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This paper considers the hp-finite element discretization of an elliptic bound-
ary value problem using tetrahedral elements. The discretization uses a poly-
nomial basis in which the number of nonzero entries per row is bounded
independently of the polynomial degree. The authors present an algorithm
which computes the nonzero entries of the stiffness matrix in optimal com-
plexity.

The algorithm is based on sum factorization and makes use of the nonzero
pattern of the stiffness matrix.

1 Introduction

hp-finite element methods (hp-FEM), see e.g. Schwab [1998], Demkowicz
et al. [2008], have become very popular for the approximation of solutions of
boundary value problems with more regularity. In order to obtain the approxi-
mate finite element solution numerically stable and fast, the functions have to
be chosen properly in hp-FEM. For quadrilateral and hexahedral elements,
tensor products of integrated Legendre polynomials are the prefered basis
functions, see Babuška et al. [1989]. For triangular and tetrahedral elements,
the element can be considered as collapsed quadrilateral or hexahedron. This
allows us to use tensor product functions. In order to obtain sparsity in the
element matrices and a moderate increase of the condition number, inte-
grated Jacobi polynomials have to be used, see Beuchler and Pillwein [2007],
Beuchler and Schöberl [2006], Karniadakis and Sherwin [2005]. Then, it has
been shown that the element stiffness and mass matrix have a bounded num-
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ber of nonzero entries per row, see Beuchler and Pillwein [2007], Beuchler
and Schöberl [2006], Beuchler et al. [2010] which results in a total number
of O(pd), d = 2, 3, nonzero entries in two and three space dimensions, re-
spectively. However, the explicit computation of the nonzero entries is very
involved.

This paper presents an algorithm which computes the element stiffness and
mass matrices in O(p3) operations in two and three space dimensions. The
algorithm combines ideas based on sum factorization, Melenk et al. [1999],
with the sparsity pattern of the matrices. One other important ingredient is
the fast evaluation of the Jacobi polynomials.

The outline of this paper is as follows. Section 2 defines defines H1-
conforming, i.e. globally continuous picewise polynomials, basis functions on
the tetrahedron. The sum factorization algorithm is presented in section 3.
Section 4 is devoted to the evaluation of the Jacobi polynomials. The com-
plexity of the algorithm is estimated in Section 5.

2 Definition of the basis functions

For the definition of our basis functions Jacobi polynomials are required. Let

pαn(x) =
1

2nn!(1− x)α
dn

dxn
(
(1− x)α(x2 − 1)n

)
n ∈ N0, α, β > −1 (1)

be the nth Jacobi polynomial with respect to the weight function (1 − x)α.
The function pαn is a polynomial of degree n, i.e., pαn ∈ Pn((−1, 1)), where
Pn(I) is the space of all polynomials of degree n on the interval I. In the
special case α = 0, the functions p0n(x) are called Legendre polynomials.
Moreover, let

p̂αn(x) =

∫ x

−1
pαn−1(y) dy n ≥ 1, p̂α0 (x) = 1 (2)

be the nth integrated Jacobi polynomial. Several relations are known between
the different families of Jacobi polynomials, see e.g. Abramowitz and Stegun
[1964]. In this paper, the relations

pα−1n (x) =
1

α+ 2n

[
(α+ n)pαn(x)− npαn−1(x)

]
, (3)

p̂αn+1(x) =
2n+ α− 1

(2n+ 2)(n+ α)(2n+ α− 2)

× ((2n+ α− 2)(2n+ α)x+ α(α− 2)) p̂αn(x)

− (n− 1)(n+ α− 2)(2n+ α)

(n+ 1)(n+ α)(2n+ α− 2)
p̂αn−1(x), n ≥ 1. (4)
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are required.
Let 4̂ be the reference tetrahedron with the four vertices at (−1,−1,−1),

(1,−1,−1), (0, 1,−1) and (0, 0, 1). On this element, the interior bubble func-
tions

φijk(x, y, z) = ui(x, y, z)vij(y, z)wijk(z), i ≥ 2, j, k ≥ 1, i+ j + k ≤ p (5)

are proposed for H1 elliptic problems in [Beuchler and Pillwein, 2007, (29)],
where the auxiliary functions are

ui(x, y, z) = p̂0i

(
4x

1− 2y − z

)(
1− 2y − z

4

)i
,

vij(y, z) = p̂2i−1j

(
2y

1− z

)(
1− z

2

)j
,

wijk(z) = p̂2i+2j−2
k (z).

In addition, there are vertex, face and edge based basis functions which can
be regarded as special cases of the above functions (5) for limiting cases of
the indices i, j and k, see Beuchler and Pillwein [2007] for more details.

Then, the element stiffness matrix for the Laplacian on the reference ele-
ment 4̂ with respect to the interior bubbles reads as

K =

[∫
4̂
∇φijk(x, y, z) · ∇φi′j′k′(x, y, z) d(x, y, z)

]
i,j,k≤p,i′+j′+k′≤p

. (6)

The transformation to the unit cube (−1, 1)3 (Duffy trick) and the evaluation
of the nabla operation results in the integration of 21 different summands.
More precisely,

K =

21∑
m=1

κmÎ(m)

with known numbers κm ∈ R and

Î(m) =

[∫ 1

−1
px,1(x)px,2(x) dx

×
∫ 1

−1

(
1− y

2

)γy
py,1(y)py,2(y) dy

×
∫ 1

−1

(
1− z

2

)γz
pz,1(z)pz,2(z) dz

]
i+j+k<p;i′+j′+k′<p

.

The structure of the functions and coefficients is displayed in Table 1.
One summand is the term

Î(6) = (mijk,i′j′k′)i+j+k≤p,i′+j′+k′≤p (7)
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px,1 px,2 γy py,1 py,2 γz pz,1 pz,2

Î(1) p0i−1 p0
i′−1

i+ i′ − 1 p̂2i−1
j p̂2i

′−1
j′ β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(2) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−1 p2i
′−1

j′−1
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(3) p0i−2 p̂0
i′ i+ i′ p̂2i−1

j p2i
′−1

j′−1
β + β′ p̂−2+2i+2j

k p̂−2+2β′

k′

Î(4) p̂0i p0
i′−2

i+ i′ p2i−1
j−1 p̂2i

′−1
j′ β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(5) p0i−2 p0
i′−2

i+ i′ − 1 p̂2i−1
j p̂2i

′−1
j′ β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(6) p̂0i p̂0
i′ i+ i′ + 1 p̂2i−1

j p̂2i
′−1

j′ β + β′ + 2 p−2+2β
k−1 p−2+2β′

k′−1

Î(7) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−2 p̂2i
′−1

j′ β + β′ + 1 p̂−2+2β
k p−2+2β′

k′−1

Î(8) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−1 p̂2i
′−1

j′ β + β′ + 1 p̂−2+2β
k p−2+2β′

k′−1

Î(9) p0i−2 p̂0
i′ i+ i′ p̂2i−1

j p̂2i
′−1

j′ β + β′ + 1 p̂−2+2β
k p−2+2β′

k′−1

Î(10) p̂0i p̂0
i′ i+ i′ + 1 p̂2i−1

j p2i
′−1

j′−2
β + β′ + 1 p−2+2β

k−1 p̂−2+2β′

k′

Î(11) p̂0i p̂0
i′ i+ i′ + 1 p̂2i−1

j p2i
′−1

j′−1
β + β′ + 1 p−2+2β

k−1 p̂−2+2β′

k′

Î(12) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−2 p2i
′−1

j′−2
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(13) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−1 p2i
′−1

j′−2
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(14) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−2 p2i
′−1

j′−1
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(15) p̂0i p̂0
i′ i+ i′ + 1 p2i−1

j−1 p2i
′−1

j′−1
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(16) p0i−2 p̂0
i′ i+ i′ p̂2i−1

j p2i
′−1

j′−2
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(17) p0i−2 p̂0
i′ i+ i′ p̂2i−1

j p2i
′−1

j′−1
β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(18) p̂0i p0
i′−2

i+ i′ p̂2i−1
j p̂2i

′−1
j′ β + β′ + 1 p−2+2β

k−1 p̂−2+2β′

k′

Î(19) p̂0i p0
i′−2

i+ i′ p2i−1
j−2 p̂2i

′−1
j′ β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(20) p̂0i p0
i′−2

i+ i′ p2i−1
j−1 p̂2i

′−1
j′ β + β′ p̂−2+2β

k p̂−2+2β′

k′

Î(21) p0i−2 p0
i′−2

i+ i′ − 1 p̂2i−1
j p̂2i

′−1
j′ β + β′ p̂−2+2β

k p̂−2+2β′

k′

Table 1 Integrands for K, where β = i+ j, β′ = i′ + j′

which corresponds (before the Duffy trick) to

mijk,i′j′k′ =

∫
4̂
p̂0i

(
4x

1− 2y − z

)
p̂0i′

(
4x

1− 2y − z

)(
1− 2y − z

4

)i+i′

×p̂2i−1j

(
2y

1− z

)
p̂2i

′−1
j′

(
2y

1− z

)(
1− z

2

)j+j′
×p2i+2j−2

k−1 (z)p2i
′+2j′−2

k′−1 (z) d(x, y, z).

The Duffy transformation applied to (7) gives

mijk,i′j′k′ =

∫ 1

−1
p̂0i (x)p̂0i′(x) dx

∫ 1

−1

(
1− y

2

)i+i′+1

p̂2i
′−1

j′ (y)p̂2i−1j (y) dy

×
∫ 1

−1

(
1− z

2

)i+j+i′+j′+2

p2i+2j−2
k−1 (z)p2i

′+2j′−2
k′−1 (z) dz. (8)
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Due to Beuchler and Pillwein [2007], this matrix has the sparsity pattern

mijk,i′j′k′ = 0 if (i, j, k, i′, j′, k′) ∈ Sp(ijk, i′j′k′) (9)

where

S
p(ijk, i′j′k′) = {i+ j + k ≤ p, i′ + j′ + k′ ≤ p, |i− i′| > 2

∨ |i− i′ + j − j′| > 4 ∨ |i− i′ + j − j′ + k − k′| > 4}
(10)

cf. [Beuchler and Pillwein, 2007, Theorem 3.3].
All 21 integrals give rise to a similar band structure as detailed above

for Î(6) and can thus be treated in the same way as explained below for the
particular case of Î(6). The only difference are shifts in the weights α of the
Jacobi polynomials or changes of the weight functions.

3 Sum Factorization

In this section, we present an algorithm for the fast numerical generation of
the local element matrices (6) for tetrahedra. The methods are based on fast
summation techniques presented in Melenk et al. [1999], Karniadakis and
Sherwin [2005] and are carried out in detail for the example of the matrix
Î(6) (8).

All one dimensional integrals in (8) are computed numerically by a Gaus-
sian quadrature rule with points xk, k = 1, . . . , p + 1 and corresponding
weights ωk. The points and weights are chosen such that∫ 1

−1
f(x) dx =

p+1∑
l=1

ωlf(xl) ∀f ∈ P2p. (11)

Since only polynomials of maximal degree 2p are integrated in (8), these
integrals are evaluated exactly. Therefore, we have to compute

mijk,i′j′k′ =

p+1∑
l=1

ωlp̂
0
i (xl)p̂

0
i′(xl)

×
p+1∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i
′−1

j′ (xm)p̂2i−1j (xm)

×
p+1∑
n=1

ωn

(
1− xn

2

)i+j+i′+j′+2

p2i+2j−2
k (xn)p2i

′+2j′−2
k′ (xn),

i.e., for all (i, j, k, i′, j′, k′) 6∈ Sp(ijk, i′j′k′), cf. (10), (9). This is done by the
following algorithm.
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Algorithm 3.1 1. Compute

h
(1)
i;i′ =

p+1∑
l=1

ωlp̂
0
i (xl)p̂

0
i′(xl)

for all i, i′ ∈ N satisfying |i− i′| ≤ 2 and i, i′ ≤ p.
2. Compute

h
(2)
i,j;i′,j′ =

p+1∑
m=1

ωm

(
1− xm

2

)i+i′+1

p̂2i−1j (xm)p̂2i
′−1

j′ (xm)

for all i, j, i′, j′ ∈ N satisfying |i − i′| ≤ 2, |i + j − i′ − j′| ≤ 4, i + j ≤ p
and i′ + j′ ≤ p.

3. Compute

h
(3)
β,k;β,′k′ =

p+1∑
n=1

ωn

(
1− xn

2

)β+β′+2

p2β−2k (xn)p2β
′−2

k′ (xn)

for all k, k′, β, β′ ∈ N satisfying |β−β′| ≤ 4, |β+k−β′−k′| ≤ 4, β+k ≤ p
and β′ + k′ ≤ p.

4. For all (i, j, k, i′, j′, k′) 6∈ Sp(ijk, i′j′k′), set

mijk,i′j′k′ = h
(1)
i;i′h

(2)
i,j;i′,j′h

(3)
i+j,k;i′+j′,k′ .

The algorithm requires the numerical evaluation of Jacobi and integrated
Jacobi polynomials at the Gaussian points xl, l = 1, . . . , p+1. In the next sub-
section, we present an algorithm which computes the required values p̂αk (xl),
m = 1, . . . , p+ 1, k = 1, . . . , p, α = 1, . . . , 2p in O(p3) operations.

4 Fast Evaluation of integrated Jacobi polynomials

The integrated Jacobi polynomials needed in the computation ofmijk,i′j′k′ (7)
are p̂0i (x), p̂2i−1j (x) (progressing in odd steps with respect to the parameter

α) and p̂2i+2j−2
k (x) (progressing in even steps with respect to the parameter

α). For i+ j + k ≤ p with i ≥ 2 and j, k ≥ 1 this means that[
p̂0i (x)

]
2≤i≤p ,[p̂

3
j (x)]1≤j≤p, . . . , [p̂

2p−3
j (x)]1≤j≤p,

[p̂4k(x)]1≤k≤p, . . . , [p̂
2p−4
k (x)]1≤k≤p

are needed. Since one group proceeds in even, the other one in odd steps, the
total of integrated Jacobi polynomials that are needed is
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p̂an(x), 1 ≤ n ≤ p− 3, 3 ≤ a ≤ 2p− 3,

if we consider the integrated Legendre polynomials separately. However, in-
tegrating over identity (3) yields

p̂α−1n+1(x) =
1

2n+ α

(
(n+ α)p̂αn+1(x)− np̂αn(x)

)
,

valid for all n ≥ 0. Using this relation starting from the integrated Jacobi
polynomials of highest degree, i.e., α = 2i− 1 = 2p− 3, the remaining Jacobi
polynomials can be computed using only two elements of the previous row.
Note that for the initial values n = 1 we have p̂α1 (x) = 1 + x for all α. For
assembling the polynomials of highest degree the three term recurrence (4)
is used. Summarizing, the evaluation of the functions at the Gaussian points
can be done in O(p3) operations. This is optimal in the three-dimensional
case, but not in the two-dimensional case.

5 Complexity of the Algorithm

The cost of the last three steps is O(p3), the first step requires O(p2) opera-
tions. Together with the evaluation of the Jacobi polynomials, the algorithm
requires in total O(p3) flops.

This algorithm uses only the sparsity structure (10). Since all matrices
Î(m), m = 1, . . . , 21, have a similar sparsity structure of the form (10), this
algorithm can be extended to all ingredients which are required for assem-
bling/computing the element stiffness matrix (6) for the Laplacian, see Beuch-
ler and Pillwein [2007]. The algorithm can also be extended to mass matrices
or matrices arising from the discretization of elliptic problems in H(curl) and
H(div), see Beuchler et al. [2010]. For two-dimensional problems, the third

step of the algorithm is not necessary. However, the values h
(2)
i,j;i′,j′ have to

be computed. Since this requires O(p3) floating point operations, the total
cost in 2D is also O(p3).
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