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The Parametrization of Canal Surfa
es andthe De
omposition of Polynomials into aSum of Two Squares�G�unter Landsmanny, Josef S
hi
hoz and Franz WinklerxResear
h Institute for Symboli
 Computation, Johannes Kepler University,A-4040 Linz, AustriaAbstra
tA 
anal surfa
e in R3 ; generated by a parametrized 
urve C = m(t); isthe Zariski 
losure of the envelope of the set of spheres with radius r(t)
entered at m(t): This 
on
ept is a generalization of the 
lassi
al notion ofan o�sets of a plane 
urve: First, the 
anal surfa
e is a surfa
e in 3-spa
erather than a 
urve in R2 and se
ond, the radius fun
tion r(t) is allowedto vary with the parameter t: In 
ase r(t) = 
onst; the resulting envelopeis 
alled a pipe surfa
e. In this paper we develop an elementary symboli
method for generating rational parametrizations of 
anal surfa
es gen-erated by rational 
urves m(t) with rational radius variation r(t): Thismethod leads to the problem of de
omposing a polynomial into a sumof two squares over R: We dis
uss de
omposition algorithms whi
h givesymboli
 and numeri
al answers to this problem.1. Introdu
tionConsider a spa
e 
urve C parametrized by a rational map m:R �! C and a real-valued rational fun
tion r(t): The 
anal surfa
e with spine 
urve m and radiusvariation r is the envelope of the family of spheres 
entered at m(t) with radiusr(t): Canal surfa
es with 
onstant radius fun
tion - 
alled pipe surfa
es in theliteratur - have wide appli
ations, su
h as shape re
onstru
tion or roboti
 pathplanning; 
anal surfa
es with variable radius fun
tion arise in 
omputer aidedgeometri
 design 
ontexts mainly as transition surfa
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Landsmann S
hi
ho Winkler: Canal Surfa
es 2There are several reasons for trying to give rational parametrizations of sur-fa
es. One of them is the wide spread use of rational parametrizations by CAD-systems. Another one is, that points lying on the surfa
e 
an be 
omputed easily.If, furthermore, the interse
tion of two surfa
es is to be determined, often thistask 
an be a

omplished most 
onveniently by representing one of the surfa
esby its impli
it equation while the se
ond one is given parametri
ally.Most algebrai
 surfa
es do not admit a rational parametrization; those whi
hdo are 
alled unirational.Surprisingly 
anal surfa
es with rational spine 
urve and rational radius fun
-tion are unirational (Peternell Pottmann, 1997). To be pre
ise, they admit realrational parametrizations of their real 
omponents.It is therefore natural to ask for methods whi
h allow one to 
onstru
t a ratio-nal parametrization of a 
anal surfa
e from its spine 
urve and radius fun
tion.The straightforward strategy would be to 
ompute the impli
it equation and toapply a general purpose parametrization algorithm (S
hi
ho, 1998/1) or (S
hi-
ho, 1998/2), but it turns out that the de�ning polynomial of a 
anal surfa
e is of
onsiderably higher 
omplexity than the original data r and m: In (Landsmannet.al., 2000) we have developed a parametrization algorithm for 
anal surfa
es,avoiding the impli
it equation and working dire
tly with the original rationaldata. Our method �rst applies a sequen
e of appropriate transformations, untilwe arrive at a variety des
ribed by an equation in simplest possible form, ratio-nally equivalent to the original one. Finding a rational parametrization of thelatter and transforming ba
k solves the parametrization problem for the former.In analogy to the 
ase of plane algebrai
 
urves, where the parametrization prob-lem ultimately redu
es to the problem of �nding a "good" point on the given
urve, see (Sendra Winkler, 1991),(Sendra Winkler, 1997), (Hillgarter Winkler,1998) we have to determine a "good" 
urve on the surfa
e.As in (Peternell Pottmann, 1997) the parametrization problem is redu
ed tothe problem of �nding a representation of a rational fun
tion as a sum of twosquares. This is a spe
ial 
ase of Hilbert's 17th problem (Bo
hnak Coste Roy,1987; Hilbert, 1901). In (Landsmann et.al., 2000) we des
ribed a pro
edure forde
iding this problem over Q :In this paper we analyze the real 
ase, whi
h is of parti
ular importan
e inpra
ti
al appli
ations.The new results are the following:� a 
lassi�
ation of all the solutions of the Two Squares Problem;� an improved numeri
al algorithm for �nding those solutions;� a 
omplexity result explaining why we 
annot hope for a fast exa
t algo-rithm 
overing all 
ases.� an improved symboli
 algorithm for those 
ases, where an exa
t solutionover Q exists.We start in Se
tion 2, presenting the de�nition of a 
anal surfa
e. Se
tion 3



Landsmann S
hi
ho Winkler: Canal Surfa
es 3des
ribes the redu
tion pro
ess whi
h eventually exposes the kernel of the para-metrization problem of 
anal surfa
es as a two squares problem. In Se
tion 4 wedis
uss this problem in adequate generality and give algorithmi
 answers, whi
h
ontain both symboli
 and numeri
al solutions.2. Preliminaries on Canal Surfa
esLet m1(t); m2(t); m3(t); r(t) be rational fun
tions with 
oeÆ
ients in R: Thetuple m = (m1; m2; m3) de�nes a rational parametrization of a 
urve in R3whi
h will be 
alled the spine 
urve in the sequel. Let F be the expressionF (x1; x2; x3; t) = 3Xi=1 (xi �mi(t))2 � r(t)2and let Z denote the union of the zero sets of the denominators of m1; m2; m3; rand of the numerator of r: Set V = R � Z; U = R3 � V: Then F being regularon U de�nes the setM = f(x1; x2; x3; t) 2 U j F (x1; x2; x3; t) = 0gwhi
h is a smooth manifold of dimension 3 by the Impli
it Fun
tion Theorem.Consider the proje
tionp :M �! R3 ; (x1; x2; x3; t) 7! (x1; x2; x3):The envelope E is the set of all 
riti
al values of p; that meansE = fx 2 R3 j 9t: (x; t) 2M and rank(x;t)(p) < 3g:Sin
e p is the restri
tion of the linear proje
tion �:R4 �! R3 ; the tangent mapT(x;t)(p) is just restri
tion of � to the tangent spa
e T(x;t)(M) and the 
onditionrank(x;t)(p) < 3 amounts to �F�t (x; t) = 0: Thus the envelope is given byE = fx 2 R3 j 9t: (x; t) 2 U ^ F (x; t) = 0 ^ �F�t (x; t) = 0g:that is, the solutions in U of the system3Xj=1 (xj �mj(t))2 � r(t)2 = 03Xj=1 (xj �mj(t)) dmj(t)dt + r(t)dr(t)dt = 0 (1)after elimination of t: The asso
iated 
anal surfa
e S 
an now be de�ned as theZariski 
losure of E:
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hi
ho Winkler: Canal Surfa
es 43. Redu
tion to the Two Squares ProblemIn order to �nd a rational parametrization of the 
anal surfa
e S we �rst need arational 
urve C on S, whi
h then 
an be used as a basis for parametrizing thewhole surfa
e by a re
e
tion pro
ess.A �rst simpli�
ation gives the substitutionxj = mj(t) + r(t)uj (1 � j � 3): (2)whi
h birationally transforms (1) to3Xj=1 u2j � 1 = 03Xj=1 dmjdt uj + drdt = 0: (3)With abbreviations aj = dmjdt ; (1 � j � 3) and d = �drdt ; working in proje
tivespa
e we pass to the homogeneous systemu21 + u22 + u23 � u20 = 0a1u1 + a2u2 + a3u3 � du0 = 0 (4)whi
h is treated as a system of equations in P3(R(t)) and geometri
ally representsthe interse
tion of a plane and a sphere. Parametrizing the linear equation weobtain the quadrati
 form' = A1x21 + A2x22 + A3x23 � 2Bx1x2 � 2Cx2x3 (5)withA1 = a21 + a22; A2 = a22 + a23; A3 = d2 � a23; B = a1a3; C = da2:Using the abbreviations s2 = a21 + a22; s3 = s2 + a23we �rst pass to the quadrati
 form  = A1A23'; whi
h then with the aid of thematrix g = 0B� a1s2a2(d2�a23) 1s2(d2�a23) �a1a2(d2�a23)1a2a3(d2�a23) 0 �s2a2a3(d2�a23)1(d�a3)(d2�a23)a3 0 a3d�s3(d�a3)(d2�a23)a3 1CAgives the equivalent quadrati
 form� = gT g:
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hi
ho Winkler: Canal Surfa
es 5� expands toZ21 + Z22 + �drdt�2 � 3Xj=1 �dmjdt �2! 2Xj=1 �dmjdt �2 Z23 = 0: (6)(see (Hillgarter, Landsmann, S
hi
ho, Winkler, 1999) for 
omputational details).An equation of similar shape is obtained in (Peternell Pottmann, 1997). There,the equations are derived by a geometri
 method.Finding the 
urve C amounts to presenting a nontrivial solution of (6) inP2(R(t)): Equation (6) also limits the real 
onne
ted 
omponents of S; as thereare real solutions only for values of t with3Xj=1 �dmjdt �2 � �drdt�2 : (7)In aÆne 
oordinates z1 = Z1Z3 ; z2 = Z2Z3a solution is found, if we are able to �nd a presentation of the term2Xj=1 �dmjdt �2 3Xj=1 �dmjdt �2 � �drdt�2!as a sum of two squares. Using Fibona

i's formula(a2 + b2)(
2 + d2) = (a
+ bd)2 + (ad� b
)2 (8)it is enough to de
ompose 3Xj=1 �dmjdt �2 � �drdt�2 :Clearing denominators produ
es an expression of equal type. As, in pra
ti
e,the input data will have rational 
oeÆ
ients, we are fa
ed with the followingproblem:Problem 1: [Two Squares Problem℄ Given a polynomial f 2 Q [t℄; �nd a de-
omposition f = g2 + h2 with g; h 2 R[t℄:Of 
ourse, f has to be globally positive. But this 
ondition is also suÆ
ientfor de
omposition. We present here the general result, formulated for rationalfun
tions.Lemma 3.1: Let � be a rational fun
tion in R(t): Then � is a sum of two squaresin R(t) if and only if � = FG with F;G 2 R[t℄ and FG � 0:



Landsmann S
hi
ho Winkler: Canal Surfa
es 6A proof 
an be found in (Landsmann et.al., 2000). We postpone the treatmentof Problem 1 to Se
tion 4.On
e a solution (z1 : z2 : z3) of (6) is at hand, appli
ation of the inversetransformations yields a 
urve C on the surfa
e S and we 
onstru
t a rationalparametrization of S by simply rotating C around the spine 
urve m: The detailsof this 
onstru
tion may be found in (Peternell Pottmann, 1997) or (Landsmannet.al., 2000).The above 
onsiderations lead also to the following 
on
lusion:Theorem 3.1: The 
anal surfa
e given by the spine 
urvem = (m1(t); m2(t); m3(t))and the radius fun
tion r(t); with m1(t); m2(t); m3(t); r(t) 2 R(t); admits a ra-tional parametrization over the reals in a

ordan
e with the spine { if and onlyif �dm1dt (x)�2 + �dm2dt (x)�2 + �dm3dt (x)�2 � �drdt (x)�2 for almost all x 2 R:In general the rational fun
tion � := �dm1dt �2 + �dm2dt �2 + �dm3dt �2� �drdt �2 need notbe positive. In this 
ase we have to restri
t to intervals on whi
h � � 0 and toreparametrize the spine 
urve. In the new setting the 
ondition � � 0 is thenvalid on the whole real axis. If e.g. � is positive on [a; b℄ � R; we 
an applythe reparametrization t = b�2+a�2+1 : In 
ase � � 0 on [a;1) we 
an use t = �2 + a:Obviously, then, ea
h point of the 
urve 
omponent under 
onsideration is passedtwi
e, so a proper parametrization 
annot be a
hieved. This problem 
an beresolved by restri
ting the parameters to positive values.The pseudo-
ode of a parametrization algorithm for 
anal surfa
es is now givenby the following steps:Algorithm CANAL SURFACEInput: m1(t); m2(t); m3(t); r(t) rational fun
tions determining a 
anal surfa
e S;Output: X1(t; �); X2(t; �); X3(t; �) rational parametrization of a 
omponent of S;1. 
ompute �(t) =P3j=1 _mj(t)2 � _r(t)2;2. 
hoose an interval (a; b) on whi
h � � 0;3. if (a; b) 6= R then reparametrize t: = t(�); so that �(�) � 0;4. 
ompute a de
omposition � = �2 + � 2;5. use identity (8) to obtain a solution of (6);6. apply the inverse transformations to get a 
urve C on the 
analsurfa
e S;7. 
ompute a surfa
e parametrization of S by rotating C around the spine.Example 1: [Viviani's Temple with variable radius℄ This spa
e 
urve is de�nedas the interse
tion of a sphere of radius 2a and a 
ir
ular 
ylinder of radius a:x2 + y2 + z2 = 4a2{This means that one parameter of the surfa
e parametrization equals the 
urve parameter.



Landsmann S
hi
ho Winkler: Canal Surfa
es 7

Figure 1: 
anal surfa
e around Viviani's temple(x� a)2 + y2 = a2Its rational parametrization 
an be given bym(t) = �2a(1� t2)2(1 + t2)2 ; 4at(1� t2)(1 + t2)2 ; 4at1 + t2� :We set a = 1 and 
ompute a parametrization of the 
anal surfa
e with spine mand radius r(t) = t1+t2 : It turns out that the term_m21 + _m22 + _m23 � _r2 = 31t4 + 2t2 + 31(1 + t2)4 ;thus, it 
an be written as (t2 + 131)p31(t2 + 1)2 !2 + 8p46531(t2 + 1)2!2 :The 
oeÆ
ients of this de
omposition are in Q [p31;p465℄ whi
h is of degree4 over Q : From this we 
an 
ompute a rational parametrization of the 
analsurfa
e drawn in Figure 1 by applying steps 5-8 (
f. Landsmann et.al. (2000))Note that it is possible to re
over a representation of � as a sum of two squaresfrom a paramerization obtained by whi
hever method. Therefore the 
ompu-tational 
omplexity of Canal surfa
e parametrization equals that of the TwoSquares Problem.



Landsmann S
hi
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es 84. The De
omposition into a Sum of SquaresThe 
ru
ial point in the algorithm CANAL SURFACE is the dis
overy of �; �su
h that �2 + � 2 = � in Step 4. By Lemma 3.1 we may assume that � = FGwith F;G 2 R[t℄ and F � 0 and G � 0: Obviously this problem 
an be solved ifwe are able to �nd a de
omposition f = g2 + h2 for polynomials f 2 R[t℄ withf � 0 into a sum of two squares of polynomials g; h 2 R[t℄: In view of Identity(8) we propose the following 
on
ept:Algorithm NUMERIC DECOMPOSITION1Input: f 2 R[t℄ positive;Output: g; h 2 R[t℄ with g2 + h2 = f ;1. 
ompute a fa
torization of f into quadrati
 polynomials:f = Qd11 � � �Qdrr ;2. for ea
h j with 1 � j � rwrite the quadrati
 fa
tor Qj = ajt2 + bjt + 
j asQj = �pajt+ bj2paj�2 +s
j � b2j4aj 2;3. 
ombine the above polynomials a

ording to formula (8).The individual 
on
epts make sense be
ause f is assumed to be positive. The
riti
al point in this algorithm is the fa
t that it requires fa
torization of univari-ate polynomials into linear and quadrati
 irredu
ible fa
tors. This is no problemnumeri
ally, but it is fairly diÆ
ult to do symboli
 fa
torization for a generi
polynomial in Q [t℄: It is therefore desirable to �nd a solution of the equation inStep 4 within the rationals.4.1. The De
omposition ProblemBefore 
onstru
ting an algorithm whi
h sear
hes for rational solutions of par-ti
ular Two Squares Problems, we make some general observations with respe
tto the stru
ture of Two Squares de
ompositions. Sin
e there are several 
om-pletely di�erent de
ompositions of positive polynomials in R[t℄; we try to obtainan exhausting 
lassi�
ation.Example 2: Consider the de
ompositionF = t6 � 2t5 + 6t4 � 14t3 + 19t2 � 14t+ 5 = (t3 � t2 + 2t� 2)2 + (t2 � 3t+ 1)2:The polynomialsu = 13t3 + ��23p2� 13� t2 + �2p2 + 23� t� 23p2� 23
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es 9v = 23p2t3 + �13 � 23p2� t2 + ��1 + 43p2� t + 13 � 43p2yield another de
omposition F = u2 + v2:For a polynomial p with 
omplex 
oeÆ
ients, �p denotes the 
omplex 
onjugateof p; i.e., if p =Pk pktk; then �p =Pk �pktk: Consider the mapss:R[t℄ � R[t℄ �! R[t℄; (g; h) 7! g2 + h2
:R[t℄ � R[t℄ �! C [t℄; (g; h) 7! g + ihand the norm N: C [t℄ �! R[t℄; p 7! p�p:For f 2 R[t℄ let DR(f) denote the set of all possible de
ompositions, i.e.,DR(f) = f(g; h) 2 R[t℄ � R[t℄ j g2 + h2 = fg:The R�linear isomorphism 
 maps DR(f) onto the setDC (f) = fp 2 C [t℄ j p�p = fg:This has two 
onsequen
es. First, with the aid of the map 
; we realize, thatany de
omposition of a polynomial f 2 R[t℄ into a sum of two squares in R[t℄is in fa
t some spe
ial kind of fa
torization in C [t℄: Se
ond, the map 
 allows totransport the a
tion of the 
ir
le group to the real situation, so that we 
an passto orbits. Sin
e two de
ompositions f = g2 + h2 and f = h2 + g2 are essentiallythe same, we identify them by an appropriate group a
tion:Let S1 � C denote the one-dimensional torus, and S2 = f1; �g the 2-elementgroup, written multipli
atively. Both groups a
t on C [t℄; the torus by s
alarmultipli
ation, and S2 by the stipulation� � P = �P :Hen
e there is a group a
tion of the free produ
t S1 ? S2 on C [t℄: The map 
transports the orbits in C [t℄ to R[t℄�R [t℄: We write (g1; h1) � (g2; h2) if the twopairs belong to the same orbit.Lemma 4.1: Take g1; h1; g2; h2 2 R[t℄ and let p1 = 
(g1; h1) and p2 = 
(g2; h2):Then (g1; h1) � (g2; h2) , 9� 2 S1 (p2 = �p1 _ p2 = ��p1)Proof: Elements x 2 S1 ? S2 are �nite produ
ts of the formx = �1��2� � � � or x = ��1��2 � � �where �j 2 S1: In both 
ases the a
tion of x on an element p 2 C [t℄ produ
eseither a polynomial �p or ��p; with � 2 S1: The �rst variant arises exa
tly in the
ase where the number of o

uren
es of � in x is even.k 2kThe groups S1 and S2 
onsidered as subgroups of AutZC [t℄ 
ommute, when
e their 
omplexprodu
t is the group whi
h e�e
tively a
ts on C [t℄.
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ho Winkler: Canal Surfa
es 10Corollary 1: Let f; g; h be in R[t℄ and assume that f = g2 + h2: Then theorbit of (g; h) is 
ontained in DR(f):Proof: Take g1; h1; g2; h2 in R[t℄ with (g1; h1) � (g2; h2); and let p1; p2 denote
(g1; h1); 
(g2; h2) respe
tively. There is a � 2 S1 with p2 = �p1 _ p2 = ��p1:Therefore, in both 
ases, N(p1) = N(p2); i.e., s(g1; h1) = s(g2; h2): 2The two de
ompositions in Example 2 are eqivalent. The se
ond one is derivedfrom the �rst by multiplying with � = 13 + 2p23 i:Theorem 4.1: Let f 2 R[t℄ be a positive squarefree polynomial of degree 2n > 0:There are then exa
tly 2n�1 pairwise inequivalent de
ompositions f = g2 + h2:Proof: First assume f to be moni
. From the fa
torization of f in C [t℄f = nYj=1 ((t� �j)(t� ��j))with �j 6= �k for j 6= k; one realizes that there are 2n separations of f intof = P �P; 
oming from distin
t 
olle
tions of the linear fa
tors. Taking intoa

ount that 
onjugate polynomials get identi�ed, there are 2n�1 left.Now, equivalent de
ompositions of f produ
e 
omplex fa
tors, whi
h eitherare asso
iated, or one is asso
iated to the 
onjugate of the other; hen
e distin
tseparations are inequivalent. Obviously every de
omposition is equivalent to onesu
h separation, hen
e the set DR(f) 
onsists of exa
tly 2n�1 orbits.In the general 
ase, write f = af̂ with f̂ moni
 and a > 0: Then DC (f) =paDC (f̂) proves the assertion. 2So far, our 
onsiderations lead to the following improvement of AlgorithmNUMERIC DECOMPOSITION1 :Algorithm NUMERIC DECOMPOSITION2Input: f 2 R[t℄ positive;Output: g; h 2 R[t℄ with g2 + h2 = f ;1. fa
tor f into squarefree parts Fj;2. for ea
h j(a) fa
tor Fj over C ;(b) 
hoose a separation pj with pj �pj = Fj;(
) set gj: = Re(p); hj: = Im(p);3. 
ombine the pairs (gj; hj) a

ording to formula (8).



Landsmann S
hi
ho Winkler: Canal Surfa
es 11The next theorem gives a 
air of the 
omplexity of an arbitrary symboli
 de-
omposition algorithm. Note that a randomly 
hosen rational polynomial usuallyhas the maximal possible Galois group��.Theorem 4.2: Let f 2 Q [t℄ be a positive irredu
ible polynomial of degree 2nover Q : De
ompose f into f = g2 + h2 (g; h 2 R[t℄). If the Galois group of f isthe symmetri
 group S2n; then the 
oeÆ
ients of g; h involve algebrai
 numbersof degree at least 12�2nn �:Proof: Set p = g + ih 2 C [t℄; then f = p�p and deg p = n: Letp = �(t� �1) � � � (t� �n)be the 
omplete fa
torization of p; thus �p = ��(t� ��1) � � � (t� ��n) and � �� = f2n: Setp1 = 1�p:We introdu
e the notations E = Q (�1 ; : : : ; �n); F = Q(�1 ; : : : ; �n; ��1; : : : ; ��n);G = Gal f = AutQF and A = f�1; : : : ; �ng: Furthermore let C denote the small-est �eld 
ontaining the 
oeÆ
ients of p; and, analogous, C1 for p1: Finally let Kbe the smallest �eld 
ontaining the 
oeÆ
ients of g and h:Obviously, F is the splitting �eld of f over Q ; and E the splitting �eld of p1 overC1: Complex 
onjugation yields an isomorphism from E with �E = Q ( ��1 ; : : : ; ��n):The group G is isomorphi
 to a transitive subgroup of SA[ �A �= S2n of order atleast 2n:Now, the 
oeÆ
ients of p1 being elementary symmetri
 polynomials in �1; : : : ; �nare expressible as polynomials involving the elementary symmetri
 polynomialsin all variables of A [ �A; and ��1; : : : ; ��n: This implies C1 � E \ �E:Sin
e the elements of Gal(F=E) 
ommute with those of Gal(F= �E) we 
on
ludeGal(F=(E \ �E)) = Gal(F=E)Gal(F= �E) �= Gal(F=E)�Gal(F= �E):With the abbreviations e = jGal(F=E)j; d = [E \ �E:C1℄ we obtain[F :E \ �E℄ = jGal(F=(E \ �E))j = jGal(F=E)jjGal(F= �E)j = e2;hen
e [E:E \ �E℄ = e and thereforee2d � [C1:Q ℄ = jGj and ed � n! (9)Now assume that G �= S2n: Then any permutation of the set �A extends to anautomorphism in Gal(F=E); when
e Gal(F=E) �= Sn and e = n!: Condition (9)gives now (n!)2d � [C1:Q ℄ = (2n)! and d = 1;therefore [C1:Q ℄ = (2n)!(n!)2 = �2nn �:��We denote the symmetri
 group on n letters by Sn:
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hi
ho Winkler: Canal Surfa
es 12Immediately from the de�nitions one derives C1(�) = C � K(i): Sin
e K � R;[K(i):K℄ = 2 is evident. Hen
e[K(i):C℄[C:C1℄[C1:Q ℄ = 2[K:Q ℄ and so[K:Q ℄ = 12[K(i):C℄[C:C1℄[C1:Q ℄ � 12�2nn �: 2Remark 1: The result states that, for a randomly 
hosen positive polynomial,any solution of the Two Squares Problem lies in a �eld extension of exponentiallyhigh degree. It is 
lear that every exa
t algorithm must in parti
ular 
ompute theextension 
ontaining the 
oeÆ
ients of the solution. Therefore we 
annot expe
tan exa
t algorithm produ
ing a solution for every 
ase in reasonable time.Remark 2: As multipli
ation of parti
ular solutions of a Two Squares Problemwith arbitrary 
omplex numbers of modulus 1 produ
es new solutions, the 
oef-�
ients of the parti
ipating polynomials 
an be algebrai
 numbers of arbitraryhigh degree, or even trans
endental numbers.Example 3: The polynomials� = 15�t3 +��15 � � 15p25� �2� t2+�25� + 35p25� �2� t� 25�� 15p25� �2 = 15p25� �2t3+��15 p25� �2 + 15�� t2+�25p25� �2 � 35�� t�25p25� �2+15�yield yet another de
omposition oft6 � 2t5 + 6t4 � 14t3 + 19t2 � 14t+ 5whi
h now 
ontains trans
endental 
oeÆ
ients.4.2. Solutions over QEven though we 
annot expe
t small exa
t solutions of the Two Squares Problemin general, there are instan
es for whi
h exa
t solutions in Q do exist. In the lastde
ade algorithms have been developed, whi
h, applied to this spe
ial situation,produ
e solutions, if they exist; we 
an e.g. 
onsider the Two Squares Problemas a spe
i�
 fun
tional de
omposition problem f(t) = (x2 + y2) Æ (g(t); h(t)) sowe might apply a fun
tional de
omposition algorithm to the polynomial f andthen sear
h through the list of de
omposition fa
tors. If x2 + y2 appears in thislist, we have an aÆrmative answer to the Two squares Problem.In (Landsmann et.al., 2000) we gave an algorithm, whi
h is tailored to the
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i�
 problem of two squares. Here we present an improvement of this algo-rithm both in terms of simpli
ity and in terms of 
omputational 
omplexity. Asin (Landsmann et.al., 2000), the method works for an arbitrary 
omputable �eldk of 
hara
teristi
 6= 2; provided that k admits 
omputable fa
torization andallows solution of the Two Squares Problem for 
onstants. If k is the �eld ofrationals, then, for de
ision of the last task, we 
an use Fermat's Theorem: 
 is asum of two squares if and only if every prime o

uring with an odd exponent inthe numerator or in the denominator is 
ongruent 1 modulo 4. In the aÆrmative
ase, a representation 
an be found easily.In the following we always assume that �1 is not a square in k. Also, weadhere to the 
onvention that g
d's be moni
.Lemma 4.2: Let F be an irredu
ible moni
 polynomial in k[t℄. If F is a fa
torof a sum of two squares of polynomials in k[t℄ whi
h are not both multiples of F ,then F itself is a sum of two squares.Proof: FG = P 2+Q2; g
d(P;Q) = 1: In k(i)[t℄ we have FG = (P+iQ)(P�iQ):If F and P + iQ were 
oprime then F jP � iQ and so F jP + iQ whi
h isa 
ontradi
tion. Hen
e both of g
d(F; P + iQ) and g
d(F; P � iQ) are non-
onstant. Applying 
onjugation, one realizes that g
d(F; P � iQ) is the 
on-jugate of g
d(F; P + iQ): A 
ommon fa
tor of these two polynomials woulddivide P and Q then
e g
d(F; P � iQ) and g
d(F; P + iQ) are 
oprime. Writingg
d(F; P + iQ) = U + iV one 
on
ludes thatU2 + V 2 = (U + iV )(U � iV )jF:Hen
e F is asso
iated to U2 + V 2: Now, sin
e g
s's having leading 
oeÆ
ient 1,we see that U2 + V 2 is moni
, therefore F = U2 + V 2: 2The following lemma redu
es the Two Squares Problem to the 
ase of irredu
iblepolynomias.Lemma 4.3: A polynomial F 6= 0 is a sum of two squares if and only if itsleading 
oeÆ
ient is a sum of two squares and all its moni
 irredu
ible fa
torsare sums of two squares.Proof: Suppose F = P 2 + Q2. We may write P as atm plus terms of lowerdegree, and Q as btn plus terms of lower degree. Assume m�n without loss ofgenerality. Be
ause �1 is not a square, there is no 
an
ellation in degree 2m inthe sum P 2 + Q2. Therefore deg(F ) = 2m and l
oe�(F ) = a2 + b2 if m = n,and l
oe�(F ) = a2 if m > n. The se
ond 
ondition follows immediately fromlemma 4.2.Conversely, suppose we have written the moni
 irredu
ible fa
tors of F as sumsof two squares. Applying Fibona

i's formula we obtain a representation of themoni
 polynomial F 0 asso
iated to F as a sum of two squares. By assumption,the leading 
oeÆ
ient 
 of F is a sum of two squares. Then another appli
ationof Fibona

i's formula represents F = 
F 0 as a sum of two squares. 2
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ible 
ase.Lemma 4.4: Let F be an irredu
ible polynomial in k[t℄. Then F is asso
iatedto a sum of two squares if and only if �1 is a square in the �eld extensionk0 := k[t℄=hF i.Proof: Suppose that P 2 + Q2 = 
F . Then Q is not divisible by F , hen
e Q isinvertible in k0 and �1 = (P �Q�1)2 in k0.Conversely, suppose that �1 is a square in k0, and let R be a polynomialsu
h that R2 + 1 is zero modulo F . Then we get R2 + 1 = FG for some G. ByLemma 4.2, F is asso
iated to a sum of two squares. 2Remark 3: If �1 is a square, thenF = �F + 12 �2 + �F � 12p�1�2 ;hen
e any polynomial 
an be easily written as a sum of two squares.Algorithmi
ally, the problem of de
iding whether �1 is a square in k0 is aspe
ial 
ase of polynomial fa
torization (�1 is a square if and only if x2 + 1is redu
ible in k0[x℄). For this subproblem, we refer to (Landau, 1985; Lenstra,1982; Wang, 1976).The given proof for the existen
e 
riterion is 
onstru
tive, in the sense thatit allows to 
onstru
t a representation of F as a sum of two squares in 
ase the
riterion is ful�lled. The following algorithm is extra
ted from this proof.Algorithm TWO SQUARESInput: F polynomial;Output: (X; Y ) polynomials su
h that X2 + Y 2 = F ;1. 
ompute the fa
torization F = 
Qj P ejj into moni
 irredu
ible polynomials;2. de
ide if 
 = l
oe�(F) is a sum of two squares;3. if 2. = FALSE then RETURN(NotExist) and exit; else 
hoose two 
onstants(X; Y ) su
h that X2 + Y 2 = 
;4. for ea
h jif ej is even then (X; Y ) = (P ej=2j X;P ej=2j Y );else(a) k0 := k[t℄=hPji;(b) if x2 + 1 is irredu
ible over k0 then RETURN(NotExist) and exit;elsei. R(t):= a polynomial su
h that R2 + 1 = 0 in k0;
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d(R + i; Pj) in k(i)[t℄;iii. (X; Y ) := (XU + Y V;XV � Y U);RETURN (X; Y ):Example 4: We want to represent the polynomialF = t6 � 2t5 + 6t4 � 14t3 + 19t2 � 14t+ 5as a sum of two squares. The polynomial is irredu
ible over Q . The leading
oeÆ
ient is 1, so the �rst 
ondition is ful�lled. Next, we have to 
he
k whether�1 is a square modulo F . It turns out, e.g. by a 
all of Maple, that �1 = R2 inQ [t℄=hF i; where R = 719t5 � 1019t4 + 3919t3 � 7319t2 + 9419t� 4719So now we know that a solution exists.Next we 
omputeg
d(R +p�1; F ) = t3 � t2 + 2t� 2 + I(�t2 + 3t� 1):Hen
e we obtain the representationF = (t3 � t2 + 2t� 2)2 + (�t2 + 3t� 1)2:5. Con
lusionWe have dis
ussed the problem of �nding real rational parametrizations of 
analsurfa
es whose spine 
urve and radius variation are given by rational fun
tions.We have stressed a purely symboli
 approa
h whi
h resulted in �nding a de-
omposition of a univariate real polynomial as a sum of two squares, so thisproblem is surveyed in adequate generality. Our 
omplexity result states that�nding su
h a de
omposition is in fa
t partial fa
torization of the polynomialunder 
onsideration. In 
ase this 
an be done over Q we gave an algorithm forperforming this task.For polynomials with rational 
oeÆ
ients it remains an open problem to doexa
t de
omposition without fa
torization if solutions 
an only be found in al-gebrai
 extensions of Q :
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