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ABSTRACT
A canal surface S, generated by a parametrized curve m(t),
in R3 is the envelope of the set of spheres with radius r(t)
centered at m(t). This concept generalizes the classical off-
sets (for r(t) = const) of plane curves. In this paper we
develop elementary symbolic methods for generating a ra-
tional parametrization of canal surfaces generated by ratio-
nal curves m(t) with rational radius variation r(t). In a pipe
surface r(t) is constant.

1. INTRODUCTION
Given a space curvem(t) and a real-valued function r(t), the
canal surface with spine curve m and radius variation r is
the envelope of the family of spheres centered at m(t) with
radius r(t). A canal surface with constant radius function
is called a pipe surface. Pipe surfaces have many practical
applications, such as shape reconstruction or robotic path
planning; canal surfaces come up in CAGD contexts mainly
as transition surfaces between pipes. As today CAD systems
prefer rational function representations, the natural ques-
tion is whether a pipe or canal surface is rational and how
to find a rational parametrization. While - considering the
analogous problem in dimension 2 - one can construct simple
examples of plane rational curves with nonrational offsets, it
turns out that canal surfaces with rational spine curve and
rational radius function are in general rational [10]. To be
precise, they admit rational parametrizations of their real
components. We want to compute such parametrizations.

Many subproblems in the parametrization process are treated
in the literature on real algebraic geometry, see e.g. [2] or
[1]. In this paper we are concerned with the problem of
achieving such a parametrization by elementary algebraic
methods, and also with the problem of parametrizing in a
coefficient field of lowest possible degree.

A straightforward approach is to construct the implicit equa-
tion and apply Schicho’s algorithm [13] for the parametri-
zation of implicitly given surfaces. However, the implicit
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equation is usually much more complex than the represen-
tation of the surface by r and m.

As we will see in Section 3, the problem can be reduced to
the parametrization problem for a surface with an equation
which is quadratic in two of the three variables. It is well-
known that parametrizations for this class of surfaces can be
computed by an algorithm given in [12]. But the equations
derived in Section 3 have a special structure. In this paper,
we devise a more efficient and simpler method that takes
advantage of this structure.

Our method is to apply a sequence of appropriate transfor-
mations, until we arrive at a variety described by an equa-
tion in simplest possible form, rationally equivalent to the
original one. Finding a rational parametrization of the latter
and transforming back solves the parametrization problem
for the former.

In the case of plane algebraic curves, the parametrization
problem ultimately reduces to the problem of finding a ”good”
point on the given curve, see [14],[15]. In the case of pipe and
canal surfaces we determine a ”good” curve on the surface.

As in [10] the parametrization problem is reduced to the
problem of finding a representation of a rational function
as a sum of two squares. This is a special case of Hilbert’s
17th problem. Over the real algebraic numbers there exists
a simple algorithm. We describe a procedure for deciding
this problem over Q.

This work has been supported by the Austrian Science Fund
(FWF) under the Proj.Nr. P11160-TEC (HySax), and the
special research area SFB F013, subprojects 03 and 04.

2. CANAL SURFACES
Let m1(t),m2(t),m3(t), r(t) be rational functions with coef-
ficients in R. The tuple m = (m1,m2,m3) defines a rational
parametrization of a curve in R3. Let F be the expression

F (x1, x2, x3, t) =

3X
i=1

(xi −mi(t))
2 − r(t)2

and let Z denote the union of the zero sets of the denomi-
nators of m1,m2,m3, r and of the numerator of r. Set V =
R− Z, U = R3 × V. Then F being regular on U defines the
set

M = {(x1, x2, x3, t) ∈ U | F (x1, x2, x3, t) = 0}
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which is a smooth manifold of dimension 3 by the Implicit
Function Theorem. Consider the projection

p : M −→ R3, (x1, x2, x3, t) 7→ (x1, x2, x3).

Then the envelope E3 is the set of all critical values of p,
that means

E3 = {x ∈ R3 | ∃t : (x, t) ∈M and rank(x,t)(p) < 3}.

Since p is the restriction of the linear projection π : R4 −→
R3, the tangent map T(x,t)(p) is just restriction of π to the
tangent space T(x,t)(M) and the condition rank(x,t)(p) < 3

amounts to ∂F
∂t

(x, t) = 0. Thus the envelope is given by

E3 = {x ∈ R3 | ∃t : (x, t) ∈ U ∧ F (x, t) = 0 ∧ ∂F

∂t
(x, t) = 0}.

that is, the solutions in U of the system

3X
i=1

(xi −mi(t))
2 − r(t)2 = 0

3X
i=1

(xi −mi(t))ṁi(t) + r(t)ṙ(t) = 0 (1)

after elimination of t (the dot denotes differentiation with
respect to t). The associated canal surface S can now be
defined as the closure of E3.

Our goal is to develop an elementary, symbolic implementable
algorithm which calculates a rational parametrization of S.
To this aim we apply an appropriate sequence of transfor-
mations to the variety (1).

3. TRANSFORMATIONS
A first simplification gives the substitution

xi = mi(t) + r(t)ui (1 ≤ i ≤ 3). (2)

We may consider (2) as a map U −→ U given by

(x1, x2, x3, t) 7→
“x1 −m1(t)

r(t)
,
x2 −m2(t)

r(t)
,
x3 −m3(t)

r(t)
, t

”
which birationally transforms (1) to

3X
i=1

u2
i − 1 = 0

3X
i=1

ṁi(t)ui + ṙ(t) = 0. (3)

For fixed t this describes a circle in R3 arising as the inter-
section of a sphere and a plane.

¿From now on we work in projective space. We define the
abbreviations aj = ṁj(t), (1 ≤ j ≤ 3) and d = −ṙ(t) and
then pass to the homogeneous system

u2
1 + u2

2 + u2
3 − u2

0 = 0
a1u1 + a2u2 + a3u3 − du0 = 0 (4)

which we treat as a system of equations in P3(R(t)). The
general solution of the linear equation is0BB@

u1

u2

u3

u0

1CCA =

0BB@
a2x1

−a1x1 + a3x2

−a2x2 + dx3

a3x3

1CCA

with x1, x2, x3 ∈ R(t). Plugging into the sphere yields the
quadratic form

ϕ = A1x
2
1 +A2x

2
2 +A3x

2
3 − 2Bx1x2 − 2Cx2x3 (5)

with

A1 = a2
1 + a2

2 A2 = a2
2 + a2

3 A3 = d2 − a2
3

B = a1a3 C = da2.

Applying standard techniques and defining the notation

s2 = a2
1 + a2

2, s3 = s2 + a2
3

we derive the equation

(d2 − a2
3)y

2
1 + (d2 − s3)y

2
2 + s2y

2
3 = 0. (6)

Obviously this equation has the complex solution

p = (i : 1 : 1).

We now apply a real projective transformation T that maps
p to the circular point at infinity q = (1 : i : 0). Writing the
equation in the new coordinates as

az2
1 + bz2

2 + cz1z2 + z3(. . . ) = 0

would imply that

a− b+ ci = 0.

We may therefore derive an equation in simplest possible
form. To this end we choose the matrix of T−1 as0@0 1 0

1 0 0
1 0 1

1A .

After some standard manipulations we arrive at the equation

Z2
1 + Z2

2 + (d2 − s3)s2Z
2
3 = 0. (7)

The essence of these technical transformations can be de-
scribed as follows:

First we replace the quadratic form (5) by

ψ = A1A
2
3ϕ.

In matrix notation we obtain

ψ =

0@ A2
1A

2
3 −A1A

2
3B 0

−A1A
2
3B A1A2A

2
3 −A1A

2
3C

0 −A1A
2
3C A1A

3
3

1A .

Then with the aid of the matrix

g =

0B@
a1

s2a2(d2−a2
3)

1
s2(d2−a2

3)

−a1
a2(d2−a2

3)
1

a2a3(d2−a2
3)

0 −s2
a2a3(d2−a2

3)
1

(d−a3)(d2−a2
3)a3

0 a3d−s3
(d−a3)(d2−a2

3)a3

1CA
we pass to the equivalent quadratic form

η = gTψg

which proves to be the left hand side of (7). Obviously we
have to make the assumptions

a2, a3, d
2 − a2

3 6= 0.

A simple study of cases shows, that we always may arrive at
the quadratic form (7). If some of the denominators happen
to be 0 then an adapted backtransformation will be needed
(see [6] for computational details).
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4. THE CONSTRUCTION OF A RATIONAL
CURVE

In order to find a rational parametrization of the canal sur-
face S we first need a rational curve C on S, which then
can be used as a basis for parametrizing the whole surface
by a reflection process. Finding the curve C amounts to
presenting a nontrivial solution of (7) in P2(R(t)). In affine
coordinates

z1 =
Z1

Z3
, z2 =

Z2

Z3

this is done if we are able to find a presentation of the term
s2(s3 − d2) as a sum of two squares. We formulate the
following lemma:

Lemma 1. Let F ∈ R[t] be a polynomial with real coeffi-
cients. Then F is indefinite (i.e. ∃x, y ∈ R with F (x) <
0 < F (y)) if and only if F has a real linear factor of odd
multiplicity.

Proof. Assume F = (t − a)dG with a ∈ R, G(a) 6= 0, d
odd. Then by continuity of G we see the existence of ele-
ments x, y with F (x) < 0 < F (y). Conversely write F as

Ld1
1 · · ·Ldr

r Qe1
1 · · ·Qes

s with Li linear and Qj quadratic ir-
reducible and assume all di even. Then from the fact that
Qe1

1 · · ·Qes
s has no real roots and Ldi

i ≥ 0 we conclude that
F must be definite.

Corollary 1. Let ρ be in R(t). Then ρ is a sum of two
squares if and only if ρ = F

G
with F,G ∈ R[t], F ≥ 0 and G

is a square in R[t].

Proof. If ρ is a sum of two squares then

ρ = σ2 + τ2 =

„
P

Q

«2

+

„
R

S

«2

=
(PS)2 + (QR)2

(QS)2
.

Conversely assume ρ = F
G

with F ≥ 0 and G = H2. ¿From
the lemma we know that every linear factor of F in R[t]
has even multiplicity, so F is a product Qe1

1 · · ·Qet
t with

Qi = ait
2 + bit + ci, ai > 0 and b2i − 4aici ≤ 0. Every

quadratic Qi can be written as a sum of two squares:

Qi =

„√
ait+

bi
2
√
ai

«2

+

s
ci −

b2i
4ai

2

.

If g = a2 + b2 and h = c2 + d2 are terms decomposed in a
sum of two squares, then the formula

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2 (8)

shows, that their product joins this property. We conclude
that F = A2 +B2, hence

ρ =

„
A

H

«2

+

„
B

H

«2

.

We may now formulate the following theorem:

Theorem 1. Equation (7) has a solution in P2(R(t)) if and
only if for all x ∈ R lying in the domain of definition of
a1, a2, a3, d we have a1(x)

2 + a2(x)
2 + a3(x)

2 ≥ d(x)2.

Proof. Assume z2
1 + z2

2 + s2(d
2− s3)z2

3 = 0 with (z1, z2, z3)
in R(t)3 \ 0. Then z3 6= 0 and the assertion is obvious. Con-
versely, if for all x ∈ R lying in the domain of definition of
a1, a2, a3, d we have a1(x)

2 + a2(x)
2 + a3(x)

2 ≥ d(x)2, then
- with obvious notation - the relation

a2
1 + a2

2 + a2
3 − d2 =

A2
1

B2
1

+
A2

2

B2
2

+
A2

3

B3
3

− D2

E2
=

(A1B2B3E)2 + (B1A2B3E)2 + (B1B2A3E)2 − (B1B2B3D)2

(B1B2B3E)2

shows that the numerator of the expression a2
1+a

2
2+a

2
3−d2 is

nonnegative for all real x while its denominator is a square.
Thus Corollary 1 shows, that it is a sum of two squares and
by the formula (8) we get a solution of (7).

Remark 1. We may rephrase Corollary 1 as: ρ is express-
ible as a sum of two squares if and only if ρ admits a repre-
sentation as ρ = F

G
with both F,G ≥ 0.

5. THE SURFACE PARAMETRIZATION
Assume, that we are given a solution (z1 : z2 : z3) of (7).
Transforming back yields a solution (u1 : u2 : u3 : u0) of
(4). We now change back to affine coordinates by replacing
uj by

uj

u0
(1 ≤ j ≤ 3). Now for a fixed t0 ∈ R let gt0(η) be

the pencil of lines lying in the plane 〈a(t0), X〉 = d(t0) and
passing through u(t0). We may realize this as

gt0(λ) = u(t0) +λ[M(t0)−u(t0) + η(u(t0)−M(t0))× a(t0)]

where M(t0) denotes the center of that circle in 3-space,
which is the real solution of (3) for t = t0, i.e.

M(t0) =
d(t0)

||a(t0)||2
a(t0),

λ parametrizes points on a line which itself depends on the
parameter η.

After a stretching of the parameter (λ := λ
||a(t0)||2 ) we obtain

ḡt0(η)(λ) = u+ λ[da− ||a||2u− η(da− ||a||2u)× a]
˛̨̨
t=t0

=

= u(t0) + λv(t0, η).

Intersecting ḡt0(η) and the sphere u2
1 +u2

2 +u2
3 = 1, ignoring

the solution λ = 0 (which represents the point u(t0)) gives

λ = −2〈u(t0), v(t0, η)〉
||v(t0, η)||2

.

Therefore the expression

(t, η) 7→ u(t)− 2
〈u(t), v(t, η)〉
||v(t, η)||2 v(t, η) (9)

defines a rational parametrization of the variety (3). The
canal surface S is now parametrized by

X(t, η) = m(t) + r(t)

„
u(t)− 2

〈u(t), v(t, η)〉
||v(t, η)||2 v(t, η)

«
. (10)

We observe that this parametrization of S makes use of the
spine curve parameter t. We say that such a parametrization
is in accordance with the spine curve. The following theorem
is now obvious:
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Theorem 2. The canal surface given by the spine curve
m(t) = (m1(t),m2(t),m3(t)) and the radius function r(t)
with m1(t),m2(t),m3(t), r(t) ∈ R(t) admits a rational pa-
rametrization over the reals in accordance with the spine if
and only if ṁ1(x)

2 + ṁ2(x)
2 + ṁ3(x)

2 ≥ ṙ(x)2 for almost
all x ∈ R.

In general the rational function ρ := ṁ1(t)
2 + ṁ2(t)

2 +
ṁ3(t)

2 − ṙ(t)2 needs not to be positive for almost all real
values t. In this case we have to restrict ourselves to intervals
on which ρ ≥ 0 and to reparametrize the spine curve, so that
in the new setting of the parameter the condition ρ ≥ 0 is
valid on the whole real axis. If e.g. ρ is positive on [a, b] ⊂ R,
we can apply the reparametrization t = bθ2+a

θ2+1
. In case ρ ≥ 0

on [a,∞) we can use t = θ2 +a. Obviously, then, each point
of the curve component under consideration is passed twice,
violating properness of the parametrization, so restriction to
the positive real axis is necessary.

We are now in a position to formulate the following algo-
rithm for finding a real rational parametrization of canal
surfaces:

Algorithm CANAL SURFACE

in: m1(t),m2(t),m3(t), r(t);
out: X1(t, η), X2(t, η), X3(t, η);

1. Compute ρ(t) =
P3

j=1 ṁj(t)
2 − ṙ(t)2.

2. Choose an interval (a, b) on which ρ ≥ 0.

3. If (a, b) 6= R then reparametrize t : = t(θ), so that
ρ(θ) ≥ 0.

4. Compute a decomposition ρ = σ2 + τ2.

5. Set z1 := ṁ1σ + ṁ2τ z2 := ṁ1τ − ṁ2σ.

6. Apply the inverse transformations to get a curve C on
the variety (3).

7. Compute a surface parametrization of (3) with the aid
of the curve C according to formula (9).

8. Compute a rational parametrization of the canal sur-
face according to formula (10).

6. EXAMPLES
Example 1. m = (t, t2, t3), r = 1−t2. Equation (7) is now

Z2
1 + Z2

2 = (1 + 9t4)(1 + 4t2)Z2
3

Consequently

(1 + 4t2)(1 + 9t4) = (1 + 6t3)2 + (2t− 3t2)2

and a solution of (7) is given by

(1 + 6t3, 2t− 3t2, 1).

Transforming into a solution of (3) yields

(u1, u2, u3) = (0, 1, 0) (11)

Now - for the sake of visualization - we can write down the
parametrization of the curve C which by a reflection process
on planes would cover the whole canal surface:

(C1(t), C2(t), C3(t)) = (t, 1, t3)

From (10) we obtain a rational parametrization
(U1(t, η), U2(t, η), U3(t, η)) of the u−surface:

N1 =
`
27 t5η + 12 t3η + 3 tη + 2

´
t

N2 = 81 t8η2 + 72 t6η2 + 34 t4η2 − 9 t4 + 8 t2η2

+4 t2 + η2 − 1
N3 = 9 t4η − 6 t3 + 4 t2η + η

D1,2,3 = 81 t8η2 + 72 t6η2 + 34 t4η2 + 9 t4 + 8 t2η2

+4 t2 + η2 + 1

where Ui = Ni
Di
. Now a parametrization of the canal surface

is given by the formulas

Xi(t, η) = mi(t) + r(t)Ui(t, η).

Example 2. [Viviani’s temple] This space curve is defined
as the intersection of a sphere of radius 2a and a circular
cylinder of radius a:

x2 + y2 + z2 = 4a2

(x− a)2 + y2 = a2

Its rational parametrization can be given by

m(t) =

0B@
2a(1−t2)2

(1+t2)2

4at(1−t2)

(1+t2)2
4at

1+t2

1CA .

It turns out, that the term

ṁ2
1 + ṁ2

2 + ṁ2
3 = 32

a2(t4 + 1)

(1 + t2)4
,

thus, it can be written as„
4

√
2at2

(1 + t2)2

«2

+

„
4

√
2a

(1 + t2)2

«2

.

If we set r = const, then we obtain a rational curve on the
pipe surface

C1(t) =
N1

D1
, C2(t) =

N2

D2
C3(t) =

N3

D3

where

N1 =
`
t2 − 1

´
(4 at10 +

√
2rt10 − 8

√
2at9 + 4 rt9 + 4 at8

−2
√

2at8 − 28
√

2rt8 + 8
√

2at7 − 8
√

2rt7 + 8 rt7

+12
√

2at6 + 70
√

2rt6 + 8
√

2at5 + 56
√

2rt5

−28
√

2rt4 − 8
√

2at3 − 8 rt3 − 56
√

2rt3 − 4 at2

−12
√

2at2 +
√

2rt2 + 8
√

2rt− 4 rt− 4 a+ 2
√

2a)

N2 = −
`
t2 − 1

´
(−rt10 + 8 at9 + 8

√
2rt9 − 16

√
2at8

+3 rt8 +
√

2rt8 + 16 at7 − 4
√

2at7 − 56
√

2rt7

+14 rt6 − 28
√

2rt6 + 16 at5 + 20
√

2at5 + 56
√

2rt5

+16
√

2at4 + 14 rt4 + 70
√

2rt4 + 20
√

2at3 + 16 at3

−8
√

2rt3 + 3 rt2 − 28
√

2rt2 − 4
√

2at+ 8 at
+
√

2r − r)

N3 = rt8 + 8 at7 − 4
√

2rt7 − 16
√

2at6 + 4 rt6 −
√

2rt6

−4
√

2at5 + 8 at5 + 16
√

2at4 + 6 rt4 + 5
√

2rt4

+8 at3 + 24
√

2at3 + 4
√

2rt3 + 5
√

2rt2 + 4 rt2

−4
√

2at+ 8 at−
√

2r + r
D1 = D2 =

`
t2 + 1

´3
(2 t6 − 4

√
2t5 −

√
2t4 + 2 t4

+4
√

2t3 + 2 t2 + 6
√

2t2 + 2−
√

2)

D3 =
`
t2 + 1

´
(2 t6 − 4

√
2t5 −

√
2t4 + 2 t4 + 4

√
2t3

+2 t2 + 6
√

2t2 + 2−
√

2)

from which we can easily generate a parametrization of the
pipe surface by the process described above.
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7. RATIONAL FUNCTIONS AS SUMS OF
SQUARES

The problem in the algorithm CANAL SURFACE is the
fact that it requires factorization of univariate polynomials
into linear and quadratic irreducible factors in step 4. This
is no problem numerically, but a symbolic factorization of
that kind is very difficult to find. Suppose, for instance, that
we need to factor a degree 7 polynomial with 7 real roots
which has the symmetric group S7 as its Galois group. Then
the smallest field containing such a factorization has degree
5040, and it is virtually impossible to do calculations in this
field. It is therefore desirable to find a solution of the equa-
tion in step 4 within the rationals. If this is not possible,
then we recommend to convert to numeric polynomials and
proceed as in the proof of Corollary 1. For symbolic treat-
ment of step 4 in the algorithm CANAL SURFACE, the
following variant of the problem arises:

Problem 1. Let k be a computable field of characteristic
zero. Let F∈k(t). Decide if F is the sum of two rational
functions. If yes, find X,Y ∈k(t), such that X2 + Y 2 = F .

It is easy to reduce to the case where F is a polynomial: in
order to represent a fraction as a sum of two squares, expand
the denominator to square and represent the numerator as
a sum of two squares. (See also Corollary 1) Actually, com-
putability of k is not enough for solving this problem. We
have to assume at least that we can solve problem 1 for con-
stants. If k is the field of rationals, then we can use Fermat’s
Theorem: c is a sum of two squares if and only every prime
occuring with an odd exponent in the numerator or in the
denominator is congruent 1 modulo 4. In the affirmative
case, a representation can be found easily. We also make
the convenient assumption that k has computable factor-
ization. This property is shared by most computable fields
occuring in practical computations, for instance all finitely
generated fields (see [4]). Problem 1 is a special case of the
problem solved in [5, 7]. However, the solution given there
is not efficient enough for our purpose. Here we give a more
efficient solution for this special case. By suitable scaling
of the unknowns X,Y , we can reduce to the case that F is
squarefree. Then, the following theorem solves the decision
problem.

Theorem 3. Let k be a field where −1 is not a square. Let
F be a squarefree polynomial in k[t]. Then F is a sum of two
squares of rational functions if and only if F is a sum of two
squares of polynomials if and only if the following conditions
are fulfilled.

1. F has even degree.

2. The leading coefficient of F is a sum of two squares.

3. −1 is a square in the ring k[t]/〈F 〉.
Proof. Assume the existence of two rational functionsX,Y
such that X2 +Y 2 = F . We may write X as atm plus terms
of lower order, and Y as btn plus terms of lower order. As-
sume m≥n without loss of generality. Because −1 is not
a square, there is no cancellation in order 2m in the sum
X2 + Y 2. Therefore, deg(F ) = 2m, and lcoeff(F ) = a2 + b2

if m = n, and lcoeff(F ) = a2 if m > n. In order to show
the third condition, assume that X = P

D
and Y = Q

D
,

where P,Q,D∈k[t] without common divisor. Then we have

P 2 +Q2 = D2F . Any irreducible common divisor of Q and
F must also divide P . Since it cannot divide D, its square
divides F . But F is squarefree, therefore Q and F are rel-
atively prime. It follows that Q is invertible in k[t]/〈F 〉,
whence −1 = (P/Q)2 in k[t]/〈F 〉. Now, assume that the
three conditions above are fulfilled, i.e. −1≡R(t)2(modF )
and deg(F ) = 2m and lcoeff(F ) = a2 + b2, for suitable
R,m, a, b. Let X,Y be indeterminate polynomials of for-
mal degree m, with coefficients xm, . . ., x0, ym, . . ., y0. The
condition

X≡RY (modF )

is equivalent to a system Γ of 2m homogeneous linear equa-
tions in the indeterminates xm, . . ., y0. Let z be a new vari-
able. The system

Γ ∪ {xm − az = 0, ym − bz = 0}

is a linear homogeneous system of 2m+2 equations in 2m+3
indeterminates. Therefore, it has a nontrivial solution. Let
(ξm, . . ., ξ0, ηm, . . ., η0, ζ) be a nontrivial solution. Let X0, Y0

be the polynomials obtained by plugging the solution into
the indeterminate coefficients. We claim that

X2
0 + Y 2

0 = ζ2F.

Proof: we have X0≡RY0(modF ) by construction. Hence

0 ≡ (X0−RY0)(X0+RY0) ≡ X2
0−R2Y 2

0 ≡ X2
0 +Y 2

0 (modF ).

The formal degree of X2
0 + Y 2

0 is 2m, hence X2
0 + Y 2

0 is a
scalar multiple of F . The claim follows now by comparison
of the leading coefficients on both sides. Next, we claim that
ζ 6=0. Suppose, indirectly, that ζ = 0. Then X2

0 + Y 2
0 = 0

by the above claim. This implies a cancellation in leading
coefficients in the sum X2

0 +Y 2
0 , which is impossible because

−1 is not a square. Now, we have found a representation

F = (X0/ζ)
2 + (Y0/ζ)

2

as sum of squares of two polynomials. The existence of a rep-
resentation as sum of two polynomials trivially implies the
existence of a representation as sum of two rational func-
tions.

Remark 2. If −1 is a square, then

F =

„
F + 1

2

«2

+

„
F − 1

2
√
−1

«2

,

hence any polynomial is a sum of two squares.

Remark 3. The equivalence of representations by rational
functions and representations by polynomials is true in much
greater generality. [11]

To emphasize the role of Theorem 3 for practical computabil-
ity, we specialize it to the rationals:

Corollary 2. Let F be a squarefree polynomial with ra-
tional coefficients. Then F is a sum of two squares in Q(t)
if and only if F is a sum of two squares in Q[t] if and only
if

1. F has even degree.

2. The leading coefficient of F is a sum of two squares.

3. −1 is a square in Q[t]/〈F 〉.
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Algorithmically, the problem of deciding whether −1 is a
square modulo F (and computing

√
−1 in the affirmative

case) can be reduced to the problem of factoring polynomi-
als over algebraic extensions (see [3, 8, 9, 16] for algorithmic
solutions of this problem). By the Chinese Remainder The-
orem, it suffices to solve this problem for each irreducible
factor of F . And for irreducible F , the problem is equiva-
lent to the factorization of x2 + 1 in the field extension de-
fined by an algebraic number with minimal polynomial F .
For performance reasons, it is better not to use the Chinese
Remainder Theorem in order to compute

√
−1 in k[t]/〈F 〉,

but to compute representations of the irreducible factors of
F as sums of two squares, and to use the product formula
(8). This leads to the following algorithm for the solution of
Problem 1.

Algorithm TWO SQUARES(F)

if degF is odd or lcoeff(F ) is not a sum of two squares then
return(NotExist) and exit;

if F is irreducible then
m := deg(F )/2;
(a, b):= two numbers such that a2 + b2 = lcoeff(F )
X := x0 + . . .+ xm−1t

m−1 + atm;
Y := y0 + . . .+ ym−1t

m−1 + btm;
k′ := k[t]/〈F 〉;
if x2 + 1 is irreducible over k′ then

return(NotExist) and exit;
R:= a polynomial such that R(t)2 + 1 = 0 in k′;
Z:= the remainder of X −RY modulo F ;
Γ:= the linear system obtained by setting
all coefficients of Z to be zero;
solve(Γ∪{xm = a, ym = b});
return(X,Y );

else
factor(F );
(X,Y ):= two constants such that X2 + Y 2 = lcoeff(F )
for each G in the list of monic factors do

(Z,W ):=TwoSquares(G);
(X,Y ) := (XZ + YW,XW − Y Z);

return(X,Y );

Example 3. We want to represent the polynomial

F = t6 − 2t5 + 6t4 − 14t3 + 19t2 − 14t+ 5

as a sum of two squares. The polynomial is irreducible over
Q. Its degree is 6, and the leading coefficient is 1, so the
first two conditions are fulfilled. The third condition can be
checked using computer algebra: Maple returns

R =
7

19
t5 − 10

19
t4 +

39

19
t3 − 73

19
t2 +

94

19
t− 47

19

and −R as square roots of −1 modulo F . At this step we
know that a solution exists. Since the leading coefficient is
12 + 02, we set

X := x0 + x1t+ x2t
2 + t3, Y := y0 + y1t+ y2t

2.

The coefficients of remainder(X −RY, F ) (in ascending or-
der) are:

x0 +
47

19
y0 +

35

19
y1 +

20

19
y2 , x1 − 94

19
y0 − 51

19
y1 − 21

19
y2

x2 +
73

19
y0 +

39

19
y1 +

25

19
y2 , −39

19
y0 − 25

19
y1 − 17

19
y2 + 1

10

19
y0 +

3

19
y1 − 1

19
y2 , − 7

19
y0 − 4

19
y1 − 5

19
y2 .

Setting them to zero yields the unique solution

y0 = −1, y1 = 3, y2 = −1, x0 = −2, x1 = 2, x2 = −1

and hence the representation

F = (t3 − t2 + 2t− 2)2 + (−t2 + 3t− 1)2
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