
Querying Registry-Published Mathematical Web Services

Rebhi Baraka∗ Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
{rbaraka,schreine}@risc.uni-linz.ac.at

Abstract

This paper describes a light-weight, content-based, func-
tional query language. The Mathematical Services Query
Language (MSQL) is specifically designed and imple-
mented for querying mathematical web services de-
scribed in the Mathematical Services Description Lan-
guage (MSDL) and published in the MathBroker registry.
Based on the client request, MSQL uses the registry query-
ing functionality to retrieve a candidate collection of
documents and then uses its own querying functional-
ity to further filter these documents based on their con-
tents.

1. Introduction

Describing, publishing, and discovering web services are
crucial issues that have recently received considerable atten-
tion. A mathematicalservice is a web service that offers the
solution to a mathematical problem (based on e.g. a com-
puter algebra system or on an automated theorem prover). In
our MathBroker project [9], the XML-based Mathematical
Services Description Language (MSDL) [4] has been devel-
oped to adequately describe mathematical services respec-
tively their constituent entities such as problem, algorithm,
implementation, and machine. To facilitate the process of
publishing and discovering mathematical services, we have
developed the MathBroker registry [3] where MSDL de-
scriptions of services are published such that clients can dis-
cover them by browsing or querying it.

Figure 1 illustrates the MathBroker information model
for the description of mathematical web services. It shows
the kinds of entities that can constitute the description of a
service and the associations among them.

The entities of the model are:

∗ This work was sponsored by the FWF Project P17643-NO4 “Math-
broker II: Brokering of Distributed Mathematical Services”.

• Problem that can be specified by input parameters, an
input condition, output parameters, and an output con-
dition. A problem can be a special version of another
problem.

• Algorithm that can be described by (a link to the de-
scription of) the problem it solves, as well as by time
and memory complexity, and termination conditions.

• Implementation that can be described by the software
used for implementing an algorithm and for the result-
ing runtime efficiency (absolute efficiency factors for
the algorithmic complexity.

• Realization that brings together the abstract specifica-
tion of the service functionality with the actual details
of the interface described in the Web Services Descrip-
tion Language (WSDL).

• Machine that can be described by its processor type
and speed, by its memory size, and by the type of the
operating system it uses.

Association:

Machine Implementation Algorithm Problem

MathbrokerObject

ExtrinsicObject

Mathbroker objects

RegistryObject

Inheritance:

ebXML objects

Realization

RunsOn IsBasedOn Implements Solves IsSpecVersOf

Figure 1. The MathBroker Information Model

A skeleton of a service description in MSDL contain-
ing these entities is shown in Figure 2. Mathematical con-
tent in this description is written in OpenMath [11] which

1

<monet:definitions
<mathb:machine_hardware name="perseus">

...
</mathb:machine_hardware>
<monet:problem name="integration">

...
</monet:problem>
<monet:algorithm name="RischAlg">

...
</monet:algorithm>
<monet:implementation name="RImpl">

...
</monet:implementation>
<monet:service name="RRISC">

...
</monet:service>

</monet:definitions>

Figure 2. A Skeleton of an MSDL Service De-
scription

is an XML-based format for representing mathematical ob-
jects in a semantics-processing way.

The MathBroker registry implementation incorporating
the information model provides a set of functionalities for
processing, classifying, associating, publishing, and search-
ing MSDL service descriptions in the registry. Service de-
scriptions are classified in the registry according to a pre-
defined classification taxonomy which represents a tree-
structured way to classify or categorize published descrip-
tions. A common example of a classification in mathemat-
ics is the GAMS (Guide to Available Mathematical Soft-
ware) classification taxonomy.

Searching facilities of the MathBroker registry are rather
limited, they only allow to query metadata accompanying
the service when published in the registry. Although meta-
data such as the name, the unique identifier, the classifica-
tions, and the associations of a service are useful in some
cases, e.g. when we know the service we want to use, or
when we are seeking a service based on its associations to
other services, they are insufficient in many cases involving
mathematical services as a basis for service discovery, e.g.,
when we are seeking a service whose problem has a certain
input precondition. Therefore it is necessary to resort to the
contents of the MSDL description of a service where suf-
ficient and complete information can be found. So to over-
come this limitation of the current search facilities of the
registry, we have designed and implemented the Mathemat-
ical Services Query Language (MSQL) for retrieving and
querying the contents of MSDL documents that are pub-
lished in the MathBroker registry.

MSQL has a set of features compatible with today’s
XML query languages to make the process of querying, the

XML-based, MSDL documents easy and efficient. Our aim
is to have a simple, small, yet general querying language
that can be extended later to deal with the semantically rich
content of MSDL and/or query other XML content. This has
lead us to design the language taking into consideration spe-
cific characteristics of current XML query languages.

The rest of this paper describes the architecture (Sec-
tion 2), the features (Section 3), and the implementation
(Section 4) of MSQL.

2. The MSQL Architecture

Figure 3 provides a high-level overview of the MSQL ar-
chitecture which consists of the following parts:

• The MSQL Engine which constitutes the query-
ing functionality.

• TheMathBroker Registrywhere MSDL documents are
published.

• The Reasonerwhich handles the part of a query that
needs reasoning (currently being implemented).

A client application sends a query to the MSQL engine and
receives a set of MSDL descriptions. These descriptions are
either returned to the user or processed further for specific
tasks, e.g., to access the service having the resulting descrip-
tion.

The MSQL Engine consists of the following components
which are designed according to the query structure ex-
plained in Section 3:

• The Query Processorwhich receives the query, di-
vides it into processable parts, and hands each part to
its corresponding component.

• The Registry Handler which receives from the
processor the query part needed to retrieve MSDL
documents from the registry based on their types and
classifications.

• The Expression Evaluator which evaluates the ex-
pression part of a query against the documents re-
trieved from the registry, filters them, and forwards
those passing the filter to the Result Quantifier and
Sorter component.

• The Reasoner Interface which receives from the
processor the query part that needs reasoning and
sends it to the reasoner.

• The Result Quantifier and Sorter which decides
whether to return some or every queried document as
a result and whether to sort the resulting documents.

In this architecture, an MSQL query received from a
client is processed as follows:

2

Result
Quantifier
and Sorter

Reasoner
Interface

Registry
Handler

Expression
Evaluator

Query
Processor

Parser

MathBroker Query Manager

External
Reasoner

MSQL
Engine

MathBroker
Registry

Client Application

Repository

(currently being
implemented)

Candidate
MSDL

documents

MSDL
results

MSQL
query

Registry
query

Figure 3. The MSQL Architecture

• The query is parsed according to MSQL grammar and
transformed into an abstract syntax tree.

• The engine connects to the registry and invokes the
“MathBroker Query Manager” which is part of the reg-
istry API. It queries the registry for candidate doc-
uments based on the type of document required and
based on the classification node under which the re-
quired document is classified. It returns to the engine
the collection of candidate MSDL documents.

• The Expression Evaluator then evaluates the condition
expression of the query against each candidate docu-
ment and if the document satisfies the condition adds
it to the collection of resulting documents.

• The Result Quantifier and Sorter then quantifies and
orders the resulting documents depending on kind of
query (see the next section).

The engine then returns the resulting MSDL documents to
the client application.

3. The MSQL Language

3.1. Requirements

Given a set of MSDL documents (of a structure such as
the one in Figure 2) published in the registry, we would like
to perform queries of the following kind:

Find every problem under classification concept
“/GAMS/Symbolic Computation” whose first in-
put argument has type “integer”.

To accomplish this request, we can do the following:

• consider the registry classification node
“/GAMS/Symbolic Computation” and fetch each
document with entity type “problem” beneath it;

• process each document and return it, if it satisfies the
following criteria: the first “input” occurring in the
“problem” has type “integer”.

The returned documents may need to be sorted before being
returned as a result.

Performing the first step involves contacting the registry
and fetching the candidate documents from it. Performing
the second step involves processing the returned candidate
documents to see if they satisfy the stated criteria. Based on
these steps, we defined a set of requirements the query lan-
guage should meet. They are as follows:

• Precise semantics:The language should have a for-
mal semantics to make the intended meaning unam-
biguous. This semantics should also provide a straight
forward reference for evaluating the correctness of the
implementation.

• Functional: The language should specify what is to be
done; how is it done is left to the implementation.

• Registry interfacing: The language should have the
functionality to access the registry in order to deter-
mine and retrieve the candidate collection of MSDL
documents.

• Composing a query:The language queries should be
composed in a concise human-readable query syntax.

• Query operations:The operations that have to be sup-
ported by MSQL are:

– Retrieval: Retrieving an MSDL document based
on the type of entity it describes and on the reg-
istry classification concepts under which this en-
tity is classified.

– Selection: Choosing an MSDL document from
the candidate documents based on content, struc-
ture, or attributes.

– Evaluation: Ultimately selecting a document
based on the evaluation of a semantic condi-
tion expressed by a logical formula.

• Input and output: The input to a query should be
MSDL documents satisfying the “Retrieval” require-
ment. The output of a query are MSDL documents.

• Result views: The language should support ordered
and unordered views of query results.

3

It is not required that the language is capable of restructur-
ing a document or returning portions of a document as a re-
sult. This is not a disadvantage because our goal is to return
whole documents that can be further processed by other ap-
plications.

Based on these requirements we have designed the lan-
guage described in the following subsection.

3.2. The Query Structure

The general structure of a query in MSQL is:

SELECT EVERY|SOME <entity>
FROM <classificationConcept>
WHERE <expression>
ORDERBY <expression> ASCENDING|DESCENDING

The query has four main clauses: the SELECT clause,
the FROM clause, the WHERE clause, and the OR-
DERBY clause. The FROM clause and part of the SE-
LECT clause, namelyentity , are registry-oriented,
i.e., their functionality is applied to the registry. This sat-
isfies the “Registry interfacing” requirement by deter-
mining the type of document, its classification in the
registry, and retrieving it from the registry. This is a cru-
cial issue of the language from the point of efficiency
role since it limits the range of documents to be queried
to those who are of typeentity and classified un-
derclassificationConcept . Theentity types as
stated in the information model (see Figure 1) are PROB-
LEM, ALGORITHM, IMPLEMENTATION, REALIZA-
TION, and MACHINE. ClassificationConcept is
a node in a given classification taxonomy of the registry,
e.g., “/GAMS/Symbolic Computation” in the GAMS clas-
sification of mathematical subjects. The SELECT clause
also determines whether to return some or all of the re-
sulting documents to the user by its SOME or EVERY
quantifier.

The WHERE and the ORDERBY clauses apply their
expression parts to each candidate document retrieved
from the registry. The expression of the WHERE clause is
a logical condition: if it is evaluated to true, the document
is considered as (part of) the result of the query. The OR-
DERBY clause sorts the resulting documents in ASCEND-
ING or DESCENDING order based on comparison criteria
resulting from the evaluation of its expression on each doc-
ument.

We illustrate the structure described so far by a concrete
query example.

Example 1. Find all problems under the classification con-
cept “/GAMS/Symbolic Computation” with first input having type
integer and order them according to their names in descend-
ing order.

SELECT EVERY problem
FROM /GAMS/Symbolic Computation
WHERE //body/input[1]/signature/om:OMOBJ/

om:OMS[1][((@name = "Z")
and (@cd = "setname1"))]

ORDERBY /problem/@name descending

This query asks for every “problem”, i.e., every docu-
ment of type “problem” classified under “/GAMS/Symbolic
Computation” that satisfies the WHERE expression. The re-
sulting documents are to be sorted in descending order ac-
cording to their names. The core of the query is its WHERE
expression which allows us to express the first input and
checks its type (details is given below).

Since we are designing a light-weight query language,
we have specified a minimal set of expressions that are nec-
essary to address the contents of the target MSDL docu-
ments. MSQL expressions include: path expressions that
can access every part of an MSDL document; expressions
involving logical, arithmetic, and comparative operators;
conditional expressions; quantified expressions; functions;
and variable bindings. They satisfy the “Functional” re-
quirement of the language. The formula is applied to an
MSDL document modeled as a tree of nodes. A node can
be a root, an element node (element), an attribute, or a text.
The various kinds of expressions are described below.

Path ExpressionsThese expressions are basically special
XPath [6] expressions. A path expression is used to locate
nodes within a document tree. It consists of a series of one
or more steps, separated by “/” or “//”, and optionally start-
ing with “/” or “//”.

A “/” at the start of a path expression begins the path at
the root of the current node.

A “//” at the start of a path expression begins a sequence
that contains the root of the current node plus all nodes de-
scending from it. This node sequence is used as the input to
subsequent steps in the path expression. The//body step
in Example 1 traverses the root node and nodes descend-
ing from it until thebody node which is used as input to
the/input[1] step.

A step in a path expression generates a sequence of items
and then filters the sequence by zero or more predicates. The
value of the step consists of those items that satisfy the pred-
icates.

A predicate consists of an expression enclosed in square
brackets. The predicate expression can either be logical
which evaluates to a truth value or numeric which evalu-
ates to a numeric value. In Example 1, the predicate in the
/input[1] step is numeric, it specifies the firstinput
node.

The /om:OMS[1][(@name = ‘‘Z’’) and (@cd =

‘‘setname1’’)] step has a sequence of two predi-
cates. The first predicate is numeric and it specifies the
first om:OMSnode. The second is logical that uses the=

4

and theand operators to evaluate to a truth value. It op-
erates on theom:OMS node to check if itsname at-
tribute has value equal toZ andcd attribute has value equal
to setname1 . The value of the second predicate repre-
sents the value of the expression; if its value istrue then
the current document is selected.

Operators MSQL supports arithmetic, logical, and com-
parison operators. They are used inside predicates to per-
form arithmetic, logical, and comparison operations. In Ex-
ample 1, the expression in the last predicate uses the com-
parison operator “=” and the logical operator “and” to eval-
uate to a truth value.

Functions In the context of a predicate, functions may be
applied to the current node to extract information used in
some operations.

Example 2.Find all problems in “/GAMS/Arithmetic, error analy-
sis/Integer” that have no precondition.

SELECT EVERY problem
FROM /GAMS/Symbolic Computation
WHERE //body[empty(/pre-condition)]

In this example, theempty function takes a path expres-
sion and returnstrue if the node pointed to by the path is
empty. The query uses this function to check if the “body”
node has an empty “pre-condition” element node.

Conditional Expressions and Variable Bindings Condi-
tional expressions are used when the document to be re-
turned depends on some condition. An expression or a value
that are used in more than one place in the same query can
be bound to a variable so it does not need to be defined
again.

Example 3.Find every service in “/GAMS/Linear Algebra” such
that if it has an implementation it runs on a machine called perseus
or its interface is on the said machine.

SELECT EVERY service
FROM /GAMS/Linear Algebra
WHERE

if not (/service[empty(//implementation)])
then

let $d := doc(//implementation/@href) in
$d/hardware[contains(@name, "perseus")]

else //service-interface-description[
contains(@href, "perseus")]

Example 3 shows a query that uses a conditional ex-
pression to decide if the current service document node
has (IsBasedOn) an implementation. If this is the case,
it takes the URI of such implementation document and re-
trieves it from the registry and checks if this implementa-
tion is related to the machineperseus . If this is not the
case, it checks (in theelse) if the service has its interface
on the said machine, i.e.,RunsOn on the said machine. The

let clause is used to bind a document to variabled. Vari-
abled is then used as part of the path expression.

In the same example, thecontains function returns
true if its first argument value contains as part of it its sec-
ond argument value. Thedoc function returns the root node
of the document whose name appears as its argument. Its ar-
gument is a URI that is used as the address of the required
document in the registry.

The query in Example 3 aside from showing the expres-
siveness of MSQL in dealing with the MSDL content, it also
reveals how MSQL utilizes the structure of the MSDL in-
formation model (see Figure 1) supported by the registry. It
uses associations (e.g.,IsBasedOn , RunsOn) among the
entities of the model implicitly in the query.

Quantifiers MSQL provides universal and existen-
tial quantifiers to test if every/some element in a document
satisfies a certain condition.

Example 4.Find all problems in “/GAMS/Arithmetic, error analy-
sis/Integer” in which the OpenMath content dictionary “sts” and
the “mapsto” symbol are used in the same signature.

SELECT EVERY problem
FROM /GAMS/Arithmetic, error analysis/Integer
WHERE every $p in /problem satisfies

some $s in $p//signature satisfies
$s/om:OMOBJ/om:OMA/om:OMS[@cd = "sts"] and
$s/om:OMOBJ/om:OMA/om:OMS[@name = "mapsto"]

The every quantifier requires all “problem” nodes to sat-
isfy the “some” quantifier which checks if at least one sig-
nature satisfies the condistion specified.

4. The MSQL Implementation

The implementation of MSQL is based on a formal se-
mantics [1] satisfying the “Precise semantics” requirement.
We have used the format of denotational semantics [12] to
give formal meaning to each construct defined in the pre-
vious section. In the implementation, each mathematical
function mapping a syntactic domain to a semantic domain
is realized by a Java method whose body corresponds to the
mathematical function definition.

In the implementation of the the MSQL engine architec-
ture (see Figure 3) the main functionality is exposed to the
user by the MSQL API [2]. The following code outlines one
way for using the API in client applications:

MsqlQuery msqlQuery = new MsqlQueryImpl();
MathBrokerConnection con =

msqlQuery.makeConnection(connectionProps);
ChildASTqueryTree =

msqlQuery.parseQuery(queryString);
Collection resultsCollection =

msqlQuery.performQuery(queryTree, con);

5

The interfaceMsqlQuery presents the MSQL engine
and contains the functionality for accessing the rest of
the API. A connection is made to the registry through
themakeConnection method. A received MSQL query
is parsed using theparseQuery method. The query is
processed and the results are returned all together as a col-
lection using theperformQuery method.

An alternative toperformQuery is iterateQuery
which allows the client to iteratively ask for one document
satisfying a query after the other (such that the engine needs
not process all candidate documents when the client is sat-
isfied with some result early).

5. Related Work

Existing XML query languages range from ones that
support simple node finding and path expressions to more
comprehensive ones that support processing, transforma-
tion, and querying tasks of XML documents. QUILT [5] is
a language that attempts to unify concepts from some of
these query languages in order to exploit the full versatil-
ity of XML. Its proposal has been adopted latter as the basis
for the development of XQuery [7]. XQuery is intended pri-
marily as a query language for querying collections of XML
documents or documents viewed as XML (e.g., a SOAP
representation of any data source). The language is designed
to be broadly capable of dealing with many sources of XML
and not only query them, but also process them, and have
new XML structures as a result.

Based on our needs, XQuery would be a bulky lan-
guage that has a lot of functionality that we don’t need and
does not address some of our requirements such as deal-
ing with classification schemes and types of objects stored
in the MathBroker registry. Instead, we used some of its
features and of its predecessors in the design of MSQL.
MSQL adapts from XQuery [7] the syntax for navigating in
the hierarchical structure of MSDL documents. From SQL
(Structured Query Language), MSQL utilizes the idea of a
series of clauses based on keywords that provide a query
pattern (the SELECT-FROM-WHERE pattern in SQL).

Considering mathematical-oriented tools, there is a num-
ber of approaches [8] for searching and retrieving mathe-
matical content, they range from basic textual methods to
semantic-driven techniques. Their functionality depends on
the representation of the target mathematical documents.
One approach [10] for achieving service discovery per-
forms matchmaking between representations of tasks (client
requests) and capabilities (service descriptions). It is per-
formed only at the level of input, output, pre- and post- con-
ditions which is not sufficient for full service discovery con-
sidering the richness of service descriptions.

6. Conclusion

The Mathematical Services Query Language (MSQL)
is a light-weight, content-based, functional query language
developed for querying mathematical descriptions given in
the Mathematical Services Description Language and pub-
lished in the MathBroker registry. MSQL complements the
metadata-based querying facility of the registry.

MSQL is currently syntax-based: queries are only per-
formed on the syntactic structure of documents. We are
working to extend MSQL to perform semantic based query-
ing where the engine contacts a reasoner to perform reason-
ing steps on the underlying semantics of MSDL.

References

[1] Rebhi Baraka,Mathematical Services Query Language:
Design, Formalization, and Implementation, Tech. re-
port, RISC, Austria, September 2005, See ftp://ftp.risc.uni-
linz.ac.at/pub/techreports/.

[2] , Mathematical Services Query Language (MSQL)
API, Research Institute for Symbolic Computation
(RISC), September 2005, See http://poseidon.risc.uni-
linz.ac.at:8080/results/msql/doc/index.html.

[3] Rebhi Baraka, Olga Caprotti, and Wolfgang Schreiner,A
Web Registry for Publishing and Discovering Mathematical
Services, Proceedings of IEEE Conference on e-Technology,
e-Commerce, and e-Service (Hong Kong, March 29 – April
1), IEEE Computer Society, 2005.

[4] Olga Caprotti and Wolfgang Schreiner,Towards a Math-
ematical Service Description Language, International
Congress of Mathematical Software 2002 (Bejing, 17–19
August), World Scientific Publishing, 2002.

[5] Don Chamberlin, Jonathan Robie, and Daniela Florescu,
QUILT: An XML Query Language for Heterogeneous Data
Sources, Proceedings of WebDB 2000 Conference.

[6] World Wide Web Consortium,XML Path Language
(XPath) 2.0, W3C Working Draft, April 2005, See
http://www.w3.org/TR/xpath20/.

[7] , XQuery 1.0: An XML Query Language, W3C Work-
ing Draft, April 2005, See http://www.w3.org/TR/xquery/.

[8] I. Dahn and A. Asperti,Mathematical Knowledge Man-
agement and Searchability, Deliverable D5.4, 2001, See
http://monet.nag.co.uk/mkm/MKMNetTN-D5-4.pdf.

[9] MathBroker – A Framework for Brokering Distrib-
uted Mathematical Services, Research Institute for
Symbolic Computation (RISC), September 2005, See
http://www/research/parallel/projects/mathbroker2/.

[10] William Naylor and Julian Padget,Semantic Matching for
Mathematical Services, Proceedings of the Forth Interna-
tional conference on Mathematical Knowledge Management
(Bremen, Germany, 15 – 17 July), Springer, 2005.

[11] The OpenMath Standard, September 2005, See
http://www.openmath.org/cocoon/openmath/index.html.

[12] David A. Schmidt,Denotational Semantics – A Methodol-
ogy for Language Development, Allyn and Bacon, 1986.

6

