-
standing and using the REDLOG system.

generator contained only the main goal and the formulae for the defintion of
convergence and for the operator &:

Conjecture 1:

Val,@EIaOVeOEIq@V%M(\xl — al\ <€ N ‘./L'Q — a2| < 62) = |(.T1 -+ .1'2) — a0| < €

Conjecture 2:

VN3N Va(n > Ng=n > Ny An > N)

Example 3: Generated conjectures (Convergence of Sum)

As a consequence of the decomposition strategy, in the first conjecture every
variable ranges over the reals, in the second conjecture all variables range over
the naturals. Attacking the first conjecture with the real extended quantifier
elimination algorithm yields (besides the validity of the formula) the instances:
ag < a1+ ag, € < L, €6 < 2 (Example 4).

V€05|€17€2Vx17w2(\x1 — al\ < €N |.’L'2 — Clg‘ < 62) = ‘(iﬁl + .’11'2) — Cl()‘ < €

—QE G = a1 + ao

Vx1,$2(|$1 — a1| < €1 N |l‘2 — a2| < 62) = |(I1 + (L‘Q) — (a1 + a2)| < €
—QE O<ea<egND<e<e—e
Example 4: Pre-processed formulae and conditions for the witnesses

The validity of the second formula can be similarly checked by integer QE and
the provided instance for Ny should be greater than the maximum of N; and
N5. We think that our method is suitable for handling the following problem

types:

boundedness of real valued sequences
convergence of real valued sequences
continuity of real valued functions
uniform continuity of real valued functions

In particular one can investigate with the method the properties of concrete
sequences or functions (e.g. continuity of f[x] = 2% or the convergence of the
sequence a[n] = 1/n), the interaction of the notions below with the standard
operators (e.g., convergence of the product) or interactions of several notions (

e.g., the product of a null-convergent and a bounded sequence is null-covergent).
It is particularly interesting to investigate the problem of the uniform conti-
nuity of the product with the method. In the first attempt the method fails
to prove that the product of two uniformly continous functions is uniformly
continuous. Since the method is not complete, we cannot consider this as dis-
proving the original conjecture, but only as a hint that the conjecture might
be incorrect. Additionally, considering only products of linear polynomials
now, we can actually find concrete linear polynomials whose product is not
uniformly continuous.

6 Conclusion and Future Work

We combine logical and algebraic techniques in order to support efficient rea-
soning in natural style for elementary analysis. Using logical decomposition
strategies, we reduce the initial proof situations to problems which can be
handled by real quantifier elimination.

In particular, on the basis of Cylindrical Algebraic Decomposition, we are
able to find real witness terms for difficult instantiations. Problems similar
to real EQE can occur if all the variables range over the integers or if we
have a problem which involves reals and integers as well. The solution of the
(extended) quantifier elimination problem in the latter cases is only partially
supported by the existing systems (see e.g., [14]). The integration of those
algorithms to a reasoning sytem would significantly extend its capabilities.

References

[1] Arnon-Collins-McCallum: Cylindrical Algebraic Decomposition I: The Basic
Algorithm. In: Caviness-Johnson (eds): Quantifier elimination and cylindrical
algebraic decomposition (pp. 136-151), Springer 1998.

[2] C. W. Brown- S. McCallum: On using bi-equational constraints in CAD
construction. In: Proceedings of the 2005 international symposium on Symbolic
and algebraic computation, Beijing, China pp. 76 - 83.

[3] B. Buchberger: The PCS Prover in Theorema. In: Lecture Notes in Computer
Science (LNCS) 2178, pp. 19-23, Springer Verlag, Berlin, 2001.

[4] G. E. Collins: Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition. In: Caviness-Johnson (eds): Quantifier elimination
and cylindrical algebraic decomposition (pp. 85-121), Springer 1998.

[5] A. Dolzmann-T. Sturm-V. Weispfenning: Real Quantifier Elimination in
Practice. MIP-9720, Universitat Passau, December 1997, Algorithmic Algebra

and Number Theory, Springer 1998, Matzat, B. H. and Greuel, G.-M. and Hiss,
G. (ed.), pp. 221-247.

[6] T. Jebelean. Natural Proofs in Elementary Analysis by S-Decomposition.
Technical report no. 01-33 in RISC Report Series, University of Linz, Austria.
November 2001.

[7] G. Kreisel-J.L. Krivine: Modelltheorie. Springer, Berlin, 1972

[8] R. Loos and V. Weispfenning: Applying linear quantifier elimination. The
Computer Journal, 36(5):450-462, 1993.

[9] D. Marker: Model Theory: An Introduction, Springer, Berlin, 2002.

[10] J. Schicho - A. Tesacek: Improved Projection Operator for CAD using Groebner
Bases Technical report no. 99-04 in RISC Report Series, University of Lingz,
Austria. 1999.

[11] A. Seidl: Extending Real Quantifier Elimination by Cylindrical Algebraic
Decomposition to Get Answers. In V. G. Ganzha, E. W. Mayr and E. V.
Vorozhtsov, editors, Proceedings of the Seventh International Workshop on
Computer Algebra in Scientific Computing (CASC 2004), St. Petersburg,
Russia.

[12] Tie-Cheng Wang-W.W. Bledsoe: Hierachical Deduction. in: JAR 3(1), 1987, pp.
35-78

[13] V. Weispfenning: Quantifier elimination for real algebra the quadratic case and
beyond Applicable Algebra in Engineering, Communication and Computing,
1993

[14] V. Weispfenning: Mixed Real-Integer Linear Quantifier Elimination. ISSAC
1999: pp. 129-136

[15] F. Winkler: Polynomial Algorithms in Computer Algebra. Texts and
Monographs in Symbolic Computation. Springer, 1996.

10

