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Abstract

A canal surface in R?, generated by a parametrized curve C = m(t), is
the Zariski closure of the envelope of the set of spheres with radius r(#)
centered at m(t). This concept is a generalization of the classical notion of
an offsets of a plane curve: First, the canal surface is a surface in 3-space
rather than a curve in R? and second, the radius function r(¢) is allowed
to vary with the parameter ¢. In case r(t) = const, the resulting envelope
is called a pipe surface. In this paper we develop an elementary symbolic
method for generating rational parametrizations of canal surfaces gen-
erated by rational curves m(¢) with rational radius variation r(¢). This
method leads to the problem of decomposing a polynomial into a sum
of two squares over R. We discuss decomposition algorithms which give
symbolic and numerical answers to this problem.

1. Introduction

Consider a space curve C parametrized by a rational map m: R — C and a real-
valued rational function r(t). The canal surface with spine curve m and radius
variation r is the envelope of the family of spheres centered at m(t) with radius
r(t). Canal surfaces with constant radius function - called pipe surfaces in the
literatur - have wide applications, such as shape reconstruction or robotic path
planning; canal surfaces with variable radius function arise in computer aided
geometric design contexts mainly as transition surfaces between pipes.
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There are several reasons for trying to give rational parametrizations of sur-
faces. One of them is the wide spread use of rational parametrizations by CAD-
systems. Another one is, that points lying on the surface can be computed easily.
If, furthermore, the intersection of two surfaces is to be determined. often this
task can be accomplished most conveniently by representing one of the surfaces
by its implicit equation while the second one is given parametrically.

Most algebraic surfaces do not admit a rational parametrization; those which
do are called unirational.

Surprisingly canal surfaces with rational spine curve and rational radius func-
tion are unirational (Peternell Pottmann, 1997). To be precise, they admit real
rational parametrizations of their real components.

It is therefore natural to ask for methods which allow one to construct a ratio-
nal parametrization of a canal surface from its spine curve and radius function.
The straightforward strategy would be to compute the implicit equation and to
apply a general purpose parametrization algorithm (Schicho, 1998/1) or (Schi-
cho, 1998/2), but it turns out that the defining polynomial of a canal surface is of
considerably higher complexity than the original data r and m. In (Landsmann
et.al., 2000) we have developed a parametrization algorithm for canal surfaces,
avoiding the implicit equation and working directly with the original rational
data. Our method first applies a sequence of appropriate transformations, until
we arrive at a variety described by an equation in simplest possible form, ratio-
nally equivalent to the original one. Finding a rational parametrization of the
latter and transforming back solves the parametrization problem for the former.
In analogy to the case of plane algebraic curves, where the parametrization prob-
lem ultimately reduces to the problem of finding a "good” point on the given
curve, see (Sendra Winkler, 1991),(Sendra Winkler, 1997), (Hillgarter Winkler,
1998) we have to determine a "good” curve on the surface.

As in (Peternell Pottmann, 1997) the parametrization problem is reduced to
the problem of finding a representation of a rational function as a sum of two
squares. This is a special case of Hilbert’s 17" problem (Bochnak Coste Roy,
1987; Hilbert, 1901). In (Landsmann et.al., 2000) we described a procedure for
deciding this problem over Q.

In this paper we analyze the real case, which is of particular importance in
practical applications.

The new results are the following:

e a classification of all the solutions of the Two Squares Problem;
e an improved numerical algorithm for finding those solutions;

e a complexity result explaining why we cannot hope for a fast exact algo-
rithm covering all cases.

e an improved symbolic algorithm for those cases, where an exact solution
over Q exists.

We start in Section 2, presenting the definition of a canal surface. Section 3
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describes the reduction process which eventually exposes the kernel of the para-
metrization problem of canal surfaces as a two squares problem. In Section 4 we
discuss this problem in adequate generality and give algorithmic answers, which
contain both symbolic and numerical solutions.

2. Preliminaries on Canal Surfaces

Let my(t), ma(t), ms(t),r(t) be rational functions with coefficients in R. The
tuple m = (my, my, m3) defines a rational parametrization of a curve in R3
which will be called the spine curve in the sequel. Let F' be the expression

F(xy, 20, 23, 1) = Z (z; —mi(t))” —r(t)?

=1

and let Z denote the union of the zero sets of the denominators of m, mo, ms, r
and of the numerator of r. Set V.= R — 7, U = R® x V. Then F being regular
on U defines the set

M = {(Il,IQ,l’g,,t) elU ‘ F(xl,xz,x3,t) = 0}

which is a smooth manifold of dimension 3 by the Implicit Function Theorem.
Consider the projection

P M — R3, (.131,.132,I3,t) — (xl,xQ,x3).
The envelope E is the set of all critical values of p, that means
E={z eR’ |3t:(x,t) € M and rank, ,(p) < 3}.

Since p is the restriction of the linear projection m: R* — R?, the tangent map
Tiat)(p) is just restriction of 7 to the tangent space T(, (M) and the condition
rank, ) (p) < 3 amounts to %—f(x, t) = 0. Thus the envelope is given by

E={xcR|3t:(2,t) €U A F(x,t) :(]Aaa—lz(x,t) = 0}.

that is, the solutions in U of the system

S (@ —mye) Ty T 1)

after elimination of . The associated canal surface S can now be defined as the
Zariski closure of E.
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3. Reduction to the Two Squares Problem

In order to find a rational parametrization of the canal surface & we first need a
rational curve C on &, which then can be used as a basis for parametrizing the
whole surface by a reflection process.

A first simplification gives the substitution

xj=m;(t) +r(thu;  (1<5<3). (2)

which birationally transforms (1) to

7j=1
3
dm; dr
—uj+— = 0. 3
— dqt 7 dt )
7j=1
With abbreviations a; = %, (1<j<3)andd= —%, working in projective
space we pass to the homogeneous system
ul +uy+uz—up =0
a1y + asus + asug — dUg =0 (4)

which is treated as a system of equations in P*(R(¢)) and geometrically represents
the intersection of a plane and a sphere. Parametrizing the linear equation we
obtain the quadratic form

0 = A1x? + Ayxs + Azxl — 2Bxay — 20503 (5)
with
Ay :af—i-ag, A, :ag—l—ag, As :d2—a§, B =ajaz, C =das.
Using the abbreviations
Sy = a3 + a5, 3= 5y + a3

we first pass to the quadratic form ¢) = A; A%, which then with the aid of the
matrix

aq 1 —aq
s2a2(d®>—a3) s2(d?—a3) az(d>—a3)
— A 0 __—S82
9= azaz(d?—a3) azaz(d?—a3)

0 azd—s3

gives the equivalent quadratic form

n=g"vg.
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1 expands to
dr\ > > dm;\ > 2 dm;\ >
724+ 72 — | - — —1) Z72=0. 6
() s () ) S (G) 20 o

(see (Hillgarter, Landsmann, Schicho, Winkler, 1999) for computational details).
An equation of similar shape is obtained in (Peternell Pottmann, 1997). There,
the equations are derived by a geometric method.

Finding the curve C amounts to presenting a nontrivial solution of (6) in
P?(R(¢)). Equation (6) also limits the real connected components of S, as there
are real solutions only for values of ¢t with

(%) = (%) "

A A
JR— 2o — —
730 T 7,

a solution is found, if we are able to find a presentation of the term

(%) (5 (%) - (%))

as a sum of two squares. Using Fibonacci’s formula

In affine coordinates

21 =

(a® 4+ b*)(c* + d*) = (ac + bd)* + (ad — be)? (8)

(%) - (%)

Jj=1

it is enough to decompose

Clearing denominators produces an expression of equal type. As, in practice,
the input data will have rational coefficients, we are faced with the following
problem:

PROBLEM 1: [Two Squares Problem] Given a polynomial f € Q[t], find a de-
composition f = g> + h?® with g, h € R[t].

Of course, f has to be globally positive. But this condition is also sufficient
for decomposition. We present here the general result, formulated for rational
functions.

LEMMA 3.1: Let p be a rational function in R(t). Then p is a sum of two squares
in R(t) if and only if p = £ with F,G € R[t] and FG > 0.
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A proof can be found in (Landsmann et.al., 2000). We postpone the treatment
of Problem 1 to Section 4.

Once a solution (z; : 2z : z3) of (6) is at hand, application of the inverse
transformations yields a curve C on the surface § and we construct a rational
parametrization of & by simply rotating C around the spine curve m. The details
of this construction may be found in (Peternell Pottmann, 1997) or (Landsmann
et.al., 2000).

The above considerations lead also to the following conclusion:

THEOREM 3.1: The canal surface given by the spine curve m = (my(t), ma(t), ms(t))
and the radius function r(t), with my(t), ma(t), ms(t),r(t) € R(t), admits a ra-
tional parametrization over the reals in accordance with the spine 1 if and only

o dm 2 . 2 m 2 N2

if ()" + (22(2))" + (22 (2))" > (L(x))" for almost all x € R.

In general the rational function p := (%)2 + (%)2 + (dc%)2 — (%)2 need not
be positive. In this case we have to restrict to intervals on which p > 0 and to
reparametrize the spine curve. In the new setting the condition p > 0 is then
valid on the whole real axis. If e.g. p is positive on [a,b] C R, we can apply
the reparametrization ¢ = bg;:l“. In case p > 0 on [a,o0) we can use t = §° + a.
Obviously, then, each point of the curve component under consideration is passed
twice, so a proper parametrization cannot be achieved. This problem can be
resolved by restricting the parameters to positive values.

The pseudo-code of a parametrization algorithm for canal surfaces is now given

by the following steps:

Algorithm CANAL_SURFACE

Input:  mq(t), ma(t), ms(t), r(t) rational functions determining a canal surface S;
Output: Xy(t,n), Xa(t,n), X3(t,n) rational parametrization of a component of S;

compute p(t) = S0, 1 (1) — #(1)"

choose an interval (a,b) on which p > 0;

if (a,b) # R then reparametrize t: = t(6), so that p(#) > 0;
compute a decomposition p = o2 + 7%

use identity (8) to obtain a solution of (6);

apply the inverse transformations to get a curve C on the canalsurface S;

N gtk o =

compute a surface parametrization of S by rotating C around the spine.

ExXAMPLE 1: [Viviani’s Temple with variable radius| This space curve is defined
as the intersection of a sphere of radius 2a and a circular cylinder of radius a:

x2+y2+22 — 4&2

9This means that one parameter of the surface parametrization equals the curve parameter.
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Figure 1: canal surface around Viviani’s temple

(x—a)?+y* = a

Its rational parametrization can be given by
2a(1 — t*)? dat(1—1t*) 4dat
ity — (240 P dat(l =) dat )
(1+122)2 7 (1412)2 "1+

We set a = 1 and compute a parametrization of the canal surface with spine m

and radius r(t) = {77 It turns out that the term

Ly .9 .9 g 3Lt 267 431

thus, it can be written as

((t2+3i1)\/3_1)2+ ( 8\/465 )2

(2 +1)2 31(2 +1)2

The coefficients of this decomposition are in Q[v/31,v/465] which is of degree
4 over Q. From this we can compute a rational parametrization of the canal
surface drawn in Figure 1 by applying steps 5-8 (cf. Landsmann et.al. (2000))

Note that it is possible to recover a representation of p as a sum of two squares
from a paramerization obtained by whichever method. Therefore the compu-
tational complexity of Canal surface parametrization equals that of the Two
Squares Problem.
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4. The Decomposition into a Sum of Squares

The crucial point in the algorithm CANAL_SURFACE is the discovery of o,
such that ¢? + 7% = p in Step 4. By Lemma 3.1 we may assume that p =
with F, G € R[t] and F' > 0 and G > 0. Obviously this problem can be solved if
we are able to find a decomposition f = g + h? for polynomials f € R[t] with
f > 0 into a sum of two squares of polynomials g, h € R[t]. In view of Identity
(8) we propose the following concept:

.
L
G

Algorithm NUMERIC_ DECOMPOSITION1

Input: f € R[t] positive;
Output: g, h € R[t] with g> + h? = f;

1. compute a factorization of f into quadratic polynomials:
f=aQbQi

2. for each j with 1 <j <r
write the quadratic factor Q; = a;t* + bjt + ¢; as

b\’ 2
— + J ] .
Qj <‘/a] + 5 aj> +4/¢ Ia,

3. combine the above polynomials according to formula (8).

The individual concepts make sense because f is assumed to be positive. The
critical point in this algorithm is the fact that it requires factorization of univari-
ate polynomials into linear and quadratic irreducible factors. This is no problem
numerically, but it is fairly difficult to do symbolic factorization for a generic
polynomial in Q[¢]. It is therefore desirable to find a solution of the equation in
Step 4 within the rationals.

4.1. The Decomposition Problem

Before constructing an algorithm which searches for rational solutions of par-
ticular Two Squares Problems, we make some general observations with respect
to the structure of Two Squares decompositions. Since there are several com-
pletely different decompositions of positive polynomials in R[t], we try to obtain
an exhausting classification.

ExAMPLE 2: Consider the decomposition
F=t1"—260 +6t" — 142 + 19 — 14t + 5= (£* —¢> + 2t — 2)* + (* = 3t + 1)~

The polynomials

1 2 1 2 2 2
=t [ —SV2— | 2V2 4+t V2=
=g +<3\f 3> +<f+3> 3\f .
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2 1 2 4 1 4
=V [ SV P 1 V2t - — V2
v 3\f +<3 3f> +< +3f> +3 3\f
yield another decomposition F' = u? + v
For a polynomial p with complex coefficients, p denotes the complex conjugate
of p, i.e., if p=>", pit*, then p =, ppt*. Consider the maps

s:R[t] x R[t] — R[t], (g,h) — g+ h?
c:R[t] x R}t] — C[t], (g,h)+— g+ih

and the norm
N:Ct] — R[t], p — pp.

For f € R[t] let Dg(f) denote the set of all possible decompositions, i.e.,
Da(f) = {(g,h) € RIt] x R[t] | g* + h* = f}.
The R—linear isomorphism ¢ maps Dg(f) onto the set

De(f) ={peClt] [ pp= [}

This has two consequences. First, with the aid of the map ¢, we realize, that
any decomposition of a polynomial f € R[¢] into a sum of two squares in R[]
is in fact some special kind of factorization in C[t]. Second, the map ¢ allows to
transport the action of the circle group to the real situation, so that we can pass
to orbits. Since two decompositions f = ¢g? + h? and f = h? + ¢° are essentially
the same, we identify them by an appropriate group action:

Let S' C C denote the one-dimensional torus, and Sy = {1, 7} the 2-element
group, written multiplicatively. Both groups act on C[t], the torus by scalar
multiplication, and Sy by the stipulation

r-P=P.

Hence there is a group action of the free product S'x Sy on C[t]. The map ¢
transports the orbits in C[t] to R[¢] x R[t]. We write (g1, h1) ~ (g2, ho) if the two
pairs belong to the same orbit.

LEMMA 4.1: Take gy, hy, g2, ho € R[t] and let py = c(g1, h1) and ps = ¢c(go, ha).
Then
(g1,h1) ~ (g2.h2) < IXNES" (2= Ap1 Vo = Apy)

Proof: Elements x € S' xS, are finite products of the form
x:)\lT/\gT"' OI'.TZ:T)\lT)\Q"'

where \; € S In both cases the action of 2 on an element p € C[t] produces
either a polynomial up or pup, with 1 € S'. The first variant arises exactly in the
case where the number of occurences of 7 in z is even.!! 0O

IThe groups S and S, considered as subgroups of AutzC[t] commute, whence their complex
product is the group which effectively acts on C[t].
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COROLLARY 1: Let f,g,h be in R[t] and assume that f = g> + h®. Then the
orbit of (g, h) is contained in Dg(f).

Proof: Take ¢y, hi, g2, ho in R[t] with (g1, h1) ~ (go, h2), and let pq, py denote
c(g1, h1), c(go, ho) respectively. There is a A € S! with po = Ap; V po = \py.
Therefore, in both cases, N(p;) = N(p2), i.e., s(g1, h1) = s(go, h2). O

The two decompositions in Example 2 are eqivalent. The second one is derived
from the first by multiplying with \ = % + %ﬁz

THEOREM 4.1: Let f € R[t] be a positive squarefree polynomial of degree 2n > 0.
There are then exactly 2"~' pairwise inequivalent decompositions f = g + h®.

Proof: First assume f to be monic. From the factorization of f in Ct]
f=1lt=aptt-a)
1=1

with a; # o for j # k, one realizes that there are 2" separations of f into
f = PP, coming from distinct collections of the linear factors. Taking into
account that conjugate polynomials get identified, there are 2"~ left.

Now, equivalent decompositions of f produce complex factors, which either
are associated, or one is associated to the conjugate of the other; hence distinct
separations are inequivalent. Obviously every decomposition is equivalent to one
such separation, hence the set DR(f) consists of exactly 2"=1 orbits.

In the general case, write f = af with f monic and a > 0. Then D¢(f)

~

VaDc(f) proves the assertion. O

So far, our considerations lead to the following improvement of Algorithm
NUMERIC_DECOMPOSITIONT1 :

Algorithm NUMERIC_ DECOMPOSITION2

Input: f € R[t] positive;

Output: g, h € R[t] with ¢> + h? = f;
1. factor f into squarefree parts Fj;
2. for each j

(a) factor Fj over C;
(b) choose a separation p; with p;p; = Fj;
(c) set gj:=Re(p), hj:=Im(p);

3. combine the pairs (g;, h;) according to formula (8).
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The next theorem gives a flair of the complexity of an arbitrary symbolic de-
composition algorithm. Note that a randomly chosen rational polynomial usually
has the maximal possible Galois group**.

THEOREM 4.2: Let f € Q[t] be a positive irreducible polynomial of degree 2n
over Q. Decompose [ into f = g°>+ h* (g,h € R[t]). If the Galois group of f is
the symmetric group Say,, then the coefficients of g, h involve algebraic numbers
of degree at least %(2:)

Proof: Set p =g+ ih € C[t], then f = pp and deg p = n. Let
p=pBt—a) - (t—an)

be the complete factorization of p; thus p = S(t—ay) - - - (t—a,) and B3 = fa,. Set

P = %p. We introduce the notations £ = Q(ay, ..., an), F=Q(ay,...,an, dy,...,d,),
G = Gal f = AutgF and A = {ay, ..., a,}. Furthermore let C' denote the small-

est field containing the coefficients of p, and, analogous, C for p;. Finally let K

be the smallest field containing the coefficients of ¢ and h.

Obviously, F'is the splitting field of f over QQ, and E the splitting field of p; over
(. Complex conjugation yields an isomorphism from F with £ = Q(dy, ..., d,).
The group G is isomorphic to a transitive subgroup of S, 4 = Ss, of order at
least 2n.

Now, the coefficients of p; being elementary symmetric polynomialsin ay, ..., a;,
are expressible as polynomials involving the elementary symmetric polynomials
in all variables of AU A, and ay, ..., a,. This implies C; C BN E.

Since the elements of Gal(F/FE) commute with those of Gal(F/E) we conclude

Gal(F/(ENE)) = Gal(F/E)Gal(F/E) = Gal(F/FE) x Gal(F/FE).
With the abbreviations e = |Gal(F/FE)|, d = [E N E:C}] we obtain
[F:ENE]=|Gal(F/(ENE))| = |Gal(F/E)||Gal(F/E)| = ¢,
hence [E: E N E] = e and therefore
e’d- [C1:Q] = |G| and ed < n! (9)
Now assume that G 2 S,,. Then any permutation of the set A extends to an
automorphism in Gal(F/FE), whence Gal(F/E) = S, and e = n!. Condition (9)

gives now

(n)?d - [C: Q] = (2n)! and d = 1,

Crg = 20 _ (2n>

(n!)? n

“*We denote the symmetric group on n letters by S,,.

therefore




Landsmann Schicho Winkler: Canal Surfaces 12

Immediately from the definitions one derives Cy(f) = C C K (7). Since K C R,
[K(i): K| = 2 is evident. Hence

[K(i): C[C: C4][Cy: Q] = 2[K: Q)] and so

K:Q) = [K(): CllC: [0 Q) > %(2:).
O

REMARK 1: The result states that, for a randomly chosen positive polynomial,
any solution of the Two Squares Problem lies in a field extension of exponentially
high degree. It is clear that every exact algorithm must in particular compute the
extension containing the coefficients of the solution. Therefore we cannot expect
an exact algorithm producing a solution for every case in reasonable time.

REMARK 2: As multiplication of particular solutions of a Two Squares Problem
with arbitrary complex numbers of modulus 1 produces new solutions, the coef-
ficients of the participating polynomials can be algebraic numbers of arbitrary
high degree, or even transcendental numbers.

ExAMPLE 3: The polynomials

1 -1 1 2 3 2 1
¢:57Tt3+<?ﬂ'—5\/25—ﬂ'2> t2+<57T+5\/25—7T2>t—gﬂ'—g\/25—ﬂ'2

1 —1 1 2 3 2 1
Y= zV 25 — w23+ <?\/ 25 — w2 + gﬂ') 24 <gv 25 — 72 — 57r> t—g\/ 25 — 7T2+g71'

yield yet another decomposition of
10 — 2% + 6" — 147 + 19> — 14t + 5

which now contains transcendental coefficients.

4.2. Solutions over Q

Even though we cannot expect small exact solutions of the Two Squares Problem
in general, there are instances for which exact solutions in Q do exist. In the last
decade algorithms have been developed, which, applied to this special situation,
produce solutions, if they exist; we can e.g. consider the Two Squares Problem
as a specific functional decomposition problem f(t) = (2® + y?) o (g(t), h(t)) so
we might apply a functional decomposition algorithm to the polynomial f and
then search through the list of decomposition factors. If 2% 4 y? appears in this
list, we have an affirmative answer to the Two squares Problem.

In (Landsmann et.al., 2000) we gave an algorithm, which is tailored to the



Landsmann Schicho Winkler: Canal Surfaces 13

specific problem of two squares. Here we present an improvement of this algo-
rithm both in terms of simplicity and in terms of computational complexity. As
in (Landsmann et.al., 2000), the method works for an arbitrary computable field
k of characteristic # 2, provided that k admits computable factorization and
allows solution of the Two Squares Problem for constants. If £ is the field of
rationals, then, for decision of the last task, we can use Fermat’s Theorem: ¢ is a
sum of two squares if and only if every prime occuring with an odd exponent in
the numerator or in the denominator is congruent 1 modulo 4. In the affirmative
case, a representation can be found easily.

In the following we always assume that —1 is not a square in k. Also, we
adhere to the convention that ged’s be monic.

LEMMA 4.2: Let F be an irreducible monic polynomial in k[t]. If F is a factor
of a sum of two squares of polynomials in k[t] which are not both multiples of F,
then F itself is a sum of two squares.

Proof: FG = P*+Q?, ged(P,Q) = 1. In k(i)[t] we have FG = (P+iQ)(P—iQ).
If F and P + i@Q) were coprime then F|P — i@ and so F|P + i) which is
a contradiction. Hence both of ged(F, P + iQ)) and ged(F, P — iQQ) are non-
constant. Applying conjugation, one realizes that ged(F, P — iQ) is the con-
jugate of ged(F, P 4 iQ). A common factor of these two polynomials would
divide P and @ thence ged(F, P —iQ) and ged(F, P 4 iQ) are coprime. Writing
ged(F, P +iQ) = U 4 iV one concludes that

U?+ V2= (U+iV)(U —iV)|F.

Hence F is associated to U? 4+ V2. Now, since ges’s having leading coefficient 1,
we see that U? 4+ V? is monic, therefore F' = U? + V2. O

The following lemma reduces the Two Squares Problem to the case of irreducible
polynomias.

LEMMA 4.3: A polynomial F # 0 is a sum of two squares if and only if its
leading coefficient is a sum of two squares and all its monic irreducible factors
are sums of two squares.

Proof: Suppose F = P? + Q*. We may write P as at™ plus terms of lower
degree, and @ as bt" plus terms of lower degree. Assume m>n without loss of
generality. Because —1 is not a square, there is no cancellation in degree 2m in
the sum P? + Q2. Therefore deg(F) = 2m and lcoeff(F) = a®> + 1 if m = n,
and lcoeff(F) = a® if m > n. The second condition follows immediately from
lemma 4.2.

Conversely, suppose we have written the monic irreducible factors of F' as sums
of two squares. Applying Fibonacci’s formula we obtain a representation of the
monic polynomial F’ associated to F' as a sum of two squares. By assumption,
the leading coefficient ¢ of F'is a sum of two squares. Then another application
of Fibonacci’s formula represents F' = ¢F' as a sum of two squares. O
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Finally, here is the solution for the irreducible case.

LEMMA 4.4: Let F be an irreducible polynomial in k[t]. Then F is associated
to a sum of two squares if and only if —1 is a square in the field extension

K = k[t]/(F).

Proof: Suppose that P24 Q? = c¢F. Then Q is not divisible by F, hence @ is
invertible in &’ and —1 = (P - Q1) in &’

Conversely, suppose that —1 is a square in &', and let R be a polynomial
such that R? + 1 is zero modulo F. Then we get R? + 1 = FG for some G. By
Lemma 4.2, F is associated to a sum of two squares. O

REMARK 3: If —1 is a square, then

o (EA1Y L (F-1 ?
S\ 2 2/~-1)
hence any polynomial can be easily written as a sum of two squares.

Algorithmically, the problem of deciding whether —1 is a square in k&' is a
special case of polynomial factorization (—1 is a square if and only if 2% + 1
is reducible in £'[x]). For this subproblem, we refer to (Landau, 1985; Lenstra,
1982; Wang, 1976).

The given proof for the existence criterion is constructive, in the sense that
it allows to construct a representation of F' as a sum of two squares in case the
criterion is fulfilled. The following algorithm is extracted from this proof.

Algorithm TWO_SQUARES

Input: F' polynomial;
Output: (X,Y) polynomials such that X? +Y? = F;

1. compute the factorization F' = ¢ Hj P;j into monic irreducible polynomials;
2. decide if ¢ = lcoeff(F) is a sum of two squares;
3. if 2. = FALSE then RETURN(NotExist) and exit; else choose two constants
(X,Y) such that X? +Y? = ¢
4. for each j
if ¢; is even then (X,Y) = (P{/°X, P7%y);
else
(a) K= K[t]/(Py);
(b) if 2% + 1 is irreducible over &’ then RETURN (NotExist) and exit;
else

i. R(t):= a polynomial such that R*> +1 =0 in &’;
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ii. U+iV :=gcd(R+1,P;) in k(i)[t];

i, (X,Y) = (XU+YV,XV - YU);
RETURN (X,Y).

ExaMPLE 4: We want to represent the polynomial
F=1%—2t° 4 6t* — 144> + 19t — 14t + 5

as a sum of two squares. The polynomial is irreducible over Q. The leading
coefficient is 1, so the first condition is fulfilled. Next, we have to check whether
—1 is a square modulo F. It turns out, e.g. by a call of Maple, that —1 = R? in

Q[t]/(F), where

L 10 s B 9 A
19 19 19 19 19 19

So now we know that a solution exists.
Next we compute

gcd(R+V—-1,F) =t —#* 42t =2+ I(—t*+ 3t - 1).
Hence we obtain the representation

F=—t+2t—2)+ (-t +3t - 1)

5. Conclusion

We have discussed the problem of finding real rational parametrizations of canal
surfaces whose spine curve and radius variation are given by rational functions.
We have stressed a purely symbolic approach which resulted in finding a de-
composition of a univariate real polynomial as a sum of two squares, so this
problem is surveyed in adequate generality. Our complexity result states that
finding such a decomposition is in fact partial factorization of the polynomial
under consideration. In case this can be done over Q we gave an algorithm for
performing this task.

For polynomials with rational coefficients it remains an open problem to do
exact decomposition without factorization if solutions can only be found in al-
gebraic extensions of Q.
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