
RISC-Linz
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria, Europe

Calculem us/MKM 2007
Work in Progress

Manuel KAUERS, Manfred KERBER,
Robert MINER, WolfgangWINDSTEIGER (Eds.)

Hagenberg, Austria
June 27{30, 2007

RISC-Linz Report SeriesNo. 07-06

Editors: RISC-Linz Faculty
B. Buchberger,R. Hemmecke, T. Jebelean,M. Kauers, T. Kutsia, G. Landsmann,
F. Lichtenberger,P. Paule, H. Rolletschek, J. Schicho, C. Schneider, W. Schreiner,
W. Windsteiger, F. Winkler.

Supported by:

Copyright notice: Permissionto copy is granted provided the title pageis alsocopied.

Preface

This collection contains the work-in-progress papers presented at two confer-
ences,Calculemus 2007 and MKM 2007. Calculemus 2007 was the 14th in a
seriesof conferencesdedicated to the integration of computer algebra systems
(CAS) and automated deduction systems(ADS). MKM 2007was the Sixth In-
ternational Conferenceon Mathematical KnowledgeManagement, an emerging
interdisciplinary �eld of research in the intersection of mathematics, computer
science,library science,and scienti�c publishing. Both conferencesaimed to pro-
vide mechanizedmathematical assistants. Regularpapersof the conferenceswere
published as Lecture Notes in Arti�cial Intelligence volume 4573.

Although the two conferenceshaveseparatecommunities and separatefoci, there
is a signi�can t overlap in the interests in building mechanized mathematical as-
sistants. For this reasonit wasdecidedto collocate the two events in 2007for the
�rst time, at RISC in Hagenberg, Austria. The number and quality of the sub-
missionsshow that this was a good decision.While the proceedingsare shared,
the submissionprocesswasseparate.The responsibilit y for acceptance/rejection
rests completely with the two separateProgram Committees.

By this collocation we made a contribution against the fragmentation of com-
munities which work on di�eren t aspects of di�eren t independent branches,tra-
ditional branches(e.g., computer algebraand theorem proving), aswell asnewly
emerging ones(on user interfaces,knowledgemanagement, theory exploration,
etc.). This will also facilitate the development of integrated mechanized math-
ematical assistants that will be routinely used by mathematicians, computer
scientists, and engineersin their every-day business.

1

2

Table of Con ten ts

Con tributions to Calculem us 2007

Property inferencefor Maple: an application of abstract interpretation : : : 5

JacquesCarette and StephenForrest

Towards Practical Re
ection for Formal Mathematics: : : : : : : : : : : : : : : : : : 21

Martin Giese and Bruno Buchberger

On the E�ciency of Geometry Theorem Proving by Gr•obner Bases: : : : : : 35

Shuichi Moritsugu and Chisato Arai

Con tributions to MKM 2007

A Document-Oriented Coq Plugin for TeXmacs: 47

Lionel Elie Mamane and Herman Geuvers

Software Speci�cation Using Tabular Expressionsand OMDoc : : : : : : : : : : 61

Dennis K. Peters, Mark Lawford, and Baltasar Tranc�on y Widemann

Reasoninginside a formula and ontological correctnessof a formal
mathematical text : 77

Andrei Paskevich, Konstantin Verchinine, Alexander Lyaletski, and
Anatoly Anisimov

The Utilit y of OpenMath : 93

JamesH. Davenport

3

4

Prop ert y inference for Maple: an application of
abstract in terpretation

JacquesCarette and StephenForrest

Computing and Software Department, McMaster Univ ersity
Hamilton, Ontario, Canada

f carette,forressa g@mcmaster.ca

Abstract. We contin ue our investigations of what exactly is in the code
base of a large, general purp ose, dynamically-t yped computer algebra
system (Maple). In this paper, we apply and adapt formal techniques
from program analysis to automatically infer various core properties of
Maple code as well as of Maple values. Our main tools for this task
are abstract interpretation, systems of constraints, and a very modular
design for the inference engine. As per previous work, our main test case
is the entire Maple library , from which we provide somesample results.

1 In tro duction

We �rst set out to understand what really is in a very large computer alge-
bra library [1]. The results were mixed: we could \infer" types (or more gener-
ally, contracts) for parts of the Maple library , and even for parts of the library
which usednon-standard features,but the coveragewasneverthelessdisappoint-
ing. The analysis contained in [1] explains why: there are eventually simply too
many non-standard features present in a large code basefor any kind of ad hoc
approach to succeed.

We were aiming to infer very complex properties from very complex code.
Since we cannot change the code complexity, it was natural to instead seeif
we could infer simple properties, especially those which were generally indepen-
dent of the more advanced features of Maple [7]. The present paper explains
our results: by using a very systematic designfor a code analysis framework, we
are able to infer simple properties of interesting piecesof code. Someof these
properties are classical[9], while others are Maple-speci�c. In most cases,these
properties canbe seenasenablersfor various code transformations, aswell asen-
ablers for full-blown type inference.Someof theseproperties were in
uenced by
other work on manipulating Maple ([8, 2]) where knowledgeof those properties
would have increasedthe precision of the results.

In this current work we follow classicalstatic program analysis fairly closely.
Thus we make crucial use of Abstract Interpretation as well as Generalized
Monotone Frameworks [9]. We did have to designseveral instantiations of such
frameworks, and prove that thesewere indeed proper and correct instances.We
alsohad to extend theseframeworks with more generalconstraint systemsto be
able to properly encode the constraints inherent in Maple code.

In Figure 1 we illustrate some of the facts we seek to infer from code as
motivation for our task. Example 1 is the sort of procedure upon which we
should like to perform successfulinferences.We aim to infer that c is an integer
or string at the procedure'stermination; for this we need to encode knowledge
of the behavior of the Maple function nops (\n umber of operands") and of the
semantics of * . Example 2 illustrates the fact that Maple programs sometimes
exhibit signi�can tly more polymorphism than their authors intend. We may
believe that the r := 0 assignment requires r to be a numeric type, but in fact
it may be a sum data structure, list, expressionsequence,vector, or matrix, upon
which arithmetic is performedcomponentwise:this \hidden polymorphism" may
inhibit the range of our inferences.Example 3 illustrates \bad" code: it will
always give an error, since the sequence(x; 1; p) automatically
attens within
map's argument list to produce map(diff,x,1,p, x) and the diff command
cannot accept this. (The list [x; 1; p] would work correctly.) We want to detect
classesof such errors statically.

Example 1 Example 2 Example 3

f 1 := p r oc (b)
l o c a l c ;
c := " a st r i n g " ;
i f b t hen

c := 7 � nops(b) ;
end i f ;
c

end p r oc :

f 2 := p r oc (n)
l o c a l i , r ;
r := 0;
f o r i t o n do

r := i � r + f (i) ;
end do ;
r et u r n r

end p r oc :

f 3 := p r oc (p , x : : name)
map(d i f f , (x , 1 , p) , x)

end p r oc :

Fig. 1. Examples of Maple input

Our main contributions involve: somenew abstract interpretation and mono-
tone framework instantiations, and showing that these are e�ectiv e; the use of
a suitable constraint language for collecting information; a completely generic
implementation (common traversalroutines, commonconstraint gathering, etc).
This genericity certainly makesour analyzer very easyto extend, and doesnot
seemto have a deleteriouse�ect on e�ciency .

The paper is structured as follows: In section 2 we intro duce Abstract In-
terpretation, followed by section 3 where we formally de�ne the properties we
are interested in. Section 4 outlines our approach to collecting information via
constraints. In section 5, we give a sampleof the results we have obtained thus
far. A description of the software architecture and designis in section6, followed
by our conclusions.

2 Abstract In terpretation

Abstract Interpretation [5] is a general methodology which is particularly well
suited to program analyses.While the operational semantics of a languagepre-
ciselydescribe how a particular program will transform someinput value into an

6

output value1, we are frequently more interested in knowing how a program in-
ducesa transformation from oneproperty to another. We proceedto givea quick
intro duction to this �eld; the interested reader may learn more from the many
papers of P. Cousot ([4, 3] being particularly relevant). Our overview has been
thoroughly enlightened by the pleasant intro duction [12] by Mads Rosendahl,
and David Schmidt's lecture notes [13], whose(combined) approach we gener-
ally follow in this section.

Conceptually, given two interpretations I 1
�

p� and I 2
�

p� from programs, we
would like to establish a relationship R betweenthem. Generally, I 1 is the stan-
dard meaning, and I 2 is a more abstract meaning, designedto capture a partic-
ular property.

To make this more concrete, let us begin with the standard example, the
Rule of sign. Consider a simple expressionlanguagegiven by the grammar

e ::= n j e+ e j e � e

We want to be able to predict, whenever possible,the sign of an expression,by
using only the signs of the constants in the expression.The standard interpre-
tation is usually given as

E
�

e� : Z E
�

e1 + e2 � = E
�

e1 � + E
�

e2 �

E
�

n � = n E
�

e1 � e2 � = E
�

e1 � � E
�

e2 �

The abstract domain we will usewill allow us to di�eren tiate betweenexpres-
sions which are constantly zero, positive or negative. In fact, however, we need
more: this is becauseif we add a positive integer to a negative integer, we cannot
know the sign of the result (without actually computing the result). So we also
give ourselvesa value to denote that all we know is the result is a `number'.

Taking Sign = f zero; pos; neg; numg, we can de�ne an \abstract" version of
addition and multiplication on Sign :

� : Sign � Sign ! Sign
� neg zero pos num
neg neg neg num num
zero neg zero pos num
pos num pos pos num
num num num num num

 : Sign � Sign ! Sign

 neg zeropos num
neg pos zeroneg num
zero zero zerozero zero
pos neg zeropos num
num num zeronum num

Using theseoperators, we can de�ne the abstract evaluation function for expres-
sionsas:

A
�

e� : Sign E
�

e1 + e2 � = A
�

e1 � � E
�

e2 �

A
�

n � = sign(n) E
�

e1 � e2 � = A
�

e1 �
 E
�

e2 �

where sign(x) = if x > 0 then pos else if x < 0 then negelse zero.

1 where these values can, for imperative programs, consist of state

7

Formally, we can describe the relation between these two operations as fol-
lows (and this is typical):

 : Sign ! P(Z) n ;

 (neg) = f x j x < 0g

 (zero) = f 0g

 (pos) = f x j x > 0g

 (num) = Z

� : P(Z) n ; ! Sign

� (X) =

8
>>><

>>>:

neg X � f x j x < 0g
zero X = f 0g

pos X � f x j x > 0g
num otherwise

The (obvious) relation between
 and � is

8s 2 Sign :� (
 (s)) = s and 8X 2 P(Z) n ; :X �
 (� (X)) :

 is called a concretization function, while � is called an abstraction function.
Thesefunctions allow a much simpler de�nition of the operations on signs:

s1 � s2 = � (f x1 + x2 j x1 2
 (s1) u x2 2
 (s2)g)

s1
 s2 = � (f x1 � x2 j x1 2
 (s1) u x2 2
 (s2)g)

From this we get the very important relationship between the two interpreta-
tions:

8e:f E
�

e� g �
 (A
�

e�)

In other words, we can safely say that the abstract domain provides us with a
correct approximation to the behaviour in the concretedomain. This relationship
is often called a safety or soundnesscondition. So while a computation over an
abstract domain may not give us very useful information (think of the case
where the answer is num), it will never be incorrect, in the sensethat the true
answer will always be contained in what is returned. More generally we have the
following setup:

De�nition 1 Let hC; vi and hA; vi be complete lattices, and let � : C ! A,

 : A ! C be monotonic and ! -continous functions. If 8c:c v C
 (� (c)) and
8a:� (
 (a)) v A a, we say that we have a Galois connection. If we actually have
that 8a:� (
 (a)) = a, we say that we havea Galois insertion.

The reader is urged to read [6] for a complete mathematical treatment of
lattices and Galois connections.The main property of interest is that � and

fully determine each other. Thus it su�ces to give a de�nition of
 : A ! C; in
other words, we want to name particular subsetsof C which re
ect a property
of interest. More precisely, given
 , we can mechanically compute � via � (c) =
uf a j c v C
 (a)g, where u is the meet of A.

Given this, we will want to synthesize abstract operations in A to re
ect
those of C; in other words for a continuous lattice function f : C ! C we are
interested in ~f : A ! A via ~f = � � f �
 . Unfortunately , this is frequently too
much to hope for, as this can easily be uncomputable. However, this is still the
correct goal:

8

De�nition 2 For a Galois Connection (as above), and functions f : C ! C
and g : A ! A, g is a sound approximation of f if and only if

8c:� (f (c)) v A g(� (c))

or equivalently
8a:f (
 (a)) v C
 (g(a)) :

Then we have that (using the samelanguageas above)

Prop osition 1 g is a soundapproximation of f if and only if g v A ! A � � f �
 .

How do we relate this to properties of programs?To each program transition
from point pi to pj , we can associate a transfer function f ij : C ! C, and also
an abstract version ~f ij : A ! A. This de�nes a computation step as a transition
from a pair (pi ; s) of a program point and a state, to (pj ; f ij (s)) a new program
point and a new (computed) state. In general, we are interested in execution
traces, which are (possibly in�nite) sequencesof such transitions. We naturally
restrict execution traces to feasible, non-trivial sequences.We always restrict
ourselvesto monotone transfer functions, i.e. such that

l1 v l2 =) f (l1) v f (l2)

which essentially meansthat we never lose any information by approximating.
This is not as simple as it sounds:features like uneval quotes, if treated na•�vely,
could intro duce non-monotonic functions.

Note that compared to someanalysesdone via abstract interpretation, our
domains will be relatively simple (see[11] for a complex analysis).

3 Prop erties and their domains

We are interested in inferring various (static) properties from code. While we
would prefer to work only with decisionprocedures,this appearsto be asking for
too much. Sincewehaveput ourselvesin an abstract interpretation framework, it
is natural to look at properties which can be approximated via complete lattices.
As it turns out, theserequirements are easyto satisfy in various ways.

On the other hand, someof theselattices do not satisfy the AscendingChain
Condition, which requires somecare to ensuretermination.

3.1 The prop erties

Surface typ e. The most obvious property of a value is its type. As a �rst ap-
proximation, wewould at least like to know what surface type a value could have:
in Maple parlance, given a value v, what are the possiblevalues for op(0,v) ?
More speci�cally , given the set I K of all kinds of inert forms which correspond
to Maple values,we usethe complete lattice L = hP(I K); �i as our framework.

9

Then each Maple operation inducesa natural transfer function f : L ! L . It is
straightforward to de�ne abstraction � and concretization
 functions between
the complete lattice hP(V); �i of setsof Maple values(V) and L . It is neverthe-
lessimportant to note that f is still an approximation: if we seea pieceof code
which doesa := l[1] , even if we knew that � (l) = LIST, the best we can do is
� (a) � E , where E = P(I K) n f EXPSEQg.

Expression sequence length . This is really two inferencesin one: to �nd
whether the value is a potential expressionsequence(expseq), and if so, what
length it may be. From Maple's semantics, we know that they behave quite dif-
ferently in many contexts than other objects, so it is important to know whether
a given quantit y is an expressionsequence.An expressionsequenceis a Maple
data structure which is essentially a self-
attening list. Any object created as
an expressionsequence(e.g. the result of a call to op) which has a length of
1 is automatically evaluated to its �rst (and only) element. That is, an object
whoseonly potential length as an expressionsequenceis 1 is not an expression
sequence.The natural lattice for this is I (N) (the set of intervals with natural
number endpoints) with � givenby containment. The abstraction function maps
all non-expseqMaple valuesto the degenerateinterval [1 : : : 1], and expseqvalues
to (an enclosurefor) its length. Note that NULL(the empty expressionsequence)
maps to [0 : : : 0], and that unknown expressionsequencesmap to [0 : : : 1].

Variable dep endence : Givena value,doesit \depend" on a symbol (viewed
as a mathematical variable)? The de�nition of `depends' here is the sameas the
Maple commandof that name.In other words,we want to know the completelist
of symbolswhosevalue cana�ect the valueof the current variable. Note that this
cansometimesbehuge(givena symbolic input), but alsoempty (when a variable
contains a static value with no embedded symbols). The natural lattice is the
powerset of all currently known (to the system) symbols, along with an extra >
to capture dynamically created symbols, with set containement ordering. Note
that this comesin di�eren t
a vours, depending on whether we treat a globally
assignedname as a symbol or as a normal value.

Num ber of variable reads : In other words, for each local variable in a
procedure,can we tell the number of times it will be read? The natural lattice
is L = V ! I (N) with V the set of local variables of a procedure. If s; t 2 L ,
then s t t is de�ned component-wise as �v :[max sl (v); t l (v); sr (v) + t r (v)] where
s(v) = [sl (v); sr (v)]; t(v) = [t l (v); t r (v)].

Num ber of variable writes : A natural (semantic) dual to the number of
reads,but operationally independent.

Reaching De�nition : This is a classicalanalysis[9] which captures,at every
program point, what assignments may havebeenbeenmadeand not overwritten.
As in [9], the lattice hereis P(Var ? � Lab ?

?), orderedby set inclusion. HereVar ?

is �nite set of variables which occur in the program, and Lab ?
? is the �nite set

of program labelsaugmented by the symbol ?. Note that unlike I (N) this lattice
satis�es the AscendingChain Condition (becauseit is �nite).

Summarizing, we will infer the following property of values (according to
the de�nitions above): its surface type, its expressionsequencelength, and its
variable dependencies.Note that, given a labelled program, we can speak of

10

values at a program point, by which we mean the value of one (or more) state
variable(s) at that program point; of those values, we are interested in similar
properties. For a program variable, we will work with the number of times it is
read or written to. And for a program point, which assignments may have been
made and not overwritten.

For the purposesof increasedprecision, theseanalysesare not performed in
isolation. What is actually done is that a Reaching De�nition analysis is �rst
performed,and then the other analysesbuild on this result. Later, weshould look
at taking (reduced) tensor products of the analyses([9] p. 254-256),although it
is only clear how to do this for �nite lattices.

3.2 Idiosyncrasies of Maple

Many of the analyseswe wish to attempt are complicated by the particular se-
mantics of Maple. Someof these, such as untypednessand the potential for an
arbitary procedure to alter global state, are shared with many other program-
ming languages.Others are speci�c to a CAS or to Maple alone. Following is a
list of somekey features.

1. Sym bols: As Maple is a CAS, every variable (aside from parameters)which
doesnot have an assignedvalue may be usedasa symbol, and passedaround
as any other value. Should the variable later be assigned,any previous ref-
erenceto it as a symbol will evaluate to its present value.

2. Functions whic h return unev aluated : Just as variables may be values
or symbols, function calls may or may not choose to evaluate. Certain of
Maple's built-in functions, sch as gcd, will return the function invocation
unevaluated when presented with symbolic input.

3. Side e�ects : Any function invocation may a�ect global state, soonecannot
assumestate remains constant when evaluating an expression.

3.3 A formalization

Here we will give the formalization for the Galois connection associated to the
expression sequence length property inference. The next section will complete
the picture by giving the associated constraints.

The sourcelattice in this caseis hP(Val) ; �i whereVal represents the set of
all possibleMaple values.The target lattice, asmentionned above, is hI (N) ; �i .
The Galois connectionin this caseis the onegivenby the representationfunction
� : Val ! I (N) (see Chapter 4 of [9]). Explicitly , for V 2 P(Val), � (V) =F

f � (b) j v 2 Vg, and
 (l) = f v 2 Var j � (v) @ lg. But this is completely
trivial! For any value v which is neither NULLnor is an expressionsequence,
then � (v) = 1::1. Otherwise � (NULL) = 0::0 and � (e) = nops([e]) for e an
expressionsequence.What is much more interesting is, what is the monotone
transfer function induced by � ?

In other words, for all the expressionconstructors and all the statements
of the language, what is the induced function on I (N)? We want to know a

11

safeapproximation to ~f = � � f �
 . For all constructors c whosesurface type
is in f INTPOS, INTNEG, RATIONAL, COMPLEX, FLOAT, HFLOAT, STRING, EQUATION,
INEQUAT, LESSEQ, LESSTHAN, DCOLON, RANGE, EXACTSERIES, HFARRAY, MODULE,
PROC, SDPOLY, SERIES, SET, LIST, TABLE, ARRAY, VECTORCOLUMN, VECTORROW,
VECTOR, NAME, MODDEF, NARGSg, ~c = 1::1, with the exception of the special name
NULLwhich is 0::0. For those in f SUM, PROD, POWER, TABLEREF, MEMBER, EXPSEQ,
ASSIGNEDLOCALNAME, ASSIGNEDNAMEg, the best that can be said a priori is 0::1 .
Someof these are expected (for example, an ASSIGNEDNAMEcan evaluate to an
expressionsequenceof any length), but others are plain strange Maple-isms:

> (1,2) + (3,4);
4,6

But we can do better than that. Figure 3.3 shows a precise de�nition of the
transfer function for SUM, EXPSEQ, and PROD. In the table for SUM, we implicitly
assumethat a � b and a::b 6= 1::1; also, since adding two expressionsequences
of di�eren t lengths (other than the 1::1 case)results in an error [in other words,
not-a-value], this case is not included in the table. In the table for PROD, we
further assumethat a � 1; c � 1, as well as a::b 6= c::d.

SUM1::1 a::b
1..1 1::1 1::1
a..b 1::1 a::b

EXPSEQ(a::b;c::d) = (a + c)::(b+ d)

PROD1::1 a::b c::d
1..1 1::1 a::b c::d
a..b a::b 1::1 1::1
c..d c::d 1::1 1::1

Fig. 2. Sometransfer functions associated to expressionsequencelength

Of course,statements and other languagefeaturesthat areonly present inside
proceduresinduce transfer functions too. Someare again quite simple: we know
that a parameter (a PARAM) will always be 1::1. In all other cases,the transfer
function associated to the statements of the languageis quite simple: whenever it
is de�ned, it is the identit y. On the other hand, the transfer functions associated
to many of the builtin functions (lik e map, op, type and soon) are very complex.
We currently have chosento take a pessimisticapproach and always assumethe
worst situation. This is mostly a stop-gap measureto enable us to get results,
and we plan on rectifying this in the future.

While it would have beenbest to obtain all transfer functions from a formal
operational semantics for Maple, no such semantics exists (outside of the actual
closed-source,proprietary implementation). Weobtained the aboveby expanding
the de�ning equation ~f = � � f �
 , for each property and each f of interest, and
the breaking down the results into a seriesof casesto examine. We then ran a
seriesof experiments to obtain the actual results. We have to admit that, even
though the authors have (together) more than 30 years' experiencewith Maple,
several of the results (including somein �gure 3.3) surprised us.

3.4 Applications

We chose those few simple analysesbecausethey are foundational: they have
many applications, and very many of the properties of interest of Maple code
can most easily be derived from those analyses.

12

For example, if we can tell that a variable will never be read, then as long
as the computation that producesthat value has no (external) side-e�ects, then
that computation can be removed2. Similarly, if it is only read once, then the
computation which producesthe value can be inlined at its point of use. Oth-
erwise, no optimizations are safe. If we can tell that a local variable is never
written to, then we can conclude that it is used as a symbol, a sure sign that
some symbolic computations are being done (as opposed to numeric or other
more pedestrian computations).

4 Constrain ts and Constrain t Solving

If we took a strict abstract interpretation plus Monotone Framework approach
[9], we would get rather disappointing results. This is becauseboth forward-
propagation and backward-propagation algorithms can be quite approximativ e
in their results.

This is why we have moved to a generalconstraint-basedapproach. Unlike a
Monotone Framework approach, for any given analysiswe generateboth forward
and backward constraints. More precisely, consider the following code:

p r oc (a) l o c a l b ;
b := op (a) ;
i f b> 1 t hen 1 el se � 1 end i f ;

end p r oc ;

If we consider the expressionsequencelength analysis of the previous section,
the best we could derive from the �rst statement is that b haslength � [0 : : : 1).
But from the b > 1 in a booleancontext and our assumption that the code in its
present state executescorrectly, we can deducethat b must have length (exactly)
1 (encoded as [1 : : : 1]). In other words, for this code to be meaningful we have
not only b � [1 : : : 1] but also [1 : : : 1] � b.

More formally, givena completelattice L = (D ; u; t ; @; =), wehave the basic
elements of a constraint languagewhich consistsof all constants and operators
of L along with a (�nite) set of variables from a (disjoint) set V. The (basic)
constraint languagethen consistsof syntactically valid formulas usingthosebasic
elements, as well as the logical operator ^ (conjunction). A solution of such a
constraint is a variable assignment which satis�es the formula.

For some lattices L , for example I (N), we also have and use the monoidal
structure (here given by � and 0::0). This structure also inducesa scalar (i.e. N)
multiplication, which we also use. In other words, we have added both � and a
scalar � to the constraint languagewhen L = I (N).

A keen reader might have noted one discrepancy: in the language of con-
straints that we have just described, it is not possible to expressthe transfer

2 in the sensethat the resulting procedure p0 will be such that p � p0, for the natural
order on functions. Such a transformation may causesomepaths to terminate which
previously did not { we consider this to desirable.

13

function (on I (N)) induced by SUM! As this is indeed so, we have added a con-
straint combinator to the languageof constraints. This takesthe form C(op) for
any (named) function op : L ! L . In particular, we can thus use the transfer
function induced by SUMand PRODin our constraint language.This also includes
the expression-sequenceconstructor , (comma).

One feature of our approach beyond that of classicalabstract interpretation
is the addition of recurrenceequations. When expressedin terms of our chosen
properties,many loopsand other control structures naturally inducerecurrences,
often very trivial ones.Consider the following:

f ac t := p r oc (a) l o c a l s ;
s := 1;
f o r i f r om 1 t o n do s := n� s ; end i f ;
r et u r n (s) ;

end p r oc ;

At the program point corresponding to the assignment to s within the loop, a
classicalReaching De�nitions approach will always give two possibilities for the
precedingassignment: the initial assignment or a previous loop iteration at the
sameprogram point, which complicatesthe analysis.One meansof dealing with
this self-dependencyis to regard the problem as a recurrenceover s.

Given a loop at program point `, we intro duce symbols LIV (`), LFV(`) into
our constraint languageto represent, respectively, the state at the start of the
i th iteration and the state upon loop termination. At the program point men-
tioned earlier, there is now only onepossibility for the precedingassignment: the
symbolic quantit y LIV(`).

At this point, we have to admit that we do not have a complete algorithm
for the solution of all the constraint systems described. What we have does
appear to work rather well, in that it terminates (even for large complex codes),
and returns sensibleanswers. It works via a combination of successive passes
of propagation of equalities, simpli�cation of constraints, and least-�xed-p oint
iteration. We are con�dent that we can prove that what we have implemented
terminates and returns a proper solution of the constraint system.

5 Results

We wish to demonstratethe results of our analyseson various inputs. It is helpful
to begin with someconcreteexamplesfor which the analysis can be replicated
by the reader. Consider the following Maple procedure:

I sP r i me := p r oc (n : : i n t eger) l o c a l S, r esu l t ;
S := numt heory :� f ac t o r set (n) ;
i f nops(S) > 1 t hen

r esu l t := (f a l se , S) ;
e l se

r esu l t := t r u e ;
end i f ;
r et u r n (r esu l t) ;

end p r oc :

14

IsPrime is an combined primalit y tester and factorizer. It factors its input n, then
returns a boolean result which indicates whether n is prime. If it is composite,
the prime factors are also returned.

This small example demonstratesthe results of two of our analyses.In the
ExpressionSequencelength analysis,weareable to conclude,even in the absence
of any special knowledgeor analysisof numtheory:-factor set , that S must be
an expressionbecauseit is used in a call to the kernel function nops (\n umber
of operands").

Combined with the fact that true and false are known to be expressions,
we can estimate the size of result as [2 : : : 2] when the if-clause is satis�ed
and [1 : : : 1] otherwise.Upon unifying the two branches,our estimate for result
becomes[1 : : : 2]. For the Surface Type Analysis, we are able to estimate the
result as f NAME,EXPSEQ g.

Our results can also be used for static inferenceof programming errors. We
assumethat the code, as written, re
ects the programmers' intent. In the pres-
ence of a programming error which is captured by one of our properties, the
resulting constraint system will have trivial solutions or no solutions at all.

For an illustration of this, consider the following example. The procedure
faulty is bound to fail, as the arguments to union must be setsor unassigned
names,not integers.As Maple is untyped, this problem will not be caught until
runtime.

f au l t y := p r oc (c) l o c a l d , S;
d := 1; S := f 3 ,4 ,5g;
S uni on d ;

end p r oc :

However, our SurfaceType analysis can detect this: the two earlier assign-
ments impose the constraints X 1 � f INTPOSg and X 2 � f SETg, while union
imposeson its arguments the constraints that X 3; X 4 � f SETg [Tname . 3 No
assignments to d or S could have occurred in the interim, we also have the con-
straints X 1 = X 4 and X 2 = X 3. The resulting solution contains X 1 = ; , which
demonstratesthat this code will always trigger an error.

gr ows := p r oc (c)
x := 2 , 3 , 4 , 5;
f o r y fr om 1 t o 10 do

x := x , y ;
end do ;
r et u r n (x) ;

end p r oc :

Here, we are able to express the relationship between the starting state,
intermediate state, and �nal state of the for loop as a recurrenceequation over
the domain of the ExprSeqLength property. In the end we are able to conclude
that the length of y is [4 : : : 4] + NL(`1) � [1 : : : 1], where NL(`1) signi�es the
number of stepsof the loop. Another analysis may later supply this fact.
3 Here Tname denotes the set of tags corresponding to names,such as NAMEand LOCAL;

the full list is too lengthy to provide, but it does not contain INTPOS.

15

Results from a test library : We have run our tools against a private
collection of Maple functions. This collection is chosenmore for the variety of
functions present within than a representativ e example of a working Maple li-
brary. Therefore, we focus on the results of our analyseson speci�c functions
present within the database,rather than on summary statistics as a whole.

l oop t est := p r oc (n : : p osi n t) : : i n t eger ;
l o c a l s : : i n t eger , i : : i n t eger , T : : t ab l e , f l ag : : t r u e ;
(s , i , f l ag) := (0 , 1 , f a l se) ;
T := t ab l e () ;
w h i l e i ^2 < n do

s := i + s ;
i f f l ag t hen T [i] := s ; end i f ;
i f t y pe(s , ' even ') t hen f l ag := t r u e ; b r eak ; end i f ;
i := 1 + i

end do ;
w h i l e t y pe(i , ' p osi n t ') do

i f assi gn ed (T [i]) t hen T [i] := T [i] � s ; end i f ;
i f t y pe(s , ' odd ') t hen s := s � i ^2 end i f ;
i := i � 1

end do ;
(s , T)

end p r oc :

This rather formidable procedure,while not doing anything particularly use-
ful, is certainly complex.It contains two successiveconditional loopswhich march
in opposite directions, and both of which populating the table T along the way.

Hereour analysisrecognizesthe fact that even though flag is written within
the body of the �rst while loop, this write event cannot reach the if-condition on
the preceding line becausethe write event is immediately followed by a break
statement. We are also able to concludethat s is always an integer: though this
is easy to see,given that all the write events to s are operations upon integer
quantities.

Results from the Maple library : We present (in �gure 3) someresults
from applying our tools to the Maple 10 standard library itself. This will serve
as a useful glimpse of how our tools behave on an authentic, working codebase.
Though our analysisfocuseson absolutely all subexpressionswithin a procedure,
here we focus on deriving useful information about a procedure'slocal variables
from their context.

Expression SequenceLength Procedures
Local with estimate 6= [0 : : : 1] 862
Local with �nite upper bound 593
Local with estimate [1 : : : 1] 374
Local with estimate [0 : : : 1] 43
Solvable loop recurrences 127
Total analyzed 1276

Surface Type Procedures
Local type is � TExpression 827
Local w/ fully-inferred type 721
Local whose value is a posint 342
Local whose value is a list 176
Local whose value is a set 56
Solvable loop recurrences 267
Total analyzed 1330

Fig. 3. Results for analyseson Maple library source

16

For each analysiswe sampledapproximately 1300proceduresfrom the Maple
standard library , each of which contained at least one local variable. We are
particularly interested in boundary cases(> , ? in our lattice, or singletons).For
the ExpressionSequenceanalysis,we obtained nontrivial results for at least one
local variable in 862 of 1276procedures;for 593, we can provide a �nite bound
[a : : : b]. For 609 locals, we have both a program point where its size is fully
inferred ([1 : : : 1]) and another where nothing is known; an explanation for this
apparent discrepancy is that locals may be assignedmultiple times in di�eren t
contexts. In the SurfaceType analysis,we have nontrivial results for 827of 1330
procedures;721 have a local whosetype is fully inferred.

6 Implemen tation

As weknew that we would be implementing many analyses,now and later, it was
required that the designand implementation be asgenericaspossible.Becauseof
Maple's excellent introspection facilities, but despiteit being dynamically typed,
we wrote the analysis in Maple itself.

This led us to designa genericabstract syntax tree (AST) traverserparametrized
by whatever information gathering phasewe wanted. In Object-Oriented terms,
we could describe our main architecture as a combination of a Visitor pattern
and a Decorator pattern. To a Haskell programmer, we would describe the archi-
tecture asa combination of a State Monad with a genericmap (gmap). The data
gathered are constraints expressedover a particular lattice (with an established
abstract interpretation).

There are several reasonsfor using a constraint systemas we have described
in section 4: modularit y, genericity, clarit y and expressivity. We can completely
decouplethe constraint generationstagefrom the constraint solving stage(mod-
ularit y), as is routinely done in modern type inferenceengines.All our analyses
have the samestructure, and share most of their code (genericity). Becauseof
this genericstructure, the constraints associated to each syntactic structure and
each builtin function are very easyto seeand understand. Furthermore, the rich
languageof constraints, built over a simple and well-understood mathematical
theory (lattices, monoidal structures), provides an expressive languagewithout
leading too quickly into uncomputable or unsolvable systems.

For all properties, the constraint languagegenerally consistsof our chosen
lattice, with its base type and lattice operations. These are extended with a
set of symbols S representing unknown values in T , and a set of constraint
transformers CT: thesemay be viewed as functions T � ! T .

In general,our approach has three stages:

1. Constrain t assignmen t : We traversethe AST: with each code fragment,
we record constraints it imposeson itself and its subcomponents. For exam-
ple, conditionals and while loops constrain their condition to be � Tbool .

2. Constrain t propagation : We traverse the AST again, propagating at-
tached constraints upwards. Constraints arising from subcomponents are

17

inserted into a larger constraint systemas appropriate to re
ect the control

o w. In somecases,this consistssimply taking conjunction of all constraints
arising from subcomponents.

3. Constrain t solving : The solution method generally dependson the prop-
erty, particularly as the constraint languageitself changesdepending on the
property at hand. On the other hand, as we implement more solvers,we are
seeingpatterns emerge,which we aim to eventually take advantage of.
In general, we proceedwith a seriesof successive approximations. We �rst
determine which type variablesweseekto approximate: often, at a particular
stagewe will desireto �nd approximations for certain classesof symbols but
leave others as symbols, untouched. (An example where symbols must be
retained is with the symbols usedin formulating recurrences.)
We then step through all variables, incrementally re�ning our approximation
for each variable basedon its relations with other quantities. We are done
when no better approximation is possible.

7 Conclusion

This work-in-progressshowsthat it is possibleto apply techniquesfrom Program
Analysis to infer various simple properties from Maple programs, even rather
complexprograms like the Maple library . Our current techniquesappear to scale
reasonablywell too.

One of the outcomeswe expect from this work is a better-mint-than-min t 4.
As shown by some of our examples, we can already detect problematic code
which mint would not
ag with any warnings.

Aside from its genericity, onesigni�can t advantageof the constraint approach
and the abstract interpretation framework is that analysesof di�eren t properties
may be combined to re�ne the results of the �rst. For instance, if a variable
instance was proven to be of size [1 : : : 1] by our ExpressionSequenceanalysis,
the type tag EXPSEQcould be safely removed from its SurfaceType results. We
have yet to combine our analysesin this manner on a large scale,though this is
a goal for future experimentation.

References

1. J. Carette and S. Forrest. Mining Maple code for contracts. In Ranise and Bigatti
[10].

2. J. Carette and M. Kucera. Partial Evaluation for Maple. In ACM SIGPLAN 2007
Workshop on Partial Evaluation and Program Manipulation , 2007.

3. P. Cousot. Typesas abstract interpretations, invited paper. In Conference Record
of the Twentyfourth Annual ACM SIGPLAN-SIGA CT Symposium on Principles
of Programming Languages, pages 316{331, Paris, France, January 1997. ACM
Press, New York, NY.

4 mint is Maple's analogueof lint , the ancient tool to �nd
a ws in C code, back when
old compilers did not have many built-in warnings.

18

4. P. Cousot and R. Cousot. Compositional and inductiv e semantic de�nitions in
�xp oint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In P. Wolper, editor, Proceedings of the SeventhInternational
Conference on Computer Aided Veri�c ation, CAV '95, pages293{308, Li �ege, Bel-
gium, Lecture Notes in Computer Science 939, 3{5 July 1995. Springer-Verlag,
Berlin, Germany.

5. Patrick Cousot and Radhia Cousot. Abstract interpretation: A uni�ed lattice
model for static analysis of programs by construction or approximation of �xp oints.
In POPL , pages238{252, 1977.

6. Brian A. Davey and H.A. Priestley. Intr oduction to Lattices and Order. Cambridge
Univ ersity Press, 2002.

7. P. DeMarco, K. Geddes, K. M. Heal, G. Labahn, J. McCarron, M. B. Monagan,
and S. M. Vorkoetter. Maple 10 Advanced Programming Guide. Maplesoft, 2005.

8. M. Kucera and J. Carette. Partial evaluation and residual theorems in computer
algebra. In Ranise and Bigatti [10].

9. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus,NJ, USA, 1999.

10. Silvio Raniseand Anna Bigatti, editors. Proceedings of Calculemus2006, Electronic
Notes in Theoretical Computer Science.Elsevier, 2006.

11. Enric Rodr��guez-Carbonell and Deepak Kapur. An abstract interpretation ap-
proach for automatic generation of polynomial invariants. In Roberto Giacobazzi,
editor, SAS, volume 3148 of Lecture Notes in Computer Science, pages280{295.
Springer, 2004.

12. Mads Rosendahl. Intro duction to abstract interpretation.
http://akira.ruc.dk/ madsr/w ebpub/absin t.p df.

13. David Schmidt. Abstract interpretation and static analysis. Lectures at the Win ter
School on Semantics and Applications, WSSA'03, Montevideo, Uruguay, July 2003.

19

20

Towards Practical Re
ection
for Formal Mathematics

Martin Giese1 and Bruno Buchberger2

1 RICAM, Austrian Academy of Sciences,
Alten bergerstr. 69, A-4040 Linz, Austria

martin.giese@oeaw.ac.at
2 RISC, JohannesKepler Univ ersity,

A-4232 Schlo� Hagenberg, Austria
bruno.buchberger@risc.uni-linz .ac. at

Abstract. We describe a design for a system for mathematical theory
exploration that can be extended by implementing new reasonersusing
the logical input language of the system. Such new reasoners can be
applied lik e the built-in reasoners, and it is possible to reason about
them, e.g. proving their soundness,within the system. This is achieved
in a practical and attractiv eway by adding re
ection, i.e. a representation
mechanism for terms and formulae, to the system's logical language,and
someknowledgeabout theseentities to the system's basic reasoners.The
approach has beenevaluated using a protot ypical implementation called
Mini-Tma. It will be incorporated into the Theorema system.

1 In tro duction

Mathematical theory exploration consistsnot only of inventing axiomsand prov-
ing theorems.Amongst other activities, it alsoincludesthe discovery of algorith-
mic ways of computing solutions to certain problems, and reasoningabout such
algorithms, e.g. to verify their correctness.What is rarely recognizedis that it
also includes the discovery and validation of useful techniques for proving the-
oremswithin a particular mathematical domain. In somecases,thesereasoning
techniquesmight evenbealgorithmic, making it possibleto implement and verify
a specializedtheorem prover for that domain.

While various systemsfor automated theorem proving have beenconstructed
over the past years,someof them specially for mathematics, and someof them
quite powerful, they essentially treat theorem proving methods asa built-in part
of the servicessuppliedby a system,in generalallowing usersonly to state axioms
and theorems, and then to construct proofs for the theorems, interactively or
automatically. An extensionand adaptation of the theorem proving capabilities
themselves, to incorporate knowledge about appropriate reasoning techniques
in a given domain, is only possibleby stepping back from the theorem proving
activit y, and modifying the theorem proving software itself, programming in
whatever languagethat system happensto be written.

We consider this to be limiting in two respects:

{ To perform this task, which should be an integral part of the exploration
process,the user needs to switch to a di�eren t language and a radically
di�eren t way of interacting with the system. Usually it will also require an
inordinate amount of insight into the architecture of the system.

{ The theorem proving proceduresprogrammed in this way cannot be made
the object of the mathematical studies inside the system: e.g., there is no
simple way to prove the soundnessof a newly written reasonerwithin the
system. It's part of the system's code, but it's not available as part of the
system'sknowledge.

Following a proposal of Buchberger [5,6], and as part of an ongoing e�ort to
redesignand reimplement the Theoremasystem[7], we will extend that system's
capabilities in such a way that the de�nition of and the reasoningabout new
theorem proving methods is possibleseamlesslythrough the sameuser interface
as the more conventional tasks of mathematical theory exploration.

In this paper, we describe our approach as it has been implemented by the
�rst author in a protot ype called Mini-Tma, a Mathematica [18] program which
doesnot shareany of the code of the current Theorema implementation. Essen-
tially the sameapproach will be followed in the upcoming new implementation
of Theorema.

The secondauthor's contributions are the identi�cation and formulation of
the problem addressedin this paper and the recognition of its importance for
mathematical theory exploration [6], as well as a �rst illustrating example [5],
a simpli�ed version of which will be used in this paper. The �rst author has
worked out the technical details and producedthe implementation of Mini-Tma.

In Sect. 2, we intro duce the required conceptson the level of the system's
logical language.Sect. 3 shows how this languagecan be used to describe new
reasoners,and how they can be applied. Sect. 4 illustrates how the system can
be usedto reasonabout the logic itself. Thesetechniquesare combined in Sect.5
to reasonabout reasoners.We brie
y disusssomefoundational issuesin Sect.6.
Related work is reviewed in Sect. 7, and Sect. 8 concludesthe paper.

2 The Framew ork

To reasonabout the syntactic (terms, formulae, proofs,.. .) and semantic (mod-
els, validit y. . .) concepts that constitute a logic, it is in principle su�cien t to
axiomatize these concepts,which is possible in any logic that permits e.g. in-
ductive data type de�nitions, and reasoningabout them. This holds also if the
formalized logic is the sameas the logic it is being formalized in, which is the
casethat interests us here.

However, to make this reasoningattractive enoughto becomea natural part
of using a mathematical assistant system, we consider it important to supply a
built-in representation of at least the relevant syntactic entities. In other words,
one particular way of expressingstatements about terms, formulae, etc. needs
to be chosen, along with an appealing syntax, and made part of the logical
language.

22

We start from the logic previously employed in the Theoremasystem,namely
an untyped higher-order predicate logic with sequencevariables. Sequencevari-
ables [16] represent sequencesof values and have proven to be very convenient
for expressingstatements about operations with variable arit y. For instance, the
operation app that appendstwo lists can be speci�ed by3

8
xs

8
ys

app[f xsg; f ysg] = f xs; ysg

using two sequencevariables xs and ys. It turns out that sequencevariables are
alsoconvenient in statements about terms and formulae, sinceterm construction
in our logic is a variable arit y operation.

2.1 Quoting

Terms in our logic are constructed in two ways: symbols (constants or variables)
are one kind of terms, and the other are compound terms, constructed by `ap-
plying' a `head' term to a number of `arguments'.4 For the representation of
symbols, we require the signature to contain a quoted version of every symbol.
Designating quotation by underlining, we write the quoted versionof a asa, the
quoted version of f as f , etc. Quoted symbols are themselvessymbols, so there
are quoted versions of them too, i.e. if a is in the signature, then so are a, a,
etc. For compound terms, the obvious representation would have been a dedi-
cated term construction function, say mkTerm, such that f [a] would be denoted
by mkTerm[f; a]. Using a special syntax, e.g. fancy brackets, would have allowed
us to write something like fh[a]i . However, experiments revealed that (in an un-
typed logic!) it is easiestto reusethe function application brackets [� � �] for term
construction and requiring that if whatever stands to the left of the brackets is
a term, then term construction instead of function application is meant. Any
axioms or reasoningrules involving term construction contain this condition on
the head term. This allows us to write f [a], which is easier to read and easier
to input to the system. For reasoning,the extra condition that the head needs
to be a term is no hindrance, since this condition usually has to be dealt with
anyway.

To further simplify reading and writing of quoted expressions,Mini-Tma
allows underlining a whole sub-expressionas a shorthand for recursively under-
lining all occurring symbols. For instance, f [a; h[b]] is acceptedas shorthand for
f [a; h[b]]. The system will also output quoted terms in this fashion whenever
possible.While this is convenient, it is important to understand that it is just
a nicer presentation of the underlying representation that requires only quoting
of symbols and complex term construction as function application.

3 Following the notation of Mathematica and Theorema, we use square brackets [� � �]
to denote function application throughout this paper. Constant symbols will be set
in sans-seriftype, and variable names in italic .

4 SeeSect. 2.2 for the issueof variable binding in quanti�ers, lambda terms, and such.

23

2.2 Dealing with Variable Binding

In the literature, various thoughts can be found on how to appropriately rep-
resent variable binding operators, i.e. quanti�ers, lambda abstraction, etc. The
dominant approachesare 1. higher-order abstract syntax, 2. de Bruijn indices,
and 3. explicit representation.

Higher-order abstract syntax (HOAS) [17] is often usedto represent variable
binding in logical frameworks and other systemsbuilt on higher-order logic or
type theory. With HOAS, a formula 8

x
p[x] would be represented asForAll[�

�
p[�]].

The argument of the ForAll symbol is a function which, for any term � deliv-
ers the result of substituting � for the bound variable x in the scope of the
quanti�er. This representation has its advantages, in particular that terms are
automatically stored modulo renaming of bound variables, and that capture-
avoiding substitution comesfor free, but we found it to be unsuitable for our
purposes:somesyntactic operations, such as comparing two terms for syntactic
equality are not e�ectiv ely possiblewith HOAS, and also term induction, which
is central for reasoningabout logics, is not easily described. Hendriks has come
to the sameconclusionin his work on re
ection for Coq [13].

Hendriks usesde Bruijn indices [10], which would represent 8
x

p[x] by a term

like ForAll[p[v1]], where v1 meansthe variable bound by the innermost binding
operator, v2 would mean to look one level further out, etc. This representation
has some advantages for the implementation of term manipulation operations
and also for re
ectiv e reasoningabout the logic.

For Mini-Tma however, in view of the projected integration of our work into
the Theorema system, we chosea simple explicit representation. The reasonis
mainly that we wanted the representations to be as readable and natural as
possible,to make it easyto debug reasoners,to usethem in interactive theorem
proving, etc. A representation that drops the namesof variableswould have been
disadvantageous.The only derivation from a straight-forward representation is
that we restrict ourselves to � abstraction as the only binding operator. Thus
8
x

p[x] is represented as

ForAll[� [x; p[x]]]

where � is an ordinary (quoted) symbol, that doesnot have any binding prop-
erties. The reasonfor having only onebinding operator is to be able to describe
operations like capture avoiding substitution without explicitly naming all op-
erators that might bind a variable. Under this convention, we considerthe e�ort
of explicitly dealing with � -conversionto be acceptable:the additional di�cult y
appears mostly in a few basic operations on terms, which can be implemented
once and for all, after which there is no longer any big di�erence between the
various representations.

2.3 An Execution Mec hanism

Writing and verifying programs has always beenpart of the Theoremaproject's
view of mathematical theory exploration [15]. It is also important in the context

24

of this paper, sincewewant usersof the systemto beable to de�ne newreasoners,
meaning programs that act on terms.

In order to keep the system's input languageas simple and homogenousas
possible,we useits logical languageas programming language.Instead of �xing
any particular way of interpreting formulae asprograms,Mini-Tma supports the
generalconceptof computation mechanisms. Computations are invoked from the
user interface by typing5

Compute[term; by ! comp;using ! ax]

where term is the term which should be evaluated, comp namesa computation
mechanism, and ax is a set of previously declaredaxioms. Technically, comp is a
function that is given term and ax as arguments, and which eventually returns
a term. The intention is that comp should compute the value of term, possibly
controlled by the formulae in ax. General purpose computation mechanisms
require the formulae of ax to belong to a well-de�ned subsetof predicate logic,
which is interpreted asa programming language.A special purposecomputation
mechanism might e.g. only perform arithmetic simpli�cations on expressions
involving concrete integers,and completely ignore the axioms. In principle, the
author of a computation mechanism hascomplete freedomto choosewhat to do
with the term and the axioms.

We shall seein Sect. 3 that it is possible to de�ne new computation mech-
anisms in Mini-Tma. It is however inevitable to provide at least one built-in
computation mechanism which can be used to de�ne others. This `standard'
computation mechanism of Mini-Tma is currently basedon conditional rewrit-
ing. It requires the axioms to be equational Horn clauses.6 Program execution
proceedsby interpreting theseHorn clausesas conditional rewrite rules, apply-
ing equalities from left to right. Rules are exhaustively applied innermost-�rst,
and left-to-righ t, and applicabilit y is tested in the order in which the axioms are
given. The conditions are evaluated using the same computation mechanism,
and all conditions have to evaluate to True for a rule to be applicable. The sys-
tem doesnot order equations,nor doesit perform completion. Termination and
con
uence are in the responsibilit y of the programmer.

Mini-Tma doesnot include a prede�ned conceptof proving mechanism. The-
orem provers are simply realized as computation mechanisms that simplify a
formula to True if they can prove it, and return it unchanged (or maybe par-
tially simpli�ed) otherwise.

3 De�ning Reasoners

Since reasonersare just special computation mechanisms in Mini-Tma, we are
interested in how to add a new computation mechanism to the system. This is
5 Compute, by, using are part of the User Language, used to issue commands to the

system. Keywords of the User Language will by set in a serif font.
6 Actually , for convenience,a slightly more general format is accepted, but it is trans-

formed to equational Horn clausesbefore execution.

25

done in two steps: �rst, using someexisting computation mechanism, we de�ne
a function that takesa (quoted) term and a set of (quoted) axioms, and returns
another (quoted) term. Then we tell the systemthat the de�ned function should
be usableas computation mechanism with a certain name.

Consider for instance an exploration of the theory of natural numbers. Af-
ter the associativit y of addition has been proved, and used to prove several
other theorems, we notice that it is always possible to rewrite terms in such
a way that all sums are grouped to the right. Moreover, this transformation
is often useful in proofs, since it obviates most explicit applications of the as-
sociativit y lemma. This suggestsimplementing a new computation mechanism
that transforms terms containing the operator Plus in such a way that all ap-
plications of Plus are grouped to the right. E.g., we want to transform the
term Plus[Plus[a; b]; Plus[c; d]] to Plus[a; Plus[b; Plus[c; d]]], ignoring any axioms.
We start by de�ning a function that will transform representations of terms,
e.g.Plus[Plus[a; b]; Plus[c; d]] to Plus[a; Plus[b; Plus[c; d]]]. We do this with the fol-
lowing de�nition:

Axioms [" shift parens" ; any[s; t; t1; t2; acc; l ; ax; comp];
simp[t; ax; comp] = add-terms[collect[t; fg]]

collect[Plus[t1; t2]; acc] = collect[t1; collect[t2; acc]]
is-symbol[t]) collect[t; acc] = cons[t; acc]
head[t] 6= Plus) collect[t; acc] = cons[t; acc]

add-terms[fg] = 0
add-terms[cons[t; fg]] = t
add-terms[cons[s; cons[t; l]]] = Plus[s;add-terms[cons[t; l]]]

]

The main function is simp, its arguments are the term t, the set of axioms ax,
and another computation mechanism comp, which will be explained later. simp
performsits task by calling an auxiliary function collectwhich recursively collects
the fringe of non-Plus subterms in a term, prepending them to an accumulator
acc that is passedin assecondargument, and that starts out empty. To continue
our example,collect[Plus[Plus[a; b]; Plus[c; d]]; fg] evaluates to the list of (quoted)
terms f a; b; c; dg. This list is then passedto a secondauxiliary function add-terms
which builds a Plus-term from the elements of a list, grouping to the right. Note
that this transformation is donecompletely without referenceto rewriting or the
associativit y lemma. We are interested in programs that can perform arbitrary
operations on terms.

The function is-symbol is evaluated to Trueif its argument represents a symbol
and not a complex term or any other object. This and someother operations
(equality of terms, . . .) are handled by built-in rewriting rules since a normal
axiomatization would not be possible,or in somecasestoo ine�cien t.

Given theseaxioms, we can now ask the system to simplify a term:

Compute[simp[Plus[Plus[a; b]; Plus[c; d]]]; fg ; fg]; by ! ConditionalRewriting ;
using ! f Axioms[" shift parens"]; : : :g]

26

We are passing in dummy arguments for ax and comp, since they will be dis-
carded anyway. Mini-Tma will answer with the term Plus[a; Plus[b; Plus[c; d]]].

So far, this is an example of a computation that works on terms, and not
very di�eren t from a computation on, say, numbers. But we can now make simp
known to the system as a computation mechanism. After typing

DeclareComputer[ShiftParens; simp; by ! ConditionalRewriting ;
using ! f Axioms[" shift parens" ,. . . g]

the system recognizesa new computation mechanism named ShiftParens. We
can now tell it to

Compute[Plus[Plus[a; b]; Plus[c; d]]; by ! ShiftParens]

and receive the answer Plus[a; Plus[b; Plus[c; d]]]. No more quotation is needed,
the behavior is just like for any built-in computation mechanism. Also note that
no axioms needto be given, sincethe ShiftParenscomputation mechanism does
its job without consideringthe axioms.

We now come back to the extra argument comp: Mini-Tma allows compu-
tation mechanisms to be combined in various ways, which we shall not discuss
in this paper, in order to obtain more complex behavior. However, even when
actual computations are doneby di�eren t mechanisms,within any invocation of
Compute, there is always one global computation mechanism, which is the top-
level one the user asked for. It happensquite frequently that user-de�ned com-
putation mechanismswould like to delegatethe evaluation of subtermsthat they
cannot handle themselves to the global computation mechanism. It is therefore
provided as the argument comp to every function that is usedas a computation
mechanism, and it can be called like a function.

Calling a user-de�ned computation mechanism declared to be implemented
asa function simpon a term t with someaxioms ax under a global computation
mechanism comp proceedsas follows: 1. t is quoted, i.e. a term t0 is constructed
that represents t, 2. simp[t0; ax; comp] is evaluated using the computation mecha-
nism and axioms�xed in the DeclareComputerinvocation. 3. The result s0 should
be the representation of a term s, and that s is the result. If step 2 does not
yield a quoted term, an error is signaled.

The ShiftParenssimpli�er is of coursea very simple example, but the same
principle can clearly be used to de�ne and executearbitrary syntactic manipu-
lations, including proof search mechanismswithin the system'slogical language.
Since most reasoning algorithms proceedby applying reasoning rules to some
proof state, constructing a proof tree, the Theoremaimplementation will include
facilities that make it easy to expressthis style of algorithm, which would be
more cumbersometo implement in out protot ypical Mini-Tma system.

4 Reasoning Ab out Logic

To prove statements about the terms and formulae of the logic, we needa prover
that supports structural induction on terms, or term induction for short.

27

An interesting aspect is that terms in Mini-Tma, like in Theorema, can have
variable arit y|there is no type system that enforces the arities of function
applications|and arbitrary terms can appear as the heads of complex terms.
Sequencevariables are very convenient in dealing with the variable length argu-
ment lists. While axiomatizing operations like capture avoiding substitution on
arbitrary term representations, we employed a recursion scheme based on the
observation that a term is either a symbol, or a complex term with an empty
argument list, or the result of adding an extra argument to the front of the argu-
ment list of another complex term, or a lambda abstraction. The corresponding
induction rule is:7

8
is-symbol[s]

P[s]

8
is-term[f]

(P[f]) P[f []])

8
is-term[f]

is-term[hd]
are-terms[tl]

(P[hd] ^ P[f [tl]]) P [f [hd; tl]])

8
is-term[t]

is-symbol[x]

(P[t]) P[� [x; t]])

8
is-term[t]

P[t]

Using the mechanism outlined in Sect. 3, we were able to implement a simple
term induction prover, that applies the term induction rule once,and then tries
to prove the individual casesusing standard techniques (conditional rewriting
and casedistinction), in lessthan 1000characters of code. This na•�ve prover is
su�cien t to prove simple statements about terms, like e.g.

8
is-term[t]

is-symbol[v]
is-term[s]

(not-free[t; v]) tf v ! sg = t)

where not-free[t; v] denotes that the variable v does not occur free in t, and
tf v ! sg denotescapture avoiding substitution of v by s in t, and both these
notions are de�ned through suitable axiomatizations.

5 Reasoning Ab out Reasoners

Program veri�cation plays an important role in the Theoremaproject [15].Using
predicate logic as a programming languageobviously makesit particularly easy
to reasonabout programs' partial correctness.Of course,termination has to be
proved separately.

With Mini-Tma's facilities for writing syntax manipulating programs, and
for reasoningabout syntactic entities, it should come as no surprise that it is

7 8
p[x]

q[x] is just convenient syntax for 8
x

(p[x]) q[x])

28

possible to use Mini-Tma to reasonabout reasonerswritten in Mini-Tma. The
�rst application that comesto mind is proving the soundnessof new reasoners:
they shouldnot be able to prove incorrect statements. Other applications include
completenessfor a certain classof problems, proving that a simpli�er produces
output of a certain form, etc.

So far, we have concentrated mainly on soundnessproofs. In the literature,
we have found two ways of proving the soundnessof reasoners:the �rst way
consistsin proving that the new reasonercannot prove anything that cannot be
proved by the existing calculus.Or, in the caseof a simpli�er like ShiftParensof
Sect. 3, if a simpli�er simpli�es t to t0, then there is a rewriting proof betweent
and t0. This approach is very di�cult to follow in practice: it requires formaliz-
ing the existing calculus, including proof trees,possibly rewriting, etc. Often the
soundnessof a reasonerwill depend on certain properties of the involved oper-
ations, e.g. ShiftParensrequires the associativit y of Plus, so the knowledgebase
has to be axiomatized as well. Moreover, to achieve reasonableproof automa-
tion, the axiomatization needsto be suitable for the employed prover: �nding a
proof can already be hard, making prover A prove that prover B will �nd a proof
essentially requires re-programming B in the axiomatization. And �nally , this
correctnessargument works purely on the syntactic level: any special reasoning
techniques available for the mathematical objects some reasoner is concerned
with are uselessfor its veri�cation!

We have therefore preferred to investigate a secondapproach: we prove that
anything a new reasonercan prove is simply true with respect to a model se-
mantics. Or, for a simpli�er that simpli�es t to t0, that t and t0 have the same
value with respect to the semantics. This approach has also been taken in the
very successfulNqThm and ACL2 systems[2,14]. It solvesthe above problems,
since it is a lot easier to axiomatize a model semantics for our logic, and the
axiomatization is also very easy to use for an automated theorem prover. The
knowledge base does not need to be `quoted', since much of the reasoning is
about the values instead of the terms, and for the samereason,any previously
implemented special reasonerscan be employed in the veri�cation.

Similarly to ACL2, we supply a function eval[t; �] that recursively evaluates
a term t under someassignment � that provides the meaning of symbols.8 To
prove the soundnessof ShiftParens, we have to show

eval[simp[t; ax; comp]; �] = eval[t; �]

for any term t, any ax and comp and any � with � [0] = 0 and � [Plus] = Plus.
To prove this statement inductiv ely, it needsto be strengthenedto

eval[add-terms[collect[t; acc]]; �] = eval[Plus[t; add-terms[acc]]; �] (�)

for any acc, and an additional lemma

eval[add-terms[cons[t; l]]; �] = Plus[eval[t; �]; eval[add-terms[l]; �]]

8 Care needsto be taken when applying eval to terms containing eval, as has already
been recognizedby Boyer and Moore [3].

29

is required. And of course, the associativit y of Plus needsto known. Mini-Tma
cannot prove (�) with the term induction prover described in Sect. 4, sinceit is
not capable of detecting the special role of the symbol Plus. However, using a
modi�ed induction prover which treats compound terms with head symbol Plus
as a separatecase,(*) can be proved automatically.

Automatically extracting such casedistinctions from a program is quite con-
ceivable, and one possibletopic for future work on Mini-Tma.

Ultimately , we intend to improve and extend the presented approach, so that
it will be possible to successively perform the following tasks within a single
framework, usinga commonlogical languageand a singleinterfaceto the system:

1. de�ne and prove theoremsabout the concept of Gr•obner bases[4],
2. implement an algorithm to compute Gr•obner bases,
3. prove that the implementation is correct,
4. implement a new theorem prover for statements in geometry basedon co-

ordinatization, and which uses our implementation of the Gr•obner bases
algorithm,

5. prove soundnessof the new theorem prover, using the shown properties of
the Gr•obner basesalgorithm,

6. prove theoremsin geometry using the new theorem prover, in the sameway
as other theorem provers are used in the system.

Though the casestudies performed so far are comparatively modest, we hope to
have convinced the reader that the outlined approach can be extended to more
complex applications.

6 Foundational Issues

Most previous work on re
ection in theorem proving environments (seeSect. 7)
has concentrated on the subtle foundational problems arising from adding re-

ection to an existing system. In particular, any axiomatization of the fact that
a re
ectiv ely axiomatized logic behaves exactly like the one it is being de�ned
in can easily lead to inconsistency. In our case,care needs to be taken with
the evaluation function eval which connects the quoted logic to the logic it is
embeddedin.

However, within the Theorema project, we are not particularly interested in
the choiceand justi�cation of a singlelogical basis.Any framework a mathemati-
cian considersappropriate for the formalization of mathematical content should
be applicable within the system|b e it one or the other
a vor of set theory,
type theory, or simply �rst-order logic. Any restriction to one particular frame-
work would mean a restriction to one particular view of mathematics, which is
something we want to avoid. This is why there is no such thing as the logic of
Theorema. But if there is no unique, well-de�ned basic logic, then neither can
we give a preciseformal basisfor its re
ectiv e extension.In fact, sincethe way in
which such an extension is de�ned is itself an interesting mathematical subject,
we do not even want to restrict ourselvesto a single way of doing it.

30

This is of coursesomewhatunsatisfying, and it is actually not the wholetruth.
We are trying to discover a particularly viable standard method of adding re-

ection and re
ectiv e reasoners.And we are indeedworried about the soundness
of that method. It turns out that one can convince oneselfof the soundnessof
such an extensionprovided the underlying logic satis�es a number of reasonable
assumptions.

Let a logical languageL be given. In the context of formalization of mathe-
matics, we may assumethat syntactically , L consistsof a subset of the formu-
lae of higher order predicate logic. Typically, sometype system will forbid the
construction of certain ill-t yped formulae, maybe there is also a restriction to
�rst-order formulae.

Most logics permit using a countably in�nite signature, in fact, many cal-
culi require the presenceof in�nitely many constant symbols for skolemization.
Adding a quoted symbol a for any symbol a of L will then be unproblematic.

Next, we can add a function is-symbol, which may be de�ned through a
countably in�nite and e�ectiv ely enumerablefamily of axioms, which should not
pose any problems. The function is-term can then be axiomatized recursively
in any logic that permits recursive de�nitions. We can assumefor the moment
that the logic does not include quoting for is-symbol or is-term, and that the
functions will recognizethe quotations of symbols and terms of L , and not of
the re
ectio ve extensionof L we are constructing.

Likewise, if the evaluation of basic symbols is delegated to an assignment
� , it should be possible to give an axiomatization of the recursive evaluation
function evalwithin any logic that permits recursive de�nitions:

is-symbol[t]) eval[t; �] = � [t]
is-term[f]) eval[f [t]; �] = eval[f ; �][eval[t; �]]

The exact de�nitions will depend on the details of L . For instance, if L is typed,
it might be necessaryto intro ducea family of evalfunctions for terms of di�eren t
types,etc. Still, we do not believe that soundnessproblems can occur here.

The interesting step is now the intro duction of an unquoting function unq,
which relates every quoted symbol a to the entit y it represents, namely a. We
de�ne unq by the axioms

unq[s0] = s

for all symbols s of L , where s0 denotesthe result of applying one level of re
ec-
tion quoting to s, i.e. unq[a] = a, unq[b] = b,. . . The formula unq[unq] = unq is
not an axiom sincethis would preciselylead to the kind of problemsidenti�ed by
Boyer and Moore in [3]. If they are only present for the symbols of the original
logic, theseaxioms do not poseany problems.

All in all, the combined extension is then a conservative extension of the
original logic, meaning that any model M for a set � of formulae of L can be
extended to a model M 0 of � in the re
ectiv e extension, such that M 0 behaves
like M when restricted to the syntax of L . Moreover, in the extension, the
formula

eval[t 0; unq] = t

31

holds for every term t of L with quotation t 0, which justi�es using eval to prove
the correctnessof new reasoners.

To allow for several levelsof quotation, this processcan be iterated. It is easy
to seethat the is-symbol, is-term, and evalfunctions de�ned for consecutive levels
can be merged.For the unq function, one possiblesolution is to usea hierarchy
unq(i) of unquoting functions, where there is an axiom unq(i) [unq(j)] = unq(j) if
and only if j < i .

Another di�cult y is the intro duction of new symbols requiredby many calculi
for skolemization, which can be jeopardizedby the presenceof knowledgeabout
the unquoting of quoted symbols. Here, a possiblesolution is to �x the set of
symbols for which unq axioms are required before proofs, as is done in ACL2.

7 Related Work

John Harrison has written a very thorough survey [11] of re
ection mechanisms
in theorem proving systems,and most of the work reviewed there is in someway
connectedto ours.

The most closely related approach is surely that of the NqThm and ACL2
systems,seee.g. [2,14]. The proving power of these systemscan be extended
by writing simpli�ers in the sameprogramming languageas that which can be
veri�ed by the system. Before using a new simpli�er, its soundnesshas to be
shown using a technique similar to that of Sect. 5. Our work extends theirs in
the following respects:

{ We usea stronger logic, ACL2 is restricted to �rst-order quanti�er-free logic.
{ Our framework allowscoding full, possiblynon-terminating theoremprovers,

and not just simpli�ers embeddedin a �xed prover.
{ Through the comp argument, reasonerscan be called recursively.
{ The specializedquoting syntax and sequencevariablesmake Mini-Tma more

pleasant and practical to use.
{ In Mini-Tma, Meta-programming can be usedwithout being forced to prove

soundness�rst, which is useful for experimentation and exploration.

Experiments in re
ection have also recently been done in Coq [13], but to
our knowledge these are restricted to �rst-order logic, and meta-programmed
provers cannot be used as part of a proof construction. There has also been
somework on adding re
ection to Nuprl [1]. This is still in its beginnings,and
its principal focus seemsto be to prove theorems about logics, while our main
goal is to increasethe system's reasoningpower.

Recent work on the self-veri�cation of HOL Light [12] is of a di�eren t char-
acter. Here, the HOL Light system is not usedto verify extensionsof itself, but
rather for the self-veri�cation of the kernel of the system.Self-veri�cation raises
somefoundational issuesof its own that do not occur in our work.

In the context of programming languages,LISP has always supported quot-
ing of programs and meta-programming, e.g. in macros.Amongst more modern
languages,Maude should be mentioned for its practically employed re
ectiv e

32

capabilities, seee.g. [9]. A quoting mechanism is part of the language,and it is
used to de�ne the `full' Maude languagein terms of a smaller basic language.
However, this re
ection is just used for programming, there is no reasoningin-
volved.

8 Conclusion and Future Work

We havereported on ongoingresearch in the frame of the Theoremaproject, that
aims at making coding of new (special purpose) reasonersand reasoningabout
them, e.g. to prove their soundness,an integral part of the theory exploration
processwithin the system.The approach hasbeenevaluated in the protot ypical
implementation Mini-Tma.

The main features of our approach are to start from a logic with a built-in
quoting mechanism, and to use the same logic for the de�nition of programs,
and in particular reasoners.We have shown that this makes it possible to de-
�ne reasonerswhich can be used by the system like the built-in ones. It also
enablesthe user to reasonabout terms, formulae, etc. and also about reasoners
themselves.

Wehavebrie
y discussedtwo alternativ esfor de�ning and proving the sound-
nessof new reasoners,and concluded that an approach basedon formalizing a
model semantics is more suitable for automated deduction than onethat is based
on formalizing proof theory.

Future work includes improving the execution e�ciency of programs written
within the Theorema logic. Improvements are also required for the theorem
proving methods, i.e. better heuristics for term induction, program veri�cation,
etc., but alsothe production of human-readableproof texts or proof trees,which
are essential for the successfulapplication of the theorem provers. All these
developments will have to be accompaniedby casestudies demonstrating their
e�ectiv eness.

Ac kno wledgmen ts

The authors would like to thank the other members of the Theorema Group,
in particular Temur Kutsia and Markus Rosenkranz, for contributing to the
numerous intensediscussionsabout the presented work.

References

1. Eli Barzilay. Implementing Re
ection in Nuprl . PhD thesis, Cornell Univ ersity
Computer Science,2006.

2. Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore the-
orem prover and its interactiv e enhancement. Computers and Mathematics with
Applications, 29(2):27{62, 1995.

3. Robert S. Boyer and J Strother Moore. The addition of bounded quanti�cation
and partial functions to a computational logic and its theorem prover. J. Autom.
Reasoning, 4(2):117{172, 1988.

33

4. Bruno Buchberger. Ein algorithmisches Kriterium f•ur die L•osbarkeit eines alge-
braischen Gleichungssystems. Aequationes Math. , 4:374{383, 1970. English trans-
lation published in [8].

5. Bruno Buchberger. Lifting knowledge to the state of inferencing. Technical Report
TR 2004-12-03,Research Institute for Symbolic Computation, Johannes Kepler
Univ ersity, Linz, Austria, 2004.

6. Bruno Buchberger. Proving by �rst and intermediate principles, November 2,
2004. Invited talk at Workshop on Types for Mathematics / Libraries of Formal
Mathematics, Univ ersity of Nijmegen, The Netherlands.

7. Bruno Buchberger, Adrian Cr�aciun, Tudor Jebelean,Laura Kov�acs,Temur Kutsia,
Ko ji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz,and
Wolfgang Windsteiger. Theorema: Towards computer-aided mathematical theory
exploration. Journal of Applied Logic, pages470{504, 2006.

8. Bruno Buchbergerand Franz Winkler. Gr•obner basesand applications. In B. Buch-
berger and F. Winkler, editors, 33 Years of Gr•obner Bases, London Mathematical
Society Lecture Notes Series251. Cambridge Univ ersity Press, 1998.

9. Manuel Clavel and Jos�e Meseguer. Re
ection in conditional rewriting logic. The-
oretical Computer Science, 285(2):245{288, 2002.

10. Nicolas G. de Bruijn. Lambda calculus notation with namelessdummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indagationes Mathematicae (Pr oceedings), 34:381{392, 1972.

11. John Harrison. Metatheory and re
ection in theorem proving: A survey and cri-
tique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK,
1995.

12. John Harrison. Towards self-veri�cation of HOL Light. In Ulric h Furbach and
Natara jan Shankar, editors, Automated Reasoning, Thir d International Joint Con-
ference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume
4130 of LNCS, pages177{191. Springer, 2006.

13. Dimitri Hendriks. Proof re
ection in Coq. Journal of Automated Reasoning, 29(3{
4):277{307, 2002.

14. Warren A. Hunt Jr., Matt Kaufmann, Robert Bellarmine Krug, J Strother Moore,
and Eric Whitman Smith. Meta reasoning in ACL2. In Joe Hurd and Thomas F.
Melham, editors, Proc. Theorem Proving in Higher Order Logics, TPHOLs 2005,
Oxford, UK , volume 3603 of LNCS, pages163{178. Springer, 2005.

15. Laura Kov�acs, Nikolaj Popov, and Tudor Jebelean. Veri�cation environment in
Theorema. Annals of Mathematics, Computing and Teleinformatics (AMCT) ,
1(2):27{34, 2005.

16. Temur Kutsia and Bruno Buchberger. Predicate logic with sequencevariables and
sequencefunction symbols. In A. Asperti, G. Bancerek, and A. Trybulec, editors,
Proc. 3rd Intl. Conf. on Mathematical Knowledge Management, MKM'04 , volume
3119 of LNCS, pages205{219. Springer Verlag, 2004.

17. Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proc. ACM SIG-
PLAN 1988 Conf. on Programming Languagedesign and Implementation, PLDI
'88, Atlanta, United States, pages199{208. ACM Press, New York, 1988.

18. Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc., 1996.

34

On the E�ciency of Geometry Theorem Pro ving
by Gr•obner Bases

Shuichi Moritsugu and Chisato Arai

Univ ersity of Tsukuba,
Tsukuba 305-8550,Ibaraki, JAPAN,

f moritsug, arai g@slis.tsukuba.ac.jp

Abstract. We show experimental results for proving Euclidean geom-
etry theorems by Gr•obner basis method. In 1988, Chou Shang-Ching
proved 512 theorems by Wu's method, and reported that 35 among them
remained unsolvable by Gr•obner basis method. In this paper, we tried to
prove these 35 theorems by Gr•obner basis method, and we succeededin
proving 26 theorems but have found that the other 9 theorems are essen-
tially di�cult to compute Gr•obner bases.We show the table of timing
data and discussseveral devicesto complete the proof by solving radical
membership problem.

1 In tro duction

In the area of mechanical proving geometry theorems, Wu's method [21] has
been widely and successfullyused since Wu Wen-Ts•un intro duced the original
algorithm in 1977. Meanwhile, another approach [9,10,20] based on Gr•obner
basismethod [2] was also proposedand has beenstudied.

In 1988,Chou Shang-Ching[3] published an extensive collection of 512 the-
oremsthat wereproved by Wu's method. He alsoapplied Gr•obner basismethod
and succeededin proving 477 theorems among them. However, it is reported
that noneof the computation for the other 35 theorems�nished within 4 hours.

Since then, there seemsto have been few attempts to recon�rm Chou's re-
sults, even though the inferiorit y of Gr•obner basis method to Wu's method is
sometimespointed out from the viewpoint of computational e�ciency . However,
a recent project [7] is in progress,which is intended to collect and construct the
benchmark including the Chou's problems.

Independently , our group has been trying to prove the above 35 theorems
by Gr•obner basismethod since2004,and we succeededin proving 26 theorems
among them [13]. On the other hand, we consider that the 9 theorems left are
essentially di�cult to compute the Gr•obner bases.

In this paper, we show the results of computation by both of Gr•obner basis
method and Wu's method, and we discussthe comparison of several ways to
solve the radical membership using Maple11 [12] and Epsilon library [19].

2 Algebraic Pro of by Gr•obner Basis Metho d

2.1 Radical Mem bership Problem

We translate the geometric hypothesesin the theorem into polynomials

f 1; : : : ; f ` 2 Q(u1; : : : ; um) [x1; : : : ; xn] :

According to Chou [3], we construct the points in order, using two types of
variables:

{ ui : parameterswhosevaluesare arbitrarily chosen,
{ x j : variables whosevaluesdepend on other ui ; xk .

Next, we translate the conclusionof the theorem into

g 2 Q(u1; : : : ; um) [x1; : : : ; xn] :

In theseformulations, weapply the following proposition to \pro vethe theorem":

g follows generically from f 1; : : : ; f ` , g 2
p

(f 1; : : : ; f `):

There exist several methods to solve this type of radical membership problem,
and we adopt the following proposition [4] whosealgorithmic computations are
basedon Gr•obner bases.More precisedescription of the algorithms and further
referencescan be found in [18].

Prop osition 1 (Radical Mem bership) Let K be an arbitrary �eld and let
I = (f 1; : : : ; f `) � K [x1; : : : ; xn] be a polynomial ideal. We compute the Gr•obner
basis G of I with any term order, and let g 2 K [x1; : : : ; xn] be another polyno-
mial. Then, g 2

p
I is equivalent to each of the following three conditions.

(a) 9s 2 N ; gs G� ! 0. (Compute for s = 1; 2; : : : :)
(b) For J = (I ; 1 � yg) � K [x1; : : : ; xn ; y], we have its Gr•obner basis with any

term order becomes(1).
(c) For J = (I ; g � y) � K [x1; : : : ; xn ; y], if we compute the Gr•obner basis

with block term order f x1; : : : ; xn g
lex
> y, then the basis contains a univariate

polynomial such as ys (9s 2 N).

SinceK = Q(u1; : : : ; um) in our formulation, the formula (c) is not e�cien t
due to the term order and is not suitable for proving geometric theorems.

When we apply the formula (a), we �rst try g G� ! 0. Sinceyou have s = 1
in almost all casesfor geometry theorems [3,4], this method seemspractical.

Actually , we obtained g G� ! 0 in all the 26 theorems we succeededin proof by
Gr•obner basismethod.

The experimental results imply that the formula (b) deservesconsideration
from the viewpoint of computational e�ciency . Hence,later we discussthe com-
parison of the methods (a) and (b).

36

(u1, 0)

(x1, x2)(u2, u3)

(0, 0)

(x3, x4)

A B

C D

N

Fig. 1. Parallelogram

2.2 Example

In order to describe the
o w of the implemented algorithms, we show an example
of proof by Gr•obner basismethod and Wu's method [3,4,19].

Example 1 (P arallelogram) We show the proof for the theorem \ the two
diagonalsof any parallelogramintersectat a point which bisectsboth diagonals".
The following polynomial expressionsare the output of our program, where the
computations are carried out over Q(u1; u2; u3) [x1; x2; x3; x4].

(1) Let A(0; 0); B (u1; 0); C(u2; u3); D (x1; x2); N (x3; x4) be the points shown
in Fig.1. We translate the geometric hypotheses(in order) as follows.
(i) AB k CD) f 1 := u1x2 � u3u1

(ii) AC k B D) f 2 := u2x2 � u3x1 + u3u1

(iii) A; N ; D are collinear) f 3 := � x4x1 + x3x2

(iv) B ; N ; C are collinear) f 4 := � (u2 � u1)x4 + u3x3 � u3u1

(2) We translate the conclusionsof the theorem.
(i) AN = N D) g1 := 2x4x2 + 2x3x1 � x2

2 � x2
1

(ii) B N = N C) g2 := 2u3x4 + 2(u2 � u1)x3 � u2
3 � u2

2 + u2
1

(3) Proof 1: Gr•obner basismethod
(i) Using the lexicographic order with x4 > x3 > x2 > x1, we compute the

Gr•obner basis for the ideal I = (f 1; f 2; f 3; f 4):

G = f 2x4 � u3; 2x3 � (u2 + u1); x2 � u3; x1 � (u2 + u1)g :

(Note) Collecting the prime factors in denominators throughout the
Gr•obner basis computation, we obtain subsidiary conditions
f u1 6= 0; u2 6= 0; u2 � u1 6= 0; u3 6= 0g. However, we restrict
ourselvesto the \generic case" [4], and here we do not discuss
the constraint for the parametersui .

(ii) Reducing the conclusion g1 by G, we obtain g1
G� ! 0, henceg1 2 I is

proved. For the conclusiong2, it is similarly proved that g2 2 I .
(4) Proof 2: Wu's method

We apply the functions `CharSet' and `prem' using Epsilon library [19] on
Maple11 [12].

37

(i) Using the order x4 > x3 > x2 > x1, we compute the characteristic
polynomials for f f 1; f 2; f 3; f 4g and let them
CS = f x1 � u2 � u1; u1x2 � u3u1; � (u2 � u1)x3 + x3x1 � u1x1;
� (u2 � u1)x4 + u3x3 � u3u1g =: f h1; h2; h3; h4g

(ii) For the conclusion g1 and CS, we compute the sequenceof pseudore-
mainders with x4; x3; x2; x1 in order:
g13 := prem(g1; h4; x4)
= � 2u3x3x2 � 2(u2 � u1)x3x1 + (u2 � u1)x2

2 + (u2 � u1)x2
1 + 2u3u1x2;

g12 := prem(g13; h3; x3)
= (u2 � u1)(x2

2x1 + x3
1 � (u2 � u1)x2

2 � (u2 + u1)x2
1 � 2u3u1x2);

g11 := prem(g12; h2; x2) = u2
1(u2 � u1)(x2

1 + u2
3)(x1 � u2 � u1);

g10 := prem(g11; h1; x1) = 0:
This result meansthat the conclusiong1 is proved.

(iii) For the conclusiong2, we compute the sequenceg23; g22; g21; g20 simi-
larly and obtain g20 = 0, which meansthat g2 is proved.

3 Results of Exp erimen t

3.1 Environmen t and Results of Exp erimen t

Table 1. Environment for Maple & Epsilon

CPU Pentium 4 (3.6 GHz)
OS Windows XP professional ed.

Main Memory 2.0 GB

In the computational environment shown in Table 1, we tried to prove 35
among Chou's 512 theorems that were not solved by Gr•obner basis method in
1988.Weextracted them from the list of timing data by Chou [3] in its Appendix.

Using the graded-reverse-lex(grevlex) order with xn > xn � 1 > � � � > x1,
the Gr•obner baseswere computered over the coe�cien t �eld Q(u1; : : : ; um) by
Maple11 [12]. For comparison, Wu's method was also applied using Epsilon li-
brary [19] over Maple11.

As a result, we succeededin proving 26amongthe 35 theorems,but the other
9 theorems remained unsolvable. In our previous paper [13], we tried to prove
them using three computer algebra systems: Reduce3.6[8] and Risa/Asir [14],
adding to Maple10 [11]. However, none of these systemshas succeededyet in
computing Gr•obner basesfor the same9 theorems, mainly becauseof the lack
of memory. (Maple10 seemsjust to take very long time to exhaust the memory.)

For the computation of Gr•obner bases by Maple11, we used the option
method=maplef4 �rst, but it failed in some cases.Then we tried again using

38

the option method=buchberger, and we succeededin proving 26 theorems in
total. It does not seemclear yet which option is suitable for these rational ex-
pressioncoe�cien t casesQ (ui) [x i].

We show the precisetiming data in Table 2, where the columns and symbols
indicate the following. In the next subsections,we show the details of devicesfor
computation (} , |).

x i number of dependent variables in the hypotheses
ui number of free parameters in the hypotheses
hi number of polynomials for the hypotheses
� failure (� : insu�cien t memory)

 successby direct computation
} , | successby somedevices
Maple(1) Using the formula (a) in Proposition 1
Maple(2) Using the formula (b) in Proposition 1
Epsilon(1) Using the functions `CS' and `prem'
Epsilon(2) Using the function `RIM' for radical ideal membership

Wu's method (Epsilon(1)) and Wang's method [16] (Epsilon (2)) seemun-
stable for a few examples,but we consider that these 35 theorems in total can
be proved by Epsilon library .

3.2 Device 1: Incremen tal Computation (})

O

A B

CD

E

F

S

P
Q

Fig. 2. Example 48

In sometheorems,we succeededin computing the Gr•obner basisby grouping
the ideal of hypothesesI = (f 1; : : : ; f `), where we changed the input order of
thesepolynomials such as ((: : : ((f 1; : : : ; f k); f k+1); : : :); f `).

We can seethe relations of polynomials f i by their inclusion of variables,be-
causethe geometrichypothesesare constructed in somekind of order. However,
if the polynomials f f 1; : : : ; f ` g are input at a time to computer algebrasystems,

39

Table 2. Success/ Failure and CPU-Time(sec) for Chou's Examples

No. # x i # ui # hi Maple(1) Maple(2) Epsilon(1) Epsilon(2)
ex6 12 11 12 � � � 1.33 2.06
ex7 12 11 12 � � � 38.73 9.00
ex8 11 8 13
 0.92 7.00 0.59 0.31
ex10 20 6 23 � � � 0.52 7.38
ex11 20 6 23 � � � 0.72 9.31
ex12 20 6 23 � � � 1.70 6.45
ex13 17 6 19 � � � 0.27 31.53
ex14 17 6 19 � � � 0.16 0.86
ex19 17 6 19 � � � 3.67 �
ex21 11 4 13
 0.69 0.58 0.06 0.58
ex26 13 7 14
 0.39 0.16 1.99 2.63
ex40 15 3 15
 18.97 42.48 3.91 14.86
ex45 14 3 14
 0.22 0.14 0.06 0.20
ex48 10 6 11 } 545.11 515.31 0.20 0.44
ex63 15 6 19
 0.19 0.13 1.17 0.78
ex72 10 6 13 }| 0.41 1.30 1468.17 56.08
ex80 14 5 16 � � � 19.34 10.03
ex94 7 3 8
 4.58 4.50 0.02 0.05
ex96 7 4 7 } 11.27 11.11 0.02 0.05
ex99 10 4 13 | 33.28 3.77 2.73 0.42
ex106 8 4 9
 2.09 0.06 1.59 0.28
ex109 7 6 11 | 2.80 0.11 1247.34 7.24
ex115 8 3 10 | 1.41 0.33 0.11 0.09
ex240 10 3 10 | 9.69 0.36 0.55 162.95
ex310 14 5 16 } 6.34 2.70 295.22 17.41
ex311 13 4 17
 0.27 0.24 0.05 0.20
ex315 20 4 23 }| 1.97 1.92 0.19 0.59
ex316 24 4 31 } 11.34 2.27 1004.00 493.69
ex367 14 5 18
 17.34 2.63 11.25 0.08
ex379 9 4 11
 0.59 0.44 0.05 0.22
ex395 5 3 6
 0.16 0.14 0.02 0.38
ex396 14 5 16 | 3.05 2.22 2.13 138.33
ex401 7 6 9
 21.53 0.02 1.27 0.14
ex492 17 3 18
 0.38 0.23 3.75 1.75
ex507 8 7 8
 1.45 0.84 0.49 0.47

40

the optimal way is not necessarilyfollowed in the inner function for Gr•obner
bases.Consequently , this incremental computation worked e�ectiv ely for some
examples,even though it is heuristic and not algorithmic.

Example 2 (Example 48 [3]: Fig.2) If �ve of six vertices of a hexagonlie
on a circle, and the three pairs of opposite sides meet a three collinear points,
then the sixth vertex lies on the samecircle.

Hyp otheses We translate the following conditions in order : OA = OC, OA =
OB , DO = OA, EO = OA, P is on line AB , S is on line EA, S is on
line CD, Q is on line B C, Q is on line SP, F is on line QE , F is on line
PD. Then we obtain 11 polynomials: f 1; : : : ; f 11.

Conclusion We let OA = OF be expressedby g.
Pro of We compute the Gr•obner basis G in two steps : ((f 1; : : : ; f 9; f 11); f 10),

becausef 10 has longer form than others. Then we obtain g G� ! 0.

3.3 Device 2: Decomp osition of the ideal (|)

O O1

B

A

D

F

P

E

C

Fig. 3. Example 109

In some cases,we cannot obtain the conclusion g G� ! 0 becauseof insuf-
�cien t hypotheses.The prover developed by Chou [3] found automatically the
nondegenerateconditions that should be addedto the hypotheses.Using Chou's
results, we added such nondegenerateconditions for x i 's and recomputed the
Gr•obner bases.

Example 3 (Example 109 [3]: Fig.3) From a point P on the line joining the
two common points A and B of two circles O and O1, two secants PCE and
PF D are drawn to the circles respectively. Showthat PC � PE = PF � PD.

41

Hyp otheses We translate the following conditions in order : O1 is on line OX ,
AX ? X O, X is the midpoint of AB , P is on line AB , EO = OA,
CO = OA, C is on line PE, F O1 = O1A, DO1 = O1A, D is on line PF .
Then we obtain 11 polynomials: f 1; : : : ; f 11.

Conclusion We let PC � PE = PF � PD be expressedby g.
Pro of For I = (f 1; : : : ; f 11), we have g 62I . Hencewe needto add the following

nondegenerateconditions.
C(x4; x3) 6= E(x2; u5)) h1 := (x3 � u5)z1 � 1 = 0
D(x7; x6) 6= F (x5; u6)) h2 := (x6 � u6)z2 � 1 = 0
If we add h1; h2 to I = (f 1; : : : ; f 11) and let I 0 = (I ; h1; h2), then we have
g 2 I 0 and complete the proof.

Note 1 The abovenondegenerateconditions canbealsocomputedby the Gr•ob-
ner basisof I = (f 1; : : : ; f 11). If we compute the minimal polynomials of x3

and x6 in I , we obtain the following (k = 3; 6):

I 3 (x3 � u5) � ' 3(x3); (x6 � u6) � ' 6(x6) ' k (xk) 2 Q(u1; : : : u6)[xk]:

If we decomposethe ideal I = (f 1; : : : ; f 11), and we restrict ourselves into
~I = (I ; ' 3; ' 6), then we have g 2 ~I and complete the proof. This implies
that x3 � u5 6= 0 and x6 � u6 6= 0 are necessaryasnondegenerateconditions.

Note 2 The theorem itself remains true for the caseswhere C = E or D = F .
Abovenondegenerateconditions meansthat the samesetof polynomials can-
not expresssuch tangent casesin common.This kind of automatic derivation
of nondegenerateconditions has been already discussedby several authors
such as [1,15].

The following example is not included in the 512 theorems by Chou [3],
but it is known as the casewhere the decomposition of components and rather
complicated computation are neededto con�rm the conclusion.Several authors
have succeededin proving this theorem so far [17], but there does not seemto
be any attempt to apply Gr•obner method to it. We proved this theorem by the
following way basedon Gr•obner basisalgorithms.

Example 4 (Th �ebault-T aylor) We follow the second formulation in Chou
[3](pp.67-68), where someauxiliary points are added to Fig.4.

Hyp otheses We translate the conditions in order and obtain f 1; : : : ; f 14 2
Q(u2; u3; u4)[x1; : : : ; x14].

Conclusion We let the tangent condition of two circles be expressedby g.
Step 1 Computing the Gr•obner basis of I = (f 1; : : : ; f 14), we have g 62I . Ac-

tually , this computation fails becauseg is not reduced to 0 by the Gr•obner
basis,but its normal form will explode.

Step 2 We try to �nd a reducible univariate polynomial in the ideal I , and �rst
obtain ' 5(x5) � ' 0

5(x5) 2 I , where the degreein x5 of each factor is two.
Step 3 We let ~I = (I ; ' 5(x5)), but again we have g 62 ~I by computing the

Gr•obner basisof ~I . Then, we try to �nd a reducible univariate polynomial in
~I , and obtain ' 11(x11) � ' 0

11(x11) 2 ~I , where the degreein x11 of each factor
is two.

42

C

A

B

O

J

I

M F

W2

D

W1

Fig. 4. Th �ebault-Taylor's Theorem

Step 4 We let ~I 0 = (I ; ' 0
5(x5)), but again we have g 62 ~I 0 by computing the

Gr•obner basisof ~I 0. Then, we try to �nd a reducible univariate polynomial
in ~I 0, and obtain ' 00

11(x11) � ' 000
11(x11) 2 ~I 0, where the degreein x11 of each

factor is two.
Step 5 Thus the hypothesesideal I is decomposedinto the following 4 compo-

nents:
I 1 = ((I ; ' 5(x5)) ; ' 11(x11)),
I 2 = ((I ; ' 5(x5)) ; ' 0

11(x11)),
I 3 = ((I ; ' 0

5(x5)) ; ' 00
11(x11)),

I 4 = ((I ; ' 0
5(x5)) ; ' 000

11(x11)).
Then, we obtain g 2 I 1 and g 62I 2; I 3; I 4 by computing each Gr•obner basis
of I j . Therefore, the conclusion is con�rmed to be true only in the ideal I 1.

It took about 1900 secondsas a whole for the above computation in the same
environment asTable 1. More than 95%of the CPU time wasusedfor computing
Gr•obner basesof I ; ~I and ~I 0 in steps1, 3 and 4 in total. Since this formulation
is basedon a rather naive way to decomposean ideal, its improvement should
be consideredfor a future work.

43

4 Concluding Remarks

Through all the experiments, we �nd that the following 9 among Chou's 512
theoremsare essentially di�cult to compute their Gr•obner basesby any means
in a moderate computational environment at present.

Ex.6,7,10,11,12Pascal'stheorem and related ones
Ex.13 Steiner's theorem
Ex.14 Kirkman's theorem
Ex.19 Brianchon's theorem (The dual of Pascal'stheorem)
Ex.80 Theorem of Pratt-W u

Except for Pratt-W u, 8 of the 9 theoremsare related to Pascal'stheorem (�gures
constructed from 6 points on a conic). Consequently , these �gures yield rather
complicated polynomial systemswith more variables and parameters than the
other solvable 26 systems.Therefore, it seemsstill di�cult to compute Gr•obner
baseswith rational expressioncoe�cien t Q(u1; : : : ; um) for such systems.

Finally, we itemize the remarks on our present results.

(1) Formulae(a) and (b) in Proposition 1 arecomparable.As shown in Table2, it
is usually faster to compute the Gr•obner basisof (f 1; : : : ; f ` ; 1� yg) directly.
However, we should con�rm (f 1; : : : ; f j ; : : : ; f `) 6= (1) at �rst, becausewe
may have (f 1; : : : ; ~f j ; : : : ; f `) = (1) by somemistakesduring the translation.

(2) If we clear the common denominator and compute in Q [ui] [x i], then inter-
mediate expressionsexplode seriously. The total number (m + n) of variables
has severe in
uence, and the computation of Gr•obner basis becomesmuch
more di�cult by reversee�ect.

(3) It is not known yet how e�cien tly new algorithms such asF4 [5]; F5 [6] work
in the rational expressioncoe�cien t casesQ (ui) [x i]. In Maple11, the option
method=maplef4 is usually faster but requiresmore memory spacethan the
option method=buchberger.

Ac kno wledgemen ts We are grateful to Ms. R.Kikuchi for permitting us to
convert her original program written in Reduce.

References

1. Bazzotti, L., Dalzotto, G., and Robbiano, L.: Remarks on Geometric Theorem
Proving, Automated Deduction in Geometry 2000 (Richter-Gebert, J. and Wang,
D., eds.), LNAI , 2061 , Zurich, Springer, 2001, 104{128.

2. Buchberger, B.: Ein Algorithmus zum Au�nden der Basiselemente des Restk-
lassenringesnach einem nul ldimensionalen Polynomideal , PhD thesis, Univ ersit•at
Innsbruck, 1965.

3. Chou, S.-C.: Mechanical Geometry Theorem Proving, D.Reidel, Dordrecht, 1988.
4. Cox, D., Little, J., and O'Shea, D.: Ideals, Varieties, and Algorithms (2nd ed.) ,

Springer, N.Y., 1997.

44

5. Faug�ere, J.-C.: A New E�cien t Algorithm for Computing Gr•obner Bases(F4), J.
Pure and Applied Algebra, 139, 1999, 61{88.

6. Faug�ere, J.-C.: A New E�cien t Algorithm for Computing Gr•obner Baseswithout
Reduction to Zero (F5), ISSAC 2002 (Mora, T., ed.), Lille, ACM, 2002, 75{83.

7. Gr•abe, H.-G.: The SymbolicData Project, http://www.sym bolicdata.org/, 2000{
2006.

8. Hearn, A. C.: Reduce User's Manual (Ver. 3.6), RAND Corp., Santa Monica, 1995.
9. Kapur, D.: Using Gr•obner Basesto ReasonAb out Geometry Problems, J.Symbolic

Computation , 2(4), 1986, 399{408.
10. Kutzler, B. and Stifter, S.: On the Application of Buchberger's Algorithm to Auto-

mated Geometry Theorem Proving, J.Symbolic Computation , 2(4), 1986,389{397.
11. Maplesoft: Maple 10 User Manual , Maplesoft, Tokyo, 2005. (in Japanese).
12. Maplesoft: Maple 11 User Manual , Maplesoft, Tokyo, 2007. (in Japanese).
13. Moritsugu, S. and Arai, C.: On the E�ciency of Geometry Theorem Proving by

Gr•obner Bases, Trans.Japan Soc.Indust.Appl.Math. , 17(2), 2007. (to appear; in
Japanese).

14. Noro, M. and Takeshima, T.: Risa/Asir - A Computer Algebra System, ISSAC '92
(Wang, P., ed.), Berkeley, ACM, 1992, 387{396.

15. Recio, T. and V�elez, M. P.: Automatic Discovery of Theorems in Elementary Ge-
ometry, J. of Automated Reasoning, 23(1), 1999, 63{82.

16. Wang, D.: An Elimination Method for Polynomial Systems, J.Symbolic Computa-
tion , 16(2), 1993, 83{114.

17. Wang, D.: Geometry Machines: From AI to SMC, AISMC 3 (Calmet, J., Campbell,
J. A., and Pfalzgraf, J., eds.), LNCS , 1138 , Steyr, Springer, 1996, 213{239.

18. Wang, D.: Gr•obner Bases Applied to Geometric Theorem Proving and Discov-
ering, Gr•obner Bases and Applications (Buchberger, B. and Winkler, F., eds.),
London Mathematical Society Lecture Note Series, 251, Cambridge Univ. Press,
Cambridge, 1998, 281{301.

19. Wang, D.: Elimination Practice: Software Tools and Applications, Imp erial College
Press, London, 2004.

20. Winkler, F.: A Geometrical Decision Algorithm Basedon the Gr•obner BasesAlgo-
rithm, ISSAC '88 (Gianni, P., ed.), LNCS , 358, Rome, Springer, 1988, 356{363.

21. Wu, W.-T.: On the decision problem and the mechanization of theorem-proving in
elementary geometry, Automated Theorem Proving: After 25 Years (Bledsoe, W.
and Loveland, D., eds.), Contemporary Mathematics, 29, AMS, Providence, 1983,
213{234.

45

46

A Do cumen t-Orien ted Coq Plugin for TEXmacs

Lionel Elie Mamane and Herman Geuvers

ICIS, Radboud Univ ersity Nijmegen, NL

Abstract. We discussthe integration of the authoring of a mathemat-
ical document with the formalisation of the mathematics contained in
that document. To achieve this we are developing a Coq plugin for the
TEXmacs scienti�c editor, called tmEgg. TEXmacs allows the wysiwyg
editing of mathematical documents, much in the style of LATEX. Our
plugin allows to integrate into a TEXmacs document mathematics for-
malised in the Coq proof assistant: formal de�nitions, lemmasand proofs.
The plugin is still undergoing active development and improvement.
As opposed to what is usual for TEXmacs plugins, tmEgg focuseson a
document consistent model of interaction. This means that a Coq com-
mand is evaluated in a context de�ned by other Coq commands in the
document. In contrast, TEXmacs plugins usually use a temporal model
of interaction, where commands are evaluated in the order (in time) of
the user requests. We will explain this distinction in more detail in the
paper.
Furhermore, Coq proofs that have been done using tmEgg are stored
completely in the document, so they can be browsed without running
Coq.

1 In tro duction

TEXmacs [1] is a tool for editing mathematical documents in a wysiwyg style.
The input an author typesis closeto LATEX, but the output is renderedon screen
in real time as it will be on paper. TEXmacs supports structure editing and it
stores the �les in a structured way using tags, which is close to XML. So, a
TEXmacs document is a labelled tree. The labels (tags) provide information that
can be usedas content or display information. For a speci�c label, the user can
choosea speci�c way of rendering the subtrees under a node with that label,
for example rendering all subtreesin math mode. But a user may also choosea
speci�c action for the subtrees,for example sending the subtreesas commands
to the computer algebra packageMaple. Of course,many labels are prede�ned,
like in LATEX, so a user is not starting from scratch.

TEXmacs facilitates interaction with other applications: within TEXmacs one
canopena\session", for examplea Maple session,and then input text within that
sessionis sent to a Maple processthat is running in the background. The Maple
output is input to the TEXmacs document, and renderedaccordingly. In this way,
TEXmacs can be used as an interface for Maple, with the additional possibility
to add text or mathematical formulas around the Maple session,creating a kind

of interactive mathematical document. Here the interaction lies in the possibility
to executeparts of the document in the background application.

In this paper wepresent tmEgg, a Coq plugin for TEXmacs. The plugin allows
the user to call Coq from within a TEXmacs document, yielding a TEXmacs
document interleaved with Coq sessions.It also provides special commandsfor
Coq, like stating a de�nition or a lemma. The plugin does not provide its own
proof language,but leveragesany proof languagethat Coq understandsor will
understand in the future, such as [2]. This meansthat when doing a proof, the
user types actual Coq commands (usually tactics) in the TEXmacs document,
which are then sent to Coq as-is and the Coq output is renderedby TEXmacs.
This is in contrast with the approach of e.g. [3], [4] or [5], that seekto change
the way a proof is written or the way a user interface interacts with the prover.

A crucial aspect of the plugin is that it views the sequenceof Coq sessions
within a document asoneCoq �le. So,when oneopensa document and executes
a command within a Coq session,�rst all previousCoq commandsare executed
and the present command is then executed in the Coq state thus obtained. So
the TEXmacs document as a whole also constitutes a valid Coq development.
Additionally , tmEgg automatically reexecutesany command that is modi�ed;
no command is locked and unmodi�able.

From the Coq perspective, onecan thus seethe TEXmacs document asa doc-
umentation of the underlying Coq �le. Using TEXmacs, one adds prett y printed
versionsof the de�nitions and lemmas. The plugin further supports this by a
folding (hiding) mechanism: a lemma statement has a folded version, showing
only the prett y printed (standard mathematical) statement of the lemma, and
an unfolded version, showing also the Coq statement of the lemma. A further
unfolding also shows the Coq proof of the lemma.

Altogether there are four ways of seeingthe tmEgg TEXmacs plugin. These
are not disjoint or orthogonal, but it is good to distinguish them and to consider
the various requirements that they imposeupon our plugin.

A Co q in terface. One can call Coq from within TEXmacs, thus providing an
interface to Coq. When the userpressesthe return key in a Coq interaction �eld,
the Coq commandsin this �eld are sent to Coq and Coq returns the result to
TEXmacs. The plugin doesn't do any prett y printing of Coq output (yet), but it
allows to save a Coq development as a TEXmacs �le which can be replayed.

A do cumen ted Co q formalisation. A Coq formalisation usually hasexplana-
tory comments to giveintuitions of the de�nitions, lemmasand proofsor to givea
mathematical (e.g. in LATEX) explanation of the formal Coq code.The plugin can
be usedfor doing just that: the traditional TEXmacs elements are usedfor com-
menting the underlying Coq �le. In this respect, tmEgg can play the samerole
as Coqdoc [6], but goes beyong this. Coqdoc extracts document snippets from
specially formatted comments in Coq scripts and creates an HTML or LATEX
document containing these snippets and the vernacular statements with some
basic prett y-prin ting of terms. In Coqdoc, there is no Coq interaction possible

48

from within this HTML or LATEX document. tmEgg enablesthe user to have a
mathematical document (in TEXmacs), whoseformal de�nitions and proofs can
also be executedin Coq. Moreover, the formal proofs can also be read without
Coq, becausethe full Coq interaction was stored within the document at the
time it was created.

Taking this usecaseto its extreme,onearrivesat a notion of literate proving,
by analogy to literate programming: a systemthat allows to write formal de�ni-
tions and proofs in one document together with their (high-level) mathematical
documentation.

A do cumen t with a Co q formalisation underneath. One can write a
mathematical article in TEXmacs, like one doesin LATEX. With tmEgg, one can
take a mathematical article and extend it with formal statements and proofs.
Due to the folding mechanism, the\view" of the article whereeverything is folded
can be the original article one started with. It should be noted that, if one adds
a Coq formalisation underneath this, not everything needs to be formalised:
lemmas can be left unproven etc., as long as the Coq �le is consistent, i.e. no
notions are used unlessthey are de�ned. In this sense,tmEgg makes a step in
the direction of the Formal Proof Sketchesidea of [7].

Course notes with formal de�nitions and pro ofs. We canusethe TEXmacs
document for course notes (handouts made by the teacher for students). An
added value of our plugin is that we have formal de�nitions and proofs under-
neath, but we don't expect that to be a very appealing feature for students. On
the other hand, we alsohave full accessto Coq, sowe can have exercisesthat are
to be donewith Coq, like\pro ve this statement" or \de�ne this conceptsuch that
such and such property holds". This is comparable in its intent to Activ eMath
[8].

In the following we present our plugin tmEgg, including sometechnical details
and a fragment of a TEXmacs document with underlying Coq formalisation.
We will discussthe four views on the plugin as mentioned above in detail. An
essential di�erence between the tmEgg Coq plugin that we have created and
other TEXmacs plugins, e.g. the one for Maple, is that we take a document
oriented approach. This we will describe �rst.

2 The documen t-consisten t model

The TEXmacs plugins to computer algebraor proof systemsusually obey a tem-
poral model of interaction, that is, the expressionsgiven to the plugin by the
user are evaluated in the chronological order the user asks for their evaluation,
irrespectiveof their relativeposition in the document and dependencies.In other
words, the TEXmacs plugin system ignores the fact that the interpreter it is in-
terfacing with hasan internal state which is modi�ed by the commandsTEXmacs

49

gives it. This can lead to the result of a command in the current sessionto be
irreproducible in later sessionsbecausethe sequenceof commandsleading to the
state in which the interpreter waswhen evaluating the commandis lost. SeeFig.
1 for an example, with the CAS Axiom. The user �rst assignsthe value 5 to a,
and asksfor the value of a. The correct answer is given. The user then rede�nes
a to be 6 and goesback up to the command a and asksfor its reexecution.The
answer given is 6, which corresponds to the chronological order of execution of
the commands,but not to the order in which the said commandsare read by a
somebody that hasn't seenthe chronological history. While in that simple case,
one may guesswhat has happened, if the user deletesthe assignation of 6 of a
or even both de�nitions (third row in the �gure), the explanation is gone, and
the behaviour of TEXmacs and Axiom is seemingly unexplainable to someone
that walks in at that moment and �nds TEXmacs and Axiom in that state. If
the document is saved and reloaded,one will not get the sameresults again.

Contrast with Fig. 2, showing a tmEgg Coq session.Empty_set is prede�ned
in Coq's standard library , and gets rede�ned in the secondcommand. However,
independently of the order in which the userasksfor evaluation of the commands,
it will always give the same result, shown in the �gure. E.g. if the user asks
for evaluation of the secondcommand (de�ning Empty_set to be 5) and then
asks for the evaluation of the �rst one, the �rst command will always answer
\ Empty_set is an inductiv ely de�ned type of sort Set without any constructor",
not \ Empty_set is 5". Similarly, if the user opens the document and evaluates
the third command, it will answer Empty_set = 5 becausethe secondcommand
will have beenautomatically executedbefore the third one.

The risk of inconsistencybrought by the temporal model is naturally even
more undesirable in the context of writing formal mathematics, leading to a
document-consistent model of interaction: a statement is always evaluated in
the context de�ned by evaluating all statements before it in the document, in
document order, starting from a blank state.

2.1 Implemen tation

Coq 8.1 thankfully provides the features essential for implementing the docu-
ment-consistent model, in the form of a backtrack commandthat can restorethe
state to a past point B . It works under the condition that no object (de�nition,
lemma, . . .) whosede�nition is currently �nished was incomplete at point B . If
this condition is not satis�ed, tmEgg backtracks up to a point before B where
this condition doeshold and then replays the statements betweenthat point and
B . This condition always holds somewhereat or before B : it holds at the very
beginning of the document, where no de�nition is started.

The arguments given to the backtrack commandare derived from state infor-
mation that Coq givesafter completion of each command, in the prompt. tmEgg
storesthe information on the Coq state before a commandasa state marker next
to the command itself, that is a document subtreewhoserendering is the empty
string. This state information consists(roughly speaking) of the number of def-

50

Fig. 1. Example of inconsistent output

initions made in the current session,the list of un�nished de�nitions and the
number of stepsmade in the current un�nished de�nition, if any.

51

Fig. 2. Example of consistent output

tmEgg also keepsa copy in memory of the Coq commandsthat have been
executed;when the user asks for evaluation of a Coq command, tmEgg checks
whether an already executedcommand was modi�ed (respectively deleted, or a
new one inserted between already executedcommands) in the document since
its execution, and if any was, automatically reexecutesit.

2.2 A better mo del

The underlying model is that the document contains a sequenceof Coq com-
mandsto be evaluated exactly in that order. This model will be familiar to users
of other popular interfaces, such as Proof General/Emacs and CoqIDE, where
one edits directly a \ .v �le" , that is a text �le made of a concatenation of Coq
commands.The tmEgg document is just a superset of that, that contains both
Coq commandsand other document snippets that get ignored by Coq.

This presents the restriction that the de�nition of an object (e.g. a lemma)
hasto precedeany useof it in the document. This forcesthe order of presentation
of objects in the document to be a valid order in the formal logical meaning.
While this is considereda feature by overly formalist people(such as one of the
authors), it is considereda hindrancefor writing documents optimised for reading
by the rest of humanity. Indeed, the author of a document may e.g. consider it
better to �rst present the main theorem, making liberal useof lemmasthat are
best read after understanding their role in the overall picture. He may even wish
to banish an uninteresting technical lemma to an appendix.

Also, from a performancepoint of view, if an object T is followed by several
objects that do not use T and then one object S that does use T, changing the
de�nition of T will lead to unnecessarilycancellingand redoing the de�nitions of
the intermediary objects that are guaranteed not to be a�ected by a change in
T; only S needsto be cancelled.A similar situation ariseswhen the user works
on several un�nished de�nitions in a temporally interleaved way; the already
executed steps of the objects placed lower in the document will constantly be
cancelledand reexecuted,for no good reason.

52

In order to better accommodate these usagescenarios,a future version of
tmEgg will have a di�eren t model: the document will be seenas containing a
set of Coq objects (de�nitions, lemmas, theorems, . . .). When the user opensa
document and asksfor reexecutionof the de�nition of an object A, all the objects
necessaryfor A, but no more, are rede�ned, irrespective of their position in the
document. Similarly, if A is changed, only the objects using it will have their
de�nition removed from the Coq session,not all thosethat happen to be de�ned
later in the document.

Furthermore, in this model, if the user jumps between two un�nished de�-
nitions, there is no needto abort either of them; they can be simply suspended
and resumed,without cancelling proof stepsthat don't needto be.

However, the proof script of one particular proof will - at least in a �rst
version - still be consideredas a strictly linear sequence.

Coq makesthat model easierto implement than other systems.Indeed, Coq
doesnot allow any rede�nition 1. Any document will thushaveonly one de�nition
of any (fully quali�ed) name,and there will be no ambiguit y on which de�nition
of B shall be usedto de�ne A, if the de�nition of A usesB. tmEgg can then store
the dependencies(hidden) in the document at the time a de�nition is �nished.

3 Presentation of tmEgg

tmEgg extendsTEXmacs with Coq interaction �elds. The user enters Coq com-
mands in one of these �elds and pressesenter to have the command executed.
Coq's answer is placedbelow the input �eld in the document itself. One can nat-
urally freely interleave Coq interaction �elds with usual document constructs,
permitting one to interleave the formal mathematics in Coq and their presen-
tation in LATEX-level mathematics or comments about the formalisation. Each
Coq interaction can be folded away at the press of a button, as well as each
speci�c result of a command individually . The output of the previous command
is automatically folded upon evaluation of a following command. SeeFig. 3 for
an example: The empty circles indicate a folded part and can be clicked to un-
fold that part, and the full circles indicate a foldable unfolded part and can be
clicked to fold it. Here, the formal counterpart to hypothesis 2 is completely
folded, while the statement of lemma 3 is unfolded and its proof folded. The
proof of lemma 4 is unfolded, but the result of most of its steps is folded.

Note that the result of each Coq command is inserted into the document
statically (and replacedupon reevaluation), just after the commanditself, before
the next command;this meansthat they canbecopiedand pastedlikeany part of
the document, but alsothat the saved�le contains them, sothat the development
can be followed without running Coq, a potentially lengthy operation. As a

1 Fig. 1 may seem to be a counter-example to this assertion, but it is not: What
happenshere is merely shadowing of the library de�nition by onein the current name-
space,but this a�ects only the unquali�ed nameEmpty_set. The library object is still
available under its fully quali�ed name, namely Coq.Init.Datatypes.Empty_set .

53

Fig. 3. tmEgg screenshot

corollary, the development can even be followed (but not independently checked)
on a computer lacking Coq.

This choiceof placing the Coq output visibly in the document itself waspartly
an experiment; traditionally the user interfacesplace the prover's answer/state
in a �xed-size reserved area of the screen.Interleaving the Coq output with its
input has proven well suited to small toy examples.Mainly, it avoids having
to constantly switch eye focus between the separateedition area and the Coq
output area, leading to a smoother experience. It also has the advantage that
it permits having several consecutive Coq outputs on screen simultaneously,
making comparing them easier.This is especially useful when reading a proof,
when one is trying to �gure out what a Coq command is doing.

54

However, it has proven unpopular with users doing bigger proofs, mainly
becauseit is not as spill-resistant as a �xed-size reserved area when the proof
state reachesa moderate sizeor becauseit \clutters up the screen".

As both approacheshave inherent advantages,future versionsof tmEgg will
support both approaches.Coq output will be saved in the document, but can be
completely hidden globally. A separatewindow, which can be shown or hidden,
will contain the output corresponding to the current Coq command.

In order to help the usercreatethe proposed\formal and informal versionof the
samemathematics" structure (particularly in the \mathematical document with
a Coq formalisation underneath" scenario),we present him with a menu where
he can choosea Coq statement type (such as Lemma, Hypothesis, De�nition,
. . .) and that will create an empty template to �ll made of:

{ the corresponding TEXmacs theorem-likeenvironment for the informal state-
ment;

{ a foldable Coq interaction �eld for the formal statement;
{ a foldable Coq interaction �eld for the formal proof, if appropriate;

This is illustrated in Fig. 4.

Fig. 4. New statement menu, empty lemma structure

3.1 Arc hitecture

We have decided to avoid putting TEXmacs-speci�c code in Coq. That's why,
rather than adapt Coq to speak the TEXmacs plugin protocol by itself, we have
implemented a wrapper in OCaml that translates from Coq to TEXmacs (see
Fig. 5). We try to keepthat wrapper assimple and statelessaspossible,putting
most of the intelligence of the plugin in Schemein TEXmacs.

55

CoqTEXmacs wrapper

Fig. 5. tmEgg architecture

3.2 Adaptations in Co q for tmEgg

However, a few genericenhancements to Coq were necessary:

{ One could not backtrack into a �nished section (that is, from a point where
this section was �nished to a point where it is un�nished). This is now
possible.

{ There are two protocols to interact with Coq: the \emacs" protocol and the
\Pco q" protocol. The Pcoq protocol hasthe hugeadvantageof clearly stating
which of the commandsyou gave to Coq failed or succeeded,while the emacs
protocol leavesyou to carefully parse the output to seewhether there is an
error messagecontained in it. On the other hand, the Pcoq protocol wastied
to a di�eren t term printer than the one usual to Coq usersand a di�eren t
history management model than the one described above.
We have untied the term printer and communication protocol, so that either
printer can be usedwith either protocol, allowed disabling the Pcoq history
management mechanism and added the backtracking state information of
the emacsprotocol to the Pcoq protocol. This allows us to usea robust com-
munication protocol (the Pcoq one), while still displaying terms in the same
syntax the userscan type them in and leveraging the backtrack command.

4 How well does the plugin do?

In the intro duction, we have described four views (possibleapplications) on the
tmEgg plugin. We now want to discussto which extent the plugin satis�es the
requirements for each of those views.

A Co q in terface. One can do Coq from within a TEXmacs document using
our plugin, if one has the patience or a machine fast enough to put up with
TEXmacs's slowness.However, as detailed above, comparedto well-known inter-
faceslike Proof General [9] and CoqIde [6], the display of the proof state inside
the document can be a disadvantage.Other things that our plugin doesnot (yet)
support but are in principle possibleto add in TEXmacs are: menus for special
tactics and prett y printing (but Proof General and CoqIde don't have this ei-
ther). Prett y printing is of courseinteresting to add in the context of TEXmacs,
becauseit hasvarious LATEX-lik e facilities to add it. However, it should be noted
that, if we want to useour plugin as an interface for Coq, the syntax should be
acceptedas input syntax too, so as to not confusethe user. The user may also
prefer to usethe default Coq pure text syntax rather than graphical mathemat-
ical notations; this will always be supported.

56

Compared to traditional user interfaces,tmEgg has the advantage that one
can scroll to any point in the proof script and reexamineCoq's state. One can
then always edit the Coq command there freely, and tmEgg will do whatever is
necessaryto make Coq aware of that. Traditional user interfaces lock already
executedcommands,that is they cannot be edited.

A do cumen ted Co q formalisation. As a documentation tool, the plugin
works �ne. One can easily add high level mathematical explanations. One can
import a completeuncommented Coq �le and start adding annotations. It would
be better if existing Coq comments, in particular Coqdoc annotations, were im-
ported and converted to TEXmacs document snippets, but this is not imple-
mented yet. Note however that there is no (formal) link betweenthe formal Coq
and the high level explanation in TEXmacs, becausethe high level translation is
not a translation of the Coq code, but addedby a human. This is di�eren t from,
e.g. the work in the Mowgli [10] project, where we have a high level rendering
of the formal Coq statements.

A do cumen t with a Co q formalisation underneath. This is a way the
plugin can be usednow. One would probably want to hide even more details, so
more folding would be desirable, e.g. folding a whole seriesof lemmas into one
\main lemma" which is the conclusionof that series.Thus one would be able to
createa higher level of abstraction that is usual in mathematical documents. Of
coursethis can already be done in TEXmacs, but our plugin doesnot speci�cally
propose it automatically. If such nested folding were added, it would also be
advisable to be able to display the \folding structure" separately, to give the
high level structure of the document.

Course notes with formal de�nitions and pro ofs. In general, proof as-
sistants are tools that require quite somematurit y to be used, so therefore we
don't expect students to easily make an exercisein their TEXmacs coursenotes
using the underlying proof assistant Coq, i.e. as an exercisein the mathematics
studied rather than asan exercisein Coq. This situation may improve in the fu-
ture though, depending on the maturit y of proof assistant technology. It should
also be noted that the plugin doesnot (yet) explain/render the Coq formalised
proofs, like e.g. the Helm tool [11] does (by translating a formal proof into a
mathematically readableproof). Seealso [12].

5 More Future Outlo oks

5.1 Mathematical input/output

Current TEXmacs interfacesto computer algebra systemsinclude conversion to
and from mathematical notations (seeFig. 6). Doing the samewith Coq brings
somedi�culties in a more acute way than with a CAS:

57

Fig. 6. Mathematical notation input/output with Axiom

{ Di�eren t developments will call for the samenotation to map to di�eren t Coq
objects; there are for exampleseveral di�eren t real numbersimplementations
for Coq.

{ Similarly, the best notation to usefor the sameCoq construct will vary de-
pending on the document, wherein the document oneis, or even more subtle
factors. A prime exampleof this is parenthesesaround associativeoperators:
One usually doesn't want a full parenthesising in statements, but if one al-
ways leavesout \unnecessary"parentheses,the statement of the associativit y
lemmaitself looksquite pointless,asdo the proof stepsconsistingof applying
the associativit y lemma.

{ SomeCoq constructs (such assomeways to de�ne division) needinformation
that is not part of usualmathematical notation (such asproof that the divisor
is not zero).

Ideally, the notations would thus probably have to be highly dynamic; if making
good choicesautomatically provesimpossible,maybe a good compromisewill be
to let the author of the document chooseon a case-by-casebasis.What can be
achieved sanely is still to be explored.

Once at least the conversion to mathematical notation is satisfying, we can
make a TEXmacs command that takes a Coq term (or the name of one) and
whoserendering is the \nice" mathematical rendering for that term. This means
that userswill be able to put Coq terms in their documents and have them look
like LATEX-level mathematics.

This conversionfrom and to \normal" mathematical notation might alsoform
a usablemechanism for informal and unsafeexchangeof terms betweendi�eren t
computer algebra systemsand proof assistants. E.g. if the Coq goal to prove is
x18 � 5x7 + 5 = 0 ! x > 2, the user could select in the goal the expression
x18 � 5x7 + 5 = 0 (duly converted from Coq term to mathematical notation by
tmEgg), paste it into a CAS sessionand ask the CAS to solve that equation
(where the TEXmacs-CAS integration plugin will duly convert it to the syntax
of the CAS being used) to quickly check whether the goal is provable, or usethe
CAS as an oracle to �nd the roots and useknowledgeof the roots to make the
proof easierto write.

58

It was originally planned to usethe Pcoq term printer to get the Coq terms as
pure � -term trees,and handle all the transformation to TEX-level presentational
notations in tmEgg itself, e.g.through mapping Coq terms to TEXmacs document
macros. This would have allowed to easily use di�eren t notations in (di�eren t
placesof) di�eren t documents, but it means loosing the abilit y to look at the
type of a term to make a presentation decision. In consultation with the Coq
team, we �nally decided we will add a term prett y-prin ter to TEXmacs syntax
in Coq itself, sharing most infrastructure with the existing Coq ASCII/Unico de
text term printer.

5.2 Miscellaneous

Once the basic framework of tmEgg has matured and works well, all kinds of
small, but highly useful, featurescan be imagined:

{ Import of Coq �les containing Coqdoc document snippets, leveraging the
LATEX import of TEXmacs.

{ Automatic generation of table of Coq constructs in the document and cor-
responding index.

{ Similarly, menu command to jump to the de�nition of a particular Coq
object.

{ Make any placewherea Coq object (e.g. a lemma) is useda hyperlink to its
de�nition. This could even eventually be expandedup to making tmEgg a
Coq library browser.

References

1. van der Hoeven, J.: GNU TEXmacs. SIGSAM Bull. 38(1) (2004) 24{25
2. Corbineau, P.: Declarativ e proof language for coq. http://www.cs.ru.nl/ cor-

binea/mmo de.html (2006)
3. Th �ery, L.: Formal proof authoring: an experiment. In L •uth, C., Aspinall, D.,

eds.: UITP2003 International Workshop on User Interfaces for Theorem Provers,
informal proceedings. Volume 189 of Technical Report., Institut f•ur Informatik
Alb ert-Ludwigs-Univ ersit•at Freiburg, Aracne (2003) 143{159

4. Dixon, L., Fleuriot, J.: A proof-centric approach to mathematical assistants. Jour-
nal of Applied Logic: Special Issueon Mathematics Assistance Systems(2005) 35
To be published.

5. Aspinall, D., L•uth, C., Wol�, B.: Assisted proof document authoring. In Kohlhase,
M., ed.: MKM 2005, Mathematical Knowledge Management: 4th International
Conference. Volume 3863 of Lecture Notes in Computer Science., Springer Ver-
lag (2006) 65{80

6. The Coq Development Team: The Coq Proof Assistant ReferenceManual. (LogiCal
Project - INRIA Futurs)

7. Wiedijk, F.: Formal proof sketches. In Berardi, S., Coppo, M., Damiani, F.,
eds.:Typesfor Proofs and Programs: Third International Workshop, TYPES 2003,
Torino, Italy . Volume 3085 of LNCS., Springer (2004) 378{393

59

8. Melis, E., Andres, E., B•udenbender, J., Frischauf, A., Goduadze, G., Libbrecht,
P., Pollet, M., Ullric h, C.: Activ eMath: A generic and adaptiv e web-basedlearning
environment. Arti�cal Intelligence and Education 12(4) (2001)

9. Aspinall, D.: Proof general - a generic tool for proof development. In S. Graf, M.S.,
ed.: TACAS 2000. Volume 1785 of LNCS. (2000)

10. Asperti, A., Wegner, B.: MoW GLI - a new approach for the content description
in digital documents. In: Proceedings of the Ninth International Conference on
Electronic Resourcesand the Social Role of Libraries in the Future. Volume 1.,
Autonomous Republic of Crimea (2002) (Section 4).

11. Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, I.: Mathematical knowl-
edge management in HELM. Annals of Mathematics and Arti�cial Intelligence,
Special Issue on Mathematical Knowledge Management 38(1-3) (2003) 27{46

12. Asperti, A., Geuvers, H., Loeb, I., Mamane, L.E., Coen, C.S.: An interactiv e alge-
bra coursewith formalised proofs and de�nitions. In Kohlhase, M., ed.: Mathemat-
ical Knowledge Management: 4th International Conference,MKM 2005, Bremen,
Germany. Volume 3863 of Lecture Notes in Computer Science., Springer Verlag
(2006) 315{329

13. Audebaud, P., Rideau, L.: TEXmacs as authoring tool for formal developments. In
Aspinall, D., L•uth, C., eds.:Proceedingsof the User Interfacesfor Theorem Provers
Workshop, UITP 2003. Volume 103 of Electronic Notes in Theoretical Computer
Science.,Rome, Italy , Elsevier (2004) 27{48

14. INRIA Sophia-Antip olis Lemme Team: PCoq, a graphical user-interface for Coq.
(http://www-sop.inria.fr/lemme/p coq/)

60

Soft ware Speci�cation Using Tabular
Expressions and OMDo c?

Dennis K. Peters1, Mark Lawford2, and Baltasar Tranc�on y Widemann3

1 Electrical and Computer Engineering
Faculty of Engineering and Applied Science

Memorial Univ ersity of Newfoundland
St. John's, Newfoundland Canada

dpeters@engr.mun.ca
http://www.engr.mun.ca/~dpete rs
2 Dept. of Computing and Software

Faculty of Engineering, McMaster Univ ersity
Hamilton, Ontario, Canada

lawford@mcmaster.ca
http://www.cas.mcmaster.ca/~law ford
3 Software Qualit y Research Laboratory

Computer Scienceand Information SystemsBuilding
Univ ersity of Limerick, Limerick, Ireland

Baltasar.Trancon@ul.ie
http://www.sqrl.ul.ie

Abstract. Precise speci�cations or descriptions of software system be-
haviour often involve fairly complex mathematical expressions.Research
has shown that these expressionscan be e�ectiv ely presented as tabular
expressions,but that tool support is neededto do this well. Traditional
documentation tools (e.g., plain text or word processors)are insu�cien t
becausethey do not i) have good support for mathematical expressions,
particularly in tabular forms, and ii) retain su�cien t semantic informa-
tion about the expressionsto permit the use of tools such as automated
reasoning systems, and code or oracle generators. This paper presents
initial work in the development of a suite of tools, using OMDo c as an
exchange medium, for development, analysis and use of tabular software
speci�cations. It shows by some simple examples how these tools can
work together with other systems to add signi�can t value to the docu-
mentation process.

1 Soft ware Speci�cations

Researchers in the area that has cometo be called \soft ware engineering" have,
over the years, proposedmany techniques for documenting required or actual
behaviour and designsfor softwarebasedsystems.Despite the purported bene�ts

? This work was carried out while all three authors were at the Software Qualit y
Research Laboratory, Univ ersity of Limerick.

of thesetechniqueswith respect to the quality of the software produced,very few
of thesehave found widespreadusein industrial softwarepractice. It is suggested
that developers are reluctant to use these techniques becausethey are not seen
to add enoughvalue to the development processto justify the e�ort required to
produceand maintain the documentation. In this work we hope to improve this
situation by developing tools that support both the production and maintenance
of good documentation and the application of this documentation to such tasks
as designanalysis, veri�cation and testing.

Someof our goals for the tools that we are developing are that they should:

{ Free authors from devoting inappropriate e�ort to the presentation details
of the document { the e�ort should be focusedon the content.

{ Assist the authors to avoid typographical mistakes, for example through
content assist techniques similar to those found in integrated development
environments.

{ Support checking of consistencyboth within a document (self consistency)
and betweendocuments, including code where appropriate.

{ Assist in designanalysis and veri�cation, possibly using tools such as proof
systems,model checkers, or computer algebra systems.

{ Support automated speci�cation basedtesting, for exampleby test caseand
oracle generation.

To achieve thesegoalsthe documentation being producedmust be in a form
that has a precisely de�ned syntax and semantics { that is, it must be formal
{ and it must be in a form that enablesaccessto the semantic content. Such
formal documentation techniques usually make use of a substantial amount of
reasonablycomplicated mathematics for which generalpurposedocumentation
production tools (e.g., word processingsoftware) are lessthan ideal becausethey
focus on the presentation of the information, rather than its semantic content.
The mathematical content markup languageOMDoc[1] addressesthis problem
and servesas a basison which to build our tools.

1.1 Tabular Expressions

The nature of computer systembehaviour often is that the systemmust react to
changesin its environment and behave di�eren tly under di�eren t circumstances.
The result is that the mathematics describing this behaviour consistsof a large
number of conditions and casesthat must be described. It has beenrecognized
for some time that tables can be used to help in the e�ectiv e presentation of
such mathematics [2{5]. In this work we view such tabular representations of
relations and functions as an important factor in making the documentation
more readable,and so we have specializedour tools to support them [6{8].

A full discussionof tabular expressionsis beyond the scope of this paper,
so interested readersare referred to the cited publications. In their most basic
form, tabular expressionsrepresent conditional expressions,so for example, (in
Janicki's style [7]) the function de�nition given in (1), could be represented by
the tabular expressionin (2).

62

f(x; y) df=

8
>>>>>><

>>>>>>:

x + y if x > 1 ^ y < 0
x � y if x � 1 ^ y < 0
x if x > 1 ^ y = 0
xy if x � 1 ^ y = 0
y if x > 1 ^ y > 0
x=y if x � 1 ^ y > 0

(1)

f(x; y) df=
x > 1 x � 1

y < 0 x + y x � y
y = 0 x xy
y > 0 y x=y

(2)

In OMDoc it is straightforward to add support for tabular expressions,simply
by de�ning appropriate (OpenMath) symbols to denote them: we usea symbol
for \table", which, following the model presented in [8], takes four argument
expressionsrepresenting

1. The evaluation term, which expresseshow the valueof a tabular expressionis
de�ned in terms of the expressionsin its grids. For (2) this expressionwould
expressthat the value is that of the element of the central grid, T [0], that is
indexed by indices of the true elements of each of the \header" grids, T [1]
and T[2], asfollows: T [0][select(T [1]); select(T [2])], whereselect is a function
on a predicate grid that givesthe index of the cell that is true.

2. The static restriction, which de�nes a condition that must be true of the
grids, independent of the expressionsin the grids, but possibly dependent
on their types. This is used, for example, to assert the conditions on the
number and sizeof the grids (i.e., the shape of the table). For (2) this would
expressthat the index set of the central grid should be the power set of
the index sets of the header grids, and that the header grids must contain
predicate expressions.

3. The dynamic restriction, which de�nes a condition that must be true of the
grid expressions.This is used to assert constraints on the table to ensure
that it hasa well de�ned meaning.For (2) this would assertthan the header
grids, T [1] and T[2], must be \prop er" { only one cell expressionshould be
true for any assignment.

4. A list of grids, which are indexed sets, represented by n-ary applications
with symbol \grid" and taking pairs of cell index and cell contents as its
arguments.

Figure 3 illustrates the OMDoc representation of a tabular expression.
Although (1) and (2) are clearly a nonsensicalexample, they are representa-

tiv e of the kind of conditional expressionthat occurs often in documentation of
software basedsystems.We have found that the tabular form of the expressions
is not only easier to read, but, perhaps more importantly , it is also easier to
write correctly. Of particular importance is that they make it very clear what
the casesare, and that all casesare considered.

63

Modern general purpose documentation tools, of course, have support for
tables aspart of the documents, but they are often not very good at dealing with
tables as part of mathematical expressions.These tools also encourageauthors
to focus e�orts on the wrong things: authors will work very hard to try to get
the appearanceof the table right, sometimeseven to the detriment of readability
(e.g., shortening variable namesso that expressions�t in the columns).

One could argue that the two alternativ e presentations given in (1) and
(2) are simply presentational styles and so should not be our focus, and we
would have to agreeto a point. As should be clear from the above discussion,
however, our encoding of tabular expressionsin OpenMath does not encode
the presentational aspectsother than implicitly in the symbol names{ it simply
de�nes new kinds of conditional (piecewise)expressionswherethe conditions are
de�ned in indexed sets that we call grids. The symbols de�ned in the \piece1"
standard OpenMath Content Dictionary 4 are not su�cien t for our purposes
sincethey group the conditions with the value expression,as in (1), rather than
along other dimensions.The latter form improvesreadability and allows for clear
expressionof \prop erness"constraints (e.g., that the expressionsin a grid must
cover all casesand not overlap).

1.2 Classes of Do cumen ts

Although tabular expressionscould be useful in many forms of documentation,
our particular emphasishas been on documents that either specify or describe
behaviour of software entities using relations on the quantities that are input
and output from the component [9]. Rather than de�ne a speci�cation language,
per se, we use standard mathematics together with some special functions or
notations that are particular to the kind of document and are de�ned using
standard mathematics [10]. The following are the particular kinds of documents
that we are targeting.

System or Soft ware Requiremen ts documents de�ne the required or actual
behaviour of an entit y by giving the acceptablevalues of the \controlled"
quantities (outputs) at any time in terms of the history and current value of
the \monitored" quantities (inputs) [11{13].

Mo dule in terface documents de�ne the required behaviour of a softwaremod-
ule (component) by giving the valuesof all output variables in terms of the
sequenceof past program calls, events and outputs of that module [14].

Mo dule in ternal design documents describe the internal designof a module
by identifying the data structure used, giving the abstraction relation that
relates this data structure to the module interfacespeci�cation, and de�ning
the relations on valuesof the data structure and output variablesbeforeand
after a call to an accessprogram [15].

Note that our documents are not documents about mathematics, but rather
make use of mathematics as a meansto communicate. Also note that our doc-
uments will not normally include proofs but may be used as input to proof
4 http://www.op enmath.org/cd/piece1.xh tml

64

systems,as illustrated in section 2.2, for exampleto reasonabout the properties
of a design.

1.3 Speci�cation Do cumen t Mo del

A review of the contents of the above document types leads us to propose a
document model consisting of the following elements.

Theory is the main structural element of our documents. Each document will
contain one or more theories. Theories may include sub-theorieseither di-
rectly or via import references.

Sym bols represent constants, variables, relations, functions or types. A speci-
�cation document fundamentally is about identifying the symbols that are
relevant and, where appropriate, de�ning their value in terms of other sym-
bols.

T yp es declarethe mathematical type of a symbol.
De�nitions declarethe meaningof a symbol (e.g., an expressiondescribingthe

relation).
Co de is unparsed formal text that, although it doesn't play a role in the doc-

uments we have mentioned, is likely to be neededfor somedocuments.
Text is unparsedinformal text that is included for readability of the document.

Readersfamiliar with OMDoc will recognizethe above elements and seethat
our documents clearly �t within the OMDoc model. We have found, however,
that the standard OMDoc attributes are insu�cien t for our purposes,so we
have added a few that are speci�c to this project and have identi�ed these by
a namespacefor the project (http://www.�llmoresoft ware.ca/ns), which we use
the pre�x \tts" to represent. The attributes are as follows:

tts:role is used for symbols to denote the role that the symbol plays in the
document. A symbol might represent, for example,an output value relation,
an auxiliary de�nition or a variable.

tts:kind is usedfor theories to denote the kind of speci�cation document that
the theory represents (requirements, module interface, module internal de-
sign).

OMDoc supports both OpenMath [16] and Content MathML [17] for math-
ematical content, but sinceour intention is to use tabular expressions,we need
to usean extensible notation, so we useonly OpenMath in this version.

2 Tool Supp ort

The set of tools that may be appropriate outcomes from this project is very
large and includes powerful editors, document consistencycheckers, veri�cation
systems,oracle generators,test casegeneratorsand model checkers, to name a
few. Clearly to develop all of thesefrom scratch would be a major undertaking

65

far beyond the resourcesof this project. However, we strongly believe in the
value of building on the strengths of existing tools where appropriate, so we are
focusingour initial e�orts on ways to leverageexisting systemsto our advantage
in this project. The OMDoc representation of a tabular speci�cation with its
embeddedsemantics is the common glue that allows us to easily bind together
components as diverseas a Eclipse plugin GUI, the PVS theorem prover and
a protot ype function based speci�cation system that also acts as a Java code
generator. Once development is completed to enable these tools to extract the
generaltable representation and semantics of [8], support will be available for all
known typesof tabular speci�cations and any future onesthat canberepresented
within this generaltable model. The current state of thesethree components of
the table tool system are outlined below.

2.1 Protot yp e Eclipse Plugin GUI

Eclipse (www.eclipse.org)is an open development platform that supports exten-
sion through a plugin mechanism. The platform providesan advancedintegrated
development environment for software development, and a wide range of avail-
able plugins to support such tasks as testing, modeling and documentation. By
developing a plugin to support production of the documents described above,
we hope to be able to build on the strengths of Eclipse and to help integrate the
documentation into the development process,for example by supporting navi-
gation betweena speci�cation and the code that implements the speci�cation or
by generating oraclesor test casesthat integrate with automated testing using
JUnit (www.junit.org) and the JUnit plugin.

The initial version of this plugin, which is pictured in �gure 1, provides a
\m ulti-page editor" (which provides di�eren t views of the samesource�le) for
\.tts" �les, which are OMDoc �les. One pageof the editor is a structured view of
the document, while another shows the raw XML representation. The support
libraries in Eclipse provide techniques to ensurethat the views of the document
are consistent. The plugin is built using several open sourcelibraries including
the RIA CA OpenMath Library 5.

This plugin is seenas a primary meansfor the human usersto interact with
speci�cation documents. Currently it supports basic veri�cation and validation
of tabular speci�cations via export to the Protot ype Veri�cation System(PVS)
[18] using XSLT to translate the OMDoc into PVS, as described below.

2.2 Example Veri�cation and Validation Environmen t

PVS is a \pro of assistant" that can automatically check for completeness(cov-
erage) and determinism (disjointness) of several types of tables [19], i.e. PVS
checks that a table de�nes a total function. This is typically very important in
safety critical environments since the engineerswant to avoid any unspeci�ed

5 http://www.mathdo x.org/pro jects/op enmath/lib/2.0 /

66

Fig. 1. Screenshotof Eclipse Plugin

behaviour. Although PVS has a steep learning curve for users,with further de-
velopment e�ort we can designour table tools and software processto \shield"
the users from PVS. Further, new features in PVS such as the random test
[20] and execution of a subsetof the PVS speci�cation languagevia the ground
evaluator [21] can be easily translated into new table tool features.

We illustrate thesecapabilities with an example,a simple Reactor Shutdown
System (SDS) component. An SDS is a watchdog system that monitors system
parameters. It shuts down (trips) the reactor if it observes "bad" behaviour.
The processcontrol is performed by a separateDigital Control computer (DCC)
sincethat functionalit y is not as critical.

We will consider a \P ower Conditioning" subsystem.Often sensorshave a
power threshold below (or above) which readings are unreliable so it's \condi-
tioned out" for certain power levels. A deadband is used to eliminate sensor
\c hatter". Sincethere are many di�eren t sensortypeswith similar power condi-
tioning requirements, during the designphaseit wasdecidedto write onegeneral
routine and pass in sensorparameters for di�eren t sensors,thereby taking ad-
vantage of code reuse.

Consider the General Power Conditioning Function illustrated in Figure 2
When Power:

{ dropsbelow K out, sensoris unreliable soit's \conditioned out" (PwrCond =
F ALS E).

{ exceedsK in , the sensor is \conditioned in" and is used to evaluate the
system.

67

PwrCond(Prev:b ool, Power, Kin, Kout:p osreal):bool =

Power � K out K out < Power < K in Power � K in
F ALS E Pr ev TRUE

Fig. 2. General power conditioning function with deadband from [22]

{ is betweenK out and K in , the valueof PwrCond is left unchangedby setting
it to its previous value, Prev.

For the graph of Power above, PwrCond would start out FALSE, then become
TRUE at time t1 and remain TRUE.

The PVS Speci�cation of the General PwrCond Function can be generated
from the OMDoc tabular speci�cation shown in Figure 3 by applying a modi�ed
version of the original omdoc2pvs.xsl by Kolhase that is available from the
OMDoc subversion repository6

The PVS generatedby applying the stylesheet is shown Figure 4. We note
that white spacehas been manual added to the �gure to improve its readabil-
it y, though this does not change the semantics of the generated�le. This PVS
speci�cation of the PwrCond table producesthe following proof obligations or
\TCCs" (Type CorrectnessConditions).

% Disjointness TCCgenerated (at line 14, column 55) for
% unfinished

PwrCond_TCC1:OBLIGATION
FORALL(Kin, Kout: posreal, Power):

NOT(Power <= Kout ANDPower > Kout & Power < Kin) AND
NOT(Power <= Kout ANDPower >= Kin) AND
NOT((Power > Kout & Power < Kin) ANDPower >= Kin);

% Coverage TCCgenerated (at line 14, column 55) for
% proved - complete

PwrCond_TCC2:OBLIGATION
FORALL(Kin, Kout: posreal, Power):

(Power <= Kout OR % Column1
(Power > Kout & Power < Kin) % Column2
ORPower >= Kin) % Column3

When type-checking the PwrCondtable the coverageTCC is automatically
proved by PVS. Thus we conclude that at least one column is always satis-
�ed for every input. But PVS attempt to prove the Disjointness TCC fails,
6 Available at https://svn.omdo c.org/rep os/omdoc/branc hes/omdoc-1.2.

68

< ?x m l v e r s i o n = " 1 . 0 " e n c o d i n g = " u t f � 8" s t a n d a l o n e = " n o "? >
< !D OCT Y PE o m d o c P U B L I C " � / / O M D oc / / D T D O M D oc S p e c 1 . 2 / / E N "

" h t t p : / / w w w . o m d o c . o r g / o m d o c / d t d / o m d o c� s p e c . d t d " [] >
< o m d o c m o d u l e s= " @s p e c " v e r s i o n = " 1 . 2 " x m l : i d = " s a m p l e t a b l e 2 . o m d o c "

x m l n s= " h t t p : / / w w w . o m d o c . o r g / o m d o c " x m l n s : c c = " h t t p : / / c r e a t i v e c o m m o n s . o r g / n s "
x m l n s : d c = " h t t p : / / p u r l . o r g / d c / e l e m e n t s / 1 . 1 / "
x m l n s : t t s = " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / n s " >

< t h e o r y x m l : i d = " s a m p l e t a b l e 2 t h e o r y " >
< s y m b o l n a m e= " s a m p l e t a b l e 2 " s c o p e = " g l o b a l " t t s : r o l e = " a u x i l i a r y "

x m l : i d = " s a m p l e t a b l e 2 " >
< t y p e s y s t e m = " p v s" >

< OM OB J x m l n s= " h t t p : / / w w w . o p en m a t h . o r g / O p en M a t h " >
< OM A>

< OM S c d = " p v s " n a m e= " f u n t y p e " / > < OM S c d = " b o o l e a n s " n a m e= " b o o l " / >
< OM S c d = " r e a l s " n a m e= " r e a l " / > < OM S c d = " r e a l s " n a m e= " r e a l " / >
< OM S c d = " r e a l s " n a m e= " r e a l " / > < OM S c d = " b o o l e a n s " n a m e= " b o o l " / >

< / OM A>
< / OM OB J>

< / t y p e >
< / s y m b o l >
< d e f i n i t i o n f o r = " # s a m p l e t a b l e 2 " t y p e = " s i m p l e " x m l : i d = " s a m p l e t a b l e 2 � d e f " >

< OM OB J x m l n s= " h t t p : / / w w w . o p en m a t h . o r g / O p en M a t h " >
< O M B IN D> < OM S c d = " p v s " n a m e= " l a m b d a " / >

< OM BV A R>
< OM A T T R>

< OM A T P> < OM S c d = " p v s " n a m e= " t y p e " / > < OM S c d = " b o o l e a n s " n a m e= " b o o l " / >
< / OM A T P>
< OM V n a m e= " P r e v " / > < / OM A T T R>

< OM A T T R>
< OM A T P> < OM S c d = " p v s " n a m e= " t y p e " / > < OM S c d = " r e a l s " n a m e= " r e a l " / >
< / OM A T P>
< OM V n a m e= " P o w er " / > < / OM A T T R>

< OM A T T R>
< OM A T P> < OM S c d = " p v s " n a m e= " t y p e " / > < OM S c d = " r e a l s " n a m e= " r e a l " / >
< / OM A T P>
< OM V n a m e= " K i n " / > < / OM A T T R>

< OM A T T R>
< OM A T P> < OM S c d = " p v s " n a m e= " t y p e " / > < OM S c d = " r e a l s " n a m e= " r e a l " / >
< / OM A T P>
< OM V n a m e= " K o u t " / > < / OM A T T R>

< / OM BV A R>
< OM A> < OM S c d = " t a b l e " c d b a s e= " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / c d "

n a m e= " t a b l e " / >
< !� � E v a l u a t i o n t e r m : n o r m a l (0) : n o r m a l t a b l e , v a l u e g r i d = 0 . � � >
< OM A> < OM S c d = " t a b l e " c d b a s e = " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / c d "

n a m e= " n o r m a l " / > < O M I> 0 < / O M I> < / OM A>
< !� � S t a t i c r e s t r i c t i o n : r e c t S t r u c t u r e (1 , < 3>) � � >
< OM A> < OM S c d = " t a b l e " c d b a s e = " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / c d "

n a m e= " r e c t S t r u c t u r e " / >
< O M I> 1 < / O M I>
< OM A> < OM S c d = " l i n a l g 2 " c d b a s e = " h t t p : / / w w w . o p en m a t h . o r g / c d "

n a m e= " v e c t o r " / > < O M I> 3 < / O M I> < / OM A>
< / OM A>
< !� � d y n a m i c r e s t r i c t i o n : p r o p e r (1) � � >
< OM A> < OM S c d = " t a b l e " c d b a s e = " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / c d "

n a m e= " p r o p e r " / > < O M I> 1 < / O M I> < / OM A>
< OM A>

< !� � L i s t o f g r i d s � � >
< OM S c d = " l i s t 1 " c d b a s e= " h t t p : / / w w w . o p en m a t h . o r g / c d " n a m e= " l i s t " / >

< !� � G r i d 0 : f a l s e j P r e v j t r u e � � >
< OM A> < OM S c d = " t a b l e " c d b a s e = " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / c d "

n a m e= " g r i d " / >
< OM A> < OM S c d = " p r o d u c t s " c d b a s e= " h t t p : / / w w w . o p en m a t h . o r g / c d "

n a m e= " p a i r " / >
< OM A> < OM S c d = " l i n a l g 2 " n a m e= " v e c t o r " / > < O M I> 0 < / O M I> < / OM A>
< OM S c d = " l o g i c 1 " c d b a s e = " h t t p : / / w w w . o p en m a t h . o r g / c d "

n a m e= " f a l s e " / >
< / OM A>
. . .

< / OM A>
< OM A>

< !� � G r i d 1 : P o w er < = K o u t j P o w er > K o u t & P o w er < K i n
j P o w er > = K i n � � >

< OM S c d = " t a b l e " c d b a s e= " h t t p : / / w w w . f i l l m o r e s o f t w a r e . c a / c d "
n a m e= " g r i d " / >

< OM A c d b a s e= " h t t p : / / w w w . o p en m a t h . o r g / c d " >
< OM S c d = " p r o d u c t s " n a m e= " p a i r " / >
< OM A>

< OM S c d = " l i n a l g 2 " n a m e= " v e c t o r " / > < O M I> 0 < / O M I> < / OM A>
< OM A> < OM S c d = " r e l a t i o n 1 " n a m e= " l e q " / >

< OM V n a m e= " P o w er " / > < OM V n a m e= " K o u t " / > < / OM A>
< / OM A>
. . .

< / OM A> < / OM A> < / OM A> < / O M B IN D> < / OM OB J> < / d e f i n i t i o n > < / t h e o r y >
< /o m d o c>

Fig. 3. Partial OMDo c representation of General Power Conditioning

69

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE
%---------------------------- ----- ---- ---- ----- ---- -%
|[Power<=Kout | Power>Kout & Power<Kin | Power>=Kin]|
%---------------------------- ----- ---- ---- ----- ---- -%
| FALSE | Prev | TRUE ||
%---------------------------- ----- ---- ---- ----- ---- -%

ENDTABLE

Fig. 4. PVS Speci�cation generated modi�ed omdoc2pvs.xsl stylesheet

indicating that the columns might overlap. The resulting unprovable sequent
for the disjointness TCC is given below along with the results of running the
(random-test) prover command to attempt to generatea counter example for
the sequent:

PwrCond_TCC1:
[-1] Kin!1 > 0
[-2] Kout!1 > 0
[-3] Power!1 > 0
[-4] Power!1 <= Kout!1
[-5] (Kin!1 <= Power!1)

|-------
[1] FALSE
Rule? (random-test)
The formula is falsified with the substitutions:
Power ==> 67 / 80
Kin ==> 31 / 85
Kout ==> 42 / 25

This commandgeneratesand evaluatesa \theorem" on random inputs to look
for counter examples,printing the �rst counter example (if any) found [20]. To
con�rm the counter exampleand locate problem we can usethe PVSio evaluator
[21] to check the headersof all columns at once on the above counterexample
values.

<PVSio> let (Prev,Power,Kin, Kout) = (FALSE, 67/80, 31/85, 42/25)
in (Power<=Kout, Power>Kout & Power<Kin, Power>=Kin);

==>
(TRUE, FALSE, TRUE)

Thus we concludethat columns 1 and 3 overlap.
While the above steps in PVS were done manually, there is no reasonwhy

these steps could not be automated via the Eclipse plugin using PVS's batch
processingmode, thus \shielding" the user from the theorem prover under the
hood of the table tool system. For example, the plugin could simply provide
the counter example and highlight the overlapping columns in a visual display

70

renderedasdisplay MathML and xhtml by modifying existing XSLT stylesheets
contained in the OMDoc distribution.

2.3 Functional Speci�cation and Co de Generation

Applied mathematics in scienceand engineeringare traditionally formulated in
�rst-order predicate logic. With the advent of theoretical computer scienceand
computer assistedformalization, alternativ e logical foundations have emerged.
Many automated theorem provers such as PVS or Isabelle/HOL [23] are based
on higher-order logic. Via the Curry-Howard isomorphism, higher-order logic is
closely related to the typed lambda-calculus [24], the foundation of functional
programming. Writing formal speci�cations in a style based on functions and
higher-order logic has several bene�ts:

{ Type systemsfor lambda-calculus are precise, powerful and well understood.
Checking and inferencealgorithms are well documented. Speci�cations can
be typecheckedfor consistency, catching many simpleerrors and ambiguities.

{ Type systemsfor lambda-calculus are largely self-contained. Algebraic data-
typessuch as integers,tuples, enumeration and record typesand the associ-
ated operations can be de�ned within the formalism, instead of being given
by axioms or external reference.Paremetrization is for free in the lambda-
calculus.Hencecomplexspeci�cations can refer to a commonlibrary of basic
de�nitions, rather than requiring special support in every processingtool.

{ Function-based speci�c ation is computationally constructive. Standard inter-
pretation and compilation techniquesfor functional programming languages
apply, yielding direct and universal evaluation algorithms and code genera-
tors for agile speci�cation tool support, simulation and oracle generation.

We have constructed the protot ype of a tool that provides basic support
for function-basedspeci�cation. It has a frontend syntax similar to a functional
programming or theorem prover language,and a semantic intermediate repre-
sentation basedon OpenMath objects for individual typesand de�nitions, and
OMDoc for theory-level structure. A typechecker supports the Calculus of Con-
structions [25] (CC). This is a subsetof the Extended Calculus of Construction
[26] (ECC), the proposed higher-order type system for OpenMath [27]. Exe-
cutable code can be generated from the typechecked intermediate representa-
tion. The tool is implemented in Java, and currently only Java code generation
is supported. Speci�cation modules processedby the tool ful�ll several roles:

Generic Library Somedatatypes and operations common to all tabular ex-
pressions.The grids of a table are organized as hierarchical arrays, lists or
associative lists of cell expressions.Evaluation and restriction terms are con-
veniently de�ned in terms of well-known higher-orderoperationssuch asmap,
filter and fold , extending the work of [28].
The logic of tables in [8] is total. For the transparent embedding of partial
functions into cell expressions,a monadic error-handling framework [29] is
provided.

71

Speci�c Tables Individual tables can be extracted from tts �les and trans-
lated to function-based style. An automatic translation procedure is cur-
rently being implemented. It assumesthat the expressionsin a table do not
involve in�nite quanti�cation, which has no direct e�ectiv e translation to
lambda-calculus. Table cell expressionsare represented as functions of all
free variables,sothat each cell is a closedexpressionand can be checked and
compiled individually . For example, the table (2) would be renderedas:

f(x; y) df=
�x; y: x > 1 �x; y: x � 1

�x; y: y < 0 �x; y: x + y �x; y: x � y
�x; y: y = 0 �x; y: x �x; y: x � y
�x; y: y > 0 �x; y: y �x; y: x=y

(3)

In this form, the assignment of values to the variables requires no reinter-
pretation or substitution of cell expressions,becauseit can be expressedby
simply applying each cell function to the tuple of values. For example, the
assignment f x := 2; y := 4g is given by the value tuple (2; 4).

Speci�cations represented in function-based style and processedusing this
tool have two important properties. Firstly , they are de�ned in a self-contained
and unambiguousway in pure typed lambda-calculus.Togetherwith the OMDoc-
basedformat, this makesa good starting point for interaction with various the-
orem proving tools. Secondly, all properties that do not involve in�nite quanti�-
cation are directly computable. Hencethe static restriction check for a table and
the evaluation and dynamic restriction check for a table and a given variable
assignment can be interpreted or compiled to executablecode, whereasthe dy-
namic restriction check for all possiblevaluesstill requires the useof a theorem
prover.

By combining both properties,substantial support for constructing newspec-
i�cation tools can be given. We have de�ned table types from [8] not yet sup-
ported by either PVS or any other available tool aspart of the domain-independent
library . Such a table type de�nition can be written by a skilled functional pro-
grammer in one day. By using our Java code generator, the core of an oracle
generator is obtained immediately.

3 Related Work

A very good discussionof the need for mathematical content markup such as
OMDoc is given in Part I of [1], so it will not be repeated here. In summary,
generalpurposedocumentation tools and presentation markup languages(e.g.,
LATEX, HTML, Presentation MathML) are insu�cien t for our purposessince
they encode the appearanceof the mathematics, not its intended meaning. For
example,given the expression\ x + 2", we are concernedprimarily with the fact
that this represents the sum of a variable x and the constant 2. The choiceof pre-
sentation of this expressionin this or another form (e.g., \ x 2+" or \sum(x; 2)")

72

is a matter of style that will be determined by the conventions adopted by the
author and the intended readers.

The use of XSLT to translate the OMDoc into PVS input represents a
lightweight approach to providing support for OMDoc speci�cation in existing
tools. A more rigorous approach to preservation of table semantics in multiple
veri�cation environments such as PVS and the protot ype functional speci�ca-
tion/co de generationenvironment might be basedupon the HeterogeneousTool
Set (Hets) [30], a parsing, static analysis and proof management tool combin-
ing various tools for di�eren t speci�cation languages.Currently the Hets system
does not support PVS or Java code generation, though it does support the Is-
abelle interactive higher-order theorem prover and SPASS automatic �rst-order
theorem prover and can generate Haskell code. A list of other projects using
OMDoc is found in Ch. 26 of [1].

Several projects have addressedthe problem of developing tools for use of
tabular expressionsin documents [22,31{35]. All of thesee�orts, with the excep-
tion of [33], are limited in the set of tabular expressionsor document typesthat
they targeted, and none useda standard interchangeformat such as OMDoc to
take advantage of other tools. The table tools developed by the CANDU owners
group and usedat Ontario Power Generation (OPG) on the Darlington Nuclear
Generating Station Shutdown Systems,usedstandard wordprocessorsto create
documents containing tabular speci�cation. Thesedocuments weresaved in RTF
format and then custom tools extracted the tables and exported them to PVS
[22,35]. One of the di�culties faced in developing the tools is that the table se-
mantics had to be inferred from the table layout in RTF. This limited the tools'
capabilities to support new table formats.

4 Conclusions and Future Work

This is a development project in its early stages,and we expect that it will evolve
as it progressesby the enhancement of the existing tools and the addition of new
tools. Our early results show that there is promise in the chosentechniques {
the model supports the needsof our documentation and the abilit y to interact
with other tools such as PVS shows the potential to achieve signi�can t leverage
from thesetools.

Near term targets for the tools are to enhancethe plugin such that it is a
reasonablycomplete and user-friendly editor, to continue to work with transla-
tion to PVS so that we can e�ectiv ely check properties of our documents, and
to add oracle generation similar to [36] and [13].

Ac kno wledgemen ts This work drawson the contributions of many peoplewho
have worked on tabular methods in the past primarily at McMaster University
and the University of Limerick. In particular we are grateful to Dr. David L.
Parnas for his inspiration, support, and helpful comments and to Jin (Kim)
Ying and Adam Balaban for their work on the formalization of the semantics of
tabular expressions.

73

The authors gratefully acknowledgesupport received for this work from the
ScienceFoundation Ireland (SFI) through the Software Qualit y Research Labo-
ratory (SQRL) at the University of Limerick and from the Natural Sciencesand
Engineering Research Council of Canada (NSERC).

References

1. Kohlhase, M.: OMDo c: An Open Markup Format for Mathematical Documents
(Version 1.2). Number 4180 in LNAI. Springer Verlag (2006)

2. Heninger, K.L., Parnas, D.L., Shore, J.E., Kallander, J.: Software requirements for
the A-7E aircraft. Technical Report MR 3876, Naval Research Laboratory (1978)

3. Parnas, D.L.: Inspection of safety critical software using function tables. In: Proc.
IFIP Congress.Volume I., North Holland (1994) 270{277

4. Weiss,G.H., Hohendorf, R., Wassyng,A., B.Quigley, Borsch, M.R.: Veri�cation of
the shutdown system software at the darlington nuclear generating station. In: Int'l
Conf. Control & Instrumen tation in Nuclear Installations. Number 4.3, Glasgow,
United Kingdom, Institution of Nuclear Engineers (1990)

5. Abraham, R.F.: Evaluating generalized tabular expressionsin software documen-
tation. M. Eng. thesis, McMaster Univ ersity, Dept. of Electrical and Computer
Engineering, Hamilton, ON (1997)

6. Parnas, D.L.: Tabular representation of relations. CRL Report 260, Communica-
tions Research Laboratory, Hamilton, Ontario, Canada (1992)

7. Janicki, R., Khedri, R.: On a formal semantics of tabular expressions. Scienceof
Computer Programming 39(2{3) (2001) 189{213

8. Balaban, A., Bane, D., Jin, Y., Parnas, D.: Mathematical model of tabular expres-
sions. SQRL Document (2006)

9. Parnas, D.L., Madey, J.: Functional documentation for computer systems. Science
of Computer Programming 25(1) (1995) 41{61

10. Parnas, D.L.: A family of mathematical methods for professional software docu-
mentation. In Romijn, J.M.T., Smith, G.P., van de Pol, J.C., eds.:Proc. Int'l Conf.
on Integrated Formal Methods. Number 3771in LNCS, Springer-Verlag (2005) 1{4

11. van Schouwen, A.J., Parnas, D.L., Madey, J.: Documentation of requirements for
computer systems. In: Proc. Int'l Symp. Requirements Eng. (RE '93), IEEE (1993)
198{207

12. Peters, D.K.: Deriving Real-Time Monitors from System Requirements Documen-
tation. PhD thesis, McMaster Univ ersity, Hamilton ON (2000)

13. Peters, D.K., Parnas, D.L.: Requirements-based monitors for real-time systems.
IEEE Trans. Software Engineering 28(2) (2002) 146{158

14. Quinn, C., Vilk omir, S., Parnas, D., Kostic, S.: Speci�cation of software compo-
nent requirements using the trace function method. In: Int'l Conf. on Software
Engineering Advances,Los Alamitos, CA, IEEE Computer Society (2006) 50

15. Parnas, D.L., Madey, J., Iglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Software Engineering 20(12) (1994) 948{976

16. The OpenMath Society: The OpenMath Standard. 2.0 edn. (2004)
http://www.op enmath.org/standard/om20-2004-06-30/ .

17. W3C: Mathematical Markup Language(MathML) Version 2.0. Secondedn. (2003)
http://www.w3.org/TR/MathML2/.

18. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal veri�cation for fault-
tolerant architectures: Prolegomena to the design of PVS. IEEE Transactions on
Software Engineering 21(2) (1995) 107{125

74

19. Owre, S., Rushby, J., Shankar, N.: Integration in PVS: Tables, types, and model
checking. In Brinksma, E., ed.: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS '97). Volume 1217 of LNCS, Enschede, The Nether-
lands, Springer-Verlag (1997) 366{383

20. Owre, S.: Random testing in pvs. In: Proceedings of Automated
Formal Methods (AFM06), SRI International (2006) Available online:
http://fm.csl.sri.com/AFM06/.

21. Mu ~noz, C.A.: PVSio ReferenceManual. National Institute of Aerospace (NIA),
Formal Methods Group, 100 Exploration Way, Hampton VA 23666. Version 2.b
(draft) edn. (2005) Available at http://researc h.nianet.org/ munoz/PVSio/.

22. Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the speci-
�cation and veri�cation of a nuclear reactor shutdown system. Accepted for publi-
cation in Oct 2004. http://www.cas.mcmaster.ca/ lawford/pap ers/ (To appear in
FMSD)

23. Nipk ow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL | A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

24. Barendregt, H.: Lambda calculi with types. In Abramsky, Gabbay, Maibaum, eds.:
Handbook of Logic in Computer Science.Volume 2. Clarendon (1992)

25. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2-3) (1988)
95{120

26. Luo, Z.: An Extended Calculus of Constructions. PhD thesis, Univ ersity of Edin-
burgh (1990)

27. The OpenMath Society: A Type System for OpenMath. 1.0 edn. (1999)
http://www.op enmath.org/standard/ecc.p df.

28. Kahl, W.: Compositional syntax and semantics of tables. SQRL Report 15, Soft-
ware Qualit y Research Laboratory, Department of Computing and Software, Mc-
Master Univ ersity (2003)

29. Spivey, M.: A functional theory of exceptions. Sci. Comput. Program. 14(1) (1990)
25{42

30. Mossakowski, T.: HETS User Guide. Department of Com-
puter Science and Bremen Institute for Safe Systems, Univ ersity
of Bremen, Germany. (2006) Online: http://www.informatik.uni-
bremen.de/agbkb/forsc hung/formal methods/CoFI/hets/UserGuide.p df.

31. Heitmeyer, C.L., Bull, A., Gasarch, C., Labaw, B.G.: SCR*: A toolset for specifying
and analyzing requirements. In: Proc. Conf. Computer Assurance (COMP ASS),
Gaithersburg, MD, National Institute of Standards and Technology (1995) 109{122

32. Hoover, D.N., Chen, Z.: Tablewise,a decision table tool. In: Proc. Conf. Computer
Assurance (COMP ASS), Gaithersburg, MD, National Institute of Standards and
Technology (1995) 97{108

33. Parnas, D.L., Peters, D.K.: An easily extensible toolset for tabular mathematical
expressions. In: Proc. Fifth Int'l Conf. Tools and Algorithms for the Construction
and Analysis of Systems. Number 1579 in LNCS, Springer-Verlag (1999) 345{359

34. Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the speci�cation and veri�cation of safety critical
software. In Rus, T., ed.: Proc. of AMAST 2000.Volume 1816of LNCS., Iowa Cit y,
Iowa, USA, Springer (2000) 73{88

35. Wassyng,A., Lawford, M.: Software tools for safety-critical software development.
International Journal on Software Tools for Technology Transfer (STTT) 8(4{5)
(2006) 337{354

36. Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Trans. Software Engineering 24(3) (1998) 161{173

75

76

Reasoning inside a form ula and ontological
correctness of a formal mathematical text

Andrei Paskevich1, Konstantin Verchinine1,
Alexander Lyaletski2, and Anatoly Anisimov2

1 Univ ersit�e Paris 12, IUT S�enart/F ontainebleau, 77300Fontainebleau, France,
andrei@capet.iut-fbleau.fr verko@capet.iut-fbleau.fr

2 Kyiv National Taras Shevchenko Univ ersity, Faculty of Cybernetics,
03680Kyiv, Ukraine,

lav@unicyb.kiev.ua ava@unicyb.kiev.ua

Abstract. Dealing with a formal mathematical text (which we regard as
a structured collection of hypothesesand conclusions), we often want to
perform various analysis and transformation tasks on the initial formulas,
without preliminary normalization. One particular example is checking
for \on tological correctness", namely, that every occurrence of a non-
logical symbol stems from somede�nition of that symbol in the forego-
ing text. Generally, we wish to test whether some known fact (axiom,
de�nition, lemma) is \applicable" at a given position inside a statement,
and to actually apply it (when needed) in a logically sound way.
In this paper, we intro duce the notion of a locally valid statement, a
statement that can be considered true at a given position inside a �rst-
order formula. We justify the reasoning about \innards" of a formula; in
particular, we show that a locally valid equivalence is a su�cien t condi-
tion for an equivalent transformation of a subformula. Using the notion
of local validit y, we give a formal de�nition of ontological correctnessfor
a text written in a special formal language called ForTheL.

1 In tro duction

In a mathematical text, be it intended for a human reader or formalized for
automated processing(Mizar Mathematical Library [1] is a classicalexample,see
also[2]), we rarely meet \absolute", unconstrainedrules, de�nitions, statements.
Usually, everything we use is supplied with certain conditions so that we have
to take them into consideration.For example,we can not reducethe fraction xy

x
until we prove that x is a nonzeronumber.

Let us consider a formula of the form (� � � 8x (x 2 IR+ � (� � � xy
x � � �)) � � �).

It seemsto be evident that we can replace xy
x with y, but could we justify

that? The task itself seemsto be absurd: as soon as a term depends on bound
variables, we can not reasonabout it. In the traditional fashion, we should �rst
split our big formula up to the quanti�er that binds x, make a substitution (or
skolemization), separatex 2 IR+ , and only then make the simpli�cation.

However, while the statement \ x is non-zero" is surely meaningless,we can
say that \ x is non-zero in this occurrenceof xy

x ". Our intuition suggeststhat

along with the usual notion of validit y, a certain local validity of a proposition
can be de�ned with respect to someposition in a formula. A statement that is
generally falseor just meaninglesscan becomelocally valid being consideredin
the corresponding context. In what follows, we call such a proposition a local
property of the position in question.

It can be argued that there is no gain in any simpli�cations when a formula
to be simpli�ed lies deep inside. We would split our big formula anyway to use
the properties of that fraction in a proof. However, we believe that it is useful
and instructiv e to simplify a problem in its initial form asfar aspossiblein order
to select the most perspective direction of the proof search.

Local properties are also necessaryto verify (and even to de�ne!) what we
call ontological correctnessof a mathematical text. Informally , we considera text
ontologically correct whenever it contains no occurrenceof a non-logical symbol
that comesfrom nowhere: for every such occurrencethere must be an applicable
de�nition or someother \in tro ductory" premise.The purposeof ontological cor-
rectnessmay be not immediately obvious: for example, the famous disjunction
\ to be or not to be" is perfectly valid (at least, in classical logic) even if the
senseof being has never been de�ned. Nevertheless,ontologically correct texts
are preferable in many aspects.

Ontological correctnessis closely related to type correctnessin typed lan-
guages(especially, in weakly typed systemssuch as WTT [3]). It allows to spot
formalization errors which otherwise could hardly be detected. Indeed, an acci-
dental ontological incorrectnessmost often implies logical incorrectness(i.e. pres-
enceof falseor unprovable claims). And it is much harder to trace a failure log
of a prover back to an invalid occurrencethan to discover it in the �rst place.

Moreover, during ontological veri�cation, we obtain information about ap-
plicabilit y of de�nitions and other preliminary facts at individual positions in
the text in question.As long assubsequent transformations (e.g. during the logi-
cal veri�cation phase)preserve ontological correctnessand other local properties
(and that should always be the case)we can unfold de�nitions and apply lemmas
without further checking.

This paper is devoted to formalization of ontological correctnessfor a partic-
ular languageof formal mathematical texts, called ForTheL [4]. To this purpose,
we develop a theoretical background for reasoningabout local properties based
on the notion of local image. The rest of the paper is organized as follows. In
Section2, we brie
y describe the ForTheL languageand provide an informal (at
the moment) de�nition of ontological correctnessof a ForTheL text. Section 3
intro ducespreliminary notions and notation which we use to de�ne and inves-
tigate the notion of local image in Section 4. With the help of local images,we
give a precisede�nition of ontological correctnessin Section 5.

2 ForTheL language

Like any usual mathematical text, a ForTheL text consists of de�nitions, as-
sumptions,a�rmations, theorems,proofs,etc. The syntax of a ForTheL sentence

78

follows the rules of English grammar. Sentencesare built of units: statements,
predicates, notions (that denote classesof objects) and terms (that denote in-
dividual entities). Units are composed of syntactical primitiv es: nouns which
form notions (e.g. \ subset of ") or terms (\ closure of "), verbsand adjectives
which form predicates(\ belongs to ", \ compact"), symbolic primitiv esthat use
a concisesymbolic notation for predicates and functions and allow to consider
usual quanti�er-free �rst-order formulas as ForTheL statements. Of course,just
a little fragment of English is formalized in the syntax of ForTheL.

There are three kinds of sentences in the ForTheL language:assumptions,
selections,and a�rmations. Assumptions serve to declarevariablesor to provide
somehypothesesfor the following text. For example, the following sentencesare
typical assumptions: \ Let S be a finite set. ", \ Assumethat mis greater
than n. ". Selectionsstate the existenceof representativ es of notions and can
be usedto declarevariables, too. Here follows an example of a selection: \ Take
an even prime number X.". Finally, a�rmations are simply statements: \ If p
divides n - p then p divides n. ". The semantics of a sentence is determined
by a seriesof transformations that convert a ForTheL statement to a �rst-order
formula, so called formula image.

Example 1. The formula image of the statement \ all closed subsets of any
compact set are compact" is:

8 A((A is a set ^ A is compact) �

8 B((B is a subset of A ^ B is closed) � B is compact))

ForTheL sections are: sentences, sentences with proofs, cases,and top-le-
vel sections: axioms, de�nitions, signature extensions, lemmas, and theorems.
A top-level section is a sequenceof assumptions concluded by an a�rmation.
Proofs attached to a�rmations and selectionsare simply sequencesof low-level
sections.A casesectionconsistsof an assumptioncalled casehypothesis followed
by a sequenceof low-level sections(the proof of a case).

Any section A or sequenceof sections� has a formula image, denoted jAj
or, respectively, j� j. The image of a sentence with proof is the same as the
image of that sentence taken without proof. The image of a casesection is the
implication (H � thesis), where H is the formula image of the casehypothesis
and thesis is a placeholderthat will be replacedby the statement being proved
during veri�cation. The formula imageof a top-level section is simply the image
of the corresponding sequenceof sentences.

The formula image of a sequenceof sectionsA; � is a conjunction jAj ^ j� j,
whenever A is a conclusion (a�rmation, casesection, lemma, theorem); or a
universally quanti�ed implication 8x A(jAj � j� j), whenever A is a hypothesis
(assumption, selection,casehypothesis,axiom, de�nition, signature extension).
Here, x A denotes the set, possibly empty, of variables declared in A (this set
also depends on the logical context of A, since any variable which is declared
above A in the text must not be bound in jAj). The formula imageof the empty
sequenceis > , the truth.

79

Thus, a ForTheL text as a whole, being a sequenceof section, can be ex-
pressedas a single logical formula. In what follows, we often use formulas, sec-
tions and sequenceof sectionsinterchangeably:whenever a sectionor a sequence
of sectionsis mentioned wherea formula is expected, the corresponding formula
image should be considered.

In this syntax, we can expressvarious proof schemeslike proof by contradic-
tion, by caseanalysis, and by general induction. The last schememerits special
consideration. Whenever an a�rmation is marked to be proved by induction,
the system constructs an appropriate induction hypothesis and inserts it into
the statement to be veri�ed. The induction hypothesis mentions a binary rela-
tion which is declared to be a well-founded ordering, hence,suitable for induc-
tion proofs. Note that we cannot expressthe very property of well-foundnessin
ForTheL (since it is essentially a �rst-order language),so that the correctnessof
this declaration is unveri�able and we take it for granted. After that transfor-
mation, the proof and the transformed statement can be veri�ed in a �rst-order
setting, without any speci�c meansto build induction proofs.

Example 2. Consider the following ForTheL formalization of Newman's lemma
about term rewriting systems.We give it in an abridged form, with somepre-
liminary de�nitions and axioms omitted. The expression\ x -R> y" meansthat
y is a reduct of x in the rewriting system R; R+and R* denote, respectively, the
transitiv e and the re
exiv e transitiv e closureof R.

Let a,b,c,d,u,v,w,x,y,z denote elements.
Let R,S,T denote rewriting systems.

Definition CRDef. R is confluent iff
for all a,b,c such that a -R*> b and a -R*> c
there exists d such that b -R*> d and c -R*> d.

Definition WCRDef. R is locally confluent iff
for all a,b,c such that a -R> b and a -R> c
there exists d such that b -R*> d and c -R*> d.

Definition TrmDef. R is terminating iff
for all a,b a -R+> b => b -<- a.

Definition NFRDef. A normal form of x in R is
an element y such that x -R*> y and y has no reducts in R.

LemmaTermNF. Let R be a terminating rewriting system.
Every element x has a normal form in R.

Proof by induction. Obvious.

LemmaNewman.
Any locally confluent terminating rewriting system is confluent.

Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that

for all a,b,c such that a -R*> b and a -R*> c
there exists d such that b -R*> d and c -R*> d.

80

Assumethat a -R+> b and a -R+> c.
Take u such that a -R> u and u -R*> b.
Take v such that a -R> v and v -R*> c.
Take w such that u -R*> w and v -R*> w.
Take a normal form d of w in R.

Let us show that b -R*> d.
Take x such that b -R*> x and d -R*> x.

end.
Let us show that c -R*> d.

Take y such that c -R*> y and d -R*> y.
end.

end.
qed.

Our formalization is simpli�ed in that the notion \ element " takesno argu-
ments, i.e. we consider rewriting systemsto be de�ned on a common (implicit)
universum.Also, in our current implementation of ForTheL, onecan not declare
a given binary relation to be well-founded, and therefore a rewriting system is
de�ned to be terminating i� its inverted transitiv e closureis a subsetof the well-
founded relation \ -<- " (De�nition TrmDef). The induction hypothesis (namely,
that any reduct of a is con
uent) is usedto verify the selections\ Take x..." and
\ Take y..." at the end of the proof. Note that we do not considercaseswhere b
or c, or both are equal to a | thesecasesare trivial enoughso that the system
can handle them without our assistance.

The ForTheL proof of Newman's lemma, while being quite terse and close
to a hand-written argument, is formal and has been automatically veri�ed by
the SAD proof assistant, using SPASS 2.2, E 0.99, and Vampire 7.45 as back-
ground provers. We refer the reader to the papers [4,5] and to the website
http://ea.unicyb .ki ev.ua for a description of SAD and further examples.

We call a ForTheL text ontologically correct whenever: (a) every non-logical
symbol (constant, function, notion or relation) in the text is either a signature
symbol or is intro duced by a de�nition; and (b) in every occurrenceof a non-
logical symbol, the arguments, if any, satisfy the guards of the corresponding
de�nition or signature extension. Since ForTheL is a one-sorted and untyped
language, these guards can be arbitrary logical formulas. Therefore, the latter
condition cannot be checked by purely syntactical meansnor by type inference
of any kind. Instead, it requiresproving statements about terms inside complex
formulas,possibly, under quanti�ers. The following sectionsprovide a theoretical
basis for such reasoning.

3 Preliminary notions

We consider a one-sorted �rst-order languagewith equality (�), the standard
propositional connectives : , ^ , _, � , � , the quanti�er symbols 8 and 9, and
the boolean constant > , denoting truth. The respective order of subformulas is

81

signi�can t for someof our de�nitions, therefore we consider F ^ G and G ^ F
as di�eren t formulas (the sameis true for _, � , and �). We write the negated
equality : (s1 � s2) as s1 6� s2 and the negatedtruth :> as ? .

We supposethat the setsof free and bound variables in any term or formula
are always disjoint. Also, a quanti�er on a variable may never appear in the
scope of another quanti�er on the samevariable.

We considersubstitutions asfunctions which map variablesto terms. For any
substitution � , if x� is di�eren t from x, we call the term x� a substitute of x in
� . A substitution is �nite whenever the set of its substitutes is �nite. We write
�nite substitutions as sequencesof the form [t1=x1; : : : ; tn =xn].

Position is a word in the alphabet f 0; 1; : : : g. In what follows, positions
are denoted by Greek letters � , � and � ; the letter � denotesthe null position
(the empty word). Positions point to particular subformulas and subterms in a
formula or term.

The set of positions in an atomic formula or a term E, denoted � (E), is
de�ned as follows (below i:� stands for f i:� j � 2 � g):

� (P(s0; : : : ; sn)) = f � g [
[

i:� (si) � (s � t) = f � g [0:� (s) [1:� (t)

� (f (s0; : : : ; sn)) = f � g [
[

i:� (si) � (>) = f � g

The set of positions in a formula H , denoted � (H), is the disjoint union

� (F) = � + (F) [� � (F) [� � (F)

of the set of positive positions � + (H), the set of negative positions � � (H),
and the set of neutral positions � � (H) (in what follows, A stands for an atomic
formula):

� + (F � G) = f � g � + (8x F) = f � g [0:� + (F)

� + (F � G) = f � g [0:� � (F) [1:� + (G) � + (9x F) = f � g [0:� + (F)

� + (F _ G) = f � g [0:� + (F) [1:� + (G) � + (: F) = f � g [0:� � (F)

� + (F ^ G) = f � g [0:� + (F) [1:� + (G) � + (A) = � (A)

� � (F � G) = ? � � (8x F) = 0:� � (F)

� � (F � G) = 0:� + (F) [1:� � (G) � � (9x F) = 0:� � (F)

� � (F _ G) = 0:� � (F) [1:� � (G) � � (: F) = 0:� + (F)

� � (F ^ G) = 0:� � (F) [1:� � (G) � � (A) = ?

� � (F � G) = 0:� (F) [1:� (G) � � (8x F) = 0:� � (F)

� � (F � G) = 0:� � (F) [1:� � (G) � � (9x F) = 0:� � (F)

� � (F ^ G) = 0:� � (F) [1:� � (G) � � (: F) = 0:� � (F)

� � (F _ G) = 0:� � (F) [1:� � (G) � � (A) = ?

82

For the sake of consistency, we set � + (t) = � (t) and � � (t) = � � (t) = ? for
any term t.

Among positions, we distinguish those of formulas (� F), those of atomic
formulas (� A), and those of terms (� t). Obviously, � (F) = � t (F) [� F (F),
� A (t) = � F (t) = ? , � A (F) � � F (F), � (t) = � t (t). We split the sets� t , � A ,
and � F into positive, negative, and neutral parts, too.

Given a formula H and a position � 2 � (H), the position b� is the maximal
pre�x of � in � F (H). In what follows, we will often usethis conversionto extend
notions and operations de�ned on positions from � F to the whole � .

A formula or a term E along with a position � 2 � (E) de�nes an occurrence.
Let us say that � is a textual predecessor of � whenever � = ! :i:� and

� = ! :j:� and i < j . Such positions will be called adjacent. If � = � , we will
say that � is a logical predecessor of � . By default, \predecessor"means\logical
predecessor".

Given a formula or a term E and a position � in � (E), we will denote by
E j � the subformula or subterm occurring in that position. In what follows, (� F)
stands for (: F), (8x F), or (9x F); and (F � G) stands for (F � G), (F � G),
(F ^ G), or (F _ G):

E j � = E (� F)j0:� = F j �
(F � G)j0:� = F j � (F � G)j1:� = Gj �

P(s0; : : : ; sn)j i:� = si j � (s � t)j0:� = sj �
f (s0; : : : ; sn)j i:� = si j � (s � t)j1:� = tj �

Given a formula or a term E, a position � in � (E), and a formula or a term
e, we will denote by E[e]� the result of replacement of E j � with e:

E [e]� = e (� F)[e]0:� = � F [e]�
(F � G)[e]0:� = F [e]� � G (F � G)[e]1:� = F � G[e]�

P(s0; : : : ; sn)[e]i:� = P(s0; : : : ; si [p]� ; : : : ; sn) (s � t)[e]0:� = s[e]� � t

f (s0; : : : ; sn)[e]i:� = f (s0; : : : ; si [p]� ; : : : ; sn) (s � t)[e]1:� = s � t[e]�

The expressione must be a term if � 2 � t (E), and a formula otherwise. Free
variables of e may becomebound in F [e]� .

4 Lo cal validit y and local prop erties

Given a formula F , a position � 2 � F (F), and a formula U, we de�ne the local
image of U w.r.t. F and � , denoted hUi F

� , as follows:

hUi F � G
0:� = hUi F

� hUi F � G
1:� = hUi G

� hUi 8xF
0:� = 8x hUi F

�

hUi F � G
0:� = G _ hUi F

� hUi F � G
1:� = F � hUi G

� hUi 9xF
0:� = 8x hUi F

�

hUi F ^ G
0:� = G � hUi F

� hUi F ^ G
1:� = F � hUi G

� hUi : F
0:� = hUi F

�

hUi F _ G
0:� = G _ hUi F

� hUi F _ G
1:� = F _ hUi G

� hUi F
" = U

83

Roughly, the formula hUi F
� says \ U is true at the position � in F ". Note that

this formula doesnot depend on the subformula F j � . For a position � 2 � t (F),
we de�ne hUi F

� to be hUi F�
� , where b� is the longest pre�x of � in � F (F).

Example 3. Let F be the formula

8x (x 2 IN � 8n (n 2 IN � (x � �b (n) �

� ((n � 1 ^ x � 1) _ x � (�b (n � 1) + �b (n � 2))))))

This formula represents a recursive de�nition. We want to verify that the argu-
ments (n � 1) and (n � 2) satisfy the guards of the de�nition and are strictly
lessthan n.

Consider the secondargument. Let � denote its position, 0:1:0:1:1:1:1:1:0.
We want to prove h(n � 2) 2 IN ^ (n � 2) < ni F

� . The latter formula is equal to

8x (x 2 IN � 8n (n 2 IN � ((n � 1 ^ x � 1) _ ((n � 2) 2 IN ^ (n � 2) < n))))

But this formula is false given n = x = 0. And that reveals an error in our
de�nition: x = 0 makes false the left side of the disjunction F j0:1:0:1:1, so we
have to consider the right side with n = 0 in order to evaluate the truth value
of the whole disjunction. Now it is easyto build a good de�nition F 0 of �b :

8x (x 2 IN � 8n (n 2 IN � (x � �b (n) �

� ((n � 1 ^ x � 1) _ (n � 2 ^ x � (�b (n � 1) + �b (n � 2)))))))

Obviously, the local image h(n � 2) 2 IN ^ (n � 2) < ni F 0

0:1:0:1:1:1:1:1:1:0 is a valid
formula:

8x (x 2 IN � 8n (n 2 IN �

� ((n � 1 ^ x � 1) _ (n � 2 � ((n � 2) 2 IN ^ (n � 2) < n)))))

Lemma 1. For any F , � 2 � (F), and a formula U, 8 U ` hUi F
� .

Proof. Here, 8 U denotesthe universal closureof U. The formula hUi F
� is equiv-

alent to a universally quanti�ed disjunction and U is a positive component of
this disjunction. ut

Lemma 2. (lo cal mo dus ponens) ` hU � V i F
� � (hUi F

� � hV i F
�)

Lemma 2 can be proved by a simple induction on the length of � .
The lemmasabove show that we can consistently reasonabout local proper-

ties. They are powerful enoughto prove someinteresting corollaries.

Corollary 1. ` hU � V i F
� � (hUi F

� � hV i F
�)

Proof. By Lemma 1 we have ` h(U � V) � (U � V)i F
� . Hence by Lemma 2,

` h(U � V)i F
� � (hU � V i F

�). Again by local modus ponens, ` h(U � V)i F
� �

(hUi F
� � hV i F

�). In the sameway, ` h(U � V)i F
� � (hV i F

� � hUi F
�). ut

84

Corollary 2. ` hU ^ V i F
� � (hUi F

� ^ hV i F
�)

Proof. In order to prove the necessity, we take the propositional tautologies
(U ^ V) � U and (U ^ V) � V . In order to prove the su�ciency , we take
the propositional tautology U � (V � (U ^ V)). Then we \immerse" a chosen
tautology inside the formula F by Lemma 1 and apply local modus ponens. ut

Corollary 3. For any quanti�er-fr ee context C,

`
�
hU1 � V1 i F

� ^ � � � ^ hUn � Vn i F
� ^ ht1 � s1i F

� ^ � � � ^ htm � sm i F
�

�
�

� hC[U1; : : : ; Un ; t1; : : : ; tm] � C[V1; : : : ; Vn ; s1; : : : ; sm]i F
�

The term \context" stands here for a formula with \holes", in which formulas
or terms can be inserted, completing the context up to a well-formed formula.
The corollary can be proved similarly to previous statements.

The key property of local imagesis given by the following theorem.

Theorem 1. For any formulas F , U, V

� 2 � F (F)) ` hU � V i F
� � (F [U]� � F [V]�)

� 2 � +
F (F)) ` hU � V i F

� � (F [U]� � F [V]�)

� 2 � �
F (F)) ` hV � Ui F

� � (F [U]� � F [V]�)

This theorem is proved by induction on the length of � . The proof is quite
straightforward and we omit it becauseof lack of space.

By Theorem 1, we can safely replace subformulas not only by equivalent
formulas but by locally equivalent ones as well. Note that the inverse of the
theorem holds in the propositional logic: ` 0 hU � V i F

� � (F [U]� � F [V]�).
Local equivalenceis there a criterion of substitutional equivalence.It is not the
casefor the �rst-order logic, where (9x x � 0) is equivalent to (9x x � 1).

Remark 1. In what follows, we often apply Theorem 1 and related results to
positions from � t , having in mind the position of the enclosingatomic formula.
Note that any statement which is locally true in a term position is also locally
true in the position of the enclosingatomic formula, since the local imagesare
the same.

Corollary 4. For any formula F , a position � 2 � t (F), and terms s and t,

` hs � t i F
� � (F [s]� � F [t]�)

Follows from Theorem 1 and Corollary 3.

Corollary 5. For any formula F , a position � 2 � F (F), and formulas U, V

` hUi F
� � (F [V]� � F [U ^ V]�) ` hUi F

� � (F [V]� � F [U � V]�)

` hV � Ui F
� � (F [V]� � F [U ^ V]�) ` hU � V i F

� � (F [V]� � F [U _ V]�)

85

Consider a closed formula H of the form 8x (C � (A � D)), where A
is an atomic formula. Consider a formula F and a position � 2 � A (F) such
that F j � = A� for somesubstitution � . If we can prove hC� i F

� , then we have
hA� � D � i F

� by Lemma 1 and Corollary 2 (provided that H is among the
premises).Then we can replaceA� with D � by Theorem 1 (we generalizethis
technique in the following section). Returning to Example 3, we can guarantee
that such an expansion is always possible (since hn � 1 2 IN ^ n � 2 2 IN i F

�
holds) and is never in�nite (since hn � 1 < n ^ n � 2 < ni F

� holds).
However, the notion of a local image intro duced above has a disadvantage:

it is not invariant w.r.t. transformations at adjacent positions.

Example 4. SincehAi A ^ A
0 is valid, (A ^ A) is equivalent to (> ^ A) by Theorem1.

But hAi A ^ A
1 is also valid, whereashAi >^ A

1 is not.

Generally, we can build a formula F whosetwo subformulas U and V assure
certain local properties for each other. Using theseproperties, we replaceU with
a locally equivalent formula U0. But thus we can losethe local properties of V .

This doesnot play an important role when we considerone-time transforma-
tions, e.g.simpli�cations. Indeed,oneshould check that simpli�cation is possible
just before doing it. But there are also certain local properties that we would
prefer keepintact during the entire proof.

For example,we can verify the ontological correctnessof a given occurrence
of a function symbol in the initial task and it is quite desirableto preservefurther
this correctnessin order to expand the de�nition of that symbol at any moment,
without extra veri�cations.

To that aim, we slightly changethe de�nition of a local image in such a way
that only the formulas at precedent positions get into the context. Psychologi-
cally, this is natural, sinceassertionsof that kind (t ype declarations, limits, etc)
are usually written before \signi�can t" formulas.

The directed local image of a formula U w.r.t. a formula F and a position
� 2 � F (F), denoted hjUji F

� , is de�ned as follows:

hjUji F � G
0:� = hjUji F

� hjUji F � G
1:� = hjUji G

� hjUji 8xF
0:� = 8x hjUji F

�

hjUji F � G
0:� = hjUji F

� hjUji F � G
1:� = F � hjUji G

� hjUji 9xF
0:� = 8x hjUji F

�

hjUji F ^ G
0:� = hjUji F

� hjUji F ^ G
1:� = F � hjUji G

� hjUji : F
0:� = hjUji F

�

hjUji F _ G
0:� = hjUji F

� hjUji F _ G
1:� = F _ hjUji G

� hjUji F
" = U

For a position � 2 � t (F), we de�ne hjUji F
� to be hjUji F�

� , where b� is the longest
pre�x of � in � F (F).

First, note that all statements proved so far about \indirected" imageshold
for directed ones, too. In somesense,directed image is just a reduction, with
someconditions and alternativ eseliminated. This is illustrated by the following
trivial lemma.

Lemma 3. ` hjUji F
� � hUi F

�

86

Theorem 2. For any formula F and two adjacent � ; � 2 � F (F),

` hjU � V ji F
� �

�
hjW ji F [U]�

� � hjW ji F [V]�
�

�

Proof. We proceedby induction on the length of � . It is easy to seethat, if �
textually precedes� , then the formulas hjW ji F [U]�

� and hjW ji F [V]�
� are identical.

So we can supposethat � textually precedes� , that is, there exist ! , � , and �
such that � = ! :0:� and � = ! :1:� . It is easy to seethat we can reduce our
problem to

` hjU � V ji G� H
0:� �

�
hjW ji (G� H)[U]0:�

1:� � hjW ji (G� H)[V]0:�
1:�

�

where (G � H) = F j ! . The latter is equivalent to

` hjU � V ji G
� �

�
hjW ji G[U]� � H

1:� � hjW ji G[V]� � H
1:�

�

and then to

` hjU � V ji G
� �

�
(G[U]� ? hjW ji H

�) � (G[V]� ? hjW ji H
�)

�

where ? is either � or _, in dependenceof � . By Lemma 3 and Theorem 1,
hjU � V ji G

� implies (G[U]� � G[V]�), hencethe claim is proved. ut

Corollary 6. For any formula F and two adjacent � ; � 2 � t (F),

` hjs � t ji F
� �

�
hjW ji F [s]�

� � hjW ji F [t]�
�

�

Finally, we intro ducethe notion of local substitution. Let H be a formula such
that no quanti�er occurs in H in the scope of another quanti�er over the same
variable. Given a position � 2 � F (H), the result of local substitution H [�]� is
de�ned as follows:

F [�]" = F (F � G)[�]0:� = F [�]� � G

(: F)[�]0:� = : F [�]� (F � G)[�]1:� = F � G[�]�
(8x F)[�]0:� = (F [x=x�])[�]� (8y F)[�]0:� = 8y F [�]�
(9x F)[�]0:� = (F [x=x�])[�]� (9y F)[�]0:� = 9y F [�]�

where x� 6= x and y� = y in the last four equations, i.e. we eliminate the
quanti�ers over the instantiated variables. Here and below, we will assumethat
x� is free for x in F and further, � doesnot instantiate any variable that occurs
in one of the substitutes of � .

When applied without restrictions, local substitutions may produce illegal
instances(e.g. when variablesof opposite polarities are instantiated). Also, local
substitutions do not preserve local properties in adjacent positions. Consider the
formula F = 8x P(x) ^ A and the substitution � = [s=x] to be applied in F at
� = 1:0, so that F [�]� = (P(s) ^ A). The atom A has the local property 8x P(x)
in F but losesthis property in F [�]� | something we would like to avoid.

87

Therefore, we intro duce a more �ne-grained operation. As before, let H be
a formula such that no quanti�er occurs in H in the scope of another quanti�er
over the samevariable, and � be a position in � F (H).

(F � G)[�]+0:� = F [�]�� � ? (F � G)[�]+1:� = F � G[�]+�
(F _ G)[�]+0:� = F [�]+� _ ? (F _ G)[�]+1:� = F _ G[�]+�
(F ^ G)[�]+0:� = F [�]+� ^ G (F ^ G)[�]+1:� = F ^ G[�]+�

(9x F)[�]+0:� = (F [x=x�])[�]+� (F � G)[�]+� = F � G

(9y F)[�]+0:� = 9y F [�]+� (: F)[�]+0:� = : F [�]��
(8z F)[�]+0:� = 8z F [�]+� F [�]+" = F

(F � G)[�]�0:� = F [�]+� � G (F � G)[�]�1:� = F � G[�]��
(F _ G)[�]�0:� = F [�]�� _ G (F _ G)[�]�1:� = F _ G[�]��
(F ^ G)[�]�0:� = F [�]�� ^ > (F ^ G)[�]�1:� = F ^ G[�]��

(8x F)[�]�0:� = (F [x=x�])[�]�� (F � G)[�]�� = F � G

(8y F)[�]�0:� = 8y F [�]�� (: F)[�]�0:� = : F [�]+�
(9z F)[�]�0:� = 9z F [�]�� F [�]�" = F

where x� 6= x and y� = y. For a position � 2 � t (H), we de�ne H [�]+� = H [�]+��
and H [�]�� = H [�]��� , where b� is the longest pre�x of � in � F (H).

These operations keep track of polarit y of an occurrence in question and
do not instantiate inappropriate variables. Also they eliminate subformulas in
certain adjacent positions | exactly thoseoneswhich may losetheir local prop-
erties after instantiation.

Lemma 4. Let H be a formula such that no quanti�er occurs in H in the scope
of another quanti�er over the same variable. Let � be a position in � (H) and
� , a substitution. Then we have:

` H [�]+� � H ` H � H [�]��

Theorem 3. Let H be a formula suchthat no quanti�er occurs in H in the scope
of another quanti�er over the samevariable. Let � be a position in � (H) and � ,
a substitution. For any polarity s 2 f + ; �g and any position � 2 � A (H [�]s�), ei-
ther (H [�]s�)j � = > or there existsa position � 0 2 � A (H) suchthat the following
holds:

Let � be the longest common pre�x of � and � 0. Let � 0 be a substitution
such that for any varaible x, if a quanti�er over x is eliminated in H [�]s� , then
x� 0 = x� , otherwise x� 0 = x. Then (H [�]s�)j � = (H j � 0)� 0 and

` hjUji H
� 0 � hjU� 0ji H [�]s

�
�

Proof. We can supposewithout loss of generality that � 2 � F (H) (otherwise
b� should be taken instead of �). We will prove this lemma by induction on

88

the length of � . In the base case (� = �), we take � 0 = � and � 0 = �, the
trivial substitution. Thus the claim is obviously true. Otherwise we consider
three typical cases.

Case H = (F � G), � = 0:� 0, s = � , H [�]s� = F [�]+� 0
� G, � = 1:� 0.

We take � 0 = � and � 0 = �. Obviously, (H [�]��)j � = Gj � 0 = (H j � 0)� 0. Further-
more, hjUji H

� 0 = F � hjUji G
� 0

and hjU� 0ji H [�]s
�

� = F [�]+� 0
� hjUji G

� 0
. By Lemma 4,

` F [�]+� 0
� F , and the claim holds. Note that we could not make the �nal step

in the cases = +, and therefore we had to de�ne H [�]+� = F [�]�� 0
� ? .

CaseH = (F � G), � = 1:� 0, s = +, H [�]s� = F � G[�]+� 0
, � = 1:� 0. By the

induction hypothesis, there exist � 0
0 2 � A (G) and a substitution � 0 such that

(G[�]+� 0
)j � 0 = (Gj � 0

0
)� 0 and ` hjUji G

� 0
0

� hjU� 0ji
G[�]+

� 0
� 0 . Then we take � 0 = 1:� 0

0 and

obtain (H [�]+�)j � = (H j � 0)� 0. Moreover, hjUji H
� 0 (equal to F � hjUji G

� 0
0
) implies

hjU� 0ji H [�]+
�

� (equal to F � hjUji
G[�]+

� 0
� 0).

Case H = (8x F), � = 0:� 0, s = � , H [�]s� = (F [x=x�])[�]�� 0
, � = � 0.

Let F 0 stand for F [x=x�]. By the induction hypothesis, there exist some� 0
0 2

� A (F 0) and a substitution � 0
0 such that (F 0[�]�� 0

)j � 0 = (F 0j � 0
0
)� 0

0 and for any V ,

` hjV ji F 0

� 0
0

� hjV � 0
0 ji

F 0[�]�
� 0

� 0 . Then we take � 0 = 0:� 0
0 and � 0 = � 0

0 � [x=x�] (recall that
� 0

0 doesnot instantiate variablesfrom x�). Weobtain (H [�]��)j � = (F 0[�]�� 0
)j � 0 =

(F 0j � 0
0
)� 0

0 = (F j � 0
0
)� 0 = (H j � 0)� 0. Further, the local image hjUji H

� 0 (equal to
8x hjUji F

� 0
0
) implies (hjUji F

� 0
0
)[x=x�]. The latter formula is equal to hjU[x=x�]ji F 0

� 0
0

and thus implies hj(U[x=x�])� 0
0 ji

F 0[�]�
� 0

� 0 , that is, hjU� 0ji H [�]�
�

� . ut

Informally , Theorem 3 says that any atom in H that \surviv es" instantiation
(i.e. is not replacedwith a booleanconstant) preservesits local properties, which
are instantiated together with the atom.

5 Applying local prop erties

Let us considera formula of the form H [F]� such that no quanti�er occurs in it
in the scope of another quanti�er over the samevariable. Let � be a substitu-
tion. By Theorem 3, there exist a formula H 0, a position � 0, and a substitution
� 0 such that (H [F]�)[�]�� � H 0[F � 0]� 0 and every local property of F in H is
preserved (modulo instantiation) in H 0. (While � is not a position of atom in
H [F]� , we can take an atom P(x), whereP is a new predicate symbol and x are
the free variables of F , and prove (H [P(x)] �)[�]�� � H 0[P(x)� 0]� 0. Note that
P(x) cannot turn into a boolean constant in (H [P(x)] �)[�]�� . Then we have
8x (P(x) � F) ` (H [F]�)[�]�� = H 0[F � 0]� 0, by Lemma 1 and Theorem 1. Since
P is a new symbol, the premise8x (P(x) � F) can be discarded.)By Lemma 4,
H [F]� implies H 0[F � 0]� 0.

We can prove that H 0[F � 0]� 0 implies 9x 0(F � 0) _ H 0[?]� 0, where x 0 are the
free variables of F � 0. Indeed, H 0[F � 0]� 0 implies 9x 0(F � 0) _ H 0[F � 0]� 0, which
is equivalent to 8x 0(: F � 0) � H 0[F � 0]� 0, which is equivalent to 8x 0(: F � 0) �
H 0[?]� 0 by Theorem 1. Therefore, H [F]� implies : H 0[?]� 0 � 9x 0(F � 0).

89

This provides us with a handy tool to test applicabilit y of de�nitions in a
ForTheL text. Consider a section A and suppose that � is the set of sections
which logically precedeA in the text. Let G be the formula image of A. Let
P(s) occur in G in a position � . Now, suppose that D 2 � is a de�nition for
the predicate symbol P. Quite naturally , the formula image of D is of the form
8x 1(H1 � : : : 8x k (H k � (P(x 1;::: ;k) � D)) : : :). By previous, it su�ces to prove
� ` hjH1� � : : : H k � � ?j i G

� , where � is the substitution [x 1;::: ;k =s], to obtain
� ` hjP(s) � D � ji G

� . Then G is equivalent to G[D �]� , that is, we can apply the
de�nition D to P(s). Moreover, all the local properties of terms and subformulas
of D in D, instantiated with � , hold in D � in G[D �]� .

In a similar fashion, we de�ne applicabilit y for other forms of ForTheL de�-
nitions and signature extensions.Note that the substitution � and the position
of the local instantiation in jDj are unambiguously determined by the form of
D. Using the method described above, we can test any logical predecessorof
A for applicabilit y at a given position in jAj, but then we have to choose an
appropriate local instantiation ourselves.

Now, a section A is ontologically correct in view of � if and only if every
occurrenceof a non-logical symbol in jAj either has an applicable de�nition or
signature extensionin � or is the principal occurrencein a de�nition or signature
extensionA (which meansthat A intro ducesthat very symbol).

A ForTheL text is ontologically correct whenever each section in it is onto-
logically correct in view of its logical predecessors.

6 Conclusion

We have intro ducedthe notion of a locally valid statement for the classical�rst-
order logic and showed how it can be used to reason about the interiors of a
formula. In particular, we proved that a locally true equivalenceis a su�cien t
condition for an equivalent transformation of a subformula. The local validit y
of a statement is expressedwith the help of local imageswhich can be regarded
as a syntactical formalization of the notion of a logical context of the statement
occurrence.Sincelocally equivalent transformations may break local properties
of other occurrences,we intro duced the notion of directed local validit y which is
invariant w.r.t. directed locally equivalent transformations. Finally, we de�ned
the operation of local instantiation and showed that this transformation pre-
serves directed local properties. Using this theoretical background, we gave a
clear de�nition of an ontologically correct ForTheL text.

The proposedapproach can be regardedas a way to handle partial relations
and functions in a mathematical text. Instead of intro ducing special individual
or truth values for unde�nedness (as in Kleene's strong logic [6]), ontological
correctnessrequires every term or atom to be well-de�ned a priori , by confor-
mance to the guards of corresponding de�nitions. Using directed images and
deductive techniquespreserving local properties, we can guarantee that the text
under consideration always stays well-de�ned. In our opinion, this corresponds
well to the usual mathematical practice.

90

Of course,reasoninginside a formula is not a new idea. To our knowledge,
related conceptswere�rst intro ducedby L.G. Monk in [7] and werefurther devel-
oped in [8]. P.J. Robinsonand J. Staplesproposeda full-
edged inferencesystem
(so called \windo w inference") [9] which operated on subexpressionstaking the
surrounding context into account. This inference system has been generalized
and extendedby J. Grundy [10].

A common trait of the mentioned approaches is that the local context of
an occurrence is represented by a set of formulas which are regarded as local
premises for the position in question. Special inference rules are then needed
to handle a local context and, what is worse, some \strong" transformations,
e.g. replacing A _ B with : A � B , are required. The notion of local image, as
described in this paper, seemsto be lighter and lessintrusive. In particular, the
results of Section4 are valid in intuitionistic logic, while the local contexts of [7]
cannot be adapted for intuitionistic logic in any obvious way.

Moreover, the de�nition of a local image can be easily extended to a (uni)-
modal language:hUi � F

0:� = � hUi F
� and hUi � F

0:� = � hUi F
� , and similarly for di-

rected images.Then the statements of Section 4 (local instantiation aside) can
be proved in the modal logic K , hencein any normal modal logic.

Acknowledgements. This work is supported by the INTAS project 05-1000008-
8144.Someparts were done within the scope of the project M/108-2007 in the
framework of the joint French-Ukrainian programme \Egide-Dnipro".

References

1. Trybulec, A., Blair, H.: Computer assisted reasoning with Mizar. In: Proc. 9th
International Joint Conferenceon Arti�cial Intelligence. (1985) 26{28

2. Barendregt, H.: Towards an interactiv e mathematical proof language. In Ka-
mareddine, F., ed.: Thirt y Five Years of Automating Mathematics, Heriot-W att
Univ ersity, Edinburgh, Scotland, Klu wer Academic Publishers (2003) 25{36

3. Kamareddine, F., Nederpelt, R.P.: A Re�nement of de Bruijn's Formal Language
of Mathematics. Journal of Logic, Languageand Information 13(3) (2004) 287{340

4. Lyaletski, A., Paskevich, A., Verchinine, K.: SAD as a mathematical assistant |
how should we go from here to there? Journal of Applied Logic 4(4) (2006) 560{591

5. Lyaletski, A., Paskevich, A., Verchinine, K.: Theorem proving and proof veri�ca-
tion in the system SAD. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Math-
ematical Knowledge Management: Third International Conference, MKM 2004.
Volume 3119 of Lecture Notes in Computer Science.,Springer (2004) 236{250

6. Kleene, S.C.: Intro duction to Metamathematics. Van Nostrand (1952)
7. Monk, L.G.: Inference rules using local contexts. Journal of Automated Reasoning

4(4) (1988) 445{462
8. Corella, F.: What holds in a context? Journal of Automated Reasoning 10(2)

(1993) 79{93
9. Robinson, P.J., Staples, J.: Formalising the hierarchical structure of practical

mathematical reasoning. Journal of Logic and Computation 3(1) (1993) 47{61
10. Grundy, J.: Transformational hierarchical reasoning. The Computer Journal 39(4)

(1996) 291{302

91

92

The Utilit y of Op enMath

JamesH. Davenport ?

Department of Computer Science,Univ ersity of Bath, Bath BA2 7AY England
J.H.Davenport@bath.ac.uk ,

WWW home page: http://staff.bath.ac.uk/mas jhd

Abstract. OpenMath [5] is a standard for representing the semantics
of mathematical objects. It di�ers from `Presentation' MathML [7] in not
being directly concerned with the presentation of the object, and from
`Content' MathML in being extensible. How should these extensions be
performed so as to maximise the utilit y (which includes presentation) of
OpenMath?

1 What is Op enMath?

\Op enMath is an emergingstandard for representing mathematical objects with
their semantics, allowing them to be exchanged between computer programs,
stored in databases,or published on the worldwide web."1. In particular, Open-
Math is extensible,unlike MathML 2.02 [7]. It achievesthis by having an exten-
sible collection of Content Dictionaries. \Con tent Dictionaries (CDs) are usedto
assigninformal and formal semantics to all symbols used in the OpenMath ob-
jects. They de�ne the symbols usedto represent conceptsarising in a particular
area of mathematics" [5, section 1.3].

Notation 1 By an OpenMath CD we wil l mean any document conforming to
the formal syntax of [5].

The status of an OpenMath content dictionary is one of the following [5,
Section 4.2.1]:

{ official : approved by the OpenMath society according to the procedure
de�ned in section 4.5 (of [5]);

? This paper owes much to some questions of Paul Libbrecht, when we were both at
the IMA Workshop \The Evolution of Mathematical Communication in the Age of
Digital Libraries" | December 8{9, 2006. Thanks are due to the IMA, and par-
ticularly Robert Miner, for organising this workshop. Further comments, notably
on section 6, are due to him [18] and Christian Gross [14]. Section 7 owes a lot to
discussionwith Prof. Vorobjov. Drs Naylor and Padegt also made useful suggestions.

1 http://www.openmath.org/overv iew/ index .htm l
2 After this paper was submitted, a draft [8] of MathML 3.0 was produced, which

basescontent markup on OpenMath content dictionaries, and thus is extensible.

{ experimental : under development, and thus liable to change;
{ private : usedby a private group of OpenMath users;
{ obsolete : an obsoleteContent Dictionary kept only for archival purposes3.

De�nition 1. A Content Dictionary is said to be public if it is accessiblefrom
http: // www.openmath/ org and hasoneof the two statusofficial or obsolete .
Similarly, a symbol is said to be public if it is in a public CD.

Note that this de�nition of public refersto the entire symbol, not just the name.
Thus

<OMSname="sin" cd="transc1"/>

is a public symbol, whereas

<OMSname="sin" cd="http://www.ca malsoft .co m/G/t ra nsc1" />

is not.
An OpenMath object, all of whosesymbols are public, has �xed, permanent,

semantics. Even if a CD changesstatus from official to obsolete , the seman-
tics do not change(though it is quite likely that new software systemswill not
be able to interpret it, except in the name of compatibilit y4).

The OpenMath standard explicitly envisagesthat OpenMath applications
can declare and negotiate the CDs (or CD groups) that they understand [5,
Section 4.4.2]. In the absenceof such negotiation5, it might seemthat the only
OpenMath objects which can safely be exchangedare onesall of whosesymbols
are public (which we can abbreviate to public OpenMath objects). If every appli-
cation had to convert from its semantics to thoseof the public CDs, there would
be great ine�ciency involved, especially if the aim was `cut and paste' from one
instanceof an application to another instanceof the sameapplication (e.g. from
mine to yours, or from today's to tomorrow's, or from version x to version ++x
or : : :). Equally, two di�eren t applications may be \su�cien tly similar" that each
can understand the other's semantics directly.

2 A Pragmatic In terpretation

De�nition 2. A Content Dictionary is said to be semi-public if it is accessible
from http: // www.openmath/ org or from an URI which resolvesto a globally
accessibleURL, and the CD has one of the two status official or obsolete .
Similarly, a symbol is said to be semi-public if it is in a semi-public CD.

3 This is the wording of [5]: the present author would be inclined to write \arc hival
and compatibilit y purp oses".

4 \Compatibilit y is the last excuse for not �xing something that you have already
admitted to be a bug" [25]. For OpenMath, declaring a CD obsolete and writing a
new one with the `bug' �xed removeseven this excuse:seesection 6.

5 Which may well be impossible in a \cut and paste" scenario.

94

Thus

<OMSname="sin" cd="http://www.ca malsoft .co m/G/t ra nsc1" />

appearsto be a semi-public symbol, whereas

<OMSname="sin" cd="file://C:/cam alj pf f/ G/t ra nsc1" />

is not.
We said above that it appeared to be a semi-public symbol. That is because

the de�nition is neither e�ectiv e (we can try to look the symbol up, but who
knows if the failure is transient or permanent) nor time-invariant: camalsoft
may go bankrupt, or its managersmay not comply with the OpenMath rules,
and delete symbols or change the semantics of them. Hence the concept that
can be e�ectiv e is that of apparently semi-public, as applied to a CD or a sym-
bol. However, an apparently semi-public symbol might not have any discernable
semantics.

De�nition 3. A symbol is said to be transitiv ely public if:

1. it is apparently semi-public;
2. its semantics can be deduced in terms of public symbols by (possibly many)

applications of Formal Mathematical Properties (FMPs) contained in appar-
ently semi-public CDs.

Again, the de�nition is not time-invariant, for the samereasonsas before.Also,
it is not application-independent, since one application might be able to make
deductions from FMPs that another could not. However, it is the semantics and
utilit y of transitiv ely public symbols that we are concernedwith here,sincethese
are onesthat applications might reasonablyencounter. This is what, e�ectiv ely,
is implied by the cdbase in the OMOBJconstructs quoted.

3 An example | arctan

One hypothetical examplewould be the following, for the systemDerive6, whose
arctan function di�ers from the de�nition in [1]. As pointed out in [9], the two
de�nitions could be related by the followingFMP.

<FMP>
<OMOBJcdbase="http://ww w.openmath .o rg /cd ">

<OMA>
<OMSname="eq" cd="relation1"/>
<OMA>

6 As already stated in [9], this is not an issueof somealgebra systems,such as Maple,
being \righ t" and others, such as Derive, \wrong": merely that Derive has chosen
a di�eren t set of branch cut behaviours from OpenMath. Provided the de�nitions
are correct, the choice is one of taste, forti�ed with the occasional dash of Occam's
razor.

95

<OMSname="arctan" cd="http://www.s of tware house.c om/Deriv e/ tr ansc1"/>
<OMVARname="z"/>

</OMA>
<OMA>

<OMSname="conjugate " cd="complex1"/>
<OMA>

<OMSname="arctan" cd="transc1"/>
<OMA>

<OMSname="conjugate" cd="complex1"/>
<OMVARname="z"/>

</OMA>
</OMA>

</OMA>
</OMA>

</OMOBJ>
</FMP>

With this de�nition, a \su�cien tly intelligent" (in fact it need not be that in-
telligent in this case)system would be able to understand OpenMath emitted
from Derive containing Derive arctangents, encoded as follows:

<OMSname="arctan" cd="http://www.so ft warehouse. com/Der iv e/t ra nsc1" />

occurrences.
The designerof the Derive! OpenMath phrasebook is then faced with a set

of alternativ es.

1. Emit in terms of the public OpenMath symbol from transc1 . This has the
advantage that no Derive CD needsto be written, or, more importantly ,
maintained and kept available. Assuming that Derive can canceldouble con-
jugation, it meansthat cutting and pasting from oneDerive to another is not
signi�can tly more expensive. Some-onewho is doing DeriveOpenMath

� ! LATEX
would be distinctly surprised by the results, since the arctan emitted by
LATEX would be (invisibly) onewith OpenMath semantics, i.e. complex con-
jugation might appear in the LATEX where there was none in the Derive.

2. Emit in terms of the Derive symbol de�ned above. This has the disadvan-
tage that the CD7 needsto be written and kept available. If the recipient
is another Derive, it would presumably understand this. If the recipient is a
\su�cien tly clever" other algebrasystemconforming to OpenMath's seman-
tics of arctan, the correct result will be achieved. If it hasDerive'ssemantics,
it will either notice this directly, or cancelthe double conjugations. If it has
di�eren t semantics, it will presumably know what to do.
The interesting question is what an OpenMath� ! LATEX phrasebook with
no explicit Derive knowledgewill do. It is unlikely to have the semantic pro-
cessingcapability to handle the FMP, though in this caseit might. However,

7 And the associated STS [11] �le.

96

a plausible action by such a phrasebook would be to check the STS [11] �le,
observe that this function was unary from a set to itself (it might notice
that the set wasC, but this is irrelevant) and just print the nameasa unary
pre�x function. Indeed, one could just observe that it was being used as a
unary function, as is done in LeActiv eMath [18,24].

3. Ignore the problem, and emit <OMSname="arctan" cd="transc1"/> . Alas,
this would be a very human reaction. Such a phrasebook would (if it met
the other criteria) be entitled to describe itself asOpenMath-compliant, but
it would certainly not meet the goal [5, Chapter 5] that \It is expected that
the application's phrasebooks for the supported Content Dictionaries will be
constructed such that the properties of the symbol expressedin the Content
Dictionary are respectedasfar aspossiblefor the givenapplication domain".

4. Refuseto emit arctans, on the grounds that Derive's is di�eren t from Open-
Math's. In view of the plausible solutions in the �rst two choices,this seems
unnecessarily\dog-in-the-manger".

We should observe that the mathematically equivalent FMP

<FMP>
<OMOBJcdbase="http://ww w.openmath .o rg /cd ">

<OMA>
<OMSname="eq" cd="relation1"/>
<OMA>

<OMSname="arctan" cd="transc1"/>
<OMVARname="z"/>

</OMA>
<OMA>

<OMSname="conjugate " cd="complex1"/>
<OMA>

<OMSname="arctan" cd="http://www.s oft warehouse.co m/Deriv e/ tra nsc1" />
<OMA>

<OMSname="conjugate" cd="complex1"/>
<OMVARname="z"/>

</OMA>
</OMA>

</OMA>
</OMA>

</OMOBJ>
</FMP>

is lessuseful,asit expressesthe `known' <OMSname="arctan" cd="transc1"/>
in terms of the 'unknown', rather than the other way round, and therefore re-
quiresmore logical power to useIn particular, the interpreting phrasebook would
needto know that the inverseof conjugation is itself conjugation.

Note also that there is no need to de�ne Derive's arctan in terms of the
OpenMath one: we could de�ne it directly (see Figure 1) in terms of log, as
OpenMath's arctan is in transc1 .

97

Fig. 1. De�nition of an alternativ e arctan

<FMP>
<OMOBJcdbase="http://www.openmath.o rg/c d">

<OMA>
<OMSname="eq" cd="relation1"/>
<OMA>

<OMSname="arctan" cd="http://www.softwarehouse .com/ Deri ve/t ransc 1"/>
<OMVname="z"/>

</OMA>
<OMA>

<OMSname="times" cd="arith1"/>
<OMA>

<OMSname="divide" cd="arith1"/>
<OMSname="one" cd="alg1"/>
<OMA>

<OMSname="times" cd="arith1"/>
<OMI>2 </OMI>
<OMSname="i" cd="nums1"/>

</OMA>
</OMA>
<OMA>

<OMSname="ln" cd="transc1"/>
<OMA>

<OMSname="divide" cd="arith1"/>
<OMA>

<OMSname="plus" cd="arith1"/>
<OMSname="one" cd="alg1"/>
<OMA>

<OMSname="times" cd="arith1"/>
<OMSname="i" cd="nums1"/>
<OMVname="z"/>

</OMA>
</OMA>
<OMA>

<OMSname="minus" cd="arith1"/>
<OMSname="one" cd="alg1"/>
<OMA>

<OMSname="times" cd="arith1"/>
<OMSname="i" cd="nums1"/>
<OMVname="z"/>

</OMA>
</OMA>

</OMA>
</OMA>

</OMA>
</OMA>

</OMOBJ>
</FMP>

98

4 Another example

Let us imagine a theorem prover specialisedin results over the natural numbers:
let us call it Euclid. Euclid's natural domain of reasoningis the positive integers
1; 2; : : :, which it refers to as N . How should Euclid exports results such as \if
the successorof a equalsthe successorof b, then a = b", i.e.

8a; b 2 N succ(a) = succ(b)) a = b? (1)

Again, the designer of the Euclid! OpenMath phrasebook has various op-
tions.

1. Emit in terms of the OpenMath symbol, i.e. encode Euclid's N as

<OMA>
<OMSname="setdiff" cd="set1"/>
<OMSname="N" cd="setname1"/>
<OMA>

<OMSname="set" cd="set1"/>
<OMSname="zero" cd="alg1"/>

</OMA>
</OMA>

This is certainly accurate, but would causesomegrief on re-importing into
Euclid, since:

{ N (in the OpenMath sense)has no direct equivalent in Euclid, but has
to be encoded as N [f 0g;

{ while expecting an algebra system to canceldouble conjugations is rea-
sonable,expecting a proof systemto simplify (N nf 0g) [f 0g is expecting
rather more.

2. Emit in Euclid's own CD, e.g. with a de�nition as in �gure 2. This has
advantagesas well as disadvantages.

{ Clearly it requires the CD to be written and maintained.
{ An OpenMath! LATEX converter would probably render this as P. This

might look well, but could be confusedwith
<OMSname="P" cd="setname1"/>

which is the set of primes8, normally rendered as P. A con�gurable
OpenMath! LATEX converter9 would be able to get this right, and print
P.

3. Ignore the di�cult y. This is clearly sub-human, rather than merely human,
sincea theorem-prover that emits incorrect statements could well be argued
to be worsethan useless.

We return to this issuein section 6.
8 This is another example of the fact that an OpenMath symbol is the name and the

CD.
9 Such as the Notation Selection Tool [21,22].

99

Fig. 2. Euclid's de�nition of P in terms of N

<FMP>
<OMOBJcdbase="http://www.openmath.o rg/c d">

<OMA>
<OMSname="eq" cd="relation1"/>
<OMSname="P" cd="http://www.euclid.gr/CD"/>
<OMA>

<OMSname="setdiff" cd="set1"/>
<OMSname="N" cd="setname1"/>
<OMA>

<OMSname="set" cd="set1"/>
<OMSname="zero" cd="alg1"/>

</OMA>
</OMA>

</OMA>
</OMOBJ>

</FMP>

5 Op enMath and Notation

What use is OpenMath if one can't \see"10 the results? Probably not much.
How doesone do it? One solution would be to make OpenMath do it.

[: : :] was indicated asan expectation of Robert Miner at the W3C-Math
f2f: if you �nd a CD, you should also have the notations with it : : : so
that you can present all the symbols in this CD. [18]

However, this begsthe question: what is \the notation" [12]. A simple example
is that of half-open intervals: the \anglo-saxon" (0; 1] and the \french"]0; 1].
More subtly, there is the \anglo-saxon" use of Arcsin to denote a multi-v alued
function and arcsin to denotethe corresponding11 one-valuedfunction, compared
with the \french" notation which is the converse.It should be noted that, in this
case,the OpenMath notation is even-handed:one is

<OMSname="arctan" cd="transc1"/>

the other is

<OMSname="arctan" cd="transc3"/>

and in both the \anglo-saxon" and \french" cases,one (or one's renderer) has
to decidewhich to capitalise.

10 Used as shorthand for \convert into a presentation", which may be displayed in
various means, e.g. audio [23].

11 But almost always with the branch cuts locally implicit, and often never stated at
all, or changing silently from one prin ting to the next [1].

100

To avoid the charge of antigallicanism being levied against the author, let
us also point out that there are di�erences due to subject:

p
� 1 is i everywhere

except in electrical engineering,where it is j , and so on.
Henceit is impossiblefor an OpenMath object to know, in a context-free way,

how it should be rendered10. The best onecould hope for is that, associated with
an OpenMath CD, there could be a \default rendering" �le, which would give a
rendering for objectsusing this system,probably by translation into Presentation
MathML as in David Carlisle's excellent style sheets[6]. This would have the
advantage of allowing technologiessuch as those described in [16,23] to process
it.

6 Is even-handedness possible?

So far we have tried to be even-handedbetween various notations: OpenMath
makes no choice between (0; 1] and]0; 1], nor says whether the mathematical
Arcsin is a single-valued or multi-v alued function, i.e. whether it corresponds to
the arcsin from transc1 or transc3 . Even in the caseof the branch cuts for
arctan, where OpenMath has chosen one de�nition, it is possible to state the
other de�nition, and do so on an even footing with OpenMath's own de�nition
in transc1 . Indeed it is possible that, as a result of the great branch cut riots
of 203612, transc1 is declaredobsolete , transc4 is promulgated with an FMP
for arctan as in �gure 1, and the authors of the softwarehouseCD change the
FMP for arctan to be

<FMP>
<OMOBJcdbase="http://ww w.openmath .o rg /cd ">

<OMA>
<OMSname="eq" cd="relation1"/>
<OMSname="arctan" cd="http://www. sof twarehouse.c om/Deri ve/ tr ansc1"/ >
<OMSname="arctan" cd="transc4"/>

</OMA>
</OMOBJ>

</FMP>

and probably also mark that CD as obsolete . None of this would change the
semantics of any OpenMath object.

However, the problem raisedin section4 is not soeasilyresolved: the question
of whether N contains zero can, and indeed has [13], generate much debate.
Many books, especially in German, supposethat N doesnot contain zero, e.g.
the following.

12 Caused by the requirement to move the branch cut in Network Time Proto col [20]
and associated data formats. Rioters marched under the slogan \giv e us our two
thousand one hundred and fort y seven million, four hundred and eighty three thou-
sand, six hundred and fort y eight secondsback".

101

Nat•urliche Zahlen sind die Zahlen, mit denenwir z•ahlen: 1, 2, 3, 4, 5,: : :.
Auf der Zahlengeradenbilden sie eineAbfolge von Punkten im Abstand
1, von 1 ausnach rechts gehend.Die Mengealler nat•urlichenZahlenwird
mit N bezeichnet. Weiters verwendenwir die Bezeichnung N 0 = f 0g[N
f•ur die nat•urlichen Zahlen zusammenmit der Zahl 0. [2, N]

Other sourcesare lessde�nitiv e.

Die nat•urlichen Zahlen sind die beim Z•ahlen verwendetenZahlen 1, 2, 3,
4, 5, 6, 7, 8, 9, 10, 11, usw. Oft wird auch die 0 (Null) zu den nat•urlichen
Zahlen gerechnet. [3, Nat•urliche Zahl].

Indeed,the questionis apparently ascontext-dependent asthe renderingof
p

� 1,
but the impact of getting it wrong is much more misleading.

Even German school books di�er here. It dependson whom you ask. If
you ask someonefrom number theory, he'd usually say that N is without
0. But if you ask someonefrom set theory, he'd say that N is with 0. It's
just what is more convenient (i.e. shorter) for their usual work. [14]

It is clear that we have two di�eren t concepts,and several notations, as shown
in Table 1.

Table 1. Nat •urliche Zahl

Concept English German German OpenMath
(number) (set)

0; 1; 2 : : : N N 0 N name="N" cd="setname1"
1; 2; 3 : : : N + or N � N ? ??

What should replace ??. Following our earlier policies, that di�eren t concepts
(lik e one-valued/multi-v alued arcsin) have di�eren t OpenMath, it clearly has to
be a new symbol. With hindsight, the German number-theory notation might
have been the best to inspire OpenMath, but we cannot change the semantics
of <OMSname="N" cd="setname1"/> . We could intro ducea new Nin a di�eren t
CD, and declaresetname1obsolete,but that would probably be worsethan the
Branch Cut riots.

Hencewe needanother symbol. This could be in setname1, or in someother
CD. If in setname1, it would needanother name: if in another CD, it could also
be called N, but this would probably causemore chaos.So, let us proposethat
we add

<OMSname="Nstar" cd="setname1"/>

to OpenMath. We then have a choice: we can de�ne it in terms of the standard
N , as we suggestedin �gure 2, or we can de�ne it in a free-standing way, by
saying that it is 1 and its successors:formally

102

<OMOBJcdbase="http://ww w.openmat h.o rg /c d">
<OMBIND>

<OMSname="forall" cd="quant1"/>
<OMBVAR>

<OMVname="n"/>
</OMBVAR>
<OMA>

<OMSname="implies" cd="logic1"/>
<OMA>

<OMSname="in" cd="set1"/>
<OMVname="n"/>
<OMSname="Nstar" cd="setname1"/>

</OMA>
<OMA>

<OMSname="or" cd="logic1"/>
<OMA>

<OMSname="eq" cd="relation1"/ >
<OMVname="n"/>
<OMSname="one" cd="alg1"/>

</OMA>
<OMA>

<OMSname="in" cd="set1"/>
<OMA>

<OMSname="minus" cd="arith1"/>
<OMVname="n"/>
<OMSname="one" cd="alg1"/>

</OMA>
<OMSname="Nstar" cd="setname1"/>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMOBJ>

(it being assumedhere, as in the caseof the existing de�nition of N , that this
de�nition is minimal, i.e. Peano'saxioms).

Provided wehaveat least the secondde�nition (having both is not excluded),
we are being aseven-handedaspossible:both conceptsexist in OpenMath, as in
the caseof single-valued/multi-v alued arcsin. Admittedly , the default rendering
might be of 0: : : as N , and 1: : : as N star or N � , but this is merely another
reasonfor renderersto be con�gurable.

7 Semantics driv es Notation?

Sofar, this paper hasarguedthat semantics is all that matters, and that notation
should follow. This is essentially the OpenMath premise(and the author's). But

103

life has a habit of not being so simple: take `O'. Every student is taught that
O(f (n)) is really a set, and that when we write \ g(n) = O(f (n))", we really
mean\ g(n) 2 O(f (n))". Almost all13 textb ooks then use`=', having apparently
placated the god of Bourbaki14. However, actual usesof O as a set are rare:
the author has never15 seen\ O(f) \ O(g)", and, while a textb ook might 16 write
\ O(n2) � O(n3)", this would only be for pedagogyof the O-notation. So `O'
abusesnotation, but OpenMath is, or ought to be, of sterner stu�. It certainly
would be an abuseof <OMSname="eq" cd="relation1"/> to useit here,as the
relation it implies is none of re
exiv e, symmetric and transitiv e17.

The set-theoretic view is the one taken by OpenMath CD18 asymp1, except
that only limiting behaviour at + 1 is considered19, and there is some type
confusion in it: it claims to represent these as sets of functions R ! R , but in
fact the expressionsare assumingN ! R .

Hence it is possible to write �n:n 2 2 O(n3) in OpenMath. This posestwo
problems for renderers:

a) how to kill the � ;
b) how to print `=' rather than `2 '.

The �rst problem is commonacrossmuch of mathematics:note that �m:m 2 2
O(n3) is equally valid, but one cannot say m2 = O(n3). The secondproblem
could be solved in several ways.

1. By resolutely using 2, as [17].
2. By attributing to each appropriate useof <OMSname="in" cd="set1"/> its

print representation (at the moment there seemsto be no standard way of
doing this, though).

3. By �xing the rendering of <OMSname="in" cd="set1"/> to print it as '=',
either:

(a) for all symbols in asymp1(thus getting it \wrong") for symbols such as
<OMSname="softO" cd="asymp2"/> ;

(b) or for all usagesof the (STS or other) type\function in set", thusprinting
sin = R R .

13 [17] is an honourable exception.
14 \the abusesof language without which any mathematical text threatens to become

pedantic and even unreadable".
15 Not even in the one context where it would be useful: � (f) = O(f) \
 (f), which

is stated in words as [10, Theorem 3.1].
16 [10, p. 41] write � (n) � O(n).
17 Curiously enough, the FMPs currently only state transitivit y: this probably ought

to be �xed.
18 Currently experimental .
19 The CD author presumably consideredthat the level of abstraction neededfor a more

general de�nition was unwarranted. The current author would agree, especially as
the context of O is generally only implicit in the wider context of the paper.

104

4. (the current author's favourite) By adding a symbol20 <OMSname="Landauin"
cd="asymp1"/> , which would, by default, print as `=', but have the seman-
tics of `2 '.

How is this last to be achieved? One possibility would be to say that it is the
sameas `2 ':

<FMP>
<OMOBJcdbase="http://ww w.openmat h.o rg /c d">

<OMA>
<OMScd = "relation1" name="eq"/>
<OMScd = "set1" name="in"/>
<OMScd = "asymp1" name="Landauin"/>

</OMA>
</OMOBJ>
</FMP>

but this runs the risk of saying that any `2 ' can becomeLandauin . A better way
might be

<FMP>
<OMOBJcdbase="http://ww w.openmat h.o rg /c d">

<OMA>
<OMScd = "logic1" name="implies"/ >
<OMA>

<OMScd = "asymp1" name="Landauin"/>
<OMVname="A"/>
<OMVname="B"/>

</OMA>
<OMA>

<OMScd = "set1" name="in"/>
<OMVname="A"/>
<OMVname="B"/>

</OMA>
</OMA>

</OMOBJ>
</FMP>

8 Conclusions

OpenMath can represent a variety of concepts,not just those \c hosenby the
designers".Alternativ e choicesof branch cuts, single-valued/multi-v alued func-
tions, starting point for the natural numbers etc. are all supportable. Whether
these are rendered in a manner appropriate to the user clearly depends on the

20 It might be more appropriate to call it Bachmannin, since[4] is apparently the source
of O. [15]

105

user, which meansthat OpenMath renderersneed to be con�gurable, and at a
variety of levels [19, section 4.2].

Even the Bourbaki school believe that notation exists to be abused,aswell as
used:OpenMath exists purely to be used,and doesnot exist to be abused.How-
ever, in somecasessuch as `O', it may needto make slight adjustments to per-
mit conventional notation, such as inserting symbols like <OMScd = "asymp1"
name="Landauin"/ >, which are mathematically redundant.

8.1 Detailed suggestions

1. Add <OMScd = "asymp1" name="Landauin"/> .
2. Add re
exiv eand symmetric propertiesto <OMScd = "relation1" name="eq"/>.
3. Add <OMSname="Nstar" cd="setname1"/> , possibly to setname1 or pos-

sibly to another CD.
4. Add a standard meansof giving printing attributes (as required in 2 on page

104).

References

1. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. US Government Printing O�c e, 1964.

2. Anonymous. Nat •urliche Zahlen. http://www.mathe- online.at/ma thint /
lexikon/n.html , 2006.

3. Anonymous. Wikip edia, Deutsch. http://de.wikipedia.org , 2007.
4. P. Bachmann. Die analytische Zahlentheorie. Teubner, 1894.
5. S. Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Ga•etano, and M. Kohlhase.

The OpenMath Standard 2.0. http://www.openmath.org , 2004.
6. D.P. Carlisle. Openmath, MathML and XSLT. ACM SIGSAM Bul letin 2, 34:6{11,

2000.
7. World-Wide Web Consortium. Mathematical Markup Language (MathML) Ver-

sion 2.0 (Second Edition). W3C Recommendation 21 October 2003, 2003. http:
//www.w3.org/TR/MathML2/ .

8. World-Wide Web Consortium. Mathematical Markup Language (MathML)
Version 3.0. W3C Working Draft, 2007. http://www.w3.org/TR/2007/
WD-MathML3-20070427.

9. R.M. Corless, J.H. Davenport, D.J. Je�rey , and S.M. Watt. According to
Abramowitz and Stegun. SIGSAM Bul letin 2, 34:58{65, 2000.

10. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Intro duction to Algo-
rithms, 2nd. ed.. M.I.T. Press, 2001.

11. J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bul letin 2,
34:16{21, 2000.

12. J.H. Davenport. Nauseating Notation. http://staff.bath.ac.uk/masjhd /
Drafts/Notation.pdf , 2007.

13. E.W. Dijkstra. Why numbering should start at zero. http://www.cs.utexas.edu/
users/EWD/transcriptions/EWD08x x/EWD831.html , 1982.

14. C. Gross. Re: Utilit y of OpenMath. E-mail 64191.89.49.160.232.1172849601 .
squirrel@webmail.uni- augsburg. de, 2007.

106

15. D.E. Knuth. Big Omicron and big Omega and big Theta. ACM SIGACT News 2,
8:18{24, 1974.

16. A. Lazrek. Multilingual Mathematical e-Document Processing. http:
//www.ima.umn.edu/2006- 2007/SW12.8 - 9.0 6/ac tivit ies/ Lazrek- Azzeddine/
MathArabIMAe.pdf, 2006.

17. A. Levitin. Intro duction to the designand analysis of algorithms. Pearson Addison-
Wesley, 2007.

18. P. Libbrecht. E-mails. 45B8875E.7000204@activemath.org, 2007.
19. S. Manzoor, P. Libbrecht, C. Ullric h, and E. Melis. Authoring Presentation for

OPENMA TH. In M. Kohlhase, editor, Proceedings MKM 2005, pages33{48, 2005.
20. D.L. Mills. Network Time Proto col, Version 3. http://rfc.net/rfc1305.html ,

1992.
21. E. Smirnova and S.M. Watt. Interfaces for Mathematical Communi-

cation. http://www.ima.umn.edu/2006- 2007/ SW12.8- 9.06/a ctiv ities /
Smirnova- Elena/SmirnovaWatt.pd f , 2006.

22. E. Smirnova and S.M. Watt. Notation Selection in Mathematical Computing En-
vironments. In Proceedings TransgressiveComputing 2006, pages339{355, 2006.

23. N. Soi�er. Accessible Mathematics. http://www.ima.umn.edu/2006- 2007/SW12.
8- 9.06/activities/Soiffer- Neil/ind ex.h tm, 2006.

24. Various. LeActiv eMath. http://www.activemath.org , 2007.
25. D.J. Wheeler. Priv ate Communication to J.H. Davenport. June 1982, 1982.

107

