J N RISC-Linz
Research Institute for Symbolic Computation

N / Johannes Kepler University
A-4040 Linz, Austria, Europe

Calculem us/MKM 2007
Work in Progress

Manuel KAUERS, Manfred KERBER,
Robert MINER, WolfgangWINDSTEIGER (Eds.)

Hagerberg, Austria
June 27{30, 2007

RISC-Linz Report SeriesNo. 07-06

Editors: RISC-Linz Faculty
B. Buchberger,R. Hemmege, T. Jebelean,M. Kauers, T. Kutsia, G. Landsmann,

F. Lichtenberger, P. Paule, H. Rolletsdhek, J. Scicho, C. Sneider, W. Sdreiner,
W. Windsteiger, F. Winkler.

Supported by:

Copyright notice: Permissionto copy is granted provided the title pageis also copied.

Preface

This collection contains the work-in-progress papers preseried at two confer-
ences,Calculemus 2007 and MKM 2007. Calculemus 2007 was the 14th in a
seriesof conferencesdedicated to the integration of computer algebra systems
(CAS) and automated deduction systems(ADS). MKM 2007 was the Sixth In-
ternational Conferenceon Mathematical Knowledge Managemen, an emerging
interdisciplinary eld of researd in the intersection of mathematics, computer
scienceibrary science,and scierti ¢ publishing. Both conferencesaimedto pro-
vide medhanizedmathematical assistarts. Regular papersof the conferencesere
published as Lecture Notes in Arti cial Intelligence volume 4573.

Although the two conferencesave separatecommunities and separatefoci, there
is a signi cant overlap in the interestsin building mecanized mathematical as-
sistants. For this reasonit wasdecidedto collocate the two events in 2007for the
rst time, at RISC in Hagerberg, Austria. The number and quality of the sub-
missionsshow that this was a good decision. While the proceedingsare shared,
the submissionprocesswas separate.The responsibility for acceptance/rejection
rests completely with the two separateProgram Committees.

By this collocation we made a cortribution against the fragmertation of com-
munities which work on di erent aspectsof di erent independert branches,tra-
ditional branches(e.g.,computer algebraand theorem proving), aswell asnewly
emerging ones(on user interfaces, knowledge managemen, theory exploration,
etc.). This will also facilitate the dewelopmert of integrated medanized math-
ematical assistarts that will be routinely used by mathematicians, computer
scientists, and engineersin their every-day business.

Table of Contents

Contributions to Calculem us 2007

Property inferencefor Maple: an application of abstract interpretation ::: 5
JacquesCarette and StephenForrest

Towards Practical Re ection for Formal Mathematics:::::::::::::::::: 21
Martin Giese and Bruno Buchterger

On the E ciency of Geometry Theorem Proving by GrebnerBases::::: 35
Shuichi Moritsugu and Chisato Arai

Contributions to MKM 2007

A Documen-Oriented Cog Plugin for TeXmacs: :::::::iirriiiiiiiiis 47
Lionel Elie Mamane and Herman Geuvers

Software Speci cation Using Tabular Expressionsand OMDoc:::::::::: 61
Dennis K. Peters, Mark Lawford, and Baltasar Trancon y Widemann

Reasoninginside a formula and ontological correctnessof a formal

mathematical text :::::::iiirrciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiin T
Andrei Paskevich, Konstantin Verchinine, Alexander Lyaletski, and
Anatoly Anisimov

The Utilit y of OpenMath :::::ocoorrorroorrorrrrnyrnnornnninins 93
JamesH. Davenport

Prop erty inference for Maple: an application of
abstract interpretation

JacquesCarette and StephenForrest

Computing and Software Department, McMaster Univ ersity
Hamilton, Ontario, Canada
f carette,forressa g@mcmastea

Abstract. We contin ue our investigations of what exactly is in the code
base of a large, general purpose, dynamically-t yped computer algebra
system (Maple). In this paper, we apply and adapt formal techniques
from program analysis to automatically infer various core properties of
Maple code as well as of Maple values. Our main tools for this task
are abstract interpretation, systems of constraints, and a very modular
designfor the inference engine. As per previous work, our main test case
is the entire Maple library, from which we provide some sample results.

1 Intro duction

We rst set out to understand what really is in a very large computer alge-
bra library [1]. The results were mixed: we could \infer" types(or more gener-
ally, contracts) for parts of the Maple library, and even for parts of the library
which usednon-standard features,but the coveragewas neverthelessdisappoint-
ing. The analysis contained in [1] explains why: there are evertually simply too
many non-standard features presert in a large code basefor any kind of ad hoc
approach to succeed.

We were aiming to infer very complex properties from very complex code.
Since we cannot change the code complexity, it was natural to instead seeif
we could infer simple properties, especially those which were generally indepen-
dent of the more advanced features of Maple [7]. The presen paper explains
our results: by using a very systematic designfor a code analysisframework, we
are able to infer simple properties of interesting piecesof code. Some of these
properties are classical[9], while others are Maple-speci c. In most cases.these
properties can be seenasenablersfor various code transformations, aswell asen-
ablersfor full-blown type inference.Someof these properties were in uenced by
other work on manipulating Maple ([8, 2]) where knowledge of those properties
would have increasedthe precision of the results.

In this current work we follow classicalstatic program analysisfairly closely
Thus we make crucial use of Abstract Interpretation as well as Generalized
Monotone Frameworks [9]. We did have to designse\eral instantiations of such
frameworks, and prove that thesewere indeed proper and correct instances.We
alsohad to extend theseframeworks with more generalconstraint systemsto be
able to properly encade the constraints inherent in Maple code.

In Figure 1 we illustrate some of the facts we seekto infer from code as
motivation for our task. Example 1 is the sort of procedure upon which we
should like to perform successfuinferences.We aim to infer that c is an integer
or string at the procedure'stermination; for this we needto encade knowledge
of the behavior of the Maple function nops (\n umber of operands") and of the
sematrtics of *. Example 2 illustrates the fact that Maple programs sometimes
exhibit signi cantly more polymorphism than their authors intend. We may
believe that the r := 0 assignmen requiresr to be a numeric type, but in fact
it may be a sumdata structure, list, expressionsequenceyector, or matrix, upon
which arithmetic is performed componerntwise:this \hidden polymorphism" may
inhibit the range of our inferences.Example 3 illustrates \bad" code: it will
always give an error, since the sequence(x; 1;p) automatically attens within
mayps argumert list to produce map(diff,x,1,p, X) and the diff command
cannot acceptthis. (The list [x; 1; p] would work correctly.) We want to detect
classesof suc errors statically.

Example 1 Example 2 Example 3
fl1 := proc(b) f2 := proc(n) f3 := proc(p, x::name)
local c; local i, r; map(diff ,(x,1,p),x)
c = "a string"; r ;= 0; end proc:
if b then for i to n do
c =7 nops(b); r:=ir+ f(i);
end if; end do;
c return r
end proc: end proc:

Fig. 1. Examples of Maple input

Our main cortributions involve: somenew abstract interpretation and mono-
tone framework instantiations, and showing that these are e ectiv e; the use of
a suitable constraint language for collecting information; a completely generic
implemenrtation (common traversalroutines, common constraint gathering, etc).
This genericity certainly makesour analyzer very easyto extend, and doesnot
seemto have a deleteriouse ect on e ciency .

The paper is structured as follows: In section 2 we intro duce Abstract In-
terpretation, followed by section 3 where we formally de ne the properties we
are interested in. Section 4 outlines our approadc to collecting information via
constraints. In section 5, we give a sample of the results we have obtained thus
far. A description of the software architecture and designis in section 6, followed
by our conclusions.

2 Abstract Interpretation

Abstract Interpretation [5] is a general methodology which is particularly well
suited to program analyses.While the operational semariics of a languagepre-
cisely describe how a particular program will transform someinput value into an

output valuet, we are frequertly more interestedin knowing how a program in-
ducesa transformation from one property to another. We proceedto give a quick
introduction to this eld; the interested reader may learn more from the many
papers of P. Cousot ([4, 3] being particularly relevant). Our overview has been
thoroughly enlightened by the pleasart introduction [12] by Mads Rosendahl,
and David Schmidt's lecture notes [13], whose (combined) approach we gener-
ally follow in this section.

Conceptually, given two interpretations 1; p and I, p from programs, we
would like to establish a relationship R betweenthem. Generally, |, is the stan-
dard meaning,and |, is a more abstract meaning, designedto capture a partic-
ular property.

To make this more concrete, let us begin with the standard example, the
Rule of sign. Consider a simple expressionlanguagegiven by the grammar

e=nje+eje e
We want to be able to predict, whene\er possible,the sign of an expression,by

using only the signs of the constarts in the expression.The standard interpre-
tation is usually given as

Ee : Z Ee+e Ee +E e
En =n Ee e =Ee E e

The abstract domain we will usewill allow usto di eren tiate betweenexpres-
sionswhich are constartly zero, positive or negative. In fact, however, we need
more: this is becausdf we add a positive integerto a negative integer, we cannot
know the sign of the result (without actually computing the result). Sowe also
give ourselvesa value to denotethat all we know is the result is a “number".

Taking Sign = fzerg pos neg numg, we can de ne an \abstract" version of
addition and multiplication on Sign:

:Sign Sign ! Sign :Sign Sign ! Sign
Ineg zeropos num Ineg zeropos num
neg|neg neg numnum neg [pos zeroneg num
zerojneg zeropos num Zero|zero zerozero zero
poS [NUM pos pos num pos [neg zeropos num
num{num NUM NUM NUM num(num zeronum num

Using these operators, we can de ne the abstract evaluation function for expres-
sionsas:

A e : Sign Ee+e =Ag E e
A n = sign(n) Ee e A e E e

where signx) = if x > 0then pos else if x < 0then negelse zera

! where these values can, for imp erative programs, consist of state

Formally, we can describe the relation betweenthese two operations as fol-
lows (and this is typical):

:Sign! P(Z)n; :P(Z)n; ! Sign

. 8
(neg = fx j x < 0Og 3 neg X fxjx<0g
(zerg = fOg (X) = zero X = f0g
(po9 = fx j x > Og S zpos X fxjx>0g
(num) = Z " num otherwise

The (obvious) relation between and is
8s2 Sign: ((s)) =sand8X 2 P(Z)n;:X (X):

is called a concretization function, while is called an abstraction function.
Thesefunctions allow a much simpler de nition of the operations on signs:

S1 S2= (fxi+X2jx12 (s1)uxz22 (s2)0)
S1 S2= (fx1 X2jx12 (sp)uxz22 (s2)9)

From this we get the very important relationship betweenthe two interpreta-
tions:
8efE eg (Ae)

In other words, we can safely say that the abstract domain provides us with a
correct approximation to the behaviour in the concretedomain. This relationship
is often called a safety or soundnesscondition. Sowhile a computation over an
abstract domain may not give us very useful information (think of the case
where the answer is num), it will never be incorrect, in the sensethat the true
answer will always be contained in what is returned. More generally we have the
following setup:

Denition 1 Let hC;vi and bA;vi be complete lattices,and let : C ! A,

: Al C be monotonic and ! -continous functions. If 8cicv¢c ((¢)) and
8a: ((a)) va a, wesaythat we havea Galois connection If we actually have
that 8a: ((a)) = a, we say that we havea Galois insertion.

The reader is urged to read [6] for a complete mathematical treatment of
lattices and Galois connections. The main property of interest is that and
fully determine eadh other. Thusit suces to give a de nition of :A! C;in
other words, we want to name particular subsetsof C which re ect a property
of interest. More precisely given , we can medanically compute via (c) =
ufajcvc (a)g, whereu is the meetof A.

Given this, we will want to synthesize abstract operations in A to re ect
those of C; in other words for a continuous lattice function f : C! C we are
interestedin 7: A! A viaf = f . Unfortunately, this is frequertly too
much to hope for, asthis can easily be uncomputable. Howewer, this is still the
correct goal:

De nition 2 For a Galois Connection (as alove), and functions f : C! C
andg:A! A, gis a soundapproximation of f if and only if

8c: (f(0) va g((0)

or equivalently
8af(() ve (9(a)):

Then we have that (using the samelanguageas above)
Prop osition 1 gis a soundapproximation of f if andonlyif gva a f

How do we relate this to properties of programs?To ead program transition
from point p; to p;, we can assaiate a transfer function f; : C! C, and also
an abstract versionfj : A! A. This de nes a computation step asa transition
from a pair (p;;s) of a program point and a state, to (p; ; fj; (s)) a new program
point and a new (computed) state. In general, we are interested in execution
traces which are (possibly in nite) sequencef sud transitions. We naturally
restrict execution traces to feasible, non-trivial sequencesWe always restrict
ourselvesto monotone transfer functions, i.e. suc that

l1v iz =) T(1)v ()

which essetially meansthat we newver lose any information by approximating.
This is not assimple asit sounds:featureslike uneval quotes if treated nasvely,
could intro duce non-monotonic functions.

Note that comparedto someanalysesdone via abstract interpretation, our
domains will be relatively simple (see[11] for a complex analysis).

3 Prop erties and their domains

We are interested in inferring various (static) properties from code. While we
would prefer to work only with decisionprocedures,this appearsto be asking for
too much. Sincewe have put ourselvesin an abstract interpretation framework, it
is natural to look at properties which can be approximated via complete lattices
As it turns out, theserequiremerts are easyto satisfy in various ways.

On the other hand, someof theselattices do not satisfy the AscendingChain
Condition, which requires somecare to ensuretermination.

3.1 The prop erties

Surface type. The most obvious property of a value is its type. As a rst ap-
proximation, we would at leastliketo know what surface type a value could have:
in Maple parlance, given a value v, what are the possible values for op(0,v) ?
More speci cally, given the set| K of all kinds of inert forms which correspond
to Maple values,we usethe completelattice L = hP(1K); i asour framework.

Then ead Maple operation inducesa natural transfer function f : L ! L. It is

straightforward to de ne abstraction and concretization functions between

the completelattice hP(V); i of setsof Maple values(V) and L. It is neverthe-

lessimportant to note that f is still an approximation: if we seea pieceof code

which doesa := I[1] , evenif we knewthat (l) = LIST, the bestwe cando is
(&) E,whereE = P(IK)nfEXPSH{

Expression sequence length . This is really two inferencesin one:to nd
whether the value is a potential expressionsequence(expseq), and if so, what
length it may be. From Maple's sematrtics, we know that they behave quite dif-
ferertly in many contexts than other objects, soit is important to know whether
a given quartit y is an expressionsequenceAn expressionsequences a Maple
data structure which is essetially a self- attening list. Any object created as
an expressionsequence(e.g. the result of a call to op) which has a length of
1 is automatically evaluated to its rst (and only) elemen. That is, an object
whoseonly potential length as an expressionsequences 1 is not an expression
sequence.The natural lattice for this is | (N) (the set of intervals with natural
number endpoints) with givenby containment. The abstraction function maps
all non-expsegMaple valuesto the degenerateinterval [1::: 1], and expseqvalues
to (an enclosurefor) its length. Note that NULL(the empty expressionsequence)
mapsto [0:::0], and that unknown expressionsequencesnapto [0:::1].

Variable dependence: Givenavalue, doesit \depend" on a symbol (viewed
as a mathematical variable)? The de nition of "depends'hereis the sameasthe
Maple commandof that name.In other words, we want to know the completelist
of symbolswhosevalue cana ect the value of the current variable. Note that this
cansometimesbe huge (given a symbolic input), but alsoempty (when a variable
contains a static value with no embedded symbols). The natural lattice is the
powersetof all currently known (to the system) symbols, along with an extra >
to capture dynamically created symbols, with set cortainement ordering. Note
that this comesin dierent avours, depending on whether we treat a globally
assignedname as a symbol or as a normal value.

Num ber of variable reads: In other words, for eat local variable in a
procedure, can we tell the number of times it will be read? The natural lattice
isL =V ! [I(N)with V the set of local variables of a procedure.If s;t 2 L,
then st t is de ned componernt-wise as v :[maxs;(v);t;(v); s (V) + t, (v)] where
s(v) = [si(v); s (V] t(v) = [ti(v); tr (V)]

Num ber of variable writes : A natural (semartic) dual to the number of
reads, but operationally independent.

Reaching De nition : This is a classicalanalysis[9] which captures,at every
program point, what assignmets may have beenbeenmadeand not overwritten.
As in [9], the lattice hereis P(Var, Lab?), orderedby setinclusion. HereVar-
is nite set of variables which occur in the program, and Lab 3 is the nite set
of program labelsaugmernted by the symbol ?. Note that unlike I (N) this lattice
satis es the Ascending Chain Condition (becauseit is nite).

Summarizing, we will infer the following property of values (according to
the de nitions above): its surfacetype, its expressionsequenceength, and its
variable dependencies.Note that, given a labelled program, we can speak of

10

valuesat a program point, by which we mean the value of one (or more) state
variable(s) at that program point; of those values, we are interested in similar
properties. For a program variable, we will work with the number of times it is
read or written to. And for a program point, which assignmeis may have been
made and not overwritten.

For the purposesof increasedprecision, these analysesare not performed in
isolation. What is actually done is that a Reading De nition analysisis rst
performed, and then the other analysesbuild on this result. Later, we should look
at taking (reduced) tensor products of the analyses([9] p. 254-256),although it
is only clear how to do this for nite lattices.

3.2 Idiosyncrasies of Maple

Many of the analyseswe wish to attempt are complicated by the particular se-
mantics of Maple. Someof these, such as untypednessand the potential for an
arbitary procedureto alter global state, are shared with many other program-
ming languages.Others are speci ¢ to a CAS or to Maple alone. Following is a
list of somekey features.

1. Symbols: As Maple is a CAS, every variable (aside from parameters)which
doesnot have an assignedvalue may be usedasa symbol, and passedaround
as any other value. Should the variable later be assigned,any previous ref-
erenceto it asa symbol will evaluate to its presen value.

2. Functions whic h return unevaluated : Just as variables may be values
or symbols, function calls may or may not chooseto evaluate. Certain of
Maple's built-in functions, sch as gcd, will return the function invocation
unevaluated when preserted with symbolic input.

3. Side e ects : Any function invocation may a ect global state, soone cannot
assumestate remains constart when evaluating an expression.

3.3 A formalization

Here we will give the formalization for the Galois connection assiated to the
expression sejuene length property inference. The next section will complete
the picture by giving the assaiated constraints.

The sourcelattice in this caseis P (Val); i whereVal represerns the set of
all possibleMaple values. The target lattice, as mentionned above,ish (N); i .
The Galois connectionin this caseis the onegiven by the representationfunction
E: Val !' [(N) (seeChapter 4 of [9]). Explicitly, for V 2 P(Val), (V) =

f (Hjv2Vgand (I) = fv 2 Var j (v) @Ilg. But this is completely

trivial! For any value v which is neither NULLnor is an expressionsequence,
then (v) = 1:1. Otherwise (NULDL = 0:0 and (e) = nops([e]) for e an
expressionsequence What is much more interesting is, what is the monotone
transfer function induced by ?

In other words, for all the expressionconstructors and all the statemerts
of the language, what is the induced function on I (N)? We want to know a

11

safe approximation to f~= f . For all constructors ¢ whosesurfacetype
is in fINTPOSINTNEGRATIONALCOMPLEKLOATHFLOATSTRINGEQUATION
INEQUATLESSEQLESSTHANDCOLONRANGEEXACTSERIESIFARRAYODULE
PROCSDPOLYSERIES SET LIST, TABLEARRAYWECTQROLUMNECTQOROW
VECTQRIAMEMODDERARGS e = 1::1, with the exception of the special name
NULLwhich is 0::0. For those in f SUMPRODPOWERABLEREMEMBEEXPSEQ
ASSIGNEDLOCALNANSIGNEDNAdVithe bestthat can be said a priori is 0::1 .
Someof these are expected (for example,an ASSIGNEDNARHH evaluate to an
expressionsequenceof any length), but others are plain strange Maple-isms:

> (1,2) + (3,4);
4.6

But we can do better than that. Figure 3.3 shaws a precise de nition of the
transfer function for SUMEXPSECand PRODIn the table for SUMwe implicitly
assumethat a band a::b6 1::1; also, since adding two expressionsequences
of di erent lengths (other than the 1::1 case)results in an error [in other words,
not-a-value], this caseis not included in the table. In the table for PRODwe
further assumethat a 1;c 1,aswell asa:b 6 c:d.

SUML:1|a::b ERlo?i :Egg

1.1)1:1)101 EXPSH®::b;c::d) = (a+ ¢):(b+ d) S P e e

2.bl11lab a.b |a:b|1:1(1:1
— c.d [cad|11lLn

Fig. 2. Sometransfer functions assciated to expressionsequencelength

Of course,statemerts and other languagefeaturesthat are only presen inside
proceduresinduce transfer functions too. Someare again quite simple: we know
that a parameter (a PARAMwiIll always be 1::1. In all other cases,the transfer
function assaiated to the statemerts of the languageis quite simple: wheneer it
is de ned, it is the identit y. On the other hand, the transfer functions assaiated
to many of the builtin functions (like map op, type and soon) are very complex.
We currently have chosento take a pessimisticapproac and always assumethe
worst situation. This is mostly a stop-gap measureto enable us to get results,
and we plan on rectifying this in the future.

While it would have beenbest to obtain all transfer functions from a formal
operational sematrtics for Maple, no such semartics exists (outside of the actual
closed-sourceproprietary implementation). We obtained the above by exmnding
the de ning equation f~= f , for eadh property and each f of interest, and
the breaking down the results into a seriesof casesto examine. We then ran a
seriesof experiments to obtain the actual results. We have to admit that, even
though the authors have (together) more than 30 years' experiencewith Maple,
seweral of the results (including somein gure 3.3) surprised us.

3.4 Applications

We chosethose few simple analysesbecausethey are foundational: they have
many applications, and very many of the properties of interest of Maple code
can most easily be derived from those analyses.

12

For example, if we can tell that a variable will never be read, then as long
asthe computation that producesthat value hasno (external) side-e ects, then
that computation can be removed?. Similarly, if it is only read once, then the
computation which producesthe value can be inlined at its point of use. Oth-
erwise, no optimizations are safe. If we can tell that a local variable is never
written to, then we can concludethat it is used as a symiwol, a sure sign that
some symlolic computations are being done (as opposedto numeric or other
more pedestrian computations).

4 Constrain ts and Constrain t Solving

If we took a strict abstract interpretation plus Monotone Framework approac
[9], we would get rather disappointing results. This is becauseboth forward-
propagation and badkward-propagation algorithms can be quite approximativ e
in their results.

This is why we have moved to a generalconstraint-based approad. Unlike a
Monotone Framework approad, for any given analysiswe generateboth forward
and backward constraints. More precisely considerthe following code:

proc(a) local b;

b := op(a);

if b>1 then 1 else 1end if;
end proc;

If we considerthe expressionsequencelength analysis of the previous section,
the bestwe could derive from the rst statemert is that bhaslength [0:::1).
But from the b> 1 in a booleancontext and our assumptionthat the codein its
presert state executescorrectly, we can deducethat b must have length (exactly)
1 (encoded as[1:::1]). In other words, for this code to be meaningful we have
notonly b [1:::1]but also[1:::1] b

More formally, givena completelattice L = (D;u;t ; @ =), wehavethe basic
elemers of a constraint languagewhich consistsof all constarts and operators
of L along with a (nite) set of variables from a (disjoint) set V. The (basic)
constraint languagethen consistsof syntactically valid formulas usingthosebasic
elemerts, as well as the logical operator (conjunction). A solution of such a
constraint is a variable assignmem which satis es the formula.

For somelattices L, for example | (N), we also have and use the monoidal
structure (here givenby and 0::0). This structure alsoinducesa scalar(i.e. N)
multiplication, which we also use.In other words, we have addedboth and a
scalar to the constraint languagewhen L = | (N).

A keen reader might have noted one discrepancy:in the language of con-
straints that we have just described, it is not possibleto expressthe transfer

2 in the sensethat the resulting procedure p® will be such that p p° for the natural

order on functions. Such a transformation may causesomepaths to terminate which
previously did not { we consider this to desirable.

13

function (on | (N)) induced by SUMAs this is indeed so, we have added a con-
straint combinator to the languageof constraints. This takesthe form C(op) for
any (named) function op: L ! L. In particular, we can thus usethe transfer
function induced by SUMind PROIN our constraint language.This alsoincludes
the expression-sequenceonstructor , (comma).

One feature of our approac beyond that of classicalabstract interpretation
is the addition of recurrenceequations. When expressedn terms of our chosen
properties, many loopsand other control structures naturally inducerecurrences,
often very trivial ones.Consider the following:

fact := proc(a) local s;
s = 1,
for i from 1 tondo s = n s; end if;
return(s);

end proc;

At the program point corresponding to the assignmen to s within the loop, a
classicalReading De nitions approadc will always give two possibilities for the
precedingassignmer: the initial assignmenm or a previous loop iteration at the
sameprogram point, which complicatesthe analysis. One meansof dealing with
this self-dependencyis to regard the problem as a recurrenceover s.

Given a loop at program point ~, we introduce symbols LIV (*), LFV(") into
our constraint languageto represen, respectively, the state at the start of the
ith iteration and the state upon loop termination. At the program point men-
tioned earlier, there is now only one possibility for the precedingassignmen: the
symbolic quantity LIV(™).

At this point, we have to admit that we do not have a complete algorithm
for the solution of all the constraint systems described. What we have does
appear to work rather well, in that it terminates (even for large complex codes),
and returns sensibleanswers. It works via a combination of successie passes
of propagation of equalities, simpli cation of constraints, and least- xed-p oint
iteration. We are con dent that we can prove that what we have implemened
terminates and returns a proper solution of the constraint system.

5 Results

We wish to demonstratethe results of our analyseson variousinputs. It is helpful
to begin with someconcrete examplesfor which the analysis can be replicated
by the reader. Consider the following Maple procedure:

IsPrime := proc(n::integer) local S, result;
S := numtheory: factorset(n);
if nops(S) > 1 then
result := (false, S);
else
result := true;
end if;
return(result);
end proc:

14

IsPrime is an combined primalit y tester and factorizer. It factorsits input n, then
returns a boolean result which indicates whether n is prime. If it is composite,
the prime factors are also returned.

This small example demonstratesthe results of two of our analyses.In the
ExpressionSequencdength analysis,we are ableto conclude,evenin the absence
of any special knowledgeor analysis of numtheory:-factor set, that S must be
an expressionbecauseit is usedin a call to the kernel function nops (\n umber
of operands").

Combined with the fact that true and false are known to be expressions,
we can estimate the size of result as [2:::2] when the if-clause is satis ed
and [1:::1] otherwise. Upon unifying the two branches,our estimate for result
becomes[1:::2]. For the Surface Type Analysis, we are able to estimate the
result asfNAME,EXPSEQ g.

Our results can also be usedfor static inference of programming errors. We
assumethat the code, aswritten, re ects the programmers'intent. In the pres-
enceof a programming error which is captured by one of our properties, the
resulting constraint systemwill have trivial solutions or no solutions at all.

For an illustration of this, consider the following example. The procedure
faulty is bound to fail, asthe argumerts to union must be setsor unassigned
names,not integers.As Maple is untyped, this problem will not be caugh until
runtime.

faulty := proc(c) local d, S;
d:= 1, S := f3,4,5q;
S union d;

end proc:

However, our Surface Type analysis can detect this: the two earlier assign-
ments imposethe constraints X; fINTPO§ and X, fSET®, while union
imposeson its argumerts the constraints that X3;X4 fSED[Thame. ° No
assignmeits to d or S could have occurred in the interim, we also have the con-
straints X3 = X4 and X, = X3. The resulting solution contains X1 = ;, which
demonstratesthat this code will always trigger an error.

grows := proc(c)
X 2, 3, 4, 5;
for y from 1 to 10 do
X = X, Y;
end do;
return (x);
end proc:

Here, we are able to expressthe relationship between the starting state,
intermediate state, and nal state of the for loop as a recurrenceequation over
the domain of the ExprSegLength property. In the end we are able to conclude
that the length of y is [4:::4]+ NL("1) [1:::1], where NL(1) signies the
number of stepsof the loop. Another analysis may later supply this fact.

3 Here Thame denotesthe set of tags corresponding to names, such as NAME&nd LOCAL
the full list is too lengthy to provide, but it doesnot contain INTPOS

15

Results from a test library : We have run our tools against a private
collection of Maple functions. This collection is chosenmore for the variety of
functions present within than a represenativ e example of a working Maple li-
brary. Therefore, we focus on the results of our analyseson specic functions
presert within the database,rather than on summary statistics as a whole.

looptest := proc(n :: posint) :: integer;
local s :: integer, i :: integer, T :: table, flag :: true;
(s, i, flag) := (0, 1, false);

T := table();
while 172 < n do

s = i+ s;
if flag then T[i] := s; end if;
if type(s, 'even') then flag := true; break; end if;
= 1+ i
end do;
while type(i, 'posint') do

if assigned(T[i]) then TJ[i] := TJ[i] s; end if;
if type(s, 'odd') then s := s i"2 end if;
=i 1
end do;
(s, T)
end proc:

This rather formidable procedure,while not doing anything particularly use-
ful, is certainly complex.It contains two successie conditional loopswhich march
in opposite directions, and both of which populating the table T along the way.

Here our analysisrecognizeghe fact that eventhough flag is written within
the body of the rst while loop, this write event cannot reach the if-condition on
the precedingline becausethe write evert is immediately followed by a break
statemert. We are alsoable to concludethat s is always an integer: though this
is easyto see,given that all the write events to s are operations upon integer
quartities.

Results from the Maple library : We presert (in gure 3) someresults
from applying our tools to the Maple 10 standard library itself. This will serve
as a useful glimpse of how our tools behave on an authentic, working codebase.
Though our analysisfocuseson absolutely all subexpressionswithin a procedure,
here we focus on deriving usefulinformation about a procedure'slocal variables
from their context.

Surface Type Procedureg
ocal typeis Texpression 827
ocal w/ fully-inferred type |721
ocal whose value is a posint |342
ocal whosevalue is a list 176
ocal whosevalue is a set (56
Solvable loop recurrences 267
Total analyzed 1330

Fig. 3. Results for analyseson Maple library source

Expression SequencelLength |Procedures
Local with estimate 6 [0:::1]|862
Local with nite upper bound 593
Local with estimate [1:::1] (374
Local with estimate [0:::1] 43
Solvable loop recurrences 127
Total analyzed 1276

16

For eadh analysiswe sampledapproximately 1300proceduresfrom the Maple
standard library, ead of which contained at least one local variable. We are
particularly interestedin boundary caseg(>, ? in our lattice, or singletons). For
the ExpressionSequenceanalysis, we obtained nontrivial results for at least one
local variable in 862 of 1276 procedures;for 593, we can provide a nite bound
[a:::b]. For 609 locals, we have both a program point where its size is fully
inferred ([1:::1]) and another where nothing is known; an explanation for this
apparert discrepancyis that locals may be assignedmultiple times in dierent
contexts. In the SurfaceType analysis, we have nontrivial results for 827 of 1330
procedures;721 have a local whosetype is fully inferred.

6 Implemen tation

As we knew that we would be implemerting many analyses,now and later, it was
required that the designand implementation be asgenericaspossible.Becauseof
Maple's excellert introspection facilities, but despiteit being dynamically typed,
we wrote the analysisin Maple itself.

This led usto designa genericabstract syntax tree (AST) traverserparametrized
by whatever information gathering phasewe wanted. In Object-Oriented terms,
we could describe our main architecture as a combination of a Visitor pattern
and a Decorator pattern. To a Haskell programmer, we would describe the archi-
tecture asa combination of a State Monad with a genericmap (gmap). The data
gathered are constraints expressedover a particular lattice (with an established
abstract interpretation).

There are seweral reasonsfor using a constraint system as we have described
in section 4: modularity, genericity, clarity and expressivity. We can completely
decouplethe constraint generation stagefrom the constraint solving stage(mod-
ularity), asis routinely donein modern type inferenceengines.All our analyses
have the samestructure, and share most of their code (genericity). Becauseof
this genericstructure, the constraints assaiated to ead syntactic structure and
ead builtin function are very easyto seeand understand. Furthermore, the rich
language of constraints, built over a simple and well-understood mathematical
theory (lattices, monoidal structures), provides an expressiwe languagewithout
leading too quickly into uncomputable or unsolvable systems.

For all properties, the constraint language generally consists of our chosen
lattice, with its basetype and lattice operations. These are extended with a
set of symbols S represerting unknown valuesin T, and a set of constraint
transformers CT: thesemay be viewed as functions T ! T.

In general, our approac hasthree stages:

1. Constrain t assignmen t: We traversethe AST: with ead code fragmert,
we record constraints it imposeson itself and its subcomponerts. For exam-
ple, conditionals and while loops constrain their condition to be Tyoor-

2. Constrain t propagation : We traverse the AST again, propagating at-
tached constraints upwards. Constraints arising from subcomponerts are

17

inserted into a larger constraint systemas appropriate to re ect the cortrol
ow. In somecasesthis consistssimply taking conjunction of all constraints
arising from subcomponerts.

3. Constrain t solving : The solution method generally dependson the prop-
erty, particularly asthe constraint languageitself changesdepending on the
property at hand. On the other hand, aswe implement more solvers, we are
seeingpatterns emerge,which we aim to eventually take advantage of.

In general, we proceedwith a seriesof successie approximations. We rst

determine which type variableswe seekto approximate: often, at a particular
stagewe will desireto nd approximations for certain classesof symbols but
leave others as symbols, untouched. (An example where symbols must be
retained is with the symbols usedin formulating recurrences.)

We then step through all variables,incremertally re ning our approximation
for eadh variable basedon its relations with other quartities. We are done
when no better approximation is possible.

7 Conclusion

This work-in-progressshawsthat it is possibleto apply techniquesfrom Program
Analysis to infer various simple properties from Maple programs, even rather
complex programs like the Maple library. Our current techniquesappearto scale
reasonablywell too.

One of the outcomeswe expect from this work is a better-mint-than-min t*.
As shown by some of our examples,we can already detect problematic code
which mint would not ag with any warnings.

Aside from its genericity, onesigni cant advantage of the constraint approac
and the abstract interpretation framework is that analysesof di erent properties
may be combined to re ne the results of the rst. For instance, if a variable
instance was proven to be of size[1:::1] by our Expression Sequenceanalysis,
the type tag EXPSEQould be safely removed from its Surface Type results. We
have yet to combine our analysesin this manner on a large scale,though this is
a goal for future experimentation.

References

1. J. Carette and S. Forrest. Mining Maple code for contracts. In Ranise and Bigatti
[10].

2. J. Carette and M. Kucera. Partial Evaluation for Maple. In ACM SIGPLAN 2007
Workshop on Partial Evaluation and Program Manipulation , 2007.

3. P. Cousot. Typesasabstract interpretations, invited paper. In Conference Record
of the Twentyfourth Annual ACM SIGPLAN-SIGA CT Symposium on Principles
of Programming Languages pages 316{331, Paris, France, January 1997. ACM
Press, New York, NY.

4 mint is Maple's analogue of lint, the ancient tool to nd awsin C code, back when
old compilers did not have many built-in warnings.

18

10.

11.

12.

13.

. P. Cousot and R. Cousot. Compositional and inductiv e semartic de nitions in

Xp oint, equational, constraint, closure-condition, rule-based and game-theoretic
form, invited paper. In P. Wolper, editor, Proceedings of the SeventhInternational
Conference on Computer Aided Veric ation, CAV '95, pages293{308, Liege, Bel-
gium, Lecture Notes in Computer Science 939, 3{5 July 1995. Springer-Verlag,
Berlin, Germany.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unied lattice
model for static analysis of programs by construction or approximation of xp oints.
In POPL, pages238{252, 1977.

Brian A. Davey and H.A. Priestley. Intr oduction to Lattices and Order. Cambridge
Univ ersity Press, 2002.

P. DeMarco, K. Geddes,K. M. Heal, G. Labahn, J. McCarron, M. B. Monagan,
and S. M. Vorkoetter. Maple 10 Advanced Programming Guide. Maplesoft, 2005.
M. Kucera and J. Carette. Partial evaluation and residual theorems in computer
algebra. In Ranise and Bigatti [10].

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus,NJ, USA, 1999.

Silvio Raniseand Anna Bigatti, editors. Proceedings of Calculemus 2006, Electronic
Notes in Theoretical Computer Science.Elsevier, 2006.

Enric Rodr guez-Carbonell and Deepak Kapur. An abstract interpretation ap-
proach for automatic generation of polynomial invariants. In Roberto Giacobazzi,
editor, SAS, volume 3148 of Lecture Notes in Computer Sciena, pages280{295.
Springer, 2004.

Mads Rosendahl. Intro duction to abstract interpretation.
http://akira.ruc.dk/ madsr/w ebpub/absint.p df.

David Schmidt. Abstract interpretation and static analysis. Lectures at the Winter
School on Semartics and Applications, WSSA'03, Montevideo, Uruguay, July 2003.

19

20

Towards Practical Re ection
for Formal Mathematics

Martin Giesé and Bruno Buchberger

! RICAM, Austrian Academy of Sciences,
Alten bergerstr. 69, A-4040 Linz, Austria
martin.giese@oeaw.ac.at
2 RISC, JohannesKepler Univ ersity,
A-4232 Schlo Hagerberg, Austria
bruno.buchberger@risc.uni-linz .ac. at

Abstract. We describe a design for a system for mathematical theory
exploration that can be extended by implementing new reasonersusing
the logical input language of the system. Such new reasonerscan be
applied like the built-in reasoners,and it is possible to reason about
them, e.g. proving their soundness,within the system. This is achieved
in a practical and attractiv eway by adding re ection, i.e. arepresertation
mechanism for terms and formulae, to the system's logical language, and
someknowledge about theseertities to the system's basic reasoners.The
approach has beenevaluated using a protot ypical implementation called
Mini-Tma. It will be incorporated into the Theorema system.

1 Intro duction

Mathematical theory exploration consistsnot only of inventing axiomsand prov-
ing theorems. Amongst other activities, it alsoincludesthe discovery of algorith-
mic ways of computing solutions to certain problems, and reasoningabout suc
algorithms, e.g. to verify their correctness.What is rarely recognizedis that it
alsoincludes the discovery and validation of useful techniques for proving the-
oremswithin a particular mathematical domain. In somecases thesereasoning
techniqguesmight evenbe algorithmic, making it possibleto implement and verify
a specializedtheorem prover for that domain.

While various systemsfor automated theorem proving have beenconstructed
over the past years, someof them specially for mathematics, and someof them
quite powerful, they essetially treat theorem proving methods asa built-in part
of the servicessupplied by a system,in generalallowing usersonly to state axioms
and theorems, and then to construct proofs for the theorems, interactively or
automatically. An extensionand adaptation of the theorem proving capabilities
themselwes, to incorporate knowledge about appropriate reasoning techniques
in a given domain, is only possibleby stepping back from the theorem proving
activity, and modifying the theorem proving software itself, programming in
whatever languagethat system happensto be written.

We considerthis to be limiting in two respects:

{ To perform this task, which should be an integral part of the exploration
process,the user needsto switch to a dierent language and a radically
di erent way of interacting with the system. Usually it will also require an
inordinate amount of insight into the architecture of the system.

{ The theorem proving proceduresprogrammed in this way cannot be made
the object of the mathematical studies inside the system: e.g., there is no
simple way to prove the soundnessof a newly written reasonerwithin the
system. It's part of the system's code, but it's not available as part of the
system's knowledge.

Following a proposal of Buchberger [5,6], and as part of an ongoing e ort to
redesignand reimplemert the Theoremasystem[7], we will extend that system's
capabilities in such a way that the de nition of and the reasoningabout new
theorem proving methods is possibleseamlesslythrough the sameuserinterface
asthe more cornvertional tasks of mathematical theory exploration.

In this paper, we describe our approach asit has beenimplemened by the
rst author in a prototype called Mini-Tma, a Mathematica [18] program which
doesnot shareany of the code of the current Theoremaimplementation. Essen-
tially the sameapproac will be followed in the upcoming new implemertation
of Theorema.

The secondauthor's contributions are the identi cation and formulation of
the problem addressedin this paper and the recognition of its importance for
mathematical theory exploration [6], as well as a rst illustrating example [5],
a simplied version of which will be usedin this paper. The rst author has
worked out the technical details and producedthe implementation of Mini-Tma.

In Sect. 2, we introduce the required conceptson the level of the system's
logical language. Sect. 3 shaws how this language can be usedto describe new
reasoners,and how they can be applied. Sect. 4 illustrates how the system can
be usedto reasonabout the logic itself. Thesetechniquesare combined in Sect.5
to reasonabout reasonersWe brie y disusssomefoundational issuesin Sect. 6.
Related work is reviewed in Sect. 7, and Sect. 8 concludesthe paper.

2 The Framew ork

To reasonabout the syntactic (terms, formulae, proofs,...) and semartic (mod-
els, validity...) conceptsthat constitute a logic, it is in principle sucient to
axiomatize these concepts, which is possiblein any logic that permits e.g. in-
ductive data type de nitions, and reasoningabout them. This holds also if the
formalized logic is the sameas the logic it is being formalized in, which is the
casethat interests us here.

However, to make this reasoningattractive enoughto becomea natural part
of using a mathematical assistant system, we considerit important to supply a
built-in represeration of at least the relevant syntactic ertities. In other words,
one particular way of expressingstatemerts about terms, formulae, etc. needs
to be chosen, along with an appealing syntax, and made part of the logical
language.

22

We start from the logic previously employedin the Theoremasystem,namely
an untyped higher-order predicate logic with sequencevariables. Sequencevari-
ables[16] represen sequence®f valuesand have proven to be very conveniert
for expressingstatemerts about operations with variable arity. For instance, the
operation app that appendstwo lists can be speci ed by3

applf xsg; fysg] = fxs;ysg

& oo
5 oo

using two sequencevariablesxs and ys. It turns out that sequencevariables are
alsocorveniert in statemerts about terms and formulae, sinceterm construction
in our logic is a variable arity operation.

2.1 Quoting

Termsin our logic are constructed in two ways: symiols (constants or variables)
are one kind of terms, and the other are compound terms, constructed by “ap-
plying' a “head' term to a number of “argumerts'.* For the represenation of
symbols, we require the signature to contain a quoted version of every symbol.

Designating quotation by underlining, we write the quoted versionof a asa, the
quoted version of f asf, etc. Quoted symbols are themselves symbols, so there
are quoted versions of them too, i.e. if a is in the signature, then so are a, a,

etc. For compound terms, the obvious represenation would have been a dedi-
cated term construction function, say mkTerm, such that f[a] would be denoted
by mkTermf; a]. Using a special syntax, e.g.fancy brackets, would have allowed
us to write something like ffal. However, experiments revealedthat (in an un-
typed logic!) it is easiestto reusethe function application brackets|[] for term

construction and requiring that if whatever stands to the left of the brackets is
a term, then term construction instead of function application is meart. Any
axioms or reasoningrules involving term construction corntain this condition on
the head term. This allows us to write f[a], which is easierto read and easier
to input to the system. For reasoning,the extra condition that the head needs
to be a term is no hindrance, since this condition usually has to be dealt with

anyway.

To further simplify reading and writing of quoted expressions,Mini-Tma
allows underlining a whole sub-expressionas a shorthand for recursively under-
lining all occurring symbols. For instance, f[a; h[b]] is acceptedas shorthand for
f[a; h[b]]. The system will also output quoted terms in this fashion wheneer
possible. While this is conveniert, it is important to understand that it is just
a nicer preseration of the underlying represeration that requiresonly quoting
of symbols and complex term construction as function application.

% Following the notation of Mathematica and Theorema, we use square brackets []
to denote function application throughout this paper. Constant symbols will be set
in sans-seriftype, and variable namesin italic .

4 SeeSect. 2.2 for the issueof variable binding in quanti ers, lambda terms, and sud.

23

2.2 Dealing with Variable Binding

In the literature, various thoughts can be found on how to appropriately rep-
resert variable binding operators, i.e. quanti ers, lambda abstraction, etc. The
dominant approachesare 1. higher-order abstract syntax, 2. de Bruijn indices,
and 3. explicit represertation.

Higher-order abstract syntax (HOAS) [17]is often usedto represen variable
binding in logical frameworks and other systemshbuilt on higher-order logic or
type theory. With HOAS, a formula § p[x] would be represered as ForAll[p[1].

The argumert of the ForAll symbol is a function which, for any term deliv-
ers the result of substituting for the bound variable x in the scope of the
quanti er. This represeration has its advantages,in particular that terms are
automatically stored modulo renaming of bound variables, and that capture-
avoiding substitution comesfor free, but we found it to be unsuitable for our
purposes:somesyntactic operations, such as comparing two terms for syntactic
equality are not e ectiv ely possiblewith HOAS, and alsoterm induction, which
is certral for reasoningabout logics, is not easily described. Hendriks has come
to the sameconclusionin his work on re ection for Coq [13].

Hendriks usesde Bruijn indices [10], which would represern §p[x] by aterm

like ForAll[p[v1]], where v; meansthe variable bound by the innermost binding
operator, v, would meanto look one level further out, etc. This represenation
has some advantages for the implementation of term manipulation operations
and also for re ectiv e reasoningabout the logic.

For Mini-Tma however, in view of the projected integration of our work into
the Theorema system, we chosea simple explicit represenation. The reasonis
mainly that we wanted the represenations to be as readable and natural as
possible,to make it easyto debugreasonersto usethem in interactive theorem
proving, etc. A represernation that drops the namesof variableswould have been
disadvantageous.The only derivation from a straight-forward represenation is
that we restrict ourselvesto abstraction as the only binding operator. Thus
§p[x] is represenied as

ForAll[_[x; p[x]]]

where _is an ordinary (quoted) symbol, that doesnot have any binding prop-
erties. The reasonfor having only one binding operator is to be able to describe
operations like capture avoiding substitution without explicitly naming all op-
erators that might bind a variable. Under this convention, we considerthe e ort
of explicitly dealingwith -corversionto be acceptable:the additional dicult y
appears mostly in a few basic operations on terms, which can be implemented
once and for all, after which there is no longer any big di erence betweenthe
various represenations.

2.3 An Execution Mec hanism

Writing and verifying programs has always beenpart of the Theorema project's
view of mathematical theory exploration [15]. It is alsoimportant in the context

24

of this paper, sincewewant usersof the systemto be ableto de ne newreasoners,
meaning programs that act on terms.

In order to keepthe system'sinput languageas simple and homogenousas
possible,we useits logical languageas programming language.Instead of xing
any particular way of interpreting formulae as programs, Mini-Tma supports the
generalconceptof computation mechanisms Computations are invoked from the
user interface by typing®

Computefterm; by ! comp;using! ax]

where term is the term which should be evaluated, comp namesa computation

mechanism, and ax is a set of previously declaredaxioms. Technically, comp is a

function that is giventerm and ax as argumerts, and which eventually returns

a term. The intention is that comp should compute the value of term, possibly
controlled by the formulae in ax. General purpose computation mecanisms
require the formulae of ax to belongto a well-de ned subsetof predicate logic,

which is interpreted asa programming language.A special purposecomputation

medanism might e.g. only perform arithmetic simpli cations on expressions
involving concreteintegers, and completely ignore the axioms. In principle, the

author of a computation medanism has complete freedomto choosewhat to do

with the term and the axioms.

We shall seein Sect. 3 that it is possibleto de ne new computation mech-
anisms in Mini-Tma. It is howewver inevitable to provide at least one built-in
computation mechanism which can be used to de ne others. This “standard'
computation medanism of Mini-Tma is currently basedon conditional rewrit-
ing. It requiresthe axioms to be equational Horn clauses® Program execution
proceedshy interpreting these Horn clausesas conditional rewrite rules, apply-
ing equalities from left to right. Rules are exhaustively applied innermost- rst,
and left-to-righ t, and applicability is tested in the order in which the axioms are
given. The conditions are evaluated using the same computation mechanism,
and all conditions have to evaluate to True for a rule to be applicable. The sys-
tem doesnot order equations, nor doesit perform completion. Termination and
con uence are in the responsibility of the programmer.

Mini-Tma doesnot include a prede ned conceptof proving mechanism The-
orem provers are simply realized as computation medanisms that simplify a
formula to True if they can prove it, and return it unchanged (or maybe par-
tially simpli ed) otherwise.

3 Dening Reasoners

Since reasonersare just special computation mechanismsin Mini-Tma, we are
interested in how to add a new computation medanism to the system. This is

5 Compute, by, using are part of the User Language usedto issue commandsto the
system. Keywords of the User Language will by setin a serif font.

& Actually , for convenience,a slightly more general format is accepted, but it is trans-
formed to equational Horn clausesbefore execution.

25

donein two steps: rst, using someexisting computation mechanism, we de ne
a function that takesa (quoted) term and a set of (quoted) axioms, and returns
another (quoted) term. Then we tell the systemthat the de ned function should
be usable as computation mecanism with a certain name.

Consider for instance an exploration of the theory of natural numbers. Af-
ter the assaiativity of addition has been proved, and used to prove seweral
other theorems, we notice that it is always possibleto rewrite terms in suc
a way that all sums are grouped to the right. Moreover, this transformation
is often useful in proofs, sinceit obviates most explicit applications of the as-
sociativit y lemma. This suggestsimplemerting a new computation mecanism
that transforms terms containing the operator Plusin such a way that all ap-
plications of Plus are grouped to the right. E.g., we want to transform the
term PlugPluga; b]; Pludc; d]] to Pluga; Plugb; Pludc; d]]], ignoring any axioms.
We start by de ning a function that will transform representations of terms,
e.g. PlugPluga; b]; Plugc; d]] to Pluga; Plugb; Plugc; d]]]. We do this with the fol-
lowing de nition:

Axioms [" shift parens'; any[s;t; t1;t»; acc; |; ax; comp];
simft; ax; comp] = add-termgcollec{t; fg]]

collect[Pludti;to]; acc] = collecty; collecft,; acc]]
is-symmol[t]) collecft; acc] = const; acc]
headt] 6 Plus) collecft; acc] = congt; acc]

add-termgfg] = 0

add-termgcongt; fg]] = t

add-termgcongs; congt; 1]] = Plugs; add-termgconst; 1]]]
]

The main function is simp, its argumerts are the term t, the set of axioms ax,
and another computation mecanism comp, which will be explained later. simp
performsits task by calling an auxiliary function collectwhich recursively collects
the fringe of non-Plus subtermsin a term, prepending them to an accunulator

acc that is passedin assecondargumert, and that starts out empty. To cortinue
our example, collecf{PlugPluga; b]; Plugc; d]]; fg] evaluatesto the list of (quoted)
terms f a; b; ¢; dg. This list is then passedto a secondauxiliary function add-terms
which builds a Plusterm from the elements of a list, grouping to the right. Note
that this transformation is done completely without referenceto rewriting or the
assaiativit y lemma. We are interested in programs that can perform arbitrary

operations on terms.

The function is-symiwl is evaluated to Trueif its argument represers a symbol
and not a complex term or any other object. This and some other operations
(equality of terms, ...) are handled by built-in rewriting rules since a normal
axiomatization would not be possible,or in somecasestoo ine cien t.

Given these axioms, we can now ask the systemto simplify a term:

Compute[simgPlugPluga; b]; Pludc; d]]]; fg;fg]; by ! ConditionalRewriting ;
using! fAxioms["shift parens'];:::g]

26

We are passingin dummy argumerts for ax and comp, since they will be dis-
carded anyway. Mini-Tma will answer with the term Pluga; Plugb; Plugc; d]]].

So far, this is an example of a computation that works on terms, and not
very di erent from a computation on, say, numbers. But we can now make simp
known to the systemas a computation medanism. After typing

DeclareComputefShiftParens simpg by ! ConditionalRewriting ;
using! fAxioms["shift parens',...q]

the system recognizesa new computation mecanism named ShiftParens We
can now tell it to

Compute[PlugPluga; b]; Plugc; d]]; by ! ShiftPareng

and receiwe the answer Pluga; Plugb; Pludc; d]]]. No more quotation is needed,
the behavior is just like for any built-in computation medanism. Also note that
no axioms needto be given, sincethe ShiftParenscomputation medanism does
its job without consideringthe axioms.

We now come badk to the extra argument comp: Mini-Tma allows compu-
tation mechanismsto be combined in various ways, which we shall not discuss
in this paper, in order to obtain more complex behavior. However, even when
actual computations are doneby di erent medanisms,within any invocation of
Compute, there is always one glotal computation mechanism, which is the top-
level one the user asked for. It happensquite frequertly that user-de ned com-
putation mechanismswould liketo delegatethe evaluation of subtermsthat they
cannot handle themselvesto the global computation mechanism. It is therefore
provided asthe argumert comp to every function that is usedasa computation
medanism, and it can be called like a function.

Calling a user-de ned computation mecanism declaredto be implemented
asa function simpon aterm t with someaxioms ax under a global computation
mechanism comp proceedsas follows: 1. t is quoted, i.e. a term t°is constructed
that represers t, 2. simgt% ax; comp] is evaluated using the computation meda-
nism and axioms xed in the DeclaeComputerinvocation. 3. The result s° should
be the represeriation of a term s, and that s is the result. If step 2 does not
yield a quoted term, an error is signaled.

The ShiftParenssimpli er is of coursea very simple example, but the same
principle can clearly be usedto de ne and executearbitrary syntactic manipu-
lations, including proof seardhh mecanismswithin the system'slogical language.
Since most reasoning algorithms proceedby applying reasoningrules to some
proof state, constructing a proof tree, the Theoremaimplementation will include
facilities that make it easyto expressthis style of algorithm, which would be
more cumbersometo implement in out prototypical Mini-Tma system.

4 Reasoning Ab out Logic

To prove statemerts about the terms and formulae of the logic, we needa prover
that supports structural induction on terms, or term induction for short.

27

An interesting aspect is that terms in Mini-Tma, like in Theorema, can have
variable arity|there is no type system that enforcesthe arities of function
applications|and arbitrary terms can appear as the headsof complex terms.
Sequencevariables are very corveniert in dealing with the variable length argu-
mernt lists. While axiomatizing operations like capture avoiding substitution on
arbitrary term represenations, we employed a recursion scheme basedon the
obsenation that a term is either a symbol, or a complex term with an empty
argumert list, or the result of adding an extra argumert to the front of the argu-
mert list of another complex term, or a lambda abstraction. The corresponding
induction rule is:’

8 Ps]
is-symbol[s]

is—ter8m[f 1 (P [f]) P [f []])
By, (PN P PIf (he: 1)
is-termfhd]

are-terms]tl]
is—te?m[t] (P [t]) P [—[X; t]])

is-symbol[x]

Pt

is-term[t]

Using the medcanism outlined in Sect. 3, we were able to implement a simple
term induction prover, that appliesthe term induction rule once,and then tries
to prove the individual casesusing standard techniques (conditional rewriting
and casedistinction), in lessthan 1000 characters of code. This nasve prover is
su cien t to prove simple statemerts about terms, like e.g.
8 (not-fredt; v]) tfv! sg=1t)
is-term[t]

is-symbol[v]
is-term[s]

where not-fredt; v] denotesthat the variable v does not occur free in t, and
tfv ! sg denotescapture avoiding substitution of v by s in t, and both these
notions are de ned through suitable axiomatizations.

5 Reasoning Ab out Reasoners

Program veri cation plays animportant role in the Theoremaproject [15]. Using
predicate logic as a programming languageobviously makesit particularly easy
to reasonabout programs' partial correctness.Of course,termination hasto be
proved separately

With Mini-Tma's facilities for writing syntax manipulating programs, and
for reasoning about syntactic ertities, it should come as no surprise that it is

7 [8]q[x] is just convenient syntax for 8 (p[x]) q[x])
pix X

28

possibleto use Mini-Tma to reasonabout reasonerswritten in Mini-Tma. The
rst application that comesto mind is proving the soundnessof new reasoners:
they should not be able to proveincorrect statemerts. Other applications include
completenesdor a certain classof problems, proving that a simpli er produces
output of a certain form, etc.

Sofar, we have concerirated mainly on soundnessproofs. In the literature,
we have found two ways of proving the soundnessof reasoners:the rst way
consistsin proving that the new reasonercannot prove anything that cannot be
proved by the existing calculus. Or, in the caseof a simpli er like ShiftParensof
Sect. 3, if a simplier simpli es t to t% then there is a rewriting proof betweent
and t° This approad is very dicult to follow in practice: it requires formaliz-
ing the existing calculus, including proof trees, possibly rewriting, etc. Often the
soundnessof a reasonerwill depend on certain properties of the involved oper-
ations, e.g. ShiftParensrequiresthe assaiativit y of Plus sothe knowledge base
has to be axiomatized as well. Moreover, to achieve reasonableproof automa-
tion, the axiomatization needsto be suitable for the employed prover: nding a
proof can already be hard, making prover A prove that proverB will nd a proof
essetially requires re-programming B in the axiomatization. And nally , this
correctnessargument works purely on the syntactic level: any special reasoning
techniques available for the mathematical objects some reasoneris concerned
with are uselesdor its veri cation!

We have therefore preferred to investigate a secondapproach: we prove that
anything a new reasonercan prove is simply true with respect to a model se-
mantics. Or, for a simplier that simplies t to t° that t and t° have the same
value with respect to the semartics. This approac has also beentaken in the
very successfuNgThm and ACL2 systems[2,14]. It solvesthe above problems,
sinceit is a lot easierto axiomatize a model semariics for our logic, and the
axiomatization is also very easyto use for an automated theorem prover. The
knowledge base does not needto be “quoted’, since much of the reasoningis
about the valuesinstead of the terms, and for the samereason,any previously
implemented special reasonerscan be employed in the veri cation.

Similarly to ACL2, we supply a function evalt;] that recursively evaluates
a term t under someassignmen that provides the meaning of symbols® To
prove the soundnessof ShiftParens we have to show

eva[simdt; ax; comp];]= evalt;]

for any term t, any ax and comp and any with [0] = 0 and [Plug = Plus
To prove this statemert inductiv ely, it needsto be strengthenedto

evaladd-termgcollec{t; acc]];] = eva[Pludt; add-terms$acc]];] ()
for any acc, and an additional lemma

evaladd-termgcongt; 1]]; 1= Pludevalt;];evaladd-termdl];]]
mto be taken when applying evalto terms containing eval as has already

beenrecognized by Boyer and Moore [3].

29

is required. And of course,the assaiativit y of Plus needsto known. Mini-Tma
cannot prove () with the term induction prover described in Sect. 4, sinceit is
not capable of detecting the special role of the symbol Plus Howewer, using a
modi ed induction prover which treats compound terms with head symbol Plus
as a separatecase,(*) can be proved automatically.

Automatically extracting such casedistinctions from a program is quite con-
ceivable, and one possibletopic for future work on Mini-Tma.

Ultimately , we intend to improve and extend the preserted approacd, sothat
it will be possibleto successiely perform the following tasks within a single
framework, usinga commonlogical languageand a singleinterfaceto the system:

1. de ne and prove theoremsabout the conceptof Grebner bases[4],

2. implement an algorithm to compute Grebner bases,

3. prove that the implementation is correct,

4. implement a new theorem prover for statemerts in geometry basedon co-
ordinatization, and which usesour implementation of the Grebner bases
algorithm,

5. prove soundnessof the new theorem prover, using the shovn properties of
the Grebner basesalgorithm,

6. prove theoremsin geometry using the new theorem prover, in the sameway
as other theorem provers are usedin the system.

Though the casestudies performed sofar are comparatively modest, we hope to
have corvinced the reader that the outlined approadc can be extendedto more
complex applications.

6 Foundational Issues

Most previous work on re ection in theorem proving ervironments (seeSect. 7)
has concertrated on the subtle foundational problems arising from adding re-
ection to an existing system. In particular, any axiomatization of the fact that
a re ectiv ely axiomatized logic behaves exactly like the oneit is being de ned
in can easily lead to inconsistency In our case,care needsto be taken with
the evaluation function eval which connectsthe quoted logic to the logic it is
embeddedin.

Howewer, within the Theoremaproject, we are not particularly interestedin
the choiceand justi cation of asinglelogical basis.Any framework a mathemati-
cian considersappropriate for the formalization of mathematical content should
be applicable within the system|b e it one or the other avor of set theory,
type theory, or simply rst-order logic. Any restriction to one particular frame-
work would mean a restriction to one particular view of mathematics, which is
something we want to avoid. This is why there is no suc thing as the logic of
Theorema. But if there is no unique, well-de ned basic logic, then neither can
we give a preciseformal basisfor its re ectiv e extension.In fact, sincethe way in
which sudch an extensionis de ned is itself an interesting mathematical subject,
we do not even want to restrict ourselvesto a single way of doing it.

30

This is of coursesomewhatunsatisfying, and it is actually not the wholetruth.
We are trying to discover a particularly viable standard method of adding re-
ection and re ectiv e reasoners And we are indeedworried about the soundness
of that method. It turns out that one can corvince oneselfof the soundnessof
such an extension provided the underlying logic satis es a number of reasonable
assumptions.

Let a logical languageL be given. In the context of formalization of mathe-
matics, we may assumethat syntactically, L consistsof a subsetof the formu-
lae of higher order predicate logic. Typically, sometype system will forbid the
construction of certain ill-t yped formulae, maybe there is also a restriction to
rst-order formulae.

Most logics permit using a countably in nite signature, in fact, many cal-
culi require the presenceof in nitely many constart symbols for skolemization.
Adding a quoted symbol a for any symbol a of L will then be unproblematic.

Next, we can add a function is-symtol, which may be de ned through a
courtably in nite and e ectiv ely enumerablefamily of axioms, which should not
pose any problems. The function is-term can then be axiomatized recursively
in any logic that permits recursive de nitions. We can assumefor the momert
that the logic does not include quoting for is-symiol or is-term, and that the
functions will recognizethe quotations of symbols and terms of L, and not of
the re ectio ve extensionof L we are constructing.

Likewise, if the evaluation of basic symbols is delegatedto an assignmen

, it should be possibleto give an axiomatization of the recursive evaluation
function evalwithin any logic that permits recursive de nitions:

is-symml[t]) evalt;]= [t]
is-term{f]) evalf [t]; 1= evalf;]levalt;]]

The exact de nitions will depend on the details of L. For instance, if L is typed,
it might be necessaryto introducea family of evalfunctions for terms of di erent
types, etc. Still, we do not believe that soundnessproblems can occur here.

The interesting step is now the intro duction of an unquoting function ung,
which relates every quoted symbol a to the ertity it represens, namely a. We
de ne unq by the axioms

ungsy = s
for all symbols s of L, where s° denotesthe result of applying onelevel of re ec-
tion quoting to s, i.e. ungal = a, ungb] = b,...The formula ungung = unqis
not an axiom sincethis would preciselyleadto the kind of problemsidenti ed by
Boyer and Moore in [3]. If they are only presert for the symbols of the original
logic, these axioms do not poseany problems.

All in all, the combined extension is then a consenative extension of the
original logic, meaning that any model M for a set of formulae of L can be
extendedto a model M %of in the re ectiv e extension, such that M © behaves
like M when restricted to the syntax of L. Moreover, in the extension, the
formula

eva[t®ung = t

31

holds for every term t of L with quotation t° which justi es using evalto prove
the correctnessof new reasoners.

To allow for seweral levelsof quotation, this processcan be iterated. It is easy
to seethat the is-symtwl, is-term, and evalfunctions de ned for consecutie levels
can be merged. For the ung function, one possiblesolution is to usea hierarchy
ung® of unquoting functions, where there is an axiom ung® [ung)] = ung{l) if
andonly if j < i.

Another di cult vy isthe introduction of new symbols required by many calculi
for skolemization, which can be jeopardized by the presenceof knowledge about
the unquoting of quoted symbols. Here, a possible solution is to x the set of
symbols for which ung axioms are required before proofs, asis donein ACL2.

7 Related Work

John Harrison haswritten a very thorough survey [11] of re ection mechanisms
in theorem proving systems,and most of the work reviewed there is in someway
connectedto ours.

The most closely related approac is surely that of the NgThm and ACL2
systems, seee.g. [2,14]. The proving power of these systemscan be extended
by writing simpli ers in the sameprogramming languageas that which can be
veried by the system. Before using a new simpli er, its soundnesshas to be
shown using a technique similar to that of Sect. 5. Our work extends theirs in
the following respects:

{ Weusea stronger logic, ACL2 is restricted to rst-order quarti er-free logic.

{ Our framework allows coding full, possibly non-terminating theorem provers,
and not just simpli ers embeddedin a xed prover.

{ Through the comp argumen, reasonerscan be called recursively.

{ The specializedquoting syntax and sequencevariables make Mini-Tma more
pleasart and practical to use.

{ In Mini-Tma, Meta-programming can be usedwithout beingforcedto prove
soundnessrst, which is useful for experimentation and exploration.

Experimerts in re ection have also recertly beendonein Coq [13], but to
our knowledge these are restricted to rst-order logic, and meta-programmed
provers cannot be used as part of a proof construction. There has also been
somework on adding re ection to Nuprl [1]. This is still in its beginnings, and
its principal focus seemsto be to prove theoremsabout logics, while our main
goalis to increasethe system'sreasoningpower.

Recent work on the self-veri cation of HOL Light [12]is of a di erent char-
acter. Here, the HOL Light systemis not usedto verify extensionsof itself, but
rather for the self-veri cation of the kernel of the system. Self-veri cation raises
somefoundational issuesof its own that do not occur in our work.

In the context of programming languages,LISP has always supported quot-
ing of programs and meta-programming, e.g. in macros. Amongst more modern
languages,Maude should be mentioned for its practically employed re ectiv e

32

capabilities, seee.g.[9]. A quoting mechanism is part of the language,and it is
usedto de ne the “full' Maude languagein terms of a smaller basic language.
However, this re ection is just usedfor programming, there is no reasoningin-
volved.

8 Conclusion and Future Work

We havereported on ongoingreseard in the frame of the Theoremaproject, that
aims at making coding of new (special purpose) reasonersand reasoningabout
them, e.g.to prove their soundness,an integral part of the theory exploration
processwithin the system.The approach has beenevaluated in the prototypical
implementation Mini-Tma.

The main features of our approach are to start from a logic with a built-in
quoting mechanism, and to use the samelogic for the de nition of programs,
and in particular reasoners.We have shown that this makesit possibleto de-
ne reasonerswhich can be used by the system like the built-in ones. It also
enablesthe userto reasonabout terms, formulae, etc. and also about reasoners
themseles.

We havebrie y discussedwo alternativ esfor de ning and proving the sound-
nessof new reasoners,and concludedthat an approac basedon formalizing a
model sematrtics is more suitable for automated deduction than onethat is based
on formalizing proof theory.

Future work includesimproving the execution e ciency of programs written
within the Theorema logic. Improvemerts are also required for the theorem
proving methods, i.e. better heuristics for term induction, program veri cation,
etc., but alsothe production of human-readableproof texts or proof trees, which
are essetial for the successfulapplication of the theorem provers. All these
developmerts will have to be accompaniedby casestudies demonstrating their
e ectiv eness.

Ac knowledgmen ts

The authors would like to thank the other members of the Theorema Group,
in particular Temur Kutsia and Markus Rosenkranz, for cortributing to the
numerousintense discussionsabout the preseried work.

References

1. Eli Barzilay. Implementing Re ection in Nuprl. PhD thesis, Cornell Univ ersity
Computer Science,2006.

2. Robert S. Boyer, Matt Kaufmann, and J Strother Moore. The Boyer-Moore the-
orem prover and its interactive enhancemen. Computers and Mathematics with
Applications, 29(2):27{62, 1995.

3. Robert S. Boyer and J Strother Moore. The addition of bounded quanti cation
and partial functions to a computational logic and its theorem prover. J. Autom.
Reasoning, 4(2):117{172, 1988.

33

10.

11.

12.

13.

14.

15.

16.

17.

18.

Bruno Buchberger. Ein algorithmisches Kriterium fur die Losbarkeit eines alge-
braischen Gleichungssystems. Aequationes Math., 4:374{383, 1970. English trans-
lation published in [8].

Bruno Buchberger. Lifting knowledgeto the state of inferencing. Tedcnical Report
TR 2004-12-03,Researd Institute for Symbolic Computation, Johannes Kepler
Univ ersity, Linz, Austria, 2004.

Bruno Buchberger. Proving by rst and intermediate principles, November 2,
2004. Invited talk at Workshop on Typesfor Mathematics / Libraries of Formal
Mathematics, University of Nijmegen, The Netherlands.

Bruno Buchberger, Adrian Craciun, Tudor Jebelean, Laura Kovacs, Temur Kutsia,
Koji Nakagawa, Florina Piroi, Nikolaj Popov, Judit Robu, Markus Rosenkranz,and
Wolfgang Windsteiger. Theorema: Towards computer-aided mathematical theory
exploration. Journal of Applied Logic, pages470{504, 2006.

Bruno Buchbergerand Franz Winkler. Grobner basesand applications. In B. Buch-
bergerand F. Winkler, editors, 33 Years of Grobner Bases London Mathematical
Society Lecture Notes Series251. Cambridge Univ ersity Press, 1998.

Manuel Clavel and Jose Meseguer. Re ection in conditional rewriting logic. The-
oretical Computer Scienae, 285(2):245{288, 2002.

Nicolas G. de Bruijn. Lambda calculus notation with namelessdummies, a tool for
automatic formula manipulation, with application to the Church-Rossertheorem.
Indagationes Mathematicae (Proceedings), 34:381{392, 1972.

John Harrison. Metatheory and re ection in theorem proving: A survey and cri-
tique. Tedhnical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK,
1995.

John Harrison. Towards self-veri cation of HOL Light. In Ulrich Furbach and
Natarajan Shankar, editors, Automated Reasoning, Thir d International Joint Con-
ference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume
4130 of LNCS, pages177{191. Springer, 2006.

Dimitri Hendriks. Proof re ection in Cog. Journal of Automated Reasoning, 29(3{
4):277{307, 2002.

Warren A. Hunt Jr., Matt Kaufmann, Robert Bellarmine Krug, J Strother Moore,
and Eric Whitman Smith. Meta reasoningin ACL2. In Joe Hurd and Thomas F.
Melham, editors, Proc. Theorem Proving in Higher Order Logics, TPHOLs 2005,
Oxford, UK, volume 3603 of LNCS, pages163{178. Springer, 2005.

Laura Kovacs, Nikolaj Popov, and Tudor Jebelean. Verication environment in
Theorema. Annals of Mathematics, Computing and Teleinformatics (AMCT) ,
1(2):27{34, 2005.

Temur Kutsia and Bruno Buchberger. Predicate logic with sequencevariables and
sequencefunction symbols. In A. Asperti, G. Bancerek, and A. Trybulec, editors,
Proc. 3rd Intl. Conf. on Mathematical Knowledge Management, MKM'04 , volume
3119 of LNCS, pages205{219. Springer Verlag, 2004.

Frank Pfenning and Conal Elliot. Higher-order abstract syntax. In Proc. ACM SIG-
PLAN 1988 Conf. on Programming Language design and Implementation, PLDI
'88, Atlanta, United States pages199{208. ACM Press, New York, 1988.
Stephen Wolfram. The Mathematica Book. Wolfram Media, Inc., 1996.

34

On the Eciency of Geometry Theorem Proving
by Greobner Bases

Shuichi Moritsugu and Chisato Arai

Univ ersity of Tsukuba,
Tsukuba 305-8550,lbaraki, JAPAN,
fmoritsug, arai g@slis.tsukuba.ac.jp

Abstract. We show experimental results for proving Euclidean geom-
etry theorems by Grebner basis method. In 1988, Chou Shang-Ching
proved 512 theorems by Wu's method, and reported that 35 amongthem
remained unsolvable by Grobner basis method. In this paper, we tried to
prove these 35 theorems by Greobner basis method, and we succeededin
proving 26 theorems but have found that the other 9 theorems are essen-
tially dicult to compute Grobner bases.We show the table of timing
data and discussseweral devicesto complete the proof by solving radical
membership problem.

1 Intro duction

In the area of medhanical proving geometry theorems, Wu's method [21] has
beenwidely and successfullyused since Wu Wen-Tsun intro duced the original
algorithm in 1977. Meanwhile, another approach [9,10,20] based on Grobner
basismethod [2] was also proposedand has been studied.

In 1988, Chou Shang-Ching[3] published an extensive collection of 512 the-
oremsthat were proved by Wu's method. He also applied Grebner basismethod
and succeededin proving 477 theorems among them. However, it is reported
that none of the computation for the other 35 theorems nished within 4 hours.

Sincethen, there seemsto have beenfew attempts to recon rm Chou's re-
sults, even though the inferiority of Grebner basis method to Wu's method is
sometimespointed out from the viewpoint of computational e ciency . However,
arecert project [7] is in progress,which is intended to collect and construct the
bendchmark including the Chou's problems.

Independertly, our group has beentrying to prove the above 35 theorems
by Grebner basismethod since 2004, and we succeededn proving 26 theorems
among them [13]. On the other hand, we considerthat the 9 theoremsleft are
essetially dicult to compute the Grobner bases.

In this paper, we show the results of computation by both of Grebner basis
method and Wu's method, and we discussthe comparison of seweral ways to
solve the radical membership using Maple11 [12] and Epsilon library [19].

2 Algebraic Pro of by Greobner Basis Metho d

2.1 Radical Mem bership Problem

We translate the geometric hypothesesin the theorem into polynomials

According to Chou [3], we construct the points in order, using two types of
variables:

{ uj: parameterswhosevaluesare arbitrarily chosen,
{ x;: variables whosevaluesdepend on other u;; X.

Next, we translate the conclusionof the theorem into

g follows generically from fq;:::;f- g2 (EHESH D

There exist several methods to solve this type of radical membership problem,
and we adopt the following proposition [4] whosealgorithmic computations are
basedon Grebner bases.More precisedescription of the algorithms and further
referencescan be found in [18].

Prop osition 1 (Radical Mem bership) Let K be an arbitrary eld and let

basis G of | Withpalny term order, and let g 2 K [x31;:::;Xn] be another polyno-
mial. Then, g2 | is equivalentto each of the following three conditions.

(@ 9s2N; ¢ ¢ o (Compute for s= 1;2;:::3)

(b) ForJ = (I;1 yg K [X1;:::;Xn;Y], we haveits Grobner basis with any
term order becomes(1).

(c) Ford = (I;0 vy) K [X1;:::;Xn;Yy], if we compute the Grobner basis

polynomial suchasy® (9s2 N). 1

due to the term order and is not suitable for proving geometric theorems.

When we apply the formula (a), we rst try g ¢ o. Sinceyou haves = 1
in almost all casesfor geometry theorems [3,4], this method seemspractical.

Actually, we obtained g ¢ 0in all the 26 theorems we succeededn proof by
Grobner basismethod.

The experimental results imply that the formula (b) desenesconsideration
from the viewpoint of computational e ciency . Hence,later we discussthe com-
parison of the methods (a) and (b).

36

C (u2,u3) D (x1, x2)

A (0,0) B (u1, 0)

Fig. 1. Parallelogram

2.2 Example

In order to describethe o w of the implemented algorithms, we shav an example
of proof by Grebner basismethod and Wu's method [3,4,19].

Example 1 (P arallelogram) We show the proof for the theorem \ the two
diagonalsof any parallelogramintersectat a point which bisectsboth diagonals".
The following polynomial expressionsare the output of our program, where the
computations are carried out over Q(us; Uz; U3) [X1; X2; X3; X4].

(1) Let A(0;0); B(u1;0); C(uz;uz); D(x1;X%2); N(X3;X4) be the points shovn
in Fig.1. We translate the geometric hypotheses(in order) as follows.
(I) AB kCD) fl = U1Xo Uzus
(II) AC kBD) foi= UxXy U3Xy+ Usug
(i) A;N;D arecollinear) fzi= XaXp+ X3Xo
(iv) B;N;C arecollinear) fa:= (U U)Xg+ UsXz UszU;g
(2) We translate the conclusionsof the theorem.
() AN =ND) O1 = 2XgX2 + 2X3X1 X3 X3
(i) BN =NC) gp:=2usxg+ 2(Uz Uj)Xz U3 U3+ u?
(3) Proof 1: Grobner basis method
(i) Using the lexicographic order with x4 > X3 > X2 > X1, we compute the
Greobner basisfor the ideal | = (f1;f2;f3;f4):

G=12x4 us; 2x3 (u2+ ug); X2 us; X1 (uz+ upg:

(Note) Collecting the prime factors in denominators throughout the
Grebner basis computation, we obtain subsidiary conditions
fupr 6 0; u, 6 0; u, uy 6 0; uz & 0g. However, we restrict
ourselvesto the \generic case"[4], and here we do not discuss
the constraint for the parametersu;.

(i) Reducing the conclusiong; by G, we obtain g; ¢ 0, henceg; 2 | is

proved. For the conclusiong, it is similarly provedthat g, 2 |. I

(4) Proof 2: Wu's method
We apply the functions "CharSet' and “prem' using Epsilon library [19] on
Maplell[12].

37

(i) Using the order x4 > X3 > X2 > X3, we compute the characteristic
polynomials for ffq;f,;f3;f4g and let them
CS=1fxs Uz Uz uiXz usur; (U2 U)Xz + X3X1 UrXi;

(U2 U1)Xg+ uzxs usuig =1 fhy;hz;hs hag

(i) For the conclusiong; and CS, we compute the sequenceof pseudore-
mainderswith X4;X3;X2; X1 in order:
O3 := prem(gs; ha; Xa)
= 2uzXszXz 2(Uz ug)Xszxy + (uz ul)x§ + (uz ul)x§ + 2U3U1X2;
012 = prem(gs; hs; X3)
= (U2 u)(x3x1+x3 (U U)X3 (Uz+ Up)x? 2uzUiXp);
Ou = prem(giz; hz; X2) = ui(uz up)(xXf+ u3)(x1 Uz Uy);
Q10 := prem(gi1; hi; x1) = O
This result meansthat the conclusiong; is proved.

(iii) For the conclusiong,, we compute the sequencels; Oz2; O21; G20 SimMi-
larly and obtain gyo = 0, which meansthat g, is proved. I

3 Results of Exp eriment

3.1 Environmen t and Results of Exp erimen t

Table 1. Environment for Maple & Epsilon

CPU Pentium 4 (3.6 GHz)
os Windows XP professional ed.
Main Memory 20GB

In the computational environment shown in Table 1, we tried to prove 35
among Chou's 512 theoremsthat were not solved by Grebner basis method in
1988.We extracted them from the list of timing data by Chou [3]in its Appendix.

Using the graded-rewerse-lex(grevlex) order with x, > x, 1 > > Xq,

Maplell [12]. For comparison, Wu's method was also applied using Epsilon li-
brary [19] over Maplell.

As aresult, we succeededn proving 26 amongthe 35theorems,but the other
9 theorems remained unsolvable. In our previous paper [13], we tried to prove
them using three computer algebra systems: Reduce3.6[8] and Risa/Asir [14],
adding to Maplel0 [11]. However, none of these systemshas succeededyet in
computing Grebner basesfor the same9 theorems, mainly becauseof the lack
of memory. (Maple10 seemgust to take very long time to exhaustthe memory.)

For the computation of Grebner basesby Maplell, we used the option
method=maplef4 rst, but it failed in somecases.Then we tried again using

38

the option method=buchberger, and we succeededin proving 26 theorems in
total. It doesnot seemclear yet which option is suitable for theserational ex-
pressioncoe cien t casesQ (u;) [xi].

We shaw the precisetiming data in Table 2, where the columns and symbols
indicate the following. In the next subsections,we show the details of devicesfor
computation (} , |).

X number of dependert variablesin the hypotheses
#u; number of free parametersin the hypotheses
#h; number of polynomials for the hypotheses

failure (: insu cien t memory)
successhy direct computation
o successy somedevices
Maple(1) Using the formula (a) in Proposition 1
Maple(2) Using the formula (b) in Proposition 1
Epsilon(1) Using the functions "CS' and “prem'
Epsilon(2) Using the function "RIM" for radical ideal membership

Wu's method (Epsilon(1)) and Wang's method [16] (Epsilon (2)) seemun-
stable for a few examples,but we considerthat these 35 theoremsin total can
be proved by Epsilon library.

3.2 Device 1: Incremen tal Computation (})

Fig. 2. Example 48

In sometheorems,we succeededn computing the Grebner basisby grouping

We can seethe relations of polynomials f; by their inclusion of variables, be-
causethe geometric hypothesesare constructed in somekind of order. However,

39

Table 2. Success Failure and CPU-Time(sec) for Chou's Examples

No. |# x; # u; # h;| Maple(1) |Maple(2) |Epsilon(1) |Epsilon(2)
ex6 | 12 11 12 1.33 2.06
ex7 |12 11 12 38.73 9.00
ex8 |11 8 13 0.92 7.00 0.59 0.31
ex10|/ 20 6 23 0.52 7.38
ex11| 20 6 23 0.72 9.31
ex12| 20 6 23 1.70 6.45
ex13| 17 6 19 0.27 31.53
exl4| 17 6 19 0.16 0.86
ex19| 17 6 19 3.67

ex21|11 4 13 0.69 0.58 0.06 0.58
ex26| 13 7 14 0.39 0.16 1.99 2.63
ex40| 15 3 15 18.97 42.48 3.91 14.86
ex45| 14 3 14 0.22 0.14 0.06 0.20
ex48| 10 6 11|} b545.11] 51531 0.20 0.44
ex63| 15 6 19 0.19 0.13 1.17 0.78
ex72{ 10 6 13} 0.41 1.300 1468.17 56.08
ex80| 14 5 16 19.34 10.03
ex94| 7 3 8 4.58 4.50 0.02 0.05
ex96| 7 4 7|} 11.27 11.11 0.02 0.05
ex99| 10 4 13|| 33.28 3.77 2.73 0.42
ex106§ 8 4 9 2.09 0.06 1.59 0.28
ex109 7 6 11| 2.80 0.11 1247.34 7.24
ex1l15§ 8 3 10| | 1.41 0.33 0.11 0.09
ex240 10 3 10| | 9.69 0.36 0.55 162.95
ex310 14 5 16|} 6.34 2.70 295.2 17.41
ex311 13 4 17 0.27 0.24 0.05 0.20
ex315 20 4 23|} 1.97] 1.92 0.19 0.59
ex316 24 4 31|} 11.34 2.27 1004.00 493.69
ex367 14 5 18 17.34 2.63 11.25 0.08
ex379 9 4 11 0.59 0.44 0.05 0.22
ex395 5 3 6 0.16 0.14 0.02 0.38
ex396 14 5 16| | 3.05 2.22 2.13 138.33
ex404 7 6 9 21.53 0.02 1.27 0.14
ex492 17 3 18 0.38 0.23 3.75 1.75
ex507 8 7 8 1.45 0.84 0.49 0.47

40

the optimal way is not necessarilyfollowed in the inner function for Grobner
bases.Consequetly, this incremertal computation worked e ectiv ely for some
examples,even though it is heuristic and not algorithmic.

Example 2 (Example 48 [3]: Fig.2) If ve of six vertices of a hexagonlie
on a circle, and the three pairs of opposite sides meet a three collinear points,
then the sixth vertex lies on the samecircle.

Hyp otheses We translate the following conditions in order: OA = OC, OA =
OB, DO = OA, EO= OA, Pisonline AB, Sisonline EA, Sison
line CD, Qisonline BC, Qisonline SP, F isonline QE, F isonline

PD. Then we obtain 11 polynomials: f1;:::;f11.

Conclusion We let OA = OF be expressedby g.

Pro of We compute the Grobner basis G in two steps: ((f1;:::;fg;f11);f10),
becausef 1o haslonger form than others. Then we obtain g ¢ o]

3.3 Device 2: Decomp osition of the ideal (]|)

Fig. 3. Example 109

In some cases,we cannot obtain the conclusion g ¢ 0 becauseof insuf-
cient hypotheses.The prover dewveloped by Chou [3] found automatically the
nondegenerateconditions that should be addedto the hypotheses.Using Chou's
results, we added sudh nondegenerateconditions for x;'s and recomputed the
Grebner bases.

Example 3 (Example 109 [3]: Fig.3) Froma point P on the line joining the
two common points A and B of two circles O and O;, two secants PCE and
PFD are drawn to the circlesrespectively. Showthat PC PE = PF PD.

41

Hyp otheses We translate the following conditions in order : Oy is on line OX,
AX ? XO, X is the midpoint of AB, P isonline AB, EO = OA,
CO=0A, Cisonline PE, FO; = O;A, DO; = O;A, D isonline PF.

Then we obtain 11 polynomials: fq1;:::;f11
Conclusion Welet PC PE = PF PD be expressedy g.
Pro of Forl| = (f1;:::;f11), we have g 62 . Hencewe needto add the following

nondegenerateconditions.
C(x4;X3) 8 E(X2;U5)) hy:=(x3 us)zz 1=0
D(x7;%s) 6 F(X5;uUg)) hy, = (X6 Ug)zz 1=0
g2 19%and complete the proof.
Note 1 The above nondegenerateconditions canbe alsocomputed by the Grob-

and Xg in |, we obtain the following (k = 3; 6):

I 3(x3 us) "3(x3); (X6 Ue) '"e(Xe) ' k(Xk) 2 Q(uy;:::ug)[Xk]:

= (I;"3;"6), then we have g 2 I"and complete the proof. This implies
that x3 Uus 6 Oand xg Ug 6 O are necessaryas nondegenerateconditions.
Note 2 The theorem itself remainstrue for the caseswhereC = E or D = F.
Above nondegenerateconditions meansthat the sameset of polynomials can-
not expresssuc tangent casesn common. This kind of automatic derivation
of nondegenerateconditions has been already discussedby se\eral authors
such as|[1,15]. I

The following example is not included in the 512 theorems by Chou [3],
but it is known as the casewhere the decomposition of componerts and rather
complicated computation are neededto con rm the conclusion. Seweral authors
have succeededn proving this theorem sofar [17], but there doesnot seemto
be any attempt to apply Grebner method to it. We proved this theorem by the
following way basedon Grebner basisalgorithms.

Example 4 (Th ebault-T aylor) We follow the second formulation in Chou
[3](pp.67-68), where someauxiliary points are addedto Fig.4.

tually, this computation fails becauseg is not reducedto 0 by the Grobner
basis, but its normal form will explode.

Step 2 Wetry to nd areducible univariate polynomial in the ideal I, and rst
obtain ' 5(xs) ' (xs) 2 |, wherethe degreein xs of ead factor is two.
Step 3 We let "= (I;' 5(xs5)), but again we have g 62" by computing the
Grebnerbasisof I. Then, wetry to nd areducible univariate polynomial in
I, and obtain ' 11(x11) ' 9;(x11) 2 I, wherethe degreein x;; of ead factor

is two.

42

Fig. 4. Thebault-Taylor's Theorem

Step 4 We let = (1;' ¢(xs)), but again we have g 62I° by computing the
Grebner basisof . Then, we try to nd a reducible univariate polynomial
in % and obtain ' $9(x11) ' 9¥x11) 2 0 where the degreein x;; of eat
factor is two.

Step 5 Thusthe hypothesesideal | is decompsedinto the following 4 compo-
nerts:

le=((13" 5(xs)); " 12(X11)),

l2= ((1;" s5(xs)); ' §1(x11)),

I3 = ((1;" 2(xs)); ' §9(x11)),

la=((1;" 3(xs)); " 338x11)).
Then, we obtain g 2 1; and g 62 ;;13;14 by computing ead Greobner basis
of Ij. Therefore, the conclusionis con rmed to be true only in the ideal | ;.

It took about 1900 secondsas a whole for the above computation in the same
ernvironment asTable 1. More than 95%of the CPU time wasusedfor computing
Grobner basesof | ;" and ® in steps 1, 3 and 4 in total. Sincethis formulation
is basedon a rather naive way to decomposean ideal, its improvemert should
be consideredfor a future work.

43

4 Concluding Remarks

Through all the experiments, we nd that the following 9 among Chou's 512
theoremsare essetially dicult to compute their Grobner basesby any means
in a moderate computational ernvironment at presert.

Ex.6,7,10,11,12Pascal'stheorem and related ones

Ex.13 Steiner's theorem

Ex.14 Kirkman's theorem

Ex.19 Brianchon's theorem (The dual of Pascal'stheorem)
Ex.80 Theorem of Pratt-W u

Except for Pratt-W u, 8 of the 9 theoremsare related to Pascal'stheorem (gures
constructed from 6 points on a conic). Consequetly, these gures vyield rather
complicated polynomial systemswith more variables and parametersthan the
other solvable 26 systems.Therefore, it seemsstill di cult to compute Grobner

Finally, we itemize the remarks on our presen results.

(1) Formulae(a) and (b) in Proposition 1 are comparable.As showvn in Table 2, it

(2) If we clear the common denominator and compute in Q [u;][x;], then inter-
mediate expressionsexplode seriously The total number (m+ n) of variables
has sewere in uence, and the computation of Grebner basis becomesmuch
more di cult by reversee ect.

(3) It is not known yet how e cien tly new algorithms such asF4 [5]; F5 [6] work
in the rational expressioncoe cien t caseQ (u;) [xi]. In Maplel1,the option
method=maplef4 is usually faster but requires more memory spacethan the
option method=buchberger.

Acknowledgemen ts We are grateful to Ms. R.Kikuchi for permitting us to
convert her original program written in Reduce.

References

1. Bazzotti, L., Dalzotto, G., and Robbiano, L.. Remarks on Geometric Theorem
Proving, Automated Deduction in Geometry 2000 (Richter-Gebert, J. and Wang,
D., eds.), LNAI , 2061, Zurich, Springer, 2001, 104{128.

2. Buchberger, B.: Ein Algorithmus zum Aunden der Basiselemente des Restk-
lassenringesnach einem nulldimensionalen Polynomideal, PhD thesis, Univ ersitat
Innsbruck, 1965.

3. Chou, S.-C.: Mechanical Geometry Theorem Proving, D.Reidel, Dordrecht, 1988.

4. Cox, D., Little, J., and O'Shea, D.: Ideals, Varieties, and Algorithms (2nd ed.),
Springer, N.Y., 1997.

44

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Faugere, J.-C.: A New E cien t Algorithm for Computing Grobner Bases(Fa4), J.
Pure and Applied Algebra, 139, 1999, 61{88.

Faugere, J.-C.: A New E cien t Algorithm for Computing Greobner Baseswithout
Reduction to Zero (Fs), ISSAC 2002 (Mora, T., ed.), Lille, ACM, 2002, 75{83.
Grabe, H.-G.: The SymbolicData Project, http://www.sym bolicdata.org/, 2000{
2006.

Hearn, A. C.: Reduce User's Manual (Ver. 3.6), RAND Corp., Sarta Monica, 1995.
Kapur, D.: Using Grobner Basesto ReasonAb out Geometry Problems, J.Symkolic
Computation, 2(4), 1986, 399{408.

Kutzler, B. and Stifter, S.: On the Application of Buchberger's Algorithm to Auto-
mated Geometry Theorem Proving, J.Symbolic Computation, 2(4), 1986, 389{397.
Maplesoft: Maple 10 User Manual, Maplesoft, Tokyo, 2005. (in Japanese).
Maplesoft: Maple 11 User Manual, Maplesoft, Tokyo, 2007. (in Japanese).
Moritsugu, S. and Arai, C.: On the E ciency of Geometry Theorem Proving by
Grobner Bases, Trans.Japan Scc.Indust.Appl.Math. , 17(2), 2007. (to appear; in
Japanese).

Noro, M. and Takeshima, T.: Risa/Asir - A Computer Algebra System, ISSAC '92
(Wang, P., ed.), Berkeley, ACM, 1992, 387{396.

Recio, T. and Velez, M. P.: Automatic Discovery of Theorems in Elementary Ge-
ometry, J. of Automated Reasoning, 23(1), 1999, 63{82.

Wang, D.: An Elimination Method for Polynomial Systems,J.Symbolic Computa-
tion, 16(2), 1993, 83{114.

Wang, D.: Geometry Machines: From Al to SMC, AISMC 3 (Calmet, J., Campbell,
J. A., and Pfalzgraf, J., eds.), LNCS, 1138, Steyr, Springer, 1996, 213{239.
Wang, D.: Grobner Bases Applied to Geometric Theorem Proving and Discov-
ering, Grobner Bases and Applications (Buchberger, B. and Winkler, F., eds.),
London Mathematical Scciety Lecture Note Series, 251, Cambridge Univ. Press,
Cambridge, 1998, 281{301.

Wang, D.: Elimination Practice: Software Tools and Applications, Imp erial College
Press, London, 2004.

Winkler, F.: A Geometrical Decision Algorithm Basedon the Grobner BasesAlgo-
rithm, ISSAC '88 (Gianni, P., ed.), LNCS, 358, Rome, Springer, 1988, 356{363.
Wu, W.-T.: On the decision problem and the mecdhanization of theorem-proving in
elementary geometry, Automated Theorem Proving: After 25 Years (Bledsoe, W.
and Loveland, D., eds.), Contemporary Mathematics, 29, AMS, Providence, 1983,
213{234.

45

46

A Document-Orien ted Coq Plugin for TEXmacs

Lionel Elie Mamane and Herman Geuvers

ICIS, Radboud University Nijmegen, NL

Abstract. We discussthe integration of the authoring of a mathemat-
ical document with the formalisation of the mathematics contained in
that document. To achieve this we are developing a Coq plugin for the
TEXmacs Sciertic editor, called tmEgg. TEXmgcs allows the wysiwyg
editing of mathematical documents, much in the style of IATEX. Our
plugin allows to integrate into a TEXmacs document mathematics for-
malised in the Coq proof assistart: formal de nitions, lemmasand proofs.
The plugin is still undergoing active developmert and improvemert.

As opposedto what is usual for TEXmgcs plugins, tmEgg focuseson a
document consistent model of interaction. This meansthat a Coq com-
mand is evaluated in a context de ned by other Coq commands in the
documert. In contrast, TEXmacs plugins usually use a temporal model
of interaction, where commands are evaluated in the order (in time) of
the user requests. We will explain this distinction in more detail in the
paper.

Furhermore, Coq proofs that have been done using tmEgg are stored
completely in the document, so they can be browsed without running
Coqg.

1 Intro duction

TEXmacs [1] is a tool for editing mathematical documents in a wysiwyg style.
The input an author typesis closeto IATEX, but the output is renderedon screen
in real time asit will be on paper. TEXmacs supports structure editing and it
storesthe les in a structured way using tags which is closeto XML. So, a
TEXmacs documert is a labelled tree. The labels (tags) provide information that
can be usedas content or display information. For a speci ¢ label, the usercan
choosea specic way of rendering the subtreesunder a node with that label,
for examplerendering all subtreesin math mode. But a user may also choosea
speci ¢ action for the subtrees,for example sendingthe subtreesas commands
to the computer algebra padkage Maple. Of course,many labels are prede ned,
like in IATEX, soa useris not starting from scratch.

TEXmacs facilitates interaction with other applications: within TEXpgcs one
canopenalsession', for examplea Maple sessionand then input text within that
sessionis sert to a Maple processthat is running in the background. The Maple
output is input to the TEXmacs documert, and renderedaccordingly. In this way,
TEXmacs can be usedas an interface for Maple, with the additional possibility
to add text or mathematical formulas around the Maple sessioncreating a kind

of interactive mathematical document. Here the interaction liesin the possibility
to executeparts of the documert in the badkground application.

In this paper we present tmEgg, a Coq plugin for TEXpgacs. The plugin allows
the user to call Coq from within a TEXges documert, yielding a TEXmacs
documert interleaved with Coq sessionslt also provides special commandsfor
Coq, like stating a de nition or a lemma. The plugin doesnot provide its own
proof language,but leveragesany proof languagethat Coq understandsor will
understand in the future, such as [2]. This meansthat when doing a proof, the
user types actual Cog commands (usually tactics) in the TEXmgcs documert,
which are then sert to Coq as-isand the Coq output is renderedby TEXngacs-
This is in contrast with the approad of e.g.[3], [4] or [5], that seekto change
the way a proof is written or the way a userinterface interacts with the prover.

A crucial aspect of the plugin is that it views the sequenceof Coq sessions
within a documert asoneCoq le. So,whenoneopensa documert and executes
a command within a Coq session,rst all previousCog commandsare executed
and the presert command is then executedin the Coq state thus obtained. So
the TEXmacs documert as a whole also constitutes a valid Coq developmert.
Additionally , tmEgg automatically reexecutesany command that is modi ed,;
no command is locked and unmodi able.

From the Coq perspective, one can thus seethe TEXgcs documert asa doc-
umerntation of the underlying Coq le. Using TEXpgacs, One adds pretty printed
versions of the de nitions and lemmas. The plugin further supports this by a
folding (hiding) mechanism: a lemma statemert has a folded version, showing
only the pretty printed (standard mathematical) statemert of the lemma, and
an unfolded version, showing also the Coq statemert of the lemma. A further
unfolding also shows the Coq proof of the lemma.

Altogether there are four ways of seeingthe tmEgg TEXmgcs plugin. These
are not disjoint or orthogonal, but it is good to distinguish them and to consider
the various requiremerts that they imposeupon our plugin.

A Cogq interface. One can call Coq from within TEXpgcs, thus providing an
interfaceto Cog. When the userpresseghe return keyin a Coq interaction eld,
the Coq commandsin this eld are sert to Coq and Coq returns the result to
TEXmacs- The plugin doesn't do any pretty printing of Cog output (yet), but it
allows to save a Coq developmert asa TEXmacs le which can be replayed.

A documented Coq formalisation. A Coqgformalisation usually hasexplana-
tory commerts to giveintuitions of the de nitions, lemmasand proofsor to givea
mathematical (e.g.in IATEX) explanation of the formal Coq code. The plugin can
be usedfor doing just that: the traditional TEXgcs elements are usedfor com-
mernting the underlying Coq le. In this respect, tmEgg can play the samerole
as Coqdoc [6], but goesbeyong this. Coqdoc extracts documert snippets from
specially formatted commerts in Coq scripts and createsan HTML or IATEX
documert containing these snippets and the vernacular statemerts with some
basic pretty-printing of terms. In Coqdoc, there is no Coq interaction possible

48

from within this HTML or IATEX documert. tmEgg enablesthe userto have a
mathematical documert (in TEXmgcs), whoseformal de nitions and proofs can
also be executedin Cog. Moreover, the formal proofs can also be read without
Coq, becausethe full Coq interaction was stored within the documert at the
time it was created.

Taking this usecaseto its extreme, onearrivesat a notion of literate proving,
by analogyto literate programming: a systemthat allowsto write formal de ni-
tions and proofsin one documert together with their (high-level) mathematical
documertation.

A document with a Coq formalisation underneath. One can write a
mathematical article in TEXpgcs, like onedoesin IATEX. With tmEgg, onecan
take a mathematical article and extend it with formal statemerts and proofs.
Dueto the folding medanism, the\view" of the article whereeverything is folded
can be the original article one started with. It should be noted that, if one adds
a Coq formalisation underneath this, not everything needsto be formalised:
lemmas can be left unproven etc., as long as the Coq le is consistent, i.e. no
notions are used unlessthey are de ned. In this sensetmEgg makesa step in
the direction of the Formal Proof Sketchesidea of [7].

Course notes with formal de nitions and pro ofs. We canusethe TEXygcs
documert for course notes (handouts made by the teacher for students). An
added value of our plugin is that we have formal de nitions and proofs under-
neath, but we don't expect that to be a very appealing feature for students. On
the other hand, we alsohave full accesgo Coq, sowe can have exerciseghat are
to be donewith Coq, like\pro vethis statement" or\de ne this conceptsud that
such and sud property holds". This is comparablein its intent to ActiveMath

(8].

In the following we presert our plugin tmEgg, including sometechnical details
and a fragment of a TEXpgacs documert with underlying Coq formalisation.
We will discussthe four views on the plugin as mentioned above in detail. An
essetial di erence betweenthe tmEgg Coq plugin that we have created and
other TEXmacs plugins, e.g. the one for Maple, is that we take a document
oriented approad. This we will describe rst.

2 The document-consisten t model

The TEXmacs plugins to computer algebraor proof systemsusually obey a tem-
poral model of interaction, that is, the expressionsgiven to the plugin by the
user are evaluated in the chronological order the user asksfor their evaluation,
irrespective of their relative position in the document and dependenciesin other
words, the TEXmgcs plugin systemignoresthe fact that the interpreter it is in-
terfacing with hasan internal state which is modi ed by the commandsTEXmacs

49

givesit. This can lead to the result of a command in the current sessionto be

irreproducible in later sessiondecausethe sequenceof commandsleading to the

state in which the interpreter waswhen evaluating the commandis lost. SeeFig.

1 for an example, with the CAS Axiom. The user rst assignsthe value 5 to a,

and asksfor the value of a. The correct answer is given. The userthen rede nes

ato be 6 and goesbadk up to the command a and asksfor its reexecution. The

answer given is 6, which correspondsto the chronological order of execution of

the commands,but not to the order in which the said commandsare read by a
somelody that hasn't seenthe chronological history. While in that simple case,
one may guesswhat has happened, if the user deletesthe assignationof 6 of a

or even both de nitions (third row in the gure), the explanation is gone,and

the behaviour of TEXmges and Axiom is seemingly unexplainable to someone
that walks in at that momert and nds TEXmgcs and Axiom in that state. If

the documert is saved and reloaded, one will not get the sameresults again.

Contrast with Fig. 2, shaving a tmEgg Coq sessionEmpty_set is prede ned
in Coq's standard library, and getsrede ned in the secondcommand. However,
independertly of the orderin which the userasksfor evaluation of the commands,
it will always give the sameresult, shovn in the gure. E.g. if the user asks
for evaluation of the secondcommand (de ning Empty_set to be 5) and then
asks for the ewvaluation of the rst one, the rst command will always answer
\ Empty_set is an inductiv ely de ned type of sort Set without any constructor"”,
not \ Empty_set is 5". Similarly, if the user opensthe documernt and evaluates
the third command,it will answer Empty_set = 5 becausethe secondcommand
will have beenautomatically executedbeforethe third one.

The risk of inconsistency brought by the temporal model is naturally even
more undesirable in the context of writing formal mathematics, leading to a
document-mnsistent model of interaction: a statemert is always evaluated in
the context de ned by ewvaluating all statemerts beforeit in the documert, in
documernt order, starting from a blank state.

2.1 Implemen tation

Coq 8.1 thankfully provides the features essetial for implementing the docu-
ment-consistert model, in the form of a backtrack commandthat can restorethe
state to a past point B. It works under the condition that no object (de nition,
lemma, ...) whosede nition is currently nished wasincomplete at point B. If
this condition is not satis ed, tmEgg badktracks up to a point before B where
this condition doeshold and then replays the statemerts betweenthat point and
B. This condition always holds somewhereat or before B: it holds at the very
beginning of the documert, where no de nition is started.

The argumerts givento the badtrack commandare derived from state infor-
mation that Coq givesafter completion of eath command,in the prompt. tmEgg
storesthe information on the Coq state before a commandasa state marker next
to the commanditself, that is a document subtree whoserendering is the empty
string. This state information consists(roughly speaking) of the number of def-

50

Type:

o

initions made in the current session,the list of un nished de nitions and the

(1)

Positivelnteger

(1)

: Positivelnteger

2

: Positivelnteger

(3)

: Positivelnteger

(1

: Positivelnteger

(4

: Positivelnteger

[44)

4]

Type:

Type:

Type:

Type:

(1)

PositivelInteger

(2)

PositivelInteger

(1)

: Positivelnteger

(4)

: Positivelnteger

(3)

Positivelnteger

4)

PositivelInteger

Fig. 1. Example of inconsistent output

number of stepsmade in the current un nished de nition, if any.

51

Fig. 2. Example of consistert output

tmEgg also keepsa copy in memory of the Coq commandsthat have been
executed; when the user asksfor evaluation of a Coqg command, tmEgg cheds
whether an already executedcommand was modi ed (respectively deleted, or a
new one inserted between already executed commands) in the documert since
its execution, and if any was, automatically reexecutesit.

2.2 A better model

The underlying model is that the documert corntains a sequenceof Coq com-
mandsto be evaluated exactly in that order. This model will be familiar to users
of other popular interfaces, such as Proof General/lEmacs and CoqIDE, where
one edits directly a\.v le", that is a text le made of a concatenation of Coq
commands.The tmEgg documert is just a superset of that, that contains both
Cog commandsand other documert snippets that get ignored by Coq.

This preseris the restriction that the de nition of an object (e.g. a lemma)
hasto precedeany useofit in the documert. This forcesthe order of preseriation
of objects in the documert to be a valid order in the formal logical meaning.
While this is considereda feature by overly formalist people(such as one of the
authors), it is considereda hindrance for writing documerts optimised for reading
by the rest of humanity. Indeed, the author of a documert may e.g. considerit
better to rst present the main theorem, making lib eral use of lemmasthat are
bestread after understanding their role in the overall picture. He may even wish
to banish an uninteresting technical lemmato an appendix.

Also, from a performancepoint of view, if an object T is followed by seweral
objects that do not use T and then one object Sthat doesuseT, changing the
de nition of Twill leadto unnecessarilycancellingand redoing the de nitions of
the intermediary objects that are guaranteed not to be a ected by a changein
T, only S needsto be cancelled.A similar situation ariseswhen the user works
on seweral un nished de nitions in a temporally interleaved way; the already
executed steps of the objects placed lower in the documert will constartly be
cancelledand reexecuted,for no good reason.

52

In order to better accommalate these usage scenarios,a future version of
tmEgg will have a di erent model: the documert will be seenas containing a
set of Coq objects (de nitions, lemmas,theorems,...). When the user opensa
documert and asksfor reexecutionof the de nition of an object A all the objects
necessaryfor A but no more, are rede ned, irrespective of their position in the
documert. Similarly, if Ais changed, only the objects using it will have their
de nition removed from the Coq sessionnot all thosethat happento be de ned
later in the document.

Furthermore, in this model, if the user jumps betweentwo un nished de -
nitions, there is no needto abort either of them; they can be simply suspended
and resumed,without cancelling proof stepsthat don't needto be.

However, the proof script of one particular proof will - at least in a rst
version - still be consideredas a strictly linear sequence.

Coqg makesthat model easierto implement than other systems.Indeed, Coq
doesnot allow any rede nition 1. Any documert will thus have only one de nition
of any (fully quali ed) name,and there will be no ambiguity on which de nition
of Bshall be usedto de ne A if the de nition of AusesB. tmEgg canthen store
the dependencies(hidden) in the documert at the time a de nition is nished.

3 Presentation of tmEgg

tmEgg extends TEXmgcs With Coq interaction elds. The user enters Coq com-
mands in one of these elds and presseserter to have the command executed.
Cog's answer is placedbelow the input eld in the documernt itself. One can nat-
urally freely interleave Coq interaction elds with usual documert constructs,
permitting one to interleave the formal mathematics in Coq and their presen-
tation in IATEX-level mathematics or commerts about the formalisation. Each
Coq interaction can be folded away at the pressof a button, as well as each
speci ¢ result of a command individually . The output of the previous command
is automatically folded upon evaluation of a following command. SeeFig. 3 for
an example: The empty circles indicate a folded part and can be clicked to un-
fold that part, and the full circlesindicate a foldable unfolded part and can be
clicked to fold it. Here, the formal counterpart to hypothesis 2 is completely
folded, while the statement of lemma 3 is unfolded and its proof folded. The
proof of lemma 4 is unfolded, but the result of most of its stepsis folded.

Note that the result of each Coq command is inserted into the document
statically (and replacedupon reewaluation), just after the commanditself, before
the next command;this meansthat they canbe copiedand pastedlike any part of
the documert, but alsothat the saved le contains them, sothat the developmert
can be followed without running Coq, a potentially lengthy operation. As a

! Fig. 1 may seemto be a counter-example to this assertion, but it is not: What
happenshereis merely shadowing of the library de nition by onein the current name-
space,but this a ects only the unquali ed name Empty_set. The library object is still
available under its fully qualied name, namely Coq.Init.Datatypes.Empty_set

53

Fig. 3. tmEgg screenshot

corollary, the developmen can even be followed (but not independenly cheded)
on a computer lacking Coqg.

This choiceof placing the Coq output visibly in the documert itself waspartly
an experimert; traditionally the userinterfacesplace the prover's answer/state
in a xed-size resened area of the screen.Interleaving the Coq output with its
input has proven well suited to small toy examples. Mainly, it avoids having
to constartly switch eye focus betweenthe separate edition area and the Coq
output area, leading to a smoother experience.lIt also has the advantage that
it permits having seweral consecutive Coq outputs on screen simultaneously,
making comparing them easier. This is especially useful when reading a proof,
when oneis trying to gure out what a Coq command is doing.

54

Howewer, it has proven unpopular with users doing bigger proofs, mainly
becauseit is not as spill-resistant as a xed-size resened area when the proof
state reachesa moderate size or becauseit \clutters up the screen’

As both approacheshave inherent advantages,future versionsof tmEgg will
support both approades.Coq output will be savedin the documert, but can be
completely hidden globally. A separatewindow, which can be showvn or hidden,
will contain the output corresponding to the current Cogq command.

In order to help the usercreatethe proposedformal and informal versionof the
samemathematics" structure (particularly in the \mathematical documert with
a Coq formalisation underneath" scenario), we presert him with a menu where
he can choosea Coq statemert type (such as Lemma, Hypothesis, De nition,
...) and that will createan empty template to I made of:

{ the corresponding TEXmacs theorem-like environment for the informal state-
mert;

{ afoldable Coq interaction eld for the formal statemert;

{ afoldable Coq interaction eld for the formal proof, if appropriate;

This is illustrated in Fig. 4.

Fig. 4. New statement menu, empty lemma structure

3.1 Arc hitecture

We have decided to avoid putting TEXmgcs-speci ¢ code in Coq. That's why,
rather than adapt Coq to speak the TEXgcs plugin protocol by itself, we have
implemented a wrapper in OCaml that translates from Coq to TEXpgcs (see
Fig. 5). Wetry to keepthat wrapper as simple and statelessas possible,putting

most of the intelligence of the plugin in Schemein TEXmgcs

55

wiapper [~ coc

Fig. 5. tmEgg architecture

3.2 Adaptations in Coq for tmEgg
However, a few genericenhancemets to Coq were necessary:

{ One could not badktrack into a nished section (that is, from a point where
this section was nished to a point where it is un nished). This is now
possible.

{ There are two protocolsto interact with Coq: the \emacs" protocol and the

\Pco q" protocol. The Pcoq protocol hasthe hugeadvantage of clearly stating
which of the commandsyou gave to Coq failed or succeededyhile the emacs
protocol leavesyou to carefully parsethe output to seewhether there is an
error messagecontained in it. On the other hand, the Pcoq proto col wastied
to a dierent term printer than the one usual to Coq usersand a di erent
history managemem model than the one described above.
We have untied the term printer and communication protocol, sothat either
printer can be usedwith either protocol, allowed disabling the Pcoq history
managemen mecanism and added the badktracking state information of
the emacsprotocol to the Pcoq protocol. This allows usto usea robust com-
munication protocol (the Pcoq one), while still displaying terms in the same
syntax the userscan type them in and leveraging the backtrack command.

4 How well doesthe plugin do?

In the intro duction, we have described four views (possibleapplications) on the
tmEgg plugin. We now want to discussto which extent the plugin satis es the
requiremerts for ead of those views.

A Cogq interface. One can do Coq from within a TEXmgcs documert using
our plugin, if one has the patience or a machine fast enoughto put up with
TEXmacs'S slowness.However, as detailed above, comparedto well-known inter-
faceslike Proof General [9] and Coglde [6], the display of the proof state inside
the documert can be a disadvantage. Other things that our plugin doesnot (yet)
support but are in principle possibleto add in TEXgcs are: menus for special
tactics and pretty printing (but Proof General and Coglde don't have this ei-
ther). Pretty printing is of courseinteresting to add in the context of TEXp@cs,
becauset hasvarious IATEX-lik e facilities to add it. However, it should be noted
that, if we want to useour plugin as an interface for Coq, the syntax should be
acceptedas input syntax too, soasto not confusethe user. The user may also
prefer to usethe default Coq pure text syntax rather than graphical mathemat-
ical notations; this will always be supported.

56

Comparedto traditional user interfaces,tmEgg has the advantage that one
can scroll to any point in the proof script and reexamine Coq's state. One can
then always edit the Coq command there freely, and tmEgg will do whatever is
necessaryto make Coq aware of that. Traditional user interfaceslock already
executedcommands,that is they cannot be edited.

A documented Cogq formalisation. As a documenration tool, the plugin
works ne. One can easily add high level mathematical explanations. One can
import a completeuncommeried Coq le and start adding annotations. It would
be better if existing Cog commerts, in particular Cogdoc annotations, were im-
ported and corverted to TEXpmgcs documert snippets, but this is not imple-
mented yet. Note however that there is no (formal) link betweenthe formal Coq
and the high level explanation in TEXgcs, becausethe high level translation is
not a translation of the Coq code, but added by a human. This is di erent from,
e.g. the work in the Mowgli [10] project, where we have a high level rendering
of the formal Coq statemerts.

A document with a Coq formalisation underneath. This is a way the
plugin can be usednow. One would probably want to hide even more details, so
more folding would be desirable, e.g. folding a whole seriesof lemmasinto one
\main lemma" which is the conclusionof that series.Thus onewould be able to
create a higher level of abstraction that is usualin mathematical documerts. Of
coursethis can already be donein TEXgcs, but our plugin doesnot speci cally
proposeit automatically. If such nested folding were added, it would also be
advisable to be able to display the \folding structure" separately to give the
high level structure of the documert.

Course notes with formal de nitions and pro ofs. In general, proof as-
sistants are tools that require quite somematurity to be used, so therefore we
don't expect students to easily make an exercisein their TEXmgcs coursenotes
using the underlying proof assistart Coq, i.e. asan exercisein the mathematics
studied rather than asan exercisein Coq. This situation may improve in the fu-
ture though, depending on the maturit y of proof assistart technology. It should
also be noted that the plugin doesnot (yet) explain/render the Coq formalised
proofs, like e.g. the Helm tool [11] does (by translating a formal proof into a
mathematically readable proof). Seealso [12].

5 More Future Outlo oks

5.1 Mathematical input/output

Current TEXmgcs interfacesto computer algebra systemsinclude corversion to
and from mathematical notations (seeFig. 6). Doing the samewith Coq brings
somedi culties in a more acute way than with a CAS:

57

Fig. 6. Mathematical notation input/output with Axiom

{ Dierent developmerts will call for the samenotation to mapto di erent Coq
objects; there are for exampleseeral di erent real numbersimplementations
for Coq.

{ Similarly, the best notation to usefor the sameCoqg construct will vary de-
pending on the documert, wherein the documert oneis, or even more subtle
factors. A prime exampleof this is parenthesesaround assciativ e operators:
One usually doesn't want a full parerthesisingin statemerts, but if one al-
ways leavesout \unnecessary"parentheses the statement of the assaiativit y
lemmaitself looks quite pointless,asdo the proof stepsconsisting of applying
the assaiativit y lemma.

{ SomeCoq constructs (such assomewaysto de ne division) needinformation
that is not part of usualmathematical notation (such asproofthat the divisor
is not zero).

Ideally, the notations would thus probably have to be highly dynamic; if making
good choicesautomatically provesimpossible,maybe a good compromisewill be
to let the author of the document chooseon a case-ly-casebasis. What can be
achieved sanelyis still to be explored.

Once at least the conversionto mathematical notation is satisfying, we can
make a TEXmacs command that takesa Coq term (or the name of one) and
whoserendering is the \nice" mathematical rendering for that term. This means
that userswill be ableto put Coq terms in their documerts and have them look
like IATEX-level mathematics.

This conversionfrom and to \normal" mathematical notation might alsoform
a usablemedanism for informal and unsafeexchangeof terms betweendi erent
computer algebra systemsand proof assistanis. E.g. if the Coq goal to proveis
x® 5x"+ 5= 01! x> 2, the user could selectin the goal the expression
x18 Bx7+ 5= 0 (duly converted from Cog term to mathematical notation by
tmEgQg), pasteit into a CAS sessionand ask the CAS to solve that equation
(where the TEXmgacs-CAS integration plugin will duly corvert it to the syntax
of the CAS being used)to quickly ched whether the goal is provable, or usethe
CAS asan oracleto nd the roots and use knowledge of the roots to make the
proof easierto write.

58

It wasoriginally plannedto usethe Pcog term printer to get the Coq terms as
pure -term trees,and handle all the transformation to TeX-level preserational
notations in tmEgg itself, e.g.through mapping Coq terms to TEXmacs documert
macros. This would have allowed to easily use di erent notations in (dierent
placesof) di erent documerts, but it meansloosing the ability to look at the
type of a term to make a presenation decision. In consultation with the Coq
team, we nally decidedwe will add a term pretty-printer to TEXmgcs Syntax
in Coq itself, sharing most infrastructure with the existing Cogq ASCII/Unico de
text term printer.

5.2 Miscellaneous

Once the basic framework of tmEgg has matured and works well, all kinds of
small, but highly useful, features can be imagined:

{ Import of Coq les containing Coqdoc documert snippets, leveraging the
IATEX import of TEXmacs:

{ Automatic generation of table of Coq constructs in the documert and cor-
responding index.

{ Similarly, menu command to jump to the de nition of a particular Coq
object.

{ Make any placewherea Coq object (e.g. alemma) is useda hyperlink to its
de nition. This could even evertually be expandedup to making tmEgg a
Coq library browser.

References

1. van der Hoeven, J.: GNU TEXmgcs. SIGSAM Bull. 38(1) (2004) 24{25

2. Corbineau, P.: Declarative proof language for cog. http://www.cs.ru.nl/ cor-
binea/mmo de.html (2006)

3. Thery, L.: Formal proof authoring: an experiment. In Luth, C., Aspinall, D.,
eds.: UITP2003 International Workshop on User Interfaces for Theorem Provers,
informal proceedings. Volume 189 of Tedhnical Report., Institut fer Informatik
Alb ert-Ludwigs-Univ ersitat Freiburg, Aracne (2003) 143{159

4. Dixon, L., Fleuriot, J.: A proof-certric approach to mathematical assistarts. Jour-
nal of Applied Logic: Special Issue on Mathematics Assistance Systems(2005) 35
To be published.

5. Aspinall, D., Luth, C., Wol, B.: Assisted proof document authoring. In Kohlhase,
M., ed.: MKM 2005, Mathematical Knowledge Managemert: 4th International
Conference. Volume 3863 of Lecture Notes in Computer Science., Springer Ver-
lag (2006) 65{80

6. The Coq Developmert Team: The Coq Proof Assistant ReferenceManual. (LogiCal
Project - INRIA Futurs)

7. Wiedijk, F.: Formal proof sketches. In Berardi, S., Coppo, M., Damiani, F.,
eds.: Typesfor Proofs and Programs: Third International Workshop, TYPES 2003,
Torino, Italy. Volume 3085 of LNCS., Springer (2004) 378{393

59

10.

11.

12.

13.

14.

. Melis, E., Andres, E., Budenbender, J., Frischauf, A., Goduadze, G., Libbrecht,

P., Pollet, M., Ullric h, C.: ActiveMath: A generic and adaptive web-basedlearning
environment. Artical Intelligence and Education 12(4) (2001)

. Aspinall, D.: Proof general- a generictool for proof developmert. In S. Graf, M.S.,

ed.: TACAS 2000. Volume 1785 of LNCS. (2000)

Asperti, A., Wegner, B.. MoWGLI - a new approach for the content description
in digital documernts. In: Proceedingsof the Ninth International Conference on
Electronic Resourcesand the Scocial Role of Libraries in the Future. Volume 1.,
Autonomous Republic of Crimea (2002) (Section 4).

Asperti, A., Padovani, L., Coen, C.S., Guidi, F., Schena, |.. Mathematical knowl-
edge managemen in HELM. Annals of Mathematics and Arti cial Intelligence,
Special Issue on Mathematical Knowledge Managemert 38(1-3) (2003) 27{46
Asperti, A., Geuvers, H., Loeb, ., Mamane, L.E., Coen, C.S.: An interactiv e alge-
bra coursewith formalised proofs and de nitions. In Kohlhase, M., ed.: Mathemat-
ical Knowledge Managemert: 4th International Conference, MKM 2005, Bremen,
Germany. Volume 3863 of Lecture Notes in Computer Science., Springer Verlag
(2006) 315{329

Audebaud, P., Rideau, L.: TEXmgacs as authoring tool for formal developmens. In
Aspinall, D., Luth, C., eds.:Proceedingsof the User Interfacesfor Theorem Provers
Workshop, UITP 2003. Volume 103 of Electronic Notes in Theoretical Computer
Science.,Rome, ltaly, Elsevier (2004) 27{48

INRIA Sophia-Antip olis Lemme Team: PCoq, a graphical user-interface for Coqg.
(http:/lwww-sop.inria.fr/lemme/p coq/)

60

Software Specication Using Tabular
Expressions and OMDo ¢’

Dennis K. Peters', Mark Lawford?, and Baltasar Trancon y Widemann?®

1 Electrical and Computer Engineering
Faculty of Engineering and Applied Science
Memorial University of Newfoundland
St. John's, Newfoundland Canada
dpeters@engr.mun.ca
http://www.engr.mun.ca/~dpete rs
2 Dept. of Computing and Software
Faculty of Engineering, McMaster Univ ersity
Hamilton, Ontario, Canada
lawford@mcmaster.ca
http://www.cas.mcmaster.ca/~law ford
3 Software Quality Researt Laboratory
Computer Scienceand Information Systems Building
Univ ersity of Limerick, Limerick, Ireland
Baltasar.Trancon@ul.ie

http://www.sqrl.ul.ie

Abstract. Precise speci cations or descriptions of software system be-
haviour often involve fairly complex mathematical expressions.Researt
has shown that these expressionscan be e ectiv ely preserted as tabular

expressions,but that tool support is neededto do this well. Traditional

documentation tools (e.g., plain text or word processors)are insu cien t
becausethey do not i) have good support for mathematical expressions,
particularly in tabular forms, and ii) retain su cien t semartic informa-

tion about the expressionsto permit the use of tools such as automated
reasoning systems, and code or oracle generators. This paper presens
initial work in the developmert of a suite of tools, using OMDo ¢ as an
exchange medium, for developmernt, analysis and use of tabular software
speci cations. It shows by some simple examples how these tools can
work together with other systemsto add signi cant value to the docu-
mentation process.

1 Software Speci cations

Researtiersin the areathat hascometo be called \soft ware engineering" have,
over the years, proposedmany techniques for documerting required or actual
behaviour and designsfor software basedsystems.Despite the purported bene ts

? This work was carried out while all three authors were at the Software Quality
Researth Laboratory, University of Limerick.

of thesetechniqueswith respectto the quality of the software produced, very few
of thesehave found widespreadusein industrial software practice. It is suggested
that dewvelopers are reluctant to usethesetechniquesbecausethey are not seen
to add enoughvalue to the developmen processto justify the e ort required to
produce and maintain the documertation. In this work we hope to improve this
situation by dewelopingtoolsthat support both the production and maintenance
of good documertation and the application of this documertation to suc tasks
as designanalysis, veri cation and testing.

Someof our goalsfor the tools that we are developing are that they should:

{ Free authors from dewoting inappropriate e ort to the presenation details
of the documert { the e ort should be focusedon the cortent.

{ Assist the authors to avoid typographical mistakes, for example through
content assisttechniques similar to those found in integrated developmert
environments.

{ Support cheding of consistencyboth within a documert (self consistency)
and betweendocumerts, including code where appropriate.

{ Assist in designanalysisand veri cation, possibly using tools sud as proof
systems,model cheders, or computer algebra systems.

{ Support automated speci cation basedtesting, for example by test caseand
oracle generation.

To achieve thesegoalsthe documertation being produced must be in a form
that has a precisely de ned syntax and semartics { that is, it must be formal
{ and it must be in a form that enablesaccessto the semartic content. Such
formal documentation techniques usually make use of a substartial amount of
reasonably complicated mathematics for which general purpose documertation
production tools (e.g., word processingsoftware) are lessthan ideal becausethey
focus on the presenation of the information, rather than its semaric content.
The mathematical content markup language OMDoc[1] addresseshis problem
and servesas a basison which to build our tools.

1.1 Tabular Expressions

The nature of computer systembehaviour often is that the systemmust react to
changesin its ervironment and behave di erently under di erent circumstances.
The result is that the mathematics describing this behaviour consistsof a large
number of conditions and casesthat must be described. It has beenrecognized
for sometime that tables can be usedto help in the e ectiv e presenation of
such mathematics [2{5]. In this work we view such tabular represenations of
relations and functions as an important factor in making the documertation
more readable,and so we have specialized our tools to support them [6{8].

A full discussionof tabular expressionsis beyond the scope of this paper,
so interested readersare referred to the cited publications. In their most basic
form, tabular expressionsrepresen conditional expressions,so for example, (in
Janicki's style [7]) the function de nition givenin (1), could be represeried by
the tabular expressionin (2).

62

8
Xx+yifx>1"ry<0
%x yifx 17y<O0
Coodf X ifx>1"y=0
f(XaY)_ Xy if x 1/\y:0 (1)
y if x>1"y>0
Cxzy ifx 1ry>0

L — ()

1
y<Ojx+yx vy
y=0|| x Xy
y>0 y [xzy

In OMDoc it is straightforward to add support for tabular expressionssimply
by de ning appropriate (OpenMath) symbols to denote them: we use a symbol
for \table", which, following the model preseried in [8], takes four argumert
expressionsrepresetting

1. The evaluationterm, which expresse$iow the value of a tabular expressionis
de ned in terms of the expressiondn its grids. For (2) this expressionwould
expressthat the value is that of the elemen of the certral grid, T[0], that is
indexed by indices of the true elemers of ead of the \header" grids, T[1]
and T[2], asfollows: T [0][select (T [1]); selet (T [2])], where selest is a function
on a predicate grid that givesthe index of the cell that is true.

2. The static restriction, which de nes a condition that must be true of the
grids, independert of the expressionsin the grids, but possibly dependert
on their types. This is used, for example, to assert the conditions on the
number and sizeof the grids (i.e., the shape of the table). For (2) this would
expressthat the index set of the certral grid should be the power set of
the index sets of the header grids, and that the header grids must cortain
predicate expressions.

3. The dynamic restriction, which de nes a condition that must be true of the
grid expressions.This is usedto assert constraints on the table to ensure
that it hasa well de ned meaning. For (2) this would assertthan the header
grids, T[1] and T[2], must be \prop er" { only one cell expressionshould be
true for any assignmer.

4. A list of grids, which are indexed sets, represerted by n-ary applications
with symbol \grid" and taking pairs of cell index and cell contents as its
argumerts.

Figure 3 illustrates the OMDoc represertation of a tabular expression.

Although (1) and (2) are clearly a nonsensicalexample,they are represerta-
tive of the kind of conditional expressionthat occurs often in documertation of
software basedsystems.We have found that the tabular form of the expressions
is not only easierto read, but, perhaps more importantly, it is also easierto
write correctly. Of particular importance is that they make it very clear what
the casesare, and that all casesare considered.

63

Modern general purpose documertation tools, of course, have support for
tables aspart of the documerts, but they are often not very good at dealing with
tables as part of mathematical expressions.Thesetools also encourageauthors
to focus e orts on the wrong things: authors will work very hard to try to get
the appearanceof the table right, sometimesevento the detriment of readability
(e.g., shortening variable namessothat expressionst in the columns).

One could argue that the two alternative preserations given in (1) and
(2) are simply presernational styles and so should not be our focus, and we
would have to agreeto a point. As should be clear from the above discussion,
however, our encading of tabular expressionsin OpenMath does not encae
the presenational aspectsother than implicitly in the symbol names{ it simply
de nes newkinds of conditional (piecewise)expressionswvherethe conditions are
de ned in indexed setsthat we call grids. The symbols de ned in the \piecel"
standard OpenMath Content Dictionary# are not sucient for our purposes
sincethey group the conditions with the value expression,asin (1), rather than
along other dimensions.The latter form improvesreadability and allows for clear
expressionof \prop erness"constraints (e.g., that the expressionsn a grid must
cover all casesand not overlap).

1.2 Classes of Documents

Although tabular expressionscould be useful in many forms of documentation,

our particular emphasishas beenon documerts that either specify or describe
behaviour of software ertities using relations on the quantities that are input

and output from the componert [9]. Rather than de ne a speci cation language,
per se we use standard mathematics together with some special functions or
notations that are particular to the kind of documernt and are de ned using
standard mathematics [10]. The following are the particular kinds of documerts
that we are targeting.

System or Software Requiremen ts documerts de ne the required or actual
behaviour of an ertity by giving the acceptablevalues of the \controlled"
guantities (outputs) at any time in terms of the history and current value of
the \monitored" quantities (inputs) [11{13].

Mo dule interface documerts de ne the required behaviour of a software mod-
ule (component) by giving the valuesof all output variablesin terms of the
sequenceof past program calls, events and outputs of that module [14].

Mo dule internal design documerts describe the internal designof a module
by identifying the data structure used, giving the abstraction relation that
relatesthis data structure to the module interface speci cation, and de ning
the relations on valuesof the data structure and output variables beforeand
after a call to an accessprogram [15].

Note that our documerts are not documerts alout mathematics, but rather
make use of mathematics as a meansto communicate. Also note that our doc-
uments will not normally include proofs but may be used as input to proof

4 http://www.op enmath.org/cd/piecel.xh tml

64

systems,asillustrated in section2.2, for exampleto reasonabout the properties
of a design.

1.3 Specication Document Mo del

A review of the contents of the above documert types leads us to proposea
documernt model consisting of the following elemeris.

Theory is the main structural elemen of our documerts. Each documert will
cortain one or more theories. Theories may include sub-theories either di-
rectly or via import references.

Symbols represen constarts, variables, relations, functions or types. A speci-
cation documen fundamentally is about identifying the symbols that are
relevant and, where appropriate, de ning their value in terms of other sym-
bols.

Typ es declarethe mathematical type of a symbol.

De nitions declarethe meaning of a symbol (e.g., an expressiondescribingthe
relation).

Code is unparsedformal text that, although it doesn't play a role in the doc-
uments we have mentioned, is likely to be neededfor somedocumerts.

Text is unparsedinformal text that is included for readability of the documert.

Readersfamiliar with OMDoc will recognizethe above elemeris and seethat
our documerts clearly t within the OMDoc model. We have found, however,
that the standard OMDoc attributes are insu cien t for our purposes,so we
have added a few that are specic to this project and have identi ed these by
a namespacefor the project (http://www. llmoresoft ware.ca/ns), which we use
the pre x \tts" to represen. The attributes are as follows:

tts:role is used for symbols to denote the role that the symbol plays in the
documernt. A symbol might represen, for example,an output value relation,
an auxiliary de nition or a variable.

tts:kind is usedfor theoriesto denote the kind of speci cation documert that
the theory represens (requirements, module interface, module internal de-

sign).

OMDoc supports both OpenMath [16] and Content MathML [17] for math-
ematical content, but since our intention is to usetabular expressionswe need
to usean extensible notation, sowe useonly OpenMath in this version.

2 Tool Support

The set of tools that may be appropriate outcomesfrom this project is very
large and includes powerful editors, documert consistencycheders, veri cation
systems, oracle generators, test casegeneratorsand model cheders, to name a
few. Clearly to dewelop all of these from scratch would be a major undertaking

65

far beyond the resourcesof this project. However, we strongly believe in the
value of building on the strengths of existing tools where appropriate, sowe are
focusingour initial e orts on ways to leverageexisting systemsto our advantage
in this project. The OMDoc represeration of a tabular speci cation with its
embedded semartics is the common glue that allows us to easily bind together
componerts as diverseas a Eclipse plugin GUI, the PVS theorem prover and
a prototype function basedspeci cation system that also acts as a Java code
generator. Once developmert is completed to enable thesetools to extract the
generaltable represenation and semartics of [8], support will be available for all
known typesof tabular speci cations and any future onesthat canberepresened
within this generaltable model. The current state of thesethree componerts of
the table tool systemare outlined below.

2.1 Protot ype Eclipse Plugin GUI

Eclipse (www.eclipse.org)is an open developmert platform that supports exten-
sionthrough a plugin medanism. The platform providesan advancedintegrated
developmert ervironment for software developmen, and a wide range of avail-
able plugins to support suc tasks as testing, modeling and documerntation. By
developing a plugin to support production of the documerts described above,
we hope to be able to build on the strengths of Eclipse and to help integrate the
documertation into the developmert process,for example by supporting navi-
gation betweena speci cation and the code that implemerts the speci cation or
by generating oraclesor test casesthat integrate with automated testing using
JUnit (www.junit.org) and the JUnit plugin.

The initial version of this plugin, which is pictured in gure 1, provides a
\m ulti-page editor" (which provides di erent views of the samesource le) for
\.tts" les, which are OMDoc les. One pageof the editor is a structured view of
the documen, while another shows the raw XML represenation. The support
libraries in Eclipse provide techniquesto ensurethat the views of the documert
are consistert. The plugin is built using seeral open sourcelibraries including
the RIACA OpenMath Library 5.

This plugin is seenasa primary meansfor the human usersto interact with
speci cation documerts. Currently it supports basic veri cation and validation
of tabular speci cations via export to the Prototype Veri cation System (PVS)
[18] using XSLT to translate the OMDoc into PVS, as described below.

2.2 Example Verication and Validation Environmen t

PVS is a \pro of assistart" that can automatically ched for completenesgcov-
erage) and determinism (disjointness) of seweral types of tables [19], i.e. PVS
cheds that a table de nes a total function. This is typically very important in
safety critical environments since the engineerswant to avoid any unspeci ed

5 http://www.mathdo x.org/pro jects/op enmath/lib/2.0 /

66

Fig. 1. Screenshotof Eclipse Plugin

behaviour. Although PVS has a steeplearning curve for users,with further de-
velopmen e ort we can designour table tools and software processto \shield"
the usersfrom PVS. Further, new features in PVS such as the random test
[20] and execution of a subsetof the PVS speci cation languagevia the ground
ewvaluator [21] can be easily translated into new table tool features.

We illustrate thesecapabilities with an example,a simple Reactor Shutdown
System (SDS) componert. An SDS s a watchdog systemthat monitors system
parameters. It shuts down (trips) the reactor if it obsenes "bad" behaviour.
The processcortrol is performed by a separateDigital Control computer (DCC)
sincethat functionality is not as critical.

We will consider a \P ower Conditioning” subsystem. Often sensorshave a
power threshold below (or above) which readings are unreliable soit's \condi-
tioned out" for certain power levels. A deadband is used to eliminate sensor
\c hatter". Sincethere are many di erent sensortypeswith similar power condi-
tioning requiremerts, during the designphaseit wasdecidedto write onegeneral
routine and passin sensorparametersfor di erent sensors,thereby taking ad-
vantage of code reuse.

Consider the General Power Conditioning Function illustrated in Figure 2
When P ower:

{ dropsbelow K out, sensoris unreliable soit's \conditioned out" (PwrCond =

FALSE).
{ exceedsKin, the sensoris \conditioned in" and is usedto evaluate the
system.

67

Power

TRUE

Kin PwrCond(Prev:b ool, Power, Kin, Kout:p osreal):bool =

Power Kout|/Kout< Power < Kin|Power Kin
FALSE Prev TRUE

Kout

Time

Fig. 2. General power conditioning function with deadband from [22]

{ isbetweenK out andK in, the value of Pwr Cond is left unchangedby setting
it to its previous value, Prev.

For the graph of P ower above, PwrCond would start out FALSE, then become
TRUE at time t1 and remain TRUE.

The PVS Speci cation of the General PwrCond Function can be generated
from the OMDoc tabular speci cation shown in Figure 3 by applying a modi ed
version of the original omdoc2pvs.xsl by Kolhase that is available from the
OMDoc subversion repository®

The PVS generatedby applying the stylesheetis showvn Figure 4. We note
that white spacehas beenmanual addedto the gure to improve its readabil-
ity, though this doesnot changethe semartics of the generated le. This PVS
speci cation of the PwrCond table producesthe following proof obligations or
\TCCs" (Type CorrectnessConditions).

% Disjointness TCCgenerated (at line 14, column 55) for
% unfinished
PwrCond_TCC1OBLIGATION
FORALL(KIin, Kout: posreal, Power):
NOT(Power <= Kout ANDPower > Kout & Power < Kin) AND
NOT(Power <= Kout ANDPower >= Kin) AND
NOT((Power > Kout & Power < Kin) ANDPower >= Kin);

% Coverage TCCgenerated (at line 14, column 55) for
% proved - complete

PwrCond_TCC20OBLIGATION
FORALLKIn, Kout: posreal, Power):

(Power <= Kout OR % Columnl
(Power > Kout & Power < Kin) % Column2
ORPower >= Kin) % Column3

When type-cheking the PwrCondtable the coverage TCC is automatically
proved by PVS. Thus we conclude that at least one column is always satis-
ed for ewvery input. But PVS attempt to prove the Disjointness TCC fails,

6 Available at https://svn.omdo c.org/rep os/omdoc/branc hes/omdoc-1.2.

68

<?2xml

xmlns:dc="

<theory xml

<symbol

version="1.0"
< IDOCTYPE omdoc PUBLIC
“http://www.omdoc.org/omdoc/ dtd/ omdoc
<omdoc modules="@spec"
xmlns="http://www.omdoc.org/ omdoc"
“http:// purl.org/dc/ elements/1.1/"
xmlns:tts="http://www.fillmoresoftware.
="sampletable2_theory">
scope="global"

ci
nam

encoding="u

version =

"sampletable2"

xml:id="sampletable2">
<type system="pvs">
<OMOBJ xmlns="http://www.openmath .org/ OpenMath">

tf 8"

//OMDoc/ /DTD OMDoc Spec

Wy o

standalone="no"? >

1.2/ /EN"
spec.dtd" >
xml:id="sampletable2.omdoc"
xmlns:cc="http:// creativecommons .org/ ns"

cal ns">

tts:

role="auxiliary"

<OMA>
<OMS cd pvs" name="funtype" /> <OMS cd="booleans" name="bool" />
<OMS cd reals" name="real" /> <OMS cd="reals" name="real" />
<OMS cd="reals" name="real" /> <OMS cd="booleans" name="bool" />
</OMA>
</OMOBJX>
</type>
</symbol>
<definition for="# sampletable2" type="simple" xml:id="sampletable2 def">

<OMOBJ xmlins="http://www.openmath .org/OpenMath">

<OMBIND> <OMS cd="pvs" name="lambda" />
<OMBVAR>
<OMATTR
<OMATP> <OMS cd="pvs" name="type" /> <OMS cd="booleans" name="bool" />
< /OMATP>
<OMV name="Prev" /> </OMATTR
<OMATTR>
<OMATP> <OMS cd="pvs" name="type" /> <OMS cd="reals" name="real" />
< /OMATP>
<OMV name="Power" /> </OMATTR>
<OMATTR>
<OMATP> <OMS cd="pvs" name="type" /> <OMS cd="reals" name="real" />
< /OMATP>
<OMV name="Kin" /> </OMATTR>
<OMATTR
<OMATP> <OMS cd="pvs" name="type" /> <OMS cd="reals" name="real" />
< /OMATP>
<OMV name="Kout" /> </OMATTR
</OMBVAR>
<OMA> <OMS cd="table" cdbase="http://www.fillmoresoftware.ca/cd"
name="table" />
<! Evaluation term: normal (0) normal table, value grid = 0. >
<OMA> <OMS cd="table" cdbase="http://www.fillmoresoftware.ca/cd"
name="normal" /> <OMI> 0 </OMI> </OMA>
<! Static restriction: rectStructure(1l, <3>) >
<OMA> <OMS cd="table" cdbase="http://www.fillmoresoftware.ca/cd"
name="rectStructure" />
<OMI> 1 </OMI>
<OMA> <OMS cd="linalg2" cdbase="http://www.openmath.org/cd"
name="vector" /> <OMI> 3 </OMI> </OMA>
< /OMA>
<! dynamic restriction: proper (1) >
<OMA> <OMS cd="table" cdbase="http://www.fillmoresoftware.ca/cd"
name="proper" /> <OMI> 1 </OMI> </OMA>
<OMA>
<! List of grids >
<OMS cd="1list1l" cdbase="http://www.openmath.org/cd" name="1list" />
<! Grid 0: false j Prev j true >
<OMA> <OMS cd="table" cdbase="http://www.fillmoresoftware.ca/cd"

</o mdoc>

nam

<OMA> <OMS cd="products"”
name="pair"
<OMA> <OMS cd=

grid

<OMS cd="logicl"

linalg2"
cdbase="http://www.openmath

">
cdbase="http
/>

name="vecto

name="false" />
</OMA>
</OMA>
<OMA>
<! Grid 1: Power <= Kout j Power >
j Power >= Kin >

<OMS cd="table"

i/ /www.openmath .org/cd"

<OMI> 0 </OMI> </OMA>
.org/cd"

rtol>

Kout & Power < Kin

cdbase="http://www. fillmoresoftware.ca/cd"

name="grid" />
<OMA cdbase="http://www.openmath .org/cd">
<OMS cd="products"” name="pair" />
<OMA>
<OMS cd="linalg2" name="vector" /> <OMI> 0 </OMI> </OMA>

<OMA> <OMS cd="
<OMV name="Power"

</OMA>

relationl"
/> <OMV name="Kout"

name="leq

vl

/> </OMA>

</OMA> </OMA> </OMA> </OMBIND> </OMOBJ» </definition> </theory>

Fig. 3. Partial OMDo c represertation of General Power Conditioning

69

PwrCond(Prev:bool, Power, Kin, Kout:posreal):bool = TABLE

Offymmmmmmmmmmmmmmmmmmmmmmmemee mmmee meee mmee e e 0%

|[Power<=Kout | Power>Kout & Power<Kin | Power>=Kin]|

Offymmmmmmmmmmmmmmmmmmmemmmemee mmmee e mmee e e 0%

| FALSE | Prev | TRUE ||

Qpmmmmmmmmmm s mmen e e e -%
ENDTABLE

Fig. 4. PVS Speci cation generated modi ed omdoc2pvs.xsl stylesheet

indicating that the columns might overlap. The resulting unprovable sequet
for the disjointness TCC is given below along with the results of running the
(random-test) prover commandto attempt to generatea counter example for
the sequet:

PwrCond_TCC1

[-1] Kinll >0

[-2] Kout!ll >0

[-3] Power!l > 0

[-4] Power!l <= Kout!1

[-5] (Kin!1 <= Power!l)
[—

[1] FALSE

Rule? (random-test)

The formula is falsified with the substitutions:
Power ==> 67 / 80

Kin ==>31/ 85

Kout ==> 42/ 25

This commandgeneratesand evaluatesa \theorem" onrandom inputs to look
for counter examples,printing the rst counter example (if any) found [20]. To
con rm the counter exampleand locate problem we can usethe PVSio evaluator
[21] to chedk the headersof all columns at once on the above courterexample
values.

<PVSio>let (Prev,PowerKin, Kou) = (FALSE, 67/80, 31/85, 42/25)
in (Power<=Kout, Power>Kout & Power<Kin, Power>=Kin);

==>

(TRUE, FALSE, TRUE)

Thus we concludethat columns 1 and 3 overlap.

While the above stepsin PVS were done manually, there is no reasonwhy
these steps could not be automated via the Eclipse plugin using PVS's batch
processingmode, thus \shielding" the user from the theorem prover under the
hood of the table tool system. For example, the plugin could simply provide
the counter example and highlight the overlapping columnsin a visual display

70

renderedasdisplay MathML and xhtml by modifying existing XSLT stylesheets
contained in the OMDoc distribution.

2.3 Functional Specication and Code Generation

Applied mathematics in scienceand engineeringare traditionally formulated in
rst-order predicate logic. With the advent of theoretical computer scienceand
computer assistedformalization, alternativ e logical foundations have emerged.
Many automated theorem provers such as PVS or Isabelle/HOL [23] are based
on higher-order logic. Via the Curry-Howard isomorphism, higher-order logic is
closely related to the typed lambda-calculus [24], the foundation of functional
programming. Writing formal speci cations in a style basedon functions and
higher-order logic has se\eral bene ts:

{ Type systemsfor lamhbda-calculus are precise, powerful and well understaood.
Cheding and inference algorithms are well documerted. Speci cations can
betypedededfor consistency catching many simple errors and ambiguities.

{ Type systemsfor lambda-calculus are largely self-contained. Algebraic data-
typessudh asintegers,tuples, enumeration and record typesand the ass@i-
ated operations can be de ned within the formalism, instead of being given
by axioms or external reference.Paremetrization is for free in the lambda-
calculus.Hencecomplexspeci cations canreferto a commonlibrary of basic
de nitions, rather than requiring special support in every processingtool.

{ Function-basel speci ¢ ation is computationally constructive. Standard inter-
pretation and compilation techniquesfor functional programming languages
apply, yielding direct and universal evaluation algorithms and code genera-
tors for agile speci cation tool support, simulation and oracle generation.

We have constructed the prototype of a tool that provides basic support
for function-based speci cation. It hasa frontend syntax similar to a functional
programming or theorem prover language,and a sematriic intermediate repre-
sertation basedon OpenMath objects for individual typesand de nitions, and
OMDoc for theory-level structure. A typededer supports the Calculus of Con-
structions [25] (CC). This is a subsetof the Extended Calculus of Construction
[26] (ECC), the proposed higher-order type system for OpenMath [27]. Exe-
cutable code can be generatedfrom the typededed intermediate represena-
tion. The tool is implemented in Java, and currently only Java code generation
is supported. Speci cation modules processedy the tool ful ll seweral roles:

Generic Library Somedatatypes and operations common to all tabular ex-
pressions.The grids of a table are organized as hierarchical arrays, lists or
assciativ e lists of cell expressionsEvaluation and restriction terms are con-
veniertly de ned in terms of well-known higher-order operations suc asmap
filter and fold , extending the work of [28].

The logic of tables in [8] is total. For the transparent embedding of partial
functions into cell expressions,a monadic error-handling framework [29] is
provided.

71

Specic Tables Individual tables can be extracted from tts les and trans-
lated to function-based style. An automatic translation procedure is cur-
rently beingimplemented. It assumeghat the expressionsn a table do not
involve in nite quanti cation, which has no direct e ectiv e translation to
lambda-calculus. Table cell expressionsare represerted as functions of all
free variables, sothat ead cell is a closedexpressionand can be chedked and
compiled individually . For example, the table (2) would be renderedas:

f(x; d 3
() X; y:x>1 y:x 1 @)

X; yiy<o0

X; YiX+y

X; y:y=0

X; Y:X

X,
X; YiX Yy
X YiX_y

X; y:y>0

X, Yy

X; YiX=y

In this form, the assignmen of valuesto the variables requires no reinter-
pretation or substitution of cell expressionsbecauseit can be expresseddy
simply applying ead cell function to the tuple of values. For example, the
assignmen fx := 2;y := 4g is given by the value tuple (2;4).

Speci cations represeried in function-based style and processedusing this
tool have two important properties. Firstly, they are de ned in a self-cortained
and unambiguousway in pure typedlambda-calculus.Togetherwith the OMDoc-
basedformat, this makesa good starting point for interaction with various the-
orem proving tools. Secondly all properties that do not involve in nite quanti -
cation are directly computable. Hencethe static restriction ched for a table and
the evaluation and dynamic restriction ched for a table and a given variable
assignmei can be interpreted or compiled to executable code, whereasthe dy-
namic restriction ched for all possiblevaluesstill requiresthe useof a theorem
prover.

By combining both properties, substartial support for constructing new spec-
i cation tools can be given. We have de ned table typesfrom [8] not yet sup-
ported by either PVS or any other available tool aspart of the domain-independen
library. Such a table type de nition can be written by a skilled functional pro-
grammer in one day. By using our Java code generator, the core of an oracle
generator is obtained immediately.

3 Related Work

A very good discussionof the need for mathematical content markup suc as
OMDoc is givenin Part | of [1], soit will not be repeated here. In summary,
general purpose documertation tools and presernation markup languages(e.g.,
IATEX, HTML, Presertation MathML) are insucien t for our purposessince
they encale the appearanceof the mathematics, not its intended meaning. For
example, given the expression\ x + 2", we are concernedprimarily with the fact
that this represerts the sum of a variable x and the constant 2. The choiceof pre-
sertation of this expressionin this or another form (e.g.,\x 2+" or \sum(x; 2)")

72

is a matter of style that will be determined by the convertions adopted by the
author and the intended readers.

The use of XSLT to translate the OMDoc into PVS input represens a
lightweight approacd to providing support for OMDoc speci cation in existing
tools. A more rigorous approac to presenation of table semartics in multiple
veri cation ernvironments such as PVS and the prototype functional speci ca-
tion/co de generation ervironment might be basedupon the HeterogeneousT ool
Set (Hets) [30], a parsing, static analysis and proof managemen tool combin-
ing various tools for di erent speci cation languages.Currently the Hets system
does not support PVS or Java code generation, though it does support the Is-
abelle interactiv e higher-order theorem prover and SPASS automatic rst-order
theorem prover and can generate Haskell code. A list of other projects using
OMDoc is found in Ch. 26 of [1].

Seweral projects have addressedthe problem of developing tools for use of
tabular expressionsn documerts [22,31{35]. All of thesee orts, with the excep-
tion of [33], are limited in the set of tabular expressionsor documert typesthat
they targeted, and none useda standard interchange format such as OMDoc to
take advantage of other tools. The table tools developed by the CANDU owners
group and usedat Ontario Power Generation (OPG) on the Darlington Nuclear
Generating Station Shutdown Systems,used standard wordprocessordo create
documerts containing tabular speci cation. Thesedocumerts weresavedin RTF
format and then custom tools extracted the tables and exported them to PVS
[22,35]. One of the di culties facedin deweloping the tools is that the table se-
mantics had to be inferred from the table layout in RTF. This limited the tools'
capabilities to support new table formats.

4 Conclusions and Future Work

This is a developmert project in its early stages,and we expect that it will evolve
asit progressedy the enhancemen of the existing tools and the addition of new
tools. Our early results shaw that there is promise in the chosentechniques {
the model supports the needsof our documertation and the ability to interact
with other tools such as PVS shows the potential to achieve signi cant leverage
from thesetools.

Near term targets for the tools are to enhancethe plugin such that it is a
reasonablycomplete and user-friendly editor, to corntinue to work with transla-
tion to PVS sothat we can e ectiv ely chedk properties of our documerts, and
to add oracle generation similar to [36] and [13].

Ac knowledgemen ts This work draws on the cortributions of many peoplewho
have worked on tabular methods in the past primarily at McMaster University
and the University of Limerick. In particular we are grateful to Dr. David L.
Parnas for his inspiration, support, and helpful commerts and to Jin (Kim)
Ying and Adam Balaban for their work on the formalization of the semartics of
tabular expressions.

73

The authors gratefully acknowledgesupport received for this work from the
ScienceFoundation Ireland (SFI) through the Software Quality Researt Labo-
ratory (SQRL) at the University of Limerick and from the Natural Sciencesand
Engineering Researtr Council of Canada (NSERC).

References

1. Kohlhase, M.: OMDoc: An Open Markup Format for Mathematical Documents
(Version 1.2). Number 4180in LNAI. Springer Verlag (2006)

2. Heninger, K.L., Parnas, D.L., Shore, J.E., Kallander, J.: Software requirements for
the A-7E aircraft. Technical Report MR 3876, Naval Researt Laboratory (1978)

3. Parnas, D.L.: Inspection of safety critical software using function tables. In: Proc.
IFIP Congress.Volume I., North Holland (1994) 270{277

4. Weiss,G.H., Hohendorf, R., Wassyng,A., B.Quigley, Borsch, M.R.: Veri cation of
the shutdown system software at the darlington nuclear generating station. In: Int'l
Conf. Control & Instrumentation in Nuclear Installations. Number 4.3, Glasgow,
United Kingdom, Institution of Nuclear Engineers (1990)

5. Abraham, R.F.: Evaluating generalizedtabular expressionsin software documen-
tation. M. Eng. thesis, McMaster University, Dept. of Electrical and Computer
Engineering, Hamilton, ON (1997)

6. Parnas, D.L.: Tabular represenation of relations. CRL Report 260, Communica-
tions Researt Laboratory, Hamilton, Ontario, Canada (1992)

7. Janicki, R., Khedri, R.: On a formal semartics of tabular expressions. Science of
Computer Programming 39(2{3) (2001) 189{213

8. Balaban, A., Bane, D., Jin, Y., Parnas, D.: Mathematical model of tabular expres-
sions. SQRL Document (2006)

9. Parnas, D.L., Madey, J.: Functional documentation for computer systems. Science
of Computer Programming 25(1) (1995) 41{61

10. Parnas, D.L.: A family of mathematical methods for professional software docu-
mentation. In Romijn, J.M.T., Smith, G.P., van de Pol, J.C., eds.:Proc. Int'l Conf.
on Integrated Formal Methods. Number 3771in LNCS, Springer-Verlag (2005) 1{4

11. van Schouwen, A.J., Parnas, D.L., Madey, J.: Documentation of requirements for
computer systems. In: Proc. Int'l Symp. Requirements Eng. (RE '93), IEEE (1993)
198{207

12. Peters, D.K.: Deriving Real-Time Monitors from System Requirements Documen-
tation. PhD thesis, McMaster Univ ersity, Hamilton ON (2000)

13. Peters, D.K., Parnas, D.L.: Requirements-based monitors for real-time systems.
IEEE Trans. Software Engineering 28(2) (2002) 146{158

14. Quinn, C., Vilk omir, S., Parnas, D., Kostic, S.: Speci cation of software compo-
nent requirements using the trace function method. In: Intl Conf. on Software
Engineering Advances,Los Alamitos, CA, IEEE Computer Scociety (2006) 50

15. Parnas, D.L., Madey, J., lglewski, M.: Precise documentation of well-structured
programs. IEEE Trans. Software Engineering 20(12) (1994) 948{976

16. The OpenMath Society: The OpenMath Standard. 2.0 edn. (2004)
http://www.op enmath.org/standard/om20-2004-06-30/ .

17. W3C: Mathematical Markup Language (MathML) Version2.0. Secondedn. (2003)
http://www.w3.org/TR/MathML2/.

18. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verication for fault-
tolerant architectures: Prolegomenato the design of PVS. IEEE Transactions on
Software Engineering 21(2) (1995) 107{125

74

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Owre, S., Rushby, J., Shankar, N.: Integration in PVS: Tables, types, and model
cheding. In Brinksma, E., ed.: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS '97). Volume 1217 of LNCS, Enschede, The Nether-
lands, Springer-Verlag (1997) 366{383

Owre, S.: Random testing in pvs. In: Proceedings of Automated
Formal Methods (AFM06), SRI International (2006) Available online:
http://fm.csl.sri.com/AFMO6/.

Munroz, C.A.: PVSio ReferenceManual. National Institute of Aerospace (NIA),
Formal Methods Group, 100 Exploration Way, Hampton VA 23666. Version 2.b
(draft) edn. (2005) Available at http://researc h.nianet.org/ munoz/PVSio/.
Lawford, M., Froebel, P., Moum, G.: Application of tabular methods to the speci-
cation and veri cation of a nuclear reactor shutdown system. Accepted for publi-
cation in Oct 2004. http://www.cas.mcmaster.ca/ lawford/pap ers/ (To appear in
FMSD)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL | A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

Barendregt, H.: Lambda calculi with types.In Abramsky, Gabbay, Maibaum, eds.:
Handbook of Logic in Computer Science.Volume 2. Clarendon (1992)

Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2-3) (1988)
95{120

Luo, Z.: An Extended Calculus of Constructions. PhD thesis, University of Edin-
burgh (1990)

The OpenMath Society: A Type System for OpenMath. 1.0 edn. (1999)
http://www.op enmath.org/standard/ecc.p df.

Kahl, W.: Compositional syntax and sematrtics of tables. SQRL Report 15, Soft-
ware Quality Researt Laboratory, Department of Computing and Software, Mc-
Master Univ ersity (2003)

Spivey, M.: A functional theory of exceptions. Sci. Comput. Program. 14(1) (1990)
25{42

Mossakowski, T.: HETS User Guide. Department of Com-
puter Science and Bremen Institute for Safe Systems, University
of Bremen, Germany. (2006) Online: http://www.informatik.uni-

bremen.de/agbkb/forsc hung/formal _methods/CoFl/hets/UserGuide.p df.
Heitmeyer, C.L., Bull, A., Gasard, C., Labaw, B.G.: SCR*: A toolset for specifying
and analyzing requirements. In: Proc. Conf. Computer Assurance (COMP ASS),
Gaithersburg, MD, National Institute of Standards and Tednology (1995) 109{122
Hoover, D.N., Chen, Z.: Tablewise,a decisiontable tool. In: Proc. Conf. Computer
Assurance (COMP ASS), Gaithersburg, MD, National Institute of Standards and
Tedhnology (1995) 97{108

Parnas, D.L., Peters, D.K.: An easily extensible toolset for tabular mathematical
expressions. In: Proc. Fifth Intl Conf. Tools and Algorithms for the Construction
and Analysis of Systems. Number 1579in LNCS, Springer-Verlag (1999) 345{359
Lawford, M., McDougall, J., Froebel, P., Moum, G.: Practical application of func-
tional and relational methods for the speci cation and veri cation of safety critical
software. In Rus, T., ed.: Proc. of AMAST 2000.Volume 18160f LNCS., lowa City,
lowa, USA, Springer (2000) 73{88

Wassyng,A., Lawford, M.: Software tools for safety-critical software developmert.
International Journal on Software Tools for Technology Transfer (STTT) 8(4{5)
(2006) 337{354

Peters, D.K., Parnas, D.L.: Using test oracles generated from program documen-
tation. IEEE Trans. Software Engineering 24(3) (1998) 161{173

75

76

Reasoning inside a form ula and ontological
correctness of a formal mathematical text

Andrei Paskevich?!, Konstantin Verchinine?!,
Alexander Lyaletski?, and Anatoly Anisimov?

1 Universite Paris 12, IUT Senart/F ontainebleau, 77300 Fontainebleau, France,
andrei@capet.iut-fbleau.fr verko@capet.iut-fbleau.fr
2 Kyiv National Taras Shevchenko Univ ersity, Faculty of Cybernetics,
03680Kyiv, Ukraine,
lav@unicyb.kiev.ua ava@unicyb.kiev.ua

Abstract. Dealing with aformal mathematical text (which weregard as
a structured collection of hypothesesand conclusions), we often want to
perform various analysis and transformation tasks on the initial formulas,
without preliminary normalization. One particular example is cheding
for \ontological correctness”, namely, that every occurrence of a non-
logical symbol stems from somede nition of that symbol in the forego-
ing text. Generally, we wish to test whether some known fact (axiom,
de nition, lemma) is \applicable" at a given position inside a statement,
and to actually apply it (when needed)in a logically sound way.

In this paper, we introduce the notion of a locally valid statement, a
statement that can be consideredtrue at a given position inside a rst-

order formula. We justify the reasoningabout \innards" of a formula; in
particular, we show that a locally valid equivalenceis a su cien t condi-
tion for an equivalent transformation of a subformula. Using the notion
of local validit y, we give a formal de nition of ontological correctnessfor
a text written in a special formal language called ForTheL.

1 Intro duction

In a mathematical text, be it intended for a human reader or formalized for
automated processing(Mizar Mathematical Library [1] is a classicalexample,see
also[2]), werarely meet\absolute", unconstrainedrules, de nitions, statemens.
Usually, everything we useis supplied with certain conditions so that we have
to take them into consideration. For example, we can not reducethe fraction 2~
until we prove that x is a nonzeronumber.

Let us consider a formula of the form (8x(x 2 IR" (X)N).
It seemsto be evidert that we can replace 2 with y, but could we justify
that? The task itself seemsto be absurd: as soon as a term dependson bound
variables, we can not reasonabout it. In the traditional fashion, we should rst
split our big formula up to the quanti er that binds x, make a substitution (or
skolemization), separatex 2 IR™, and only then make the simpli cation.

However, while the statemert \ x is non-zero" is surely meaningless,we can
s&y that \x is non-zeroin this occurrenceof Z-". Our intuition suggeststhat

along with the usual notion of validity, a certain local validity of a proposition
can be de ned with respect to someposition in a formula. A statemert that is
generally false or just meaninglesscan becomelocally valid being consideredin
the corresponding context. In what follows, we call such a proposition a local
property of the position in question.

It can be arguedthat there is no gain in any simpli cations when a formula
to be simpli ed lies deepinside. We would split our big formula anyway to use
the properties of that fraction in a proof. However, we believe that it is useful
and instructiv eto simplify a problem in its initial form asfar aspossiblein order
to selectthe most perspective direction of the proof seard.

Local properties are also necessaryto verify (and even to de ne!) what we
call ontological correctnessof a mathematical text. Informally, we considera text
ontologically correct whenewer it corntains no occurrenceof a non-logical symbol
that comesfrom nowhere:for every sudh occurrencethere must be an applicable
de nition or someother \in troductory" premise.The purposeof ontological cor-
rectnessmay be not immediately obvious: for example, the famous disjunction
\to be or not to be" is perfectly valid (at least, in classicallogic) even if the
senseof being has never been de ned. Nevertheless,ontologically correct texts
are preferablein many aspects.

Ontological correctnessis closely related to type correctnessin typed lan-
guages(especially, in weakly typed systemssuch asWTT [3]). It allows to spot
formalization errors which otherwise could hardly be detected. Indeed, an acci-
dental ontological incorrectnessmost often implies logical incorrectness(i.e. pres-
enceof false or unprovable claims). And it is much harder to trace a failure log
of a prover bad to an invalid occurrencethan to discoverit in the rst place.

Moreover, during ontological veri cation, we obtain information about ap-
plicability of de nitions and other preliminary facts at individual positions in
the text in question. As long as subsequeh transformations (e.g. during the logi-
cal veri cation phase)presere ontological correctnessand other local properties
(and that should always be the case)we canunfold de nitions and apply lemmas
without further cheding.

This paper is devoted to formalization of ontological correctnessfor a partic-
ular languageof formal mathematical texts, called ForTheL [4]. To this purpose,
we dewvelop a theoretical badkground for reasoningabout local properties based
on the notion of local image The rest of the paper is organized as follows. In
Section2, we brie y describe the ForTheL languageand provide an informal (at
the momert) de nition of ontological correctnessof a ForThelL text. Section 3
intro ducespreliminary notions and notation which we useto de ne and inves-
tigate the notion of local image in Section 4. With the help of local images,we
give a precisede nition of ontological correctnessin Section 5.

2 ForTheL language

Like any usual mathematical text, a ForTheL text consistsof de nitions, as-
sumptions, a rmations, theorems,proofs,etc. The syntax of a ForThelL sertence

78

follows the rules of English grammar. Sertencesare built of units: statemerts,
predicates, notions (that denote classesof objects) and terms (that denote in-
dividual entities). Units are composed of syntactical primitiv es: nouns which
form notions (e.g.\ subset of ") or terms (\ closure of"), verbsand adjectives
which form predicates(\ belongs to", \ compact’), symbolic primitiv esthat use
a concisesymbolic notation for predicates and functions and allow to consider
usual quanti er-free rst-order formulas asForThelL statemerts. Of course,just
a little fragment of English is formalized in the syntax of ForTheL.

There are three kinds of sertencesin the ForTheL language:assumptions,
selections,and a rmations. Assumptions serveto declarevariablesor to provide
somehypothesesfor the following text. For example,the following sertencesare
typical assumptions:\Let S be a finite set. ", \ Assumethat mis greater
than n.". Selectionsstate the existence of represertativ es of notions and can
be usedto declarevariables, too. Here follows an example of a selection:\ Take
an even prime numberX.". Finally, a rmations are simply statemens: \If p
divides n - pthen pdivides n.". The semariics of a sertenceis determined
by a seriesof transformations that convert a ForThelL statemert to a rst-order
formula, so called formula image

Example 1. The formula image of the statemert \all closed subsets of any
compact set are compact’ is:

8A((Ais a set ~ Ais compact)
8B((Bis a subset of A Bis closed) B is compact))

ForTheL sections are: sertences, sertences with proofs, cases,and top-le-
vel sections: axioms, de nitions, signature extensions, lemmas, and theorems.
A top-level section is a sequenceof assumptions concluded by an a rmation.
Proofs attached to a rmations and selectionsare simply sequence®f low-level
sections.A casesection consistsof an assumption called case hypothesis followed
by a sequenceof low-level sections(the proof of a case).

Any section A or sequenceof sections has a formula image, denoted jAj
or, respectively, j j. The image of a sertence with proof is the same as the
image of that sertence taken without proof. The image of a casesection is the
implication (H thesis), whereH is the formula image of the casehypothesis
and thesis is a placeholderthat will be replacedby the statemert being proved
during veri cation. The formula image of a top-level sectionis simply the image
of the corresponding sequenceof sertences.

The formula image of a sequenceof sectionsA; is a conjunction jAj~ | j,
whenewer A is a conclusion (a rmation, casesection, lemma, theorem); or a
universally quanti ed implication 8xa(jAj | j), whenewer A is a hypothesis
(assumption, selection, casehypothesis, axiom, de nition, signature extension).
Here, x o denotesthe set, possibly empty, of variables declaredin A (this set
also depends on the logical context of A, since any variable which is declared
above A in the text must not be bound in jAj). The formula image of the empty
sequencds >, the truth.

79

Thus, a ForTheL text as a whole, being a sequenceof section, can be ex-
pressedas a single logical formula. In what follows, we often use formulas, sec-
tions and sequenceof sectionsinterchangeably: wheneer a sectionor a sequence
of sectionsis mertioned where a formula is expected, the corresponding formula
image should be considered.

In this syntax, we can expressvarious proof schemeslik e proof by contradic-
tion, by caseanalysis,and by generalinduction. The last scheme merits special
consideration. Whenewer an a rmation is marked to be proved by induction,
the system constructs an appropriate induction hypothesis and inserts it into
the statemert to be veri ed. The induction hypothesis mertions a binary rela-
tion which is declaredto be a well-founded ordering, hence, suitable for induc-
tion proofs. Note that we cannot expressthe very property of well-foundnessin
ForTheL (sinceit is essetially a rst-order language),sothat the correctnessof
this declaration is unveri able and we take it for granted. After that transfor-
mation, the proof and the transformed statemert can be veried in a rst-order
setting, without any speci ¢ meansto build induction proofs.

Example 2. Consider the following ForTheL formalization of Newman's lemma
about term rewriting systems.We give it in an abridged form, with some pre-
liminary de nitions and axioms omitted. The expression\x -R> y" meansthat
y is a reduct of x in the rewriting system R R+and R* denote, respectively, the
transitiv e and the re exiv e transitiv e closure of R

Let a,b,c,d,u,v,w,x,y,z denote elements.
Let R,S,T denote rewriting systems.

Definition CRDef. R is confluent iff
for all ab,c such that a -R*> b and a -R*> ¢
there exists d such that b -R*> d and ¢ -R*> d.
Definition =~ WCRDef. Ris locally confluent iff
for all ab,c suchthat a-R>b and a -R>c
there exists d such that b -R*> d and ¢ -R*> d.
Definition TrmDef. R is terminating iff
for al ab a-R+>b =>b -<- a.
Definition NFRDef. A normal form of x in R is
an element y such that x -R*> y and y has no reducts in R.

LemmalermNF. Let R be a terminating rewriting system.
Every element x has a normal form in R.
Proof by induction. Obvious.

LemmaNewman.
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that
for all ab,c such that a -R*> b and a -R*> ¢
there exists d such that b -R*> d and ¢ -R*> d.

80

Assumethat a -R+>b and a -R+> c.

Take u such that a -R> u and u -R*> b.
Take v such that a -R> v and v -R*> c.
Take w such that u -R*> wand v -R*> w.
Take a normal form d of win R.

Let us showthat b -R*> d.
Take x such that b -R*> x and d -R*> x.
end.
Let us showthat c -R*> d.
Take y such that ¢ -R*> y and d -R*> y.
end.
end.
ged.

Our formalization is simpli ed in that the notion \ element" takesno argu-
merts, i.e. we considerrewriting systemsto be de ned on a common (implicit)
universum.Also, in our current implementation of ForTheL, onecan not declare
a given binary relation to be well-founded, and therefore a rewriting system s
de ned to be terminating i its inverted transitiv e closureis a subsetof the well-
foundedrelation \-<- " (De nition TrmDef). The induction hypothesis(namely,
that any reduct of a is con uent) is usedto verify the selections\ Take x..." and
\Take y..." at the end of the proof. Note that we do not considercaseswhere b
or ¢, or both are equalto a| thesecasesare trivial enoughsothat the system
can handle them without our assistance.

The ForTheL proof of Newman's lemma, while being quite terse and close
to a hand-written argumert, is formal and has been automatically veried by
the SAD proof assistart, using SPASS 2.2, E 0.99, and Vampire 7.45 as back-
ground provers. We refer the reader to the papers [4,5] and to the website
http://ea.unicyb .ki ev.ua for a description of SAD and further examples.

We call a ForTheL text ontologically correct whenewer: (a) every non-logical
symbol (constant, function, notion or relation) in the text is either a signature
symbol or is introduced by a de nition; and (b) in every occurrenceof a non-
logical symbol, the argumerts, if any, satisfy the guards of the corresponding
de nition or signature extension. Since ForTheL is a one-sorted and untyped
language, these guards can be arbitrary logical formulas. Therefore, the latter
condition cannot be cheded by purely syntactical meansnor by type inference
of any kind. Instead, it requires proving statemerts about terms inside complex
formulas, possibly, under quanti ers. The following sectionsprovide a theoretical
basisfor suc reasoning.

3 Preliminary notions
We consider a one-sorted rst-order languagewith equality (), the standard

propositional connectives: , ~, _, , , the quantier symbols 8 and 9, and
the boolean constart >, denoting truth. The respective order of subformulas is

81

signi cant for someof our de nitions, therefore we considerF ~ G and G" F
asdierent formulas (the sameis true for _, , and). We write the negated
equality : (s1 s2) ass; 6 sp and the negatedtruth :> as?.

We supposethat the setsof free and bound variablesin any term or formula
are always disjoint. Also, a quanti er on a variable may never appear in the
scope of another quanti er on the samevariable.

We considersubstitutions asfunctions which map variablesto terms. For any
substitution , if x is dierent from x, we call the term x a substitute of x in

. A substitution is nite whenewer the set of its substitutes is nite. We write

nite substitutions as sequence®f the form [t1=Xq;:::;th=Xy].
Position is a word in the alphabet f0;1;:::g. In what follows, positions
are denoted by Greek letters , and ; the letter denotesthe null position

(the empty word). Positions point to particular subformulas and subtermsin a
formula or term.

The set of positions in an atomic formula or a term E, denoted (E), is
de ned asfollows (below i: standsforfi: j 2 q):

(P(soiiiisn)) = f g [ibo(s) (s =fgl 0 (5[1 ()
(f(so;ziisn)) = gl [i (si) >)=fg

The set of positions in a formula H, denoted (H), is the disjoint union
= "B &0 F)

of the set of positive positions *(H), the set of negative positions (H),
and the set of neutral positions (H) (in what follows, A stands for an atomic
formula):
(F G)=fg "(BxF)=f g[0. *(F)
(F G)y=fg[0 (F)[L (G TOxF)=f g[0. *(F)
F_G=fg[0 *(FA)[1. "(G) TGCFR)=fg[00 (F)

"(Fre)=fg[0 "(F)[1 "(G) (A= (A)
(F G)=> (8xF)=0: (F)
(F =0 "(F)[1. (G) (xF)=0 (F)
(F_G=0 (F)[11 (G) (CF)=0 *(F)
(FrG) =0 (F)[11 (G) (A) =2
(F G=0 (F)[1 (G) (8xF)=0: (F)
(F G=0 (F)[1 (G) (xF)=0: (F)
(FrG)=0 (F)[1 (G) CF)y=0 (F)
(F_G=0 (F)[L (G) (A) =2

82

For the sake of consistency we set *(t) = (t) and (t) = (t) = ? for
any term t.

Among positions, we distinguish those of formulas (), those of atomic

formulas (), and those of terms ((). Obviously, (F) = +(F)[¢(F),
A= rM®=72, a(F) r(F), (1= (). Wesplitthesets , a,
and ¢ into positive, negative, and neutral parts, too.

Givena formula H and a position 2 (H), the position b is the maximal
prex of in g(H). In what follows, we will often usethis conversionto extend
notions and operations de ned on positions from g to the whole

A formula or aterm E alongwith a position 2 (E) de nes an occurrence.

Let us say that is a textual predecessor of whenewer = !:: and

= 1. andi < j. Such positions will be called adjacent. If =, we will
say that is alogical predecessor of . By default, \predecessor"means\logical
predecessor".

Given a formula or a term E and a position in (E), we will denote by
Ej the subformula or subterm occurring in that position. In what follows, (F)
standsfor (: F), (8xF), or (9xF); and (F G) standsfor (F G), (F G),
(F™G), or (F_G):

Ej =E (F)jO: = Fj

(F Gio: =Fj (F G = Gj
P(so;::iisn)iic = si (s tjo =5
f(so;::isn)jic = i (s tj =t

Givena formula or aterm E, a position in (E), and a formula or a term
e, we will denoteby E[e] the result of replacemen of Ej with e:

Ele] =e (F)elo = Flel

(F G)lelo. =Fle] G (F G)e. =F Gl
P(so;:::isn)leli = P(so;::i;silpl s:iiisn) (s D)lelo: = se] t
f(so;:iiisn)lel; = f(soi::mssilpl siiiisn) (s Del =s te]

The expressione must beaterm if 2 ((E), and a formula otherwise. Free
variables of e may becomebound in Fe] .

4 Local validit y and local prop erties

Givena formula F, a position 2 ¢(F), and a formula U, we de ne the local
image of U w.rt. F and , denotedhUi", asfollows:

huif. © = huif huif. © = hui® Ui = gxhuif
hif. © = G_ruif if. ©=F i€ nuig® = 8xhuif
hUib."¢ = G huif it"¢=F Hui® hUisF = huif
hif-¢ = G _huif hit-¢ = F _hui® huif = U

83

Roughly, the formula hUiF says\U is true at the position in F". Note that
this formula doesnot depend on the subformula Fj . For a position 2 ((F),
we de ne hJiF to be hUiF, whereb is the longestpre x of in ¢ (F).

Example 3. Let F be the formula

8x(x 2 IN 8n(n 2 IN (x b (n)
(n 17x 1)_x (b(n I+ b(n 2))))
This formula represernts a recursive de nition. We want to verify that the argu-
ments (n 1) and (n 2) satisfy the guards of the de nition and are strictly
lessthan n.

Consider the secondargumert. Let denote its position, 0:1:0:1:1:1:1:1:0.
Wewant to proveh(n 2)2 IN* (n 2)< niF. The latter formula is equal to

8 (X2IN 8n(n2IN ((n 1~x 1)_((n 2)2IN"(n 2)<n)))

But this formula is false given n = x = 0. And that reveals an error in our
de nition: x = 0 makes false the left side of the disjunction Fjo.1.0:1:1, SO we
have to considerthe right side with n = 0 in order to evaluate the truth value
of the whole disjunction. Now it is easyto build a good de nition F°of b :

8x (x 2 IN 8n(n 2 IN (x b (n)
(h 17x H_(m 2%x (b(n 1+ b(n 2)))

Obviously, the localimageh(n 2)2IN”* (n 2)< nig:izo:lzlzlzlzlzl:o is a valid
formula:

8x(x 2 IN 8n(n 2 IN
(n 17x 1) _(n 2 ((n 22IN~(n 2)<n))
Lemma 1. ForanyF, 2 (F), andaformula U, 8U " hJiF.

Proof. Here, 8 U denotesthe universalclosureof U. The formula Ui is equiv-
alent to a universally quanti ed disjunction and U is a positive componert of
this disjunction. t

Lemma 2. (local modus ponens) ~ hJ ViF (WUIF hiF)

Lemma 2 can be proved by a simple induction on the length of
The lemmasabove shaw that we can consisterily reasonabout local proper-
ties. They are powerful enoughto prove someinteresting corollaries.

Corollary 1. ~hJ ViF (WUif HiF)

Proof. By Lemmalwehave’ WU V) (U V)iF. Henceby Lemma 2,
hU V)ifF (U ViF). Again by local modus ponens © hU V)iF
(WJiF hiF). In the sameway, * (U V)iF (WiF hUiF). u

84

Corollary 2. ~ hJ~ViF (WJifF ~ WiF)

Proof. In order to prove the necessiy, we take the propositional tautologies
(unrv) U and (U " V) V. In order to prove the suciency, we take
the propositional tautology U (V. (U~ V)). Then we \immerse" a chosen
tautology inside the formula F by Lemma 1 and apply local modus ponens tl

Corollary 3. For any quanti er-fr ee context C,

m1 V]_|F/\ AI’Un VniFArtl S]_lFA Anm Sm'F

The term \context" stands here for a formula with \holes", in which formulas
or terms can be inserted, completing the context up to a well-formed formula.
The corollary can be proved similarly to previous statemerts.

The key property of local imagesis given by the following theorem.

Theorem 1. For any formulas F, U, V

2 f(F)) ~h Vvit (FIUl FV])
f(F)) ~hVif (FlUI FV])
f(F)) W Uf (FIUl FV])

This theorem is proved by induction on the length of . The proof is quite
straightforward and we omit it becauseof lack of space.

By Theorem 1, we can safely replace subformulas not only by equivalent
formulas but by locally equivalent ones as well. Note that the inverse of the
theorem holds in the propositional logic: *o U~ ViF (F[V] FIV]).
Local equivalenceis there a criterion of substitutional equivalence.lt is not the
casefor the rst-order logic, where (9x x 0) is equivalent to (9xx 1).

Remark 1. In what follows, we often apply Theorem 1 and related results to
positions from ¢, having in mind the position of the enclosingatomic formula.
Note that any statemert which is locally true in a term position is also locally
true in the position of the enclosingatomic formula, sincethe local imagesare
the same.

Corollary 4. For any formula F, a position 2 ((F), andterms s and t,
‘s tit (F[s] FItl)
Follows from Theorem 1 and Corollary 3.
Corollary 5. For any formula F, a position 2 ¢(F), and formulas U, V

T hiF o (FIV] FU~ VD) T it (FIVI F[U V])
‘W Uit (F[V] FUAV]) S ViF (FIV] FU_V])

85

Consider a closed formula H of the form 8x (C (A D)), where A
is an atomic formula. Consider a formula F and a position 2 A (F) suc
that Fj = A for somesubstitution . If we can prove hC i, then we have
hA D i by Lemma 1 and Corollary 2 (provided that H is among the
premises). Then we can replace A with D by Theorem 1 (we generalizethis
technique in the following section). Returning to Example 3, we can guarantee
that such an expansionis always possible(sincem 12 IN A n 22 INiF
holds) and is newer in nite (sinceln 1< n”~ n 2< ni" holds).

However, the notion of a local image introduced above has a disadvantage:
it is not invariant w.r.t. transformations at adjacert positions.

Example 4. SincehAi{"A isvalid, (A" A) is equivalent to (>~ A) by Theorem 1.
But hAiI{"A is alsovalid, whereashAi;" A is not.

Generally, we can build a formula F whosetwo subformulas U and V assure
certain local properties for eadh other. Using theseproperties, we replaceU with
a locally equivalert formula U° But thus we can losethe local properties of V.

This doesnot play an important role when we considerone-time transforma-
tions, e.g.simpli cations. Indeed, oneshould ched that simpli cation is possible
just before doing it. But there are also certain local properties that we would
prefer keepintact during the entire proof.

For example, we can verify the ontological correctnessof a given occurrence
of afunction symbol in the initial task and it is quite desirableto presene further
this correctnessin order to expandthe de nition of that symbol at any momert,
without extra veri cations.

To that aim, we slightly changethe de nition of a local imagein such a way
that only the formulas at preceden positions get into the context. Psychologi-
cally, this is natural, sinceassertionsof that kind (type declarations, limits, etc)
are usually written before\signi can t" formulas.

The directed local image of a formula U w.r.t. a formula F and a position

2 g(F), denotedhUjF, is de ned as follows:

hUjo. © = HUj" HUFL © = {HUj® hUj & = 8x hUj"
hUjo. © = HUjt HUFL ©=F KHUj® HUjRFT = 8xhUfT
hUjio.” © = HUj* HUjL ® = F HUj® hUjo" = HUj*
HUjo-C = U™ KHUJL-® = F _{uj® hUjT = U

For a positon 2 (F), we de ne fUj" to be UjF, where b is the longest
prex of in g(F).

First, note that all statemerts proved sofar about \indirected" imageshold
for directed ones,too. In some sense,directed image is just a reduction, with
someconditions and alternativ eseliminated. This is illustrated by the following
trivial lemma.

Lemma 3. T Ut hUif

86

Theorem 2. For any formula F and two adjacent ; 2 ((F),
“HU o Vit Bwifll o hwjFivI

Proof. We proceedby induction on the length of . It is easyto seethat, if
textually precedes , then the formulas W j FIVT and ijiF[V] are identical.

Sowe can supposethat textually precedes , that is, there exist!, , and
suchthat = 1:0. and = !:1: . It is easyto seethat we can reduce our
problem to

CHU Vg P jwjis T {S e

where (G H) = Fj, . The latter is equivalent to

H .G[V] H

T vi® o pwjsY Wi §

and then to
THU o Vi® (GU] ?hwit) (GIV] ?hwij*)

where ? is either or _, in dependenceof . By Lemma 3 and Theorem 1,
HU Vj©¢ implies (G[U] G[V]), hencethe claim is proved. t

Corollary 6. For any formula F and two adjacent ; 2 (F),
“hs tit o HwijfBEl hwijtl
Finally, we intro ducethe notion of local substitution. Let H be a formula suc
that no quanti er occursin H in the scope of another quarti er over the same

variable. Given a position 2 ¢ (H), the result of local substitution H[] is
de ned asfollows:

F[I-=F (F Gl =F[] G
CHE) loo =:F[1] (F Gl l: =F G[]
(BXF) Jo: = (F[x=x D[] (BYF)[Jo. = 8yF[]
(O F) Jo: = (F[x=x D[] (OYF)[Jo: = 9yF[]
wherex 6 x andy = y in the last four equations, i.e. we eliminate the

quarnti ers over the instantiated variables. Here and below, we will assumethat
x isfreefor x in F and further, doesnot instantiate any variable that occurs
in one of the substitutes of
When applied without restrictions, local substitutions may produce illegal
instances(e.g. when variables of opposite polarities are instantiated). Also, local
substitutions do not presene local properties in adjacert positions. Considerthe
formula F = 8x P(x) * A and the substitution = [s=x] to be applied in F at
= 1:0,sothat F[] = (P(s)™ A). The atom A hasthe local property 8x P (x)
in F but losesthis property in F[] | somethingwe would like to avoid.

87

Therefore, we introduce a more ne-grained operation. As before, let H be
a formula sudh that no quanti er occursin H in the scope of another quanti er
over the samevariable, and be a position in g (H).

(F Gl =F[1 7 (F Oll. =F G
(F_G)llo =F[T _7 (F_Gl I =F_G[I
(FA"G)l I =F[I""G (F Q) I =F"G[T
(xF) Jo. = (Fix=x DL I" (F OlI'=F G
OYF) Jo. = YFL T Pl =:F[]
(8zF)[Io. =8zF[" FI"=F

(F Gl =F[I" G (F Ol =F ¢G[]
(F_Gll. =F[] _G (F_GI . =F_G[]
(F "Gl lo. =F[1 "> Fr"Gl L. =F"C[]
(8F) Jo. = (Fix=x][] (F Gl] =F G
(8yF) lo. =8yF[] CP o =:F[T
(9zF)[lo. = 9zF[] F[. =F

wherex 6 x andy =vy. Forapositon 2 (H), wedene H[]* = H[|*
andH[] = H[] , whereb isthe longestprex of in g(H).

These operations keep track of polarity of an occurrencein question and
do not instantiate inappropriate variables. Also they eliminate subformulas in
certain adjacent positions| exactly those oneswhich may losetheir local prop-
erties after instantiation.

Lemma 4. LetH be a formula suchthat no quanti er occursin H in the scope
of another quanti er over the samevariable. Let be a position in (H) and
, a substitution. Then we have:

"H[]" H "H HI[]

Theorem 3. LetH beaformula suchthat no quanti er occursin H in the smpe
of another quanti er over the samevariable. Let be a position in (H) and ,
a substitution. For any polarity s2 f+; g andany positon 2 A (H[J*), ei-
ther (H[J¥)j = > or there existsa position °2 A (H) suchthat the following
holds:

Let be the longest common pre x of and © Let © be a substitution
suchthat for any varaible x, if a quanti er over x is eliminated in H[]*, then
x 9= x , otherwisex °= x. Then (H[I¥)j = (Hj o) %and

Uit U GRtr

Proof. We can supposewithout loss of generality that 2 g (H) (otherwise
b should be taken instead of). We will prove this lemma by induction on

88

the length of . In the basecase(=), wetake °= and °= |, the
trivial substitution. Thus the claim is obviously true. Otherwise we consider
three typical cases.

CaseH = (F G), =0,o8= ,H[PF=F[]", G =Ly
Wetake °= and %= . Obviously, (H[])j = Gj, = (Hj o) ° Further-
more, jUj" = F §UjC and iU "' = F[], {UjC. By Lemma 4,
" F[]', F,andthe claim holds. Note that we could not make the nal step
in the cases = +, and thereforewehadto dene H[" = F[] | 2.

CaseH=(F G), =1 os=+ H[F=F G[],, =1 Bythe
induction hypothesis, there exist 2 A (G) and a substitution © such that

(G[T'))i o = (Gj o) Cand” §Uj% U §5 . Then wetake °= 1: ¢ and
obtain (H[1")j = (Hj o) ° Moreover, WUji", (equalto F HUj Gg) implies

hu GV (equalto F UL o).
CaseH = (8xF), =0os= ,H[PF = FKxxD1, = o
Let F%stand for F[x=x]. By the induction hypothesis, there exist some ¢ 2
A (F9 and a substitution § such that (FY] ,)j, = (F9 o) §and for any V,

0

I\ Fgo BV Sj FO[o Thenwetake °= 0: Jand °= 9 [x=x](recall that
§ doesnot instantiate variablesfrom x). Weobtain (H[])j = (Fq1,)i, =
(F99) § = (Fig) °= (Hjo) ° Further, the local image hUj" (equal to
8x hUj Fg) implies (HUji Fg)[x:x]. The latter formula is equal to KU[x=x Jj Fgo

HET

0
and thus implies i(U[x=x J) S, ' °, that is, hU G t

Informally, Theorem 3 says that any atom in H that \surviv es" instantiation
(i.e. is not replacedwith a booleanconstart) presenesits local properties, which
are instantiated together with the atom.

5 Applying local prop erties

Let us considera formula of the form H[F] suc that no quanti er occursin it
in the scope of another quanti er over the samevariable. Let be a substitu-
tion. By Theorem 3, there exist a formula H? a position ©° and a substitution

O sudh that (H[F])[] HIF 9 o and ewery local property of F in H is
presened (modulo instantiation) in H% (While is not a position of atom in
H[F] , wecantakean atom P(x), whereP is a new predicate symbol and x are
the free variables of F, and prove (H[P(x)]) 1] HIP(x) 9 o. Note that
P (x) cannot turn into a boolean constart in (H[P(x)])[] . Then we have
8x (P(x) F) (H[F1) 1 =HIF 9o, by Lemma1 and Theorem 1. Since
P is a new symbol, the premise8x (P(x) F) canbediscarded.)By Lemma4,
H[F] impliesHIF 9 o.

We can prove that HJF 9 o implies 9x°(F 9 _ H9?] o, where x° are the
free variables of F ° Indeed, HIF 9 o implies 9x°(F 9 _ HIF 9 o, which
is equivalert to 8x°: F 9 HYF 9 o, which is equivalert to 8x°(: F 9
H9?] o by Theorem 1. Therefore, H[F] implies: HJ?] o 9x°(F 9.

89

This provides us with a handy tool to test applicability of de nitions in a
ForTheL text. Consider a section A and supposethat s the set of sections
which logically precedeA in the text. Let G be the formula image of A. Let
P(s) occur in G in a position . Now, supposethat D 2 is a de nition for
the predicate symbol P. Quite naturally, the formula image of D is of the form
8x1(Hy :::8xk(Hk (P(X1::k) D)):::). By previous,it suces to prove

T hHg 1 = I ?ji¢, where is the substitution [x1...x=S], to obtain

“HP(s) D j®. Then G is equivalent to G[D] , that is, we can apply the
de nition D to P(s). Moreover, all the local properties of terms and subformulas
of D in D, instantiated with , holdin D in GD] .

In a similar fashion, we de ne applicability for other forms of ForTheL de -
nitions and signature extensions.Note that the substitution and the position
of the local instantiation in jDj are unambiguously determined by the form of
D. Using the method described above, we can test any logical predecessorof
A for applicability at a given position in jAj, but then we have to choose an
appropriate local instantiation ourselves.

Now, a section A is ontologically correct in view of if and only if every
occurrenceof a non-logical symbol in jAj either has an applicable de nition or
signature extensionin or is the principal occurrencein a de nition or signature
extension A (which meansthat A introducesthat very symbol).

A ForTheL text is ontologically correct whenewer ead sectionin it is onto-
logically correct in view of its logical predecessors.

6 Conclusion

We have intro ducedthe notion of a locally valid statemert for the classical rst-

order logic and showved how it can be usedto reasonabout the interiors of a
formula. In particular, we proved that a locally true equivalenceis a su cien t
condition for an equivalert transformation of a subformula. The local validity
of a statemert is expressedwith the help of local imageswhich can be regarded
as a syntactical formalization of the notion of a logical context of the statemert
occurrence.Sincelocally equivalent transformations may break local properties
of other occurrenceswe intro ducedthe notion of directed local validity which is
invariant w.r.t. directed locally equivalert transformations. Finally, we de ned
the operation of local instantiation and showed that this transformation pre-
senes directed local properties. Using this theoretical badkground, we gave a
clear de nition of an ontologically correct ForTheL text.

The proposedapproac can be regardedasa way to handle partial relations
and functions in a mathematical text. Instead of intro ducing special individual
or truth values for unde nedness (as in Kleene's strong logic [6]), ontological
correctnessrequires every term or atom to be well-de ned a priori, by confor-
mance to the guards of corresponding de nitions. Using directed images and
deductive techniquespreservinglocal properties, we can guarantee that the text
under consideration always stays well-de ned. In our opinion, this corresponds
well to the usual mathematical practice.

90

Of course,reasoninginside a formula is not a new idea. To our knowledge,
related conceptswere rst introducedby L.G. Monk in [7] and werefurther devel-
opedin [8]. P.J. Robinsonand J. Staplesproposeda full- edged inferencesystem
(so called \windo w inference") [9] which operated on subexpressionstaking the
surrounding context into accourt. This inference system has been generalized
and extended by J. Grundy [10].

A common trait of the mentioned approachesis that the local context of
an occurrenceis represerted by a set of formulas which are regarded as local
premisesfor the position in question. Special inference rules are then needed
to handle a local context and, what is worse, some\strong" transformations,
e.g.replacing A _ B with : A B, are required. The notion of local image, as
described in this paper, seemsto be lighter and lessintrusive. In particular, the
results of Section4 are valid in intuitionistic logic, while the local contexts of [7]
cannot be adapted for intuitionistic logic in any obvious way.

Moreover, the de nition of a local image can be easily extendedto a (uni)-
modal language:hJioF = HUiF and Ui,m = HUiF, and similarly for di-
rected images. Then the statemerts of Section 4 (local instantiation aside) can
be proved in the modal logic K, hencein any normal modal logic.

Acknowledgements. This work is supported by the INT AS project 05-1000008-
8144.Someparts were done within the scope of the project M/108-2007 in the
framework of the joint French-Ukrainian programme \Egide-Dnipro".

References

1. Trybulec, A., Blair, H.: Computer assistedreasoning with Mizar. In: Proc. 9th
International Joint Conferenceon Arti cial Intelligence. (1985) 26{28
2. Barendregt, H.: Towards an interactive mathematical proof language. In Ka-
mareddine, F., ed.: Thirt y Five Years of Automating Mathematics, Heriot-W att
Univ ersity, Edinburgh, Scotland, Kluwer Academic Publishers (2003) 25{36
3. Kamareddine, F., Nederpelt, R.P.: A Re nement of de Bruijn's Formal Language
of Mathematics. Journal of Logic, Language and Information 13(3) (2004) 287{340
4. Lyaletski, A., Paskevich, A., Verchinine, K.: SAD as a mathematical assistart |
how should we go from hereto there? Journal of Applied Logic 4(4) (2006) 560{591
5. Lyaletski, A., Paskevich, A., Verchinine, K.: Theorem proving and proof veri ca-
tion in the system SAD. In Asperti, A., Bancerek, G., Trybulec, A., eds.: Math-
ematical Knowledge Managemert: Third International Conference, MKM 2004.
Volume 3119 of Lecture Notes in Computer Science.,Springer (2004) 236{250
. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1952)
. Monk, L.G.: Inference rules using local contexts. Journal of Automated Reasoning
4(4) (1988) 445{462
8. Corella, F.: What holds in a context? Journal of Automated Reasoning 10(2)
(1993) 79{93
9. Robinson, P.J., Staples, J.: Formalising the hierarchical structure of practical
mathematical reasoning. Journal of Logic and Computation 3(1) (1993) 47{61
10. Grundy, J.: Transformational hierarchical reasoning. The Computer Journal 39(4)
(1996) 291{302

~N O

91

92

The Utilit y of OpenMath

JamesH. Davenport”

Department of Computer Science,Univ ersity of Bath, Bath BA2 7AY England
J.H.Davenport@bath.ac.uk ,
WWW home page: http://staff.bath.ac.uk/mas jhd

Abstract. OpenMath [5] is a standard for represerting the semantics
of mathematical objects. It di ers from "Presenation’ MathML [7]in not
being directly concernedwith the presertation of the object, and from
“Content' MathML in being extensible. How should these extensions be
performed so asto maximise the utilit y (which includes presertation) of
OpenMath?

1 What is OpenMath?

\Op enMath is an emergingstandard for represening mathematical objects with
their semartics, allowing them to be exchanged between computer programs,
stored in databases,or published on the worldwide web."?. In particular, Open-
Math is extensible, unlike MathML 2.0 [7]. It achievesthis by having an exten-
sible collection of Content Dictionaries. \Content Dictionaries (CDs) are usedto
assigninformal and formal semartics to all symbols usedin the OpenMath ob-
jects. They de ne the symbols usedto represen conceptsarising in a particular
area of mathematics" [5, section 1.3].

Notation 1 By an OpenMath CD we will mean any document conforming to
the formal syntax of [5].

The status of an OpenMath content dictionary is one of the following [5,
Section4.2.1]:

{ official : approved by the OpenMath society accordingto the procedure
de ned in section4.5 (of [5]);

? This paper owes much to some questions of Paul Libbrecht, when we were both at
the IMA Workshop \The Evolution of Mathematical Communication in the Age of
Digital Libraries" | Decenber 8{9, 2006. Thanks are due to the IMA, and par-
ticularly Robert Miner, for organising this workshop. Further commerts, notably
on section 6, are due to him [18] and Christian Gross [14]. Section 7 owes a lot to
discussionwith Prof. Vorobjov. Drs Naylor and Padegt also made useful suggestions.

! http://www.openmath.org/overv iew/ index .htm|

2 After this paper was submitted, a draft [8] of MathML 3.0 was produced, which
basescontent markup on OpenMath content dictionaries, and thus is extensible.

{ experimental : under developmert, and thus liable to change;
{ private : usedby a private group of OpenMath users;
{ obsolete : an obsoleteContent Dictionary kept only for archival purposes.

De nition 1. A Content Dictionary is said to be public if it is accessiblefrom
http: // wwwopenmath/org and hasone of the two statusofficial ~ or obsolete .
Similarly, a symtol is said to be public if it is in a public CD.

Note that this de nition of public refersto the entire symbol, not just the name.
Thus

<OMShame="sin" cd="transcl"/>
is a public symbol, whereas
<OMShame="sin" cd="http://www.ca malsoft .co m/G/t ranscl"/>

is not.

An OpenMath object, all of whosesymbols are public, has xed, permanert,
semarics. Evenif a CD changesstatus from official ~ to obsolete , the seman-
tics do not change (though it is quite likely that new software systemswill not
be able to interpret it, exceptin the name of compatibilit y*).

The OpenMath standard explicitly envisagesthat OpenMath applications
can declare and negotiate the CDs (or CD groups) that they understand [5,
Section 4.4.2]. In the absenceof such negotiation®, it might seemthat the only
OpenMath objects which can safely be exchangedare onesall of whosesymbols
are public (which we can abbreviate to public OpenMath objects). If every appli-
cation had to convert from its semartics to those of the public CDs, there would
be great ine ciency involved, especially if the aim was “cut and paste' from one
instance of an application to another instance of the sameapplication (e.g. from
mine to yours, or from today's to tomorrow's, or from versionx to version ++x
or:::). Equally, two di erent applications may be\su cien tly similar" that each
can understand the other's semartics directly.

2 A Pragmatic Interpretation

De nition 2. A Content Dictionary is said to be semi-public if it is accessible
from http: // wwwopenmath/org or from an URI which resolvesto a glokally
accessibleURL, and the CD has one of the two status official ~ or obsolete .
Similarly, a symtol is said to be semi-public if it is in a semi-public CD.

3 This is the wording of [5]: the presert author would be inclined to write \arc hival
and compatibilit y purp oses".

4 \Compatibilit y is the last excusefor not xing something that you have already
admitted to be a bug" [25]. For OpenMath, declaring a CD obsolete and writing a
new one with the "bug’ xed removeseven this excuse:seesection 6.

5 Which may well be impossiblein a\cut and paste" scenario.

94

Thus

<OMShame="sin" cd="http://www.ca malsoft .co m/G/t ranscl"/>
appearsto be a semi-public symbol, whereas

<OMShame="sin" cd="file://C:/cam alj pff/ G/transcl"/>

is not.

We said above that it appeared to be a semi-public symbol. That is because
the de nition is neither e ective (we can try to look the symbol up, but who
knows if the failure is transient or permanert) nor time-invariant: camalsoft
may go bankrupt, or its managersmay not comply with the OpenMath rules,
and delete symbols or change the semarics of them. Hence the concept that
can be e ectiv e is that of apparently semi-public, as applied to a CD or a sym-
bol. However, an apparertly semi-public symbol might not have any discernable
semartics.

De nition 3. A symtol is said to be transitiv ely public if:

1. it is apparently semi-public;

2. its semantics can be deduced in terms of public syminls by (possibly many)
applications of Formal Mathematical Properties (FMPs) contained in appar-
ently semi-public CDs.

Again, the de nition is not time-invariant, for the samereasonsas before. Also,
it is not application-independen, since one application might be able to make
deductionsfrom FMPs that another could not. However, it is the semartics and
utilit y of transitiv ely public symbolsthat we are concernedwith here,sincethese
are onesthat applications might reasonablyencourter. This is what, e ectiv ely,
is implied by the cdbase in the OMOBdonstructs quoted.

3 An example | arctan

One hypothetical examplewould be the following, for the systemDerive®, whose
arctan function di ers from the de nition in [1]. As pointed out in [9], the two
de nitions could be related by the followingFMP.

<FMP>
<OMOBgddbase="http://ww w.opennath .org/cd ">
<OMA>
<OMShame="eq" cd="relation1"/>
<OMA>

& As already stated in [9], this is not an issueof somealgebra systems, such as Maple,
being \righ t" and others, such as Derive, \wrong": merely that Derive has chosen
a dierent set of branch cut behaviours from OpenMath. Provided the de nitions
are correct, the choice is one of taste, fortied with the occasional dash of Occam's
razor.

95

<OMSame="arctan" cd="http://www.s of tware house.c om/Deiv e/tr anscl"/>
<OMVARame="z"/>
</OMA>
<OMA>
<OMShame="conjugate" cd="complex1"/>
<OMA>
<OMShame="arctan" cd="transcl"/>
<OMA>
<OMShame="conjugate" cd="complex1"/>
<OMVARame="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</FMP>

With this de nition, a\su cien tly intelligent" (in fact it neednot be that in-
telligent in this case)systemwould be able to understand OpenMath emitted
from Derive containing Derive arctangerts, encaded as follows:

<OMShame="arctan" cd="http://www.so ft waehouse. com/Ceriv e/t ranscl"/>

occurrences.
The designerof the Derivel OpenMath phraselook is then faced with a set
of alternativ es.

1. Emit in terms of the public OpenMath symbol from transcl . This hasthe
advantage that no Derive CD needsto be written, or, more importantly,
maintained and kept available. Assumingthat Derive can canceldouble con-
jugation, it meansthat cutting and pasting from one Derive to another is not

signi cantly more expensive. Some-onewho is doing Derive OPEMMath jxrp
would be distinctly surprised by the results, since the arctan emitted by
IATEX would be (invisibly) onewith OpenMath semariics, i.e. complex con-
jugation might appear in the IATEX where there was none in the Derive.

2. Emit in terms of the Derive symbol de ned above. This has the disadvan-
tage that the CD” needsto be written and kept available. If the recipiert
is another Derive, it would presumably understand this. If the recipiert is a
\su cien tly clever" other algebrasystemconforming to OpenMath's seman-
tics of arctan, the correct result will be achieved. If it hasDerive's sematrtics,
it will either notice this directly, or cancelthe double conjugations. If it has
di erent semartics, it will presumably know what to do.

The interesting question is what an OpenMath ! IATEX phrasebook with
no explicit Derive knowledgewill do. It is unlikely to have the sematrtic pro-
cessingcapability to handle the FMP, though in this caseit might. Howevwer,

7 And the assaiated STS [11] le.

96

a plausible action by such a phrasetlook would be to ched the STS[11] le,
obsene that this function was unary from a set to itself (it might notice
that the setwasC, but this is irrelevant) and just print the nameasa unary
pre x function. Indeed, one could just obsene that it was being usedas a
unary function, asis donein LeActiveMath [18,24].

3. Ignore the problem, and emit <OMSiame="arctan" cd="transcl"/> .Alas,
this would be a very human reaction. Such a phraselook would (if it met
the other criteria) be ertitled to describe itself as OpenMath-compliant, but
it would certainly not meetthe goal [5, Chapter 5] that \It is expected that
the application's phrasebooks for the supported Content Dictionaries will be
constructed suc that the properties of the symbol expressedn the Content
Dictionary arerespectedasfar aspossiblefor the givenapplication domain”.

4. Refuseto emit arctans, on the groundsthat Derive'sis di erent from Open-
Math's. In view of the plausible solutionsin the rst two choices,this seems
unnecessarily\dog-in-the-manger".

We should obsene that the mathematically equivalent FMP

<FMP>
<OMOBgadbase="http://ww w.opennath .org/cd ">
<OMA>
<OMShame="eq" cd="relation1"/>
<OMA>
<OMSame="arctan" cd="transcl"/>
<OMVARame="z"/>
</OMA>
<OMA>
<OMShame="conjugate" cd="complex1"/>
<OMA>
<OMShame="arctan" cd="http://www.s oft waehouse.co m/Deriv e/ tra nscl"/>
<OMA>
<OMShame="conjugate" cd="complex1"/>
<OMVARame="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</FMP>

is lessuseful, asit expresseshe “known' <OMShame="arctan" cd="transcl"/>
in terms of the 'unknown’, rather than the other way round, and therefore re-
quiresmore logical power to useln particular, the interpreting phrasebook would
needto know that the inverseof conjugation is itself conjugation.

Note also that there is no needto de ne Derive's arctan in terms of the
OpenMath one: we could de ne it directly (seeFigure 1) in terms of log, as
OpenMath's arctan is in transcl .

97

Fig. 1. De nition of an alternativ e arctan

<FMP>
<OMOBg&dbase="http://www.openmath.o rg/c d">
<OMA>
<OMShame="eq" cd="relation1"/>
<OMA>

<OMShame="arctan" cd="http://www.softwarehouse .com/Derive/t ransc1"/>
<OMWhame="2"/>
</OMA>
<OMA>
<OMShame="times" cd="arith1"/>
<OMA>
<OMShame="divide" cd="arithl"/>
<OMShame="one" cd="alg1"/>
<OMA>
<OMSame="times" cd="arith1"/>
<OMI>2 </OMI>
<OMSame="i" cd="nums1"/>
</OMA>
</OMA>
<OMA>
<OMShame="In" cd="transcl"/>
<OMA>
<OMSame="divide" cd="arithl"/>
<OMA>
<OMShame="plus" cd="arith1"/>
<OMShame="one" cd="alg1"/>
<OMA>
<OMShame="times" cd="arith1"/>
<OMSame="i" cd="nums1"/>
<OM\hame="z"/>
</OMA>
</OMA>
<OMA>
<OMSame="minus" cd="arith1"/>
<OMShame="one" cd="alg1"/>
<OMA>
<OMShame="times" cd="arith1"/>
<OMShame="i" cd="nums1"/>
<OM\hame="z"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</FMP>

98

4 Another example

Let usimagine a theorem prover specialisedin results over the natural numbers:
let us call it Euclid. Euclid's natural domain of reasoningis the positive integers
1,2;:::, which it refersto as N. How should Euclid exports results such as \if

the successof a equalsthe successowof b, then a= b, i.e.

8a;b2 N sucqa) = sucab)) a= b? Q)

Again, the designerof the Euclid! OpenMath phraselook has various op-
tions.

1. Emit in terms of the OpenMath symbol, i.e. encade Euclid's N as

<OMA>
<OMShame="setdiff* cd="setl"/>
<OMSame="N" cd="setnamel"/>
<OMA>
<OMShame="set" cd="setl"/>
<OMShame="zero" cd="algl"/>
</OMA>
</OMA>

This is certainly accurate, but would causesomegrief on re-importing into
Euclid, since:

{ N (in the OpenMath sense)has no direct equivalent in Euclid, but has
to be encadedasN [fOg;

{ while expecting an algebra systemto canceldouble conjugations is rea-
sonable,expecting a proof systemto simplify (N nf0g)[fOg is expecting
rather more.

2. Emit in Euclid's own CD, e.g. with a de nition asin gure 2. This has
advantagesas well as disadvantages.

{ Clearly it requiresthe CD to be written and maintained.

{ An OpenMath! IATEX corverter would probably render this asP. This
might look well, but could be confusedwith

<OMSame="P" cd="setnamel"/>
which is the set of primes®, normally rendered as P. A con gurable
OpenMath! IATEX converter® would be able to get this right, and print
P.
3. Ignore the dicult y. This is clearly sub-human, rather than merely human,
sincea theorem-prover that emits incorrect statemerts could well be argued
to be worsethan useless.

We return to this issuein section 6.

8 This is another example of the fact that an OpenMath symbol is the name and the
CD.
9 Such asthe Notation Selection Tool [21,22].

99

Fig. 2. Euclid's de nition of P in terms of N

<FMP>
<OMOBa@dbase="http://www.openmath.o rg/c d">
<OMA>
<OMShame="eq" cd="relation1"/>
<OMShame="P" cd="http://www.euclid.gr/CD"/>
<OMA>
<OMShame="setdiff* cd="setl"/>
<OMShame="N" cd="setnamel"/>
<OMA>
<OMShame="set" cd="setl"/>
<OMShame="zero" cd="algl"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</FMP>

5 OpenMath and Notation

What use is OpenMath if one can't \see"!° the results? Probably not much.
How doesone do it? One solution would be to make OpenMath do it.

[:::] wasindicated asan expectation of Robert Miner at the W3C-Math
f2f: if you nd a CD, you should also have the notations with it ::: so
that you can presert all the symbols in this CD. [18]

However, this begsthe question: what is \the notation" [12]. A simple example
is that of half-open intervals: the \anglo-saxon" (0;1] and the \french"]0; 1].
More subtly, there is the \anglo-saxon" use of Arcsin to denote a multi-v alued
function and arcsinto denotethe corresponding®* one-valued function, compared
with the \french" notation which is the converse.lt should be noted that, in this
case,the OpenMath notation is even-handed:oneis

<OMSame="arctan" cd="transcl"/>
the other is
<OMShame="arctan" cd="transc3"/>

and in both the \anglo-saxon" and \french" cases,one (or one's renderer) has
to decidewhich to capitalise.

10 Used as shorthand for \convert into a presertation”, which may be displayed in
various means, e.g. audio [23].

11 But almost always with the branch cuts locally implicit, and often never stated at
all, or changing silently from one printing to the next [1].

100

To avoid the charge of antigallicanism being levied agBinst the author, let
us also point out that there are di erences due to subject: lisi everywhere
exceptin electrical engineering,whereit is j, and soon.

Henceit isimpossiblefor an OpenMath object to know, in a corntext-free way,
how it should be rendered®. The bestonecould hope for is that, assaiated with
an OpenMath CD, there could be a \default rendering” le, which would give a
rendering for objects using this system, probably by translation into Presertation
MathML as in David Carlisle's excelleri style sheets[6]. This would have the
advantage of allowing technologiessuc asthose described in [16,23] to process
it.

6 Is even-handedness possible?

So far we have tried to be even-handedbetween various notations: OpenMath
makes no choice between (0; 1] and]0; 1], nor says whether the mathematical
Arcsin is a single-\valued or multi-v alued function, i.e. whether it correspondsto
the arcsin from transcl or transc3 . Evenin the caseof the branch cuts for
arctan, where OpenMath has chosenone de nition, it is possibleto state the
other de nition, and do soon an even footing with OpenMath's own de nition
in transcl . Indeed it is possiblethat, asa result of the great branch cut riots
of 2036', transcl is declaredobsolete , transc4 is promulgated with an FMP
for arctan asin gure 1, and the authors of the softwarehouseCD change the
FMP for arctan to be

<FMP>
<OMOBgdbase="http://ww w.opennath .org/cd ">
<OMA>
<OMShame="eq" cd="relation1"/>
<OMShame="arctan" cd="http://www. sof tware house.c oniDeri ve/tr anscl"/ >
<OMShame="arctan" cd="transc4"/>
</OMA>
</OMOBJ>
</FMP>

and probably also mark that CD as obsolete . None of this would change the
semairtics of any OpenMath object.

However, the problem raisedin section4 is not soeasilyresolved: the question
of whether N contains zero can, and indeed has [13], generate much debate.
Many books, especially in German, supposethat N doesnot cortain zero, e.g.
the following.

12 caused by the requirement to move the branch cut in Network Time Proto col [20]
and assciated data formats. Rioters marched under the slogan \giv e us our two
thousand one hundred and forty sewen million, four hundred and eighty three thou-
sand, six hundred and forty eight secondsback".

101

Naterliche Zahlen sind die Zahlen, mit denenwir zahlen: 1, 2, 3,4,5,:: .
Auf der Zahlengeradenbilden sie eine Abfolge von Punkten im Abstand
1, von 1 ausnach rechts gehend.Die Mengealler naturlichen Zahlenwird
mit N bezeihnet. Weiters verwendenwir die BezeikinungN = fOg[N
fur die naturlichen Zahlen zusammenmit der Zahl 0. [2, N]

Other sourcesare lessde nitiv e.

Die naterlichen Zahlen sind die beim Zahlen verwendetenZahlen 1, 2, 3,
4,5,6,7,8,9, 10,11, usw. Oft wird auch die O (Null) zu den naturlichen
Zahlen geredtinet. [3, Naterliche zahl].

Indeed, the questionis apparertly ascontext-dependert asthe rendering of P 1,
but the impact of getting it wrong is much more misleading.

Even German school books di er here. It dependson whom you ask. If
you ask someonefrom number theory, he'd usually say that N is without
0. But if you ask someonefrom set theory, he'd say that N is with 0. It's
just what is more conveniert (i.e. shorter) for their usual work. [14]

It is clear that we have two di erent concepts,and seweral notations, as shovn
in Table 1.

Table 1. Naterliche Zahl

Concept English German German OpenMath

(number) (set)
0;1;2::: N N o N name="N"cd="setnamel"
1;2;3:::N* or N N ?2727?

What should replace ??. Following our earlier policies, that dierent concepts
(lik e one-valued/multi-v alued arcsin) have di erent OpenMath, it clearly hasto
be a new symbol. With hindsight, the German number-theory notation might
have beenthe best to inspire OpenMath, but we cannot change the semartics
of <OMShame="N" cd="setnamel"/> . We could introducea new Nin a di erent
CD, and declaresetnamel obsolete,but that would probably be worsethan the
Branch Cut riots.

Hencewe needanother symbol. This could be in setnamel, or in someother
CD. If in setnamel, it would needanother name:if in another CD, it could also
be called N, but this would probably causemore chaos. So, let us proposethat
we add

<OMSame="Nstar" cd="setnamel"/>

to OpenMath. We then have a choice: we can de ne it in terms of the standard
N, as we suggestedin gure 2, or we can de ne it in a free-standing way, by
saying that it is 1 and its successorsformally

102

<OMOBgdbase="http://ww w.opennat h.org/c d">
<OMBIND>
<OMShame="forall" cd="quant1"/>
<OMBVAR>
<OM\Whame="n"/>
</OMBVAR>
<OMA>
<OMShame="implies" cd="logicl"/>
<OMA>
<OMSame="in" cd="setl"/>
<OM\Whame="n"/>
<OMSame="Nstar" cd="setnamel"/>
</OMA>
<OMA>
<OMShame="or" cd="logic1"/>
<OMA>
<OMShame="eq" cd="relation1"/ >
<OMWhame="n"/>
<OMShame="one" cd="algl"/>
</OMA>
<OMA>
<OMShame="in" cd="setl"/>
<OMA>
<OMSame="minus" cd="arith1"/>
<OM\Whame="n"/>
<OMShame="one" cd="alg1"/>
</OMA>
<OMShame="Nstar" cd="setnamel"/>
</OMA>
</OMA>
</OMA>
</OMBIND>
</OMOBJ>

(it being assumedhere, asin the caseof the existing de nition of N, that this
de nition is minimal, i.e. Peano'saxioms).

Provided we have at least the secondde nition (having both is not excluded),
we are being as even-handedas possible:both conceptsexist in OpenMath, asin
the caseof single-valued/multi-v alued arcsin. Admittedly , the default rendering
might be of 0::: as N, and 1::: as Nstar or N , but this is merely another
reasonfor renderersto be con gurable.

7 Semantics driv es Notation?

Sofar, this paper hasarguedthat semartics is all that matters, and that notation
should follow. This is essetially the OpenMath premise (and the author's). But

103

life has a habit of not being so simple: take "O'. Every student is taught that
O(f (n)) is really a set, and that when we write \g(n) = O(f (n))", we really
mean\g(n) 2 O(f (n))". Almost all*® textb ooksthen use'=', having apparertly
placated the god of Bourbaki'4. However, actual usesof O as a set are rare:
the author hasnever'® seen\ O(f)\ O(g)", and, while a textb ook might*® write
\O(n?) O(n®)", this would only be for pedagogyof the O-notation. So "O'
abusesnotation, but OpenMath is, or ought to be, of sterner stu. It certainly
would be an abuseof <OMShame="eq" cd="relation1"/> to useit here,asthe
relation it implies is none of re exiv e, symmetric and transitiv e'’.

The set-theoretic view is the one taken by OpenMath CD*® asymp1 except
that only limiting behaviour at +1 is considered®, and there is some type
confusionin it: it claims to represen these as setsof functions R ! R, but in
fact the expressionsare assumingN ! R.

Henceit is possibleto write n:n 2 2 O(n®) in OpenMath. This posestwo
problems for renderers:

a) how to kill the ;
b) how to print "=' rather than 2".

The rst problem is commonacrossmuch of mathematics: note that m:m 2 2
O(n®) is equally valid, but one cannot say m? = O(n3). The secondproblem
could be solved in seweral ways.

1. By resolutely using 2, as[17].

2. By attributing to ead appropriate useof <OMSame="in" cd="setl"/> its
print represeration (at the momern there seemsto be no standard way of
doing this, though).

3. By xing the rendering of <OMSame="in" cd="setl"/> to print it as'=,
either:

(a) for all symbolsin asympl(thus getting it \wrong") for symbols such as
<OMShame="softO" cd="asymp2"/>;

(b) orfor all usagesfthe (STS or other) type\function in set", thus printing
sin= RR,

13 [17] is an honourable exception.

1 \the abusesof language without which any mathematical text threatens to become
pedantic and even unreadable".

Not even in the one context where it would be useful: (f) = O(f)\ (f), which
is stated in words as [10, Theorem 3.1].

18 110, p. 41]write (n) O(n).

17 Curiously enough, the FMPs currently only state transitivit y: this probably ought
to be xed.

Currently experimental .

The CD author presumably consideredthat the level of abstraction neededfor a more
general de nition was unwarranted. The current author would agree, especially as
the context of O is generally only implicit in the wider context of the paper.

15

18
19

104

4. (the current author's favourite) By adding a symbol?® <OMSame="Landauin"
cd="asympl"/>, which would, by default, print as '=', but have the seman-
tics of 2",

How is this last to be achieved? One possibility would be to say that it is the
sameas 2"

<FMP>
<OMOBgddbase="http://ww w.opennat h.org/c d">
<OMA>
<OM&d
<OM&d
<OM&d
</OMA>
</OMOBJ>
</FMP>

"relationl” name="eq"/>
"setl” name="in"/>
"asympl" name="Landauin"/>

but this runs the risk of saying that any "2' can becomelLandauin. A better way
might be

<FMP>
<OMOBgddbase="http://ww w.opennat h.org/c d">
<OMA>
<OM&d = "logicl" name="implies"/ >
<OMA>

<OM<d = "asympl" name="Landauin"/>
<OMWhame="A"/>
<OMWhame="B"/>
</OMA>
<OMA>
<OM&d = "setl" name="in"/>
<OMWhame="A"/>
<OMWhame="B"/>
</OMA>
</OMA>
</OMOBJ>
</FMP>

8 Conclusions

OpenMath can represen a variety of concepts, not just those \chosenby the
designers". Alternativ e choicesof branch cuts, single-valued/multi-v alued func-
tions, starting point for the natural numbers etc. are all supportable. Whether
these are renderedin a manner appropriate to the user clearly dependson the

20 1t might be more appropriate to call it Bachmannin since[4] is apparently the source
of O. [15]

105

user, which meansthat OpenMath renderersneed to be con gurable, and at a
variety of levels[19, section4.2].

Eventhe Bourbaki school believe that notation existsto be abused,aswell as
used:OpenMath exists purely to be used,and doesnot exist to be abused.How-
ever, in somecasessuch as ‘O', it may needto make slight adjustments to per-
mit corventional notation, suc asinserting symbols like <OMSd = "asympl"
name="Landauin"/ >, which are mathematically redundar.

8.1 Detailed suggestions

=

. Add <OM&d = "asympl" name="Landauin"/>.

N

3. Add <OMShame="Nstar" cd="setnamel"/> , possibly to sethamel or pos-
sibly to another CD.

4. Add a standard meansof giving printing attributes (asrequiredin 2 on page
104).

References

1. M. Abramowitz and |. Stegun. Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables. US Government Printing O c e, 1964.

2. Anonymous. Naterliche Zahlen. http://www.mathe- online.at/ma thint /
lexikon/n.html , 2006.
3. Anonymous. Wikip edia, Deutsch. http://de.wikipedia.org , 2007.

4. P. Bachmann. Die analytische Zahlentheorie. Teubner, 1894.

5. S.Buswell, O. Caprotti, D.P. Carlisle, M.C. Dewar, M. Gaetano, and M. Kohlhase.
The OpenMath Standard 2.0. http://www.openmath.org , 2004.

6. D.P. Carlisle. Openmath, MathML and XSLT. ACM SIGSAM Bulletin 2, 34:6{11,
2000.

7. World-Wide Web Consortium. Mathematical Markup Language (MathML) Ver-
sion 2.0 (Second Edition). W3C Recommendation 21 October 2003, 2003. http:
Ilwww.w3.org/TR/MathML2/ .

8. World-Wide Web Consortium. Mathematical Markup Language (MathML)
Version 3.0. W3C Working Draft, 2007. http://www.w3.0rg/TR/2007/
WDMathML320070427

9. R.M. Corless, J.H. Davenport, D.J. Jerey, and S.M. Watt. According to
Abramowitz and Stegun. SIGSAM Bulletin 2, 34:58{65, 2000.

10. T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd. ed.. M.I.T. Press 2001.

11. J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bulletin 2,
34:16{21, 2000.

12. J.H. Davenport. Nauseating Notation. http://staff.bath.ac.uk/masjhd /
Drafts/Notation.pdf , 2007.

13. E.W. Dijkstra. Why numbering should start at zero. http://www.cs.utexas.edu/
users/EWD/transcriptions/EWD08x x/EVWD831html , 1982.

14. C. Gross. Re: Utilit y of OpenMath. E-mail 64191.89.49.160.232.1172849601 .
squirrel@webmail.uni- augsburg. de, 2007.

106

. Add re exiv eand symmetric propertiesto <OMSd = "relation1" name="eq"/>.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.
25.

D.E. Knuth. Big Omicron and big Omegaand big Theta. ACM SIGACT News 2,
8:18{24, 1974.

A. Lazrek. Multilingual ~Mathematical e-Document Processing. http:
Ilwww.ima.umn.edu/2006- 2007/SW2.8- 9.0 6/activit ies/ Lazrek- Azzeddine/
MathArablMAe.pdf, 2006.

A. Levitin. Introduction to the designand analysis of algorithms. Pearson Addison-
Wesley, 2007.

P. Libbrecht. E-mails. 45B8875E.7000204@activemath.org 2007.

S. Manzoor, P. Libbrecht, C. Ullrich, and E. Melis. Authoring Presertation for
OPENMA TH. In M. Kohlhase, editor, Proceedings MKM 2005, pages33{48, 2005.
D.L. Mills. Network Time Protocol, Version 3. http://rfc.net/rfc1305.html ,
1992.

E. Smirnova and S.M. Watt. Interfaces for Mathematical Communi-
cation. http://www.ima.umn.edu/2006- 2007/SW128- 9.06/a ctiv ities /
Smirnova- Elena/SmirnovaWatt.pd f, 2006.

E. Smirnova and S.M. Watt. Notation Selectionin Mathematical Computing En-
vironments. In Proceedings Transgressive Computing 2006, pages339{355, 2006.
N. Soier. Accessible Mathematics. http://www.ima.umn.edu/2006- 2007/SW12
8- 9.06/activities/Soiffer- Neil/ind ex.htm, 2006.

Various. LeActiv eMath. http://www.activemath.org , 2007.

D.J. Wheeler. Private Communication to J.H. Davenport. June 1982 1982.

107

