Symbolic Computation
(An Editorial)

The short description given below of the scope, goal, and structure of the Journal of Symbolic
Computation is the result of intensive discussions among the persons involved in initiating this
journal. The editors will use it as a guide for the development of the journal and potential
authors can use it to decide whether to make this journal a forum for their research results.

Scope of the Journal

The scope of the Journal of Symbolic Computation is
—the algorithmic solution of problems dealing with symbolic objects.

In a very broad sense, all mathematical objects (and their representations in computers)
could be considered as symbolic objects. However, in accordance with two major research
traditions that have developed in the last two decades, namely

— computational algebra and computational logic,

only certain classes of symbolic objects and specific algorithmic problems will be
considered in this journal. Still, the scope is broad enough to integrate computational
geomelry, as a companion to computational algebra, and automatic programming
(computer-assisted program verification, transformation and synthesis), as a field that is
intimately connected with computational logic.

In these areas, all three aspects of the algorithmic solution of problems will be within
the scope of the journal, namely

— mathematical foundations, correctness and complexity of new (sequential and
parallel) algorithms

— implementation and integration of these algorithms in software systems

—applications of these systems for advanced problem solving in the natural and
technical sciences.

Various names have been used in the past for the different sub-areas covered in the
journal. Thus, for example, computational algebra is also called computer algebra,
formula manipulation, symbolic and algebraic computation, computation in finite terms,
computer analysis, analytic computation, or symbolic mathematics. Similarly, different
names are in use for computational logic, computational geometry and automatic
programming, We do not want to give priority to the usage of particular names. Rather,
we chose “symbolic computation”™ as a short name for embracing the above areas
without wanting to restrict the usage of other forms. Moreover, a standardised name or
an exact definition of the boundaries of the field or the subfields could prevent further
evolution of the field.

0747-7171/85/010001 + 06 $03.00/0 © 1985 Academic Press Inc. (London) Ltd

2 Symbolic Computation (An Editorial)

More specifically, the following topics are certainly within the scope of this journal:

—symbolic integration, symbolic summation, symbolic solution of differential
equations and of other problems in analysis

— term simplification

— arithmetic in basic and higher algebraic domains

— polynomial factorisation

—symbolic solution of equations and systems of equations

— combinatorial group theory

— permutation and matrix groups

— computation of characters and representations

— computations in Lie groups

—computational number theory

—computational problems in non-associative and other algebras

—algorithmic combinatorics

-—computational geometry

— computational aspects of algebraic geometry

—algorithmic analysis of real manifolds

— algorithmic problems in differential geometry

— algebraic algorithms in coding theory and cryptography

—interface between symbolic and numerical algorithms

— universal automated theorem proving

— unification

—automated theorem proving in special theories (for example, in the theory of real
closed fields)

—automated proof checking

—algorithmic proof theory

—algorithmic problems in combinatorial logic and lambda calculus

— algorithmic logic

—automatic program synthesis

—automatic program transformation

— automatic program verification

— symbolic execution of programs

— algorithmic treatment of abstract data type specifications

—interpreters for high-level programs (functional programs, rewrite rule programs,
logic programs)

— intrinsic complexity of problems in symbolic computation
—complexity analysis of algorithms in symbolic computation

— heuristic tuning of algorithms in symbolic computation
—design issues of software systems for symbolic computation
— parallel and other special hardware for symbolic computation
— programming languages for symbolic computation
—descriptions of available symbolic software systems
—descriptions of typical symbolic systems applications
—impact of symbolic computation on mathematical education

For a pragmatic further specification of the scope of the journal it may also help to
mention some areas that, though algorithmic, will definitely be excluded from the journal.

Symbolic Computation (An Editorial) 3

Such areas are, for example, numerical analysis (if not combined with symbolic methods),
algorithm theory (in the sense of general recursive function theory), compiler construction
(if not in connection with symbolic software systems), algorithmic graph theory (if not
relevant for one of the areas included). These areas will be excluded either because they
consider objects (for example, floating point numbers) that are not symbolic objects in the
sense of the research tradition of computational algebra and computational logic or
because we feel that these areas are already covered sufficiently by existing journals.

The above enumerative characterisation of the scope was simply by inclusion and
exclusion. However, it may also make evident some important common features of the
areas covered by the Journal of Symbolic Computation. First, the algorithmic emphasis of
the journal is on practical algorithms, i.e. algorithms that perform in reasonable
computing time or at least aim at showing a direction for the solution of a symbolic
problem on real computers. Second, the objects treated by the algorithms should either be
algebraic in nature or expressions in formal languages. Typically, algebraic objects admit
exact computation as opposed to the approximative character of numerical
computations. Examples of algebraic objects are basic objects as the integers of arbitrary
precision and the rationals, polynomials with coefficients in (basic) algebraic domains,
matrices of (basic) algebraic objects, (representatives of) residue classes modulo
congruence relations, elements of (finite) groups etc. Typically, computations on
expressions in formal languages (terms, formulae, programs) have the flavour of
operating on a metalevel of numerical computations. For example, numerically, a fixed
finite sum can be evaluated for variable input values; a symbolic algorithm can take a
whole spectrum of finite sum expressions as inputs and can transform them into a simpler
form, whose simplicity then allows more efficient numerical evaluation.

Aspects of Symbolic Computation

The resecarchers working in the development of new algorithms for symbolic
computation, the implementers of symbolic computation software systems, and the users
applying these systems to problem solving in science and engineering naturally tend to
lose contact with each other. This unfortunate situation has often been deplored in the
past.

In fact, the feedback obtainable from system users would be a crucial stimulus for
algorithm and system designers in the further improvement of the systems. Similarly, the
interaction between algorithm designers and system designers is of vital importance.
Finally, for improving the quality and scope of applications, clear and concise
information about existing systems and the power of available algorithms is mandatory
for potential users of symbolic software systems in science and engineering.

This multiple flow of information between algorithm designers, system designers and
users, however, has proved to be difficult to achieve in the past. First, it is often nearly
impossible for algorithm and systems designers to understand the details of an
application paper that presupposes a huge amount of special knowledge about an
application area, such as general relativity, high energy physics or industrial mechanics.
Furthermore, these papers normally include only occasional remarks on the successful
use of symbolic software systems. Similarly, it is often difficult for the system designers
and potential users to extract the algonthmic details from basic research papers on
symbolic algorithms.

4 Symbolic Computation (An Editorial)

Seemingly the above necessities and constraints contradict each other. Finding a
balanced solution that hopefully satisfies the needs of the algorithm designers, the system
implementers and the users as well was not an easy task for the editorial board of the
Journal of Symbolic Computation. After careful consideration, we finally came up with a
structure for the issues of the journal that should serve the needs of and make the journal
attractive to all three groups of researchers involved in symbolic computation.

Goal of the Journal

It is the explicit goal of the Journal of Symbolic Computation to promote the growth
and interaction of the rescarch areas enumerated above and of contiguous areas by
establishing one common publication forum. This endeavour seems to be overdue for
several reasons.

First, in spite of a large increase in research activity over the last two decades none of
these research areas has yet found a specific publication forum. Rather, the pertinent
research results have been scattered up to now in many different journals or published in
conference proceedings only. This is particularly true of computer algebra.

Furthermore, from a mathematical point of view, it is becoming increasingly clear that
on the basis of common mathematical insights these areas share many advanced
algorithmic ideas as, for example, lifting and completion. Also, many particular
algorithms, e.g. unification algorithms or polynomial factorisation algorithms, occur as
important subalgorithms in the solution of problems in several of these areas. For some
of these research areas, e.g. the area of decision procedures for real closed fields or certain
geometrical decision procedures, it would actually be hard to determine whether they
belong to computational algebra, computational geometry, or computational logic. Some
of the areas are prerequisites to each other. For example, algorithmic proof theory
provides a basis for advanced approaches to program synthesis. Thus, there is strong
evidence that mathematically the areas enumerated in the description of the scope of this
journal are developing into a coherent field.

Finally, from the practical point of view, it seems that users are starting to require
more than just independent software systems for numerical analysis, computer algebra,
automated theorem proving, computational geometry, and automatic programming.
Rather, the construction of software systems for “scientific computation”, i.e. software
systems integrating numeric, algebraic, geometric and logic computation, embedded in an
automatic programming and knowledge engineering environment is a major challenge for
the next decade. A common research publication integrating the component areas is of
vital importance to move towards the successful development of these “mathematical
expert systems”.

Besides promoting the growth and interaction of the various subareas of symbolic
computation, it is also a goal of the Journal of Symbolic Computation to provide-a home
for the three groups of researchers in symbolic computation, namely the algorithm
designers, the system implementers, and the users, and also for their interaction with one
another.

The editorial policy, reflected in the structure of the issues of the Journal of Symbolic
Computation, aims to guarantee that these goals will be achieved.

Symbolic Computation (An Editorial) 5

Structure of the Issues

Typically, each issue of the journal will have the following structure:

Tutorial Section

Research Contributions Section
Systems Descriptions Section
Applications Letters Section
Bibliography Section.

Tutorial Section. Each tutorial section will contain one or two tutorials on subfields of
symbolic computation. These contributions will be invited. Normally, they will give an
overview of the mathematical foundations and basic ideas of the algorithmic methods
used in that particular area and/or a survey on available systems and/or successful
applications. This section should bridge the gap between algorithm designers on the one
hand and system designers and users on the other but also stimulate the interaction
between researchers working in different subfields of symbolic computation.

Research Contributions Section. Original papers are presented in this section, which, of
course, forms the core of the journal. The research aspect can either be on symbolic
algorithms (mathematical foundation, correctness, complexity), or on new software
techniques for the implementation of symbolic software systems. This section contains
up-to-date information for specialists actively involved in research on symbolic
computation. However, authors of such papers will be encouraged to provide
introductions that clarify the relevance of their paper for contiguous areas of symbolic
computation in order to make the papers interesting for as wide a readership as possible.

Systems Descriptions Section. This section will contain one or two (invited) survey
papers describing running and well established symbolic (hardware and) software systems
that have found acceptance with users. Typically, these papers will provide descriptions of
symbolic systems as they appear to the user and should motivate the application of these
systems in problem solving. Of course, such descriptions will also be interesting for other
system designers. However, these surveys will not normally concentrate on details of the
specific software techniques used. (Papers on new software techniques belong in the
research contributions section.)

Applications Letters Section. In this section short letters (1 to 4 pages each) will be
included describing successful applications of symbolic software systems in various
application fields. Since we feel that this section will be of particular importance for
bridging the gap between users of symbolic software systems and algorithm and system
designers, the editorial policy for the applications letters section is described in more
detail here.’

Typically, application letters will have the following structure:

—short statement of the problem solved

—short characterisation of the mathematical method, in particular symbolic method,
used

-—symbolic software system used

— results achieved

—suggestions for other possible applications, generalisations, and improvements

—details of how and where to obtain program and output listings and reference to a
detailed publication.

6 Symbolic Computation (An Editotial)

The extent of the details of an application letter should allow another specialist in the
application area to test similar problems using the same symbolic program or system. It
should also allow the developers of the symbolic software system to understand the
significance of the application model, the scope of its impact, and the possible
improvements for the system. Finally, it should challenge the algorithm designer to
determine which algorithmic problems need (better) solutions. Application letters will be
refereed like all the other papers in the journal. They will typically be short versions
(extended abstracts) of detailed publications in other refereed journals or proceedings, for
example in a journal of the particular application field. However, many details pertinent
to the particular application science can normally be left out and more information on
the symbolic computation aspect should be added. Hence, a clear reference to the detailed
publication must be made in the application letter and a copy of the detailed publication
should be enclosed when submitting the application letter. In case the material covered in
the application letter has not yet been published elsewhere, a program listing and tape for
verification and a detailed technical report or equivalent material must be enclosed for
verification when submitting the application letter.

Bibliography Section. In some issues we hope to include at least one short (annotated)
bibliography on a particular subfield of symbolic computation, for which it might be
difficult to obtain bibliographic data. In some issues we will have complete bibliographies
on major and well-established subfields of symbolic computation. From time to time,
updates to previous bibliographies will be published.

[t is our strong desire that by a vigorous cooperation with the authors the goals set forth
in this editorial will be achieved.

The Editors

