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Abstract

In his famous book “Combinatory Analysis” MacMahon introduced Parti-
tion Analysis (“Omega Calculus”) as a computational method for solving
problems in connection with linear homogeneous diophantine inequalities
and equations. The object of this paper is to show that partition analysis
is ideally suited for being implemented in computer algebra. To this end
we have developed the computer algebra package Omega. In addition to
an introduction to basic facts of “Omega Calculus”, we present a number
of applications that illustrate the usage of the package.

1. Introduction

We begin with the beautiful refinement of Euler’s classic result [1, p. 5] that was
discovered by M. Bousquet-Mélou and K. Eriksson [5] only recently:
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Theorem 1.1 (“Lecture Hall Partition Theorem”): The number of par-
titions of n of the form n = bj + bj−1 + · · ·+ b1 wherein

bj
j
≥ bj−1

j − 1
≥ · · · ≥ b1 ≥ 0

and
bj − bj−1 + · · ·+ (−1)j−1b1 = m

equals the number of partitions of n into exactly m odd parts each of which is
less than or equal to 2j − 1.

In [5] Bousquet-Mélou and Eriksson gave two different proofs of this theorem,
one using Bott’s formula for the affine Coxeter group C̃n, and one of bijective-
combinatorial nature. In [2] the first named author presented a proof follow-
ing an entirely different approach, MacMahon’s Partition Analysis [7, Vol. II,
Sect. VIII, pp. 91–170]. In order to illustrate this point, we recall the definition
of MacMahon’s Omega operator Ω=.

Definition 1.1: The operator Ω= is defined on functions with absolutely con-
vergent multisum expansions

∞∑
s1=−∞

· · ·
∞∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsrr

in an open neighborhood of the complex circles |λi| = 1. The action of Ω= is
given by

Ω
=

∞∑
s1=−∞

· · ·
∞∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsrr :=

∞∑
s1=0

· · ·
∞∑
sr=0

As1,...,sr .

Note: In applications, the As1,...,sr themselves will be rational functions of several
complex variables over C. In each instance it is straightforward to specify the
domain for these variables to guarantee the absolute convergence required in
Definition 1.1.

While MacMahon did not carefully distinguish whether his Laurent series were
analytic or merely formal, we emphasize that it is essential to treat everything
analytically rather than formally because the method relies on unique Laurent
series representations of rational functions. For instance, if we were to proceed
formally, then

Ω
=

∞∑
n=0

qnλn =
∞∑
n=0

qn =
1

1− q

while

−Ω
=

∞∑
n=1

q−nλ−n = 0.
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But if we allowed a purely formal application of the geometric series, then both
initial expressions are

1

1− λq
.

To avoid confusion we will always have Ω= operate on variables denoted by letters
in the middle of the Greek alphabet (e.g. λ, µ, ν). The parameters unaffected
by Ω= will be denoted by letters from the Latin alphabet.

We can ensure that Definition 1.1 is mathematically well-posed provided we
require that functions to which we apply Ω= have no singularities in the λi
within a neighborhood of the circle |λi| = 1. While this suggests major problems
in the abstract, it provides no difficulties whatsoever in practice because the only
arguments of Ω= that ever arise are all of the form

P (x1, . . . , xn;λ1, . . . , λr)∏n
i=1(1− xi λv1(i)

1 · · ·λvr(i)r )
(1)

where P is a Laurent polynomial in the n+r variables and the vh(i) are integers
not necessarily positive. As long as the xi (which may be power products in
other variables) are restricted to a small neighborhood of 0, we are guaranteed
that we have avoided any singularity inside the annuli that provide the domain
for the λi.

Let us now consider the instance j = 3 of Theorem 1.1. Obviously, the coeffi-
cient of xmqn in

1

(1− qx)(1− q3x)(1− q5x)
(2)

equals the number of partitions of n into exactly m odd parts each of which is
less than or equal to 5. On the other hand, the coefficient of xmqn in

Ω
=

∑
b1,b2,b3≥0

λ2b3−3b2
1 λb2−2b1

2 xb3−b2+b1qb1+b2+b3 (3)

gives exactly the number of the desired lecture hall partitions for j being fixed to
3, because the Omega operator Ω= allows only those partitions b1 + b2 + b3 = n
to be counted for which 2b3 − 3b2 ≥ 0 and b2 − 2b1 ≥ 0. By geometric series
expansion the three independent sums can be brought into product form, which
means that expression (3) formulated as

Ω
=

∑
b1≥0

(qx
λ2

2

)b1 ∑
b2≥0

(λ2q

λ3
1x

)b2 ∑
b3≥0

(λ2
1qx)b3

can be rewritten as

Ω
=

1(
1− qx

λ2
2

)(
1− λ2q

λ3
1x

)
(1− λ2

1qx)
. (4)

Note that this is an instance of (1) with n = 3, x1 = x3 = qx, x2 = q/x; so
our convergence conditions require q to be in a small neighborhood of 0 while
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x is in a neighborhood of 1. Therefore all that remains for proving the Lecture
Hall Partition Theorem for j = 3 is to show equality of the generating function
expressions (2) and (4). To do so we need the following lemma.

Lemma 1.1: For any integer s ≥ 0,

Ω
=

1

(1− λx)
(
1− y

λs

) =
1

(1− x)(1− xsy)
.

Proof: By geometric series expansion and application of the Ω= operator the left
hand side equals

Ω
=

∑
i,j≥0

λi−sjxiyj =
∑

j≥0,i≥sj

xiyj =
∑
j,k≥0

xsj+kyj.

Geometric series summation completes the proof. 2

With this lemma in hand, the proof of “(2) = (4)” reduces to successive
elimination of the Ω= parameters λ1 and λ2.

Proof of the Lecture Hall Partition Theorem for j = 3: Split (4) additively into
two parts by applying partial fraction decomposition

1

1− t2
=

1

2(1− t)
+

1

2(1 + t)

to the term 1/(1 − λ2
1qx). Then by using Lemma 1.1 eliminate from both sum-

mands the parameter λ1. For the last step one observes that Lemma 1.1 can be
applied again in order to eliminate λ2; this way one arrives at (2). 2

We mention that this elimination is carried out automatically by the Omega

package in a slightly modified manner as shown in Section 3.2; see In[2] and In[3]
there.

This example reveals that algebraic manipulation is a central element in
MacMahon’s method; consequently a computer algebra implementation should,
indeed, allow many more applications than MacMahon could carry out by hand.
In Section 2 we explain how such an implementation can be achieved in a fairly
general setting based on the “fundamental recurrence”. In Sections 3.1 and 3.2
a description of the corresponding Omega package is given. This package is a
collection of procedures that implement the method in the computer algebra
system Mathematica. In addition to the introductory examples of how to use
the package, in the remaining sections the reader finds further applications that
illustrate the powerful combination of MacMahon’s classical Partition Analysis
with modern computer algebra tools.

In Section 3.3 we apply a related operator, Ω=, to linear homogeneous dio-
phantine equations. We have postponed the presentation of Ω= to Section 3.3
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in order to avoid overloading the Introduction with definitions. In Section 4 one
finds further Omega applications of less elementary nature. Section 4.1 deals with
MacMahon’s problem of “solid partitions on a cube” which he was able to solve
only after the introduction of 18 (!) case distinctions with hairy computations.
With the Omega package the same problem now finds a straightforward automatic
solution. Section 4.2 deals with a non-trivial problem originally raised by Her-
mite, whose solution is automatic with the Omega package. Based on heuristics
extracted from Omega computations, we embed Hermite’s problem in a general
setting which then is treated in a purely combinatorial manner in Section 4.3.
Finally, in Section 4.4 we introduce “k-gon partitions”. In connection with var-
ious generating functions computed with the Omega package, we conclude with
an open problem.

Note: The present paper is the third in a major project devoted to MacMahon’s
method. In all the forthcoming papers it is cited as number III in our series of
“MacMahon’s Partition Analysis” articles. For further information on the status
of this project the interested reader is referred to the Web page mentioned in
Section 3.1.

2. The Fundamental Recurrence

We examined MacMahon’s use of Partition Analysis with the object of generaliz-
ing his method to a pure algorithm. To this end we begin by listing a condensed
version of his catalog [7, Vol. II, pp. 102–103] of fundamental evaluations of the
Omega operator. Note that the elimination rule described by Lemma 1.1 is the
first entry in this list.

Ω
=

1

(1− λx)
(
1− y

λs

) =
1

(1− x)(1− xsy)
,

Ω
=

1

(1− λsx)
(
1− y

λ

) =
1 + xy 1−ys−1

1−y

(1− x)(1− xys)
,

Ω
=

1

(1− λx)
(
1− y

λ

)(
1− z

λ

) =
1

(1− x)(1− xy)(1− xz)
,

Ω
=

1

(1− λx)(1− λy)
(
1− z

λ

) =
1− xyz

(1− x)(1− y)(1− xz)(1− yz)
,

Ω
=

1

(1− λx)(1− λy)
(
1− z

λ2

) =
1 + xyz − x2yz − xy2z

(1− x)(1− y)(1− x2z)(1− y2z)
,

Ω
=

1

(1− λ2x)
(
1− y

λ

)(
1− z

λ

) =
1 + xy + xz + xyz

(1− x)(1− xy2)(1− xz2)
,

Ω
=

1

(1− λ2x)(1− λy)
(
1− z

λ

) =
1 + xz − xyz − xyz2

(1− x)(1− y)(1− yz)(1− xz2)
,

Ω
=

1

(1− λx)(1− λy)(1− λz)
(
1− w

λ

)
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=
1− xyw − xzw − yzw + xyzw + xyzw2

(1− x)(1− y)(1− z)(1− xw)(1− yw)(1− zw)
,

Ω
=

1

(1− λx)(1− λy)
(
1− z

λ

)(
1− w

λ

)
=

1− xyz − xyw − xyzw + xy2zw + x2yzw

(1− x)(1− y)(1− xz)(1− xw)(1− yz)(1− yw)
.

These nine formulas and the problems solved by MacMahon using these for-
mulas make clear that we need a general algorithm for the evaluation of

Ω
=

λa

(1− x1λ)(1− x2λ) · · · (1− xnλ)
(
1− y1

λ

)(
1− y2

λ

)
· · ·
(
1− ym

λ

) (5)

(where m and n are nonnegative integers and a is any integer).

At first glance, this appears to be inadequate to cover MacMahon’s nine iden-
tities. Some of his identities have expressions of the form (1−Xλr) or (1−Y λ−s)
in the denominator. However these expressions are easily rendered as products
that fit our example because

(1−Xλr) =
r−1∏
j=0

(1− ρjX1/rλ),

(1− Y λ−s) =
s−1∏
j=0

(1− σjY 1/sλ−1),

(6)

where ρ = e2πi/r and σ = e2πi/s. The fundamental theorem of symmetric func-
tions guarantees that the fractional roots of X and Y will disappear in the final
answer.

Also one can envisage in the numerator of (5) a general Laurent polynomial
in λ. However the linearity of Ω= shows that again our expression covers these
cases as well.

Before we state our result, we must recall the homogeneous symmetric func-
tions, denoted by hj(x1, x2, . . . , xn), which are given by

∞∑
j=0

hj(x1, x2, . . . , xn) tj =
1

(1− tx1)(1− tx2) · · · (1− txn)
.

Finally we should dispose of the degenerate cases when either n or m is 0. In
these cases, the effect of Ω= is immediate by inspection:
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Lemma 2.1: For any integer a,

Ω
=

λa

(1− x1λ)(1− x2λ) · · · (1− xnλ)
= Ω
=

∞∑
j=0

hj(x1, . . . , xn)λa+j

=


1

(1− x1)(1− x2) · · · (1− xn)
, if a ≥ 0,

1

(1− x1)(1− x2) · · · (1− xn)
−
−a−1∑
j=0

hj(x1, . . . , xn), if a < 0.

Similarly, we have:

Lemma 2.2: For any integer a,

Ω
=

λa(
1− y1

λ

)(
1− y2

λ

)
· · ·
(
1− ym

λ

) = Ω
=

∞∑
j=0

hj(y1, . . . , ym)λa−j

=


0, if a < 0,
a∑
j=0

hj(y1, . . . , ym), if a ≥ 0.

The main recurrence for the Ω= calculus reads as follows.

Theorem 2.1 (“Fundamental Recurrence”): For n and m positive inte-
gers and a any integer,

Ω
=

λa

(1− x1λ)(1− x2λ) · · · (1− xnλ)
(
1− y1

λ

)(
1− y2

λ

)
· · ·
(
1− ym

λ

)
=

Pn,m,a(x1, . . . , xn; y1, . . . , ym)∏n
i=1(1− xi) ·

∏n
i=1

∏m
j=1(1− xiyj)

, (7)

where for n > 1,

Pn,m,a(x1, . . . , xn; y1, . . . , ym) =
1

xn − xn−1

·
{
xn(1− xn−1) ·

m∏
j=1

(1− xn−1yj) · Pn−1,m,a(x1, . . . , xn−2, xn; y1, . . . , ym)

− xn−1(1− xn) ·
m∏
j=1

(1− xnyj) · Pn−1,m,a(x1, . . . , xn−2, xn−1; y1, . . . , ym)
}

and for n = 1,

P1,m,a(x1; y1, . . . , ym)

=


x−a1 , if a ≤ 0,

x−a1 +
m∏
j=1

(1− x1yj) ·
a∑
j=0

hj(y1, . . . , ym)(1− xj−a1 ), if a > 0.
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Remark: The form of the denominator in the evaluation guarantees that con-
vergence conditions are maintained as we successively apply this theorem in the
algorithm.

Proof: The proof of the main recurrence follows simply from the fact that

1

(1− xnλ)(1− xn−1λ)
=

1

xn − xn−1

( xn
1− xnλ

− xn−1

1− xn−1λ

)
.

It is sufficient to carry out the proof under the assumption xi 6= xj (i 6= j),
because the general case is an immediate consequence of the following elementary
fact: if T (x1, . . . , xn;λ1, . . . , λr) is a term of the form (1) then

Ω
=

lim
xi→xj

T (x1, . . . , xn;λ1, . . . , λr) = lim
xi→xj

Ω
=
T (x1, . . . , xn;λ1, . . . , λr).

(The limit is understood to be taken within the corresponding domain of con-
vergence.)

Hence for n > 1

Ω
=

λa

(1− x1λ)(1− x2λ) · · · (1− xnλ)
(
1− y1

λ

)(
1− y2

λ

)
· · ·
(
1− ym

λ

)
=

1

xn − xn−1

·
{

Ω
=

xnλ
a

(1− x1λ) · · · (1− xn−2λ)(1− xnλ)
(
1− y1

λ

)
· · ·
(
1− ym

λ

)
− Ω
=

xn−1λ
a

(1− x1λ) · · · (1− xn−2λ)(1− xn−1λ)
(
1− y1

λ

)
· · ·
(
1− ym

λ

)}.
This is exactly the main recurrence once the expressions involving Pn,m,a have
been substituted and the left denominator cleared.

For the n = 1 case, we see that

P1,m,a(x1; y1, . . . , ym)

(1− x1)(1− x1y1) · · · (1− x1ym)
= Ω
=

λa

(1− x1λ)
(
1− y1

λ

)
· · ·
(
1− ym

λ

)
= Ω
=

∞∑
n=0

∞∑
j=0

hj(y1, . . . , ym)xn1λ
n+a−j.

Now if a ≤ 0, then this expression is

∞∑
j=0

∞∑
n=j−a

hj(y1, . . . , ym)xn1 =

∑∞
j=0 hj(y1, . . . , ym)xj−a1

1− x1

=
x−a1

(1− x1)(1− x1y1) · · · (1− x1ym)
,
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and so for a ≤ 0
P1,m,a(x1; y1, . . . , ym) = x−a1 .

If a > 0, then we have

Ω
=

∞∑
n=0

∞∑
j=0

hj(y1, . . . , ym)xn1λ
n+a−j

= Ω
=

∞∑
n=0

( a∑
j=0

+
∞∑

j=a+1

)
hj(y1, . . . , ym)xn1λ

n+a−j

=

∑a
j=0 hj(y1, . . . , ym)

1− x1

+
∞∑

j=a+1

∞∑
n=j−a

hj(y1, . . . , ym)xn1

=

∑a
j=0 hj(y1, . . . , ym)

1− x1

+

∑∞
j=a+1 hj(y1, . . . , ym)xj−a1

1− x1

=

∑a
j=0 hj(y1, . . . , ym)

1− x1

+
x−a1

(1− x1)(1− x1y1) · · · (1− x1ym)

−
∑a

j=0 hj(y1, . . . , ym)xj−a1

1− x1

=
1

1− x1

a∑
j=0

hj(y1, . . . , ym)(1− xj−a1 ) +
x−a1

(1− x1)(1− x1y1) · · · (1− x1ym)

=
x−a1 +

∏m
j=1(1− x1yj) ·

∑a
j=0 hj(y1, . . . , ym)(1− xj−a1 )

(1− x1)(1− x1y1) · · · (1− x1ym)
,

which gives the desired formula for P1,m,a. 2

3. The Mathematica Implementation

The object of this section is to describe the usage of the Omega package which
has been implemented by the third author. In order to illustrate how the package
is used in practice, a few tutorial examples are given. In Section 4 the reader
finds further applications of less elementary nature.

3.1. The Omega package

The package consists of the Mathematica file Omega.m and the small documen-
tation file Readme.txt; both can be downloaded from the Omega homepage at
http://www.risc.uni-linz.ac.at/research/combinat/risc/software/Omega/.

After loading the package with <<Omega.m, the functions OR (for Omega Rule)
and OEqR (for Omega Equal Rule) are provided. According to the fundamental
recurrence (with respect to n) given in Theorem 2.1, OR applies the operator Ω=
with respect to a certain variable, say λ, to an expression. Analogously, OEqR
applies the operator Ω=; see Section 3.3. The calling syntax is
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OR[expr, λ] and OEqR[expr, λ]

where λ is a variable (i.e., a Mathematica symbol) and expr is a rational function
of the form

L(λ)(
1± p1(λ)

)
· · ·
(
1± pd(λ)

)
with

L(λ) a Laurent polynomial in λ over Q(z1, . . . , zl), where the zi are
indeterminates different from λ,

pi(λ) power products (with integer exponents) in λ and z1, . . . , zl.

The output of OR and OEqR is a rational function free of λ. While the de-
nominator of the result can be read off almost immediately from (7), for the
numerator we have to compute and add all terms corresponding to the different
powers of λ appearing in L(λ). Moreover, if expr is of the form

L(λ1, . . . , λr)(
1± p1(λ1, . . . , λr)

)
· · ·
(
1± pd(λ1, . . . , λr)

) ,
then Theorem 2.1 together with the linearity of Ω= guarantees that all λi can be
eliminated in turn from expr. In other words, each application of OR (or OEqR)
produces valid input for the next elimination call.

For involved applications it turns out that the numerator of the result some-
times gets so complicated that it cannot be factored by Mathematica in reason-
able time. In this case, calling

OR[expr, λ, FactorProc−>FactorSquareFree]

performs only square free factorization. If this still does not solve the problem,
factorization can be avoided completely by calling

OR[expr, λ, FactorProc−>None].

However note that in both cases the numerator and denominator of the result
might contain common factors. The option FactorProc is also accepted by OEqR.

From the programmer’s point of view it is worth remarking that the main
difficulties concerning the implementation were caused by decomposition (6),
since Mathematica is not able to handle roots of unity efficiently. For instance,
consider the factorization of 1 − xλ5 into

∏4
i=0(1 − x(i)λ), where the x(i) de-

note the fifth roots of x. Then the only way to reconstruct the original term
1− xλ5 from this decomposition is to apply the Mathematica functions Expand

and FullSimplify, which results in an incredibly bad runtime behavior even for
simple applications. We could finally overcome this problem heuristically by ob-
serving that after evaluating such polynomials numerically, the imaginary parts
of the coefficients vanish immediately and the remaining real (integer!) parts



G.E. Andrews, P. Paule, and A. Riese: MacMahon’s Partition Analysis 11

can be reestablished easily. We want to emphasize that in the next release of
the package (Version 2) we will utilize a generalized partial fraction decomposi-
tion to completely avoid these problems with roots of unity. The method will be
described in a forthcoming paper of the authors.

Concerning the run-time, all examples shown in this paper only take a few
seconds on an SGI Octane except the one presented in Section 4.1 which needs
approximately 40 seconds. From Theorem 2.1 and the linearity of the Omega
operator one sees that the complexity mainly depends on

• the number n, which in our setting just equals the sum of all positive
exponents of λ in the power products pi,

• the exponents of λ in L(λ), which take influence on the initial values of the
recurrences, and

• the number of monomials in L(λ).

3.2. How to use the Omega package in practice

We run our Mathematica session in the same directory in which we have put the
file Omega.m (together with the file Readme.txt). After invoking Mathematica
we load the package:

In[1]:= <<Omega.m

Axel Riese’s Omega implementation version 1.4 loaded

Now the proof of Theorem 1.1 for j = 3 can simply be done as follows. First
we input the expression the Ω= operator acts on; see (4) and the preceding
discussion:

In[2]:= f = 1 / ((1−q x/λ22)(1−λ2 q/(λ31 x))(1−λ21 q x))

Out[2]=
1(

1− λ2 q
λ3

1 x

)
(1− λ2

1 q x)
(
1− q x

λ2
2

)
Then we call the procedure OR to eliminate the variables λ1 and λ2:

In[3]:= OR[f, λ1]

Out[3]=

1 + λ2 q
3 x

(1− q x)
(
1− q x

λ2
2

)
(1− λ2

2 q
5 x)

In[4]:= OR[%, λ2]

Out[4]=
1

(1− q x) (1− q3 x) (1− q5 x)

This proves the equality in question.

Alternatively, we can prove “(2) = (4)” by reversing the order of elimination:
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In[5]:= OR[f, λ2]

Out[5]=
1(

1− q
λ3

1 x

) (
1− q3

λ6
1 x

)
(1− λ2

1 q x)

In[6]:= OR[%, λ1]

Out[6]=
1

(1− q x) (1− q3 x) (1− q5 x)

This means, if we reverse the order in which the λi are eliminated, we obtain
a different intermediate result. This fact is of particular importance in more
involved situations. In other words, in applications where we need to eliminate
several variables a certain order of elimination might turn out to be optimal
with respect to running time. See, for instance, the generating function for solid
partitions on a cube in Section 4.1.

3.3. Linear homogeneous diophantine equations

For one further introductory application we look at linear homogeneous diophan-
tine equations. Also this problem area has been studied by MacMahon exten-
sively. To this end MacMahon defined a different Omega operator.

Definition 3.1: The operator Ω= is given by

Ω
=

∞∑
s1=−∞

· · ·
∞∑

sr=−∞

As1,...,srλ
s1
1 · · ·λsrr := A0,...,0.

This means, all non-trivial power products in the λ’s are killed by the Ω= oper-
ator.

As already pointed out by MacMahon [7, Vol. II, Sect. VIII, p. 104], this
operator is related to Ω=, for instance, as follows:

Ω
=
F (λ) = Ω

=
F (λ) + Ω

=
F (1/λ)− F (1). (8)

We use exactly this relation in order to find a parameterized representation of
all tuples (a1, a2, a3, a4) of nonnegative integers satisfying a1 + a2 − a3 − a4 = 0.
(See Stanley [9, Ch. 4, Example 4.6.15].) Equivalent to this is the computation
of the corresponding generating function, i.e.,

Ω
=

∑
a1,a2,a3,a4≥0

λa1+a2−a3−a4xa1
1 x

a2
2 x

a3
3 x

a4
4 = Ω

=

1

(1− x1λ)(1− x2λ)
(
1− x3

λ

)(
1− x4

λ

) .
Using (8) the elimination is done as follows:



G.E. Andrews, P. Paule, and A. Riese: MacMahon’s Partition Analysis 13

In[2]:= f = 1 / ((1−x1 λ)(1−x2 λ)(1−x3/λ)(1−x4/λ));

In[3]:= Factor[OR[f, λ] + OR[f /. λ−>1/λ, λ] − (f /. λ−>1)]

Out[3]=

− −1 + x1 x2 x3 x4

(−1 + x1 x3) (−1 + x2 x3) (−1 + x1 x4) (−1 + x2 x4)

As another example from Stanley’s book [9, Ch. 4, Prop. 4.6.21], let us count
the number S3(r) of 3× 3 symmetric matrices with nonnegative integer entries
such that every row (and column) sum equals r. If (a1, a2, a3) stands for the first,
(a2, a4, a5) for the second, and (a3, a5, a6) for the third row, then the correspond-
ing linear system of homogeneous equations is

a1 + a2 + a3 − r = 0, a2 + a4 + a5 − r = 0, and a3 + a5 + a6 − r = 0.

The solution in generating function form can be written down immediately by
means of the Ω= operator,

Ω
=

∑
a1,...,a6,r≥0

λa1+a2+a3−r
1 λa2+a4+a5−r

2 λa3+a5+a6−r
3 xa1

1 x
a2
2 x

a3
3 x

a4
4 x

a5
5 x

a6
6 y

r

= Ω
=

1

(1− x1λ1)(1− x2λ1λ2)(1− x3λ1λ3)(1− x4λ2)(1− x5λ2λ3)
·

1

(1− x6λ3)
(
1− y

λ1λ2λ3

) .
For the elimination we use the procedure “OEqR” that encodes relation (8):

In[4]:= SymMS = 1 / ((1−λ1 x1)(1−λ1 λ2 x2) (1−λ1 λ3 x3)(1−λ2 x4) *

(1−λ2 λ3 x5)(1−λ3 x6)(1−y/(λ1 λ2 λ3)));

In[5]:= OEqR[ OEqR[ OEqR[SymMS, λ1], λ2], λ3]

Out[5]=

1− x1 x2 x3 x4 x5 x6 y
3

(1− x3 x4 y) (1− x1 x5 y) (1− x2 x6 y) (1− x1 x4 x6 y) (1− x2 x3 x5 y2)

In[6]:= % /. x −> 1

Out[6]=

1− y3

(1− y)4 (1− y2)

Obviously, S3(r) is the coefficient of yr after setting all the xi’s to 1 in the
computed λ-free generating function expression. This specialization, Out[6], can
be found in [9, Ch. 4, after Prop. 4.6.21].

Finally, we remark that there are more efficient ways than using (8) to im-
plement the Ω= operator. For more details, including an Ω= analogue to the
“Fundamental Recurrence” (Thm. 2.1), we refer the interested reader to the
forthcoming article [4].
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4. Further Applications

In this section we present further applications of Omega that are of less elemen-
tary nature.

4.1. Solid partitions on a cube

MacMahon devoted Art. 98 of [6, Sect. 7] to the consideration of the simplest
“lattice in solido”; namely, the lattice “in which the points are the summits
of a cube and the branches the edges of the cube.” In other words, following
MacMahon let us put nonnegative integer weights ai (1 ≤ i ≤ 8) on the vertices
of a cube as described by Figure 1 below.

�
��
�
��

�
��
�
��

�
��
�
��

a1 a2

a3 a4

a5 a6

a7 a8
s

s

s

s

c

s

s

s-

�

-

�

-

�

-

�

? ?

? ?

Figure 1: MacMahon’s solid cube

The vertices of the cube in Figure 1 are connected by directed edges that are
interpreted as inequalities. For instance, the directed edge from the vertex with
weight a1 to the vertex with weight a2 corresponds to the inequality relation
a1 ≥ a2, and so on. This way we have introduced 12 diophantine inequalities to
which we relate the generating function∑

qa1+···+a8 ,

where the sum runs over all nonnegative integer tuples (a1, . . . , a8) with entries
satisfying the 12 inequalities induced by the cube.

It is easy to check that this generating function is nothing but the Ω= operator
applied to the expression

In[2]:= f = 1 / ((1−q λ1 λ2 λ3)(1−q λ4 λ5/λ1)(1−q λ6 λ7/λ2) *

(1−q λ8/(λ4 λ6))(1−q λ9 λ10/λ3)(1−q λ11/(λ5 λ9)) *

(1−q λ12/(λ7 λ10))(1−q/(λ8 λ11 λ12)));

from which we first eliminate λ12:
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In[3]:= OR[f, λ12]

Out[3]=

1/
(

(1− λ1 λ2 λ3 q)
(
1− λ4 λ5 q

λ1

) (
1− q

λ10 λ7

) (
1− λ6 λ7 q

λ2

) (
1− λ8 q

λ4 λ6

)
(
1− λ11 q

λ5 λ9

) (
1− λ10 λ9 q

λ3

)(
1− q2

λ10 λ11 λ7 λ8

))
Now one proceeds by eliminating the remaining λ’s in some convenient order,

for instance, in the order (λ11, λ10, λ1, λ8, λ7, λ5, λ9, λ6, λ3, λ4).
This way one keeps the numerator equal to 1 until OR[%, λ9]. For readers

who want to use the Omega package in practice we point to the important fact
that other orders of elimination might result in (much) more involved numera-
tor polynomials that might slow down the computation tremendously. A good
heuristic principle for finding a “good” order is to apply OR with respect to a
λ-variable that occurs less frequently than others.

After eliminating λ4 the last step is:

In[14]:= OR[%, λ2]

Out[14]=

(1 + 2 q2 + 2 q3 + 3 q4 + 3 q5 + 5 q6 + 4 q7 + 8 q8 + 4 q9 + 5 q10 + 3 q11 +

3 q12 + 2 q13 + 2 q14 + q16) /(
(1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6)(1− q7)(1− q8)

)
In this way we have computed the generating function

∑
qa1+···+a8 in less than

one minute of computation time.
At the time of MacMahon the situation was quite a different one. It is instruc-

tive to compare how he managed to solve the Ω= elimination problem. Namely,
MacMahon divided the calculation into eighteen (!) parts (according to all possi-
ble inequality relations between weights corresponding to non-adjacent vertices
[6, Art. 98]) whose sum then gives the desired generating function. We conclude
this section with the footnote added by MacMahon after the description of his
computation, “Mr. A.B. KEMPE, Treas. R.S., has verified this conclusion by a
different and most ingenious method of summation, which also readily yields the
result for any desired restriction on the part-magnitude.”

4.2. A problem of Hermite

In their famous book [8, Ex. 31], Pólya and Szegő posed the following problem:

Problem 4.1: For an integer n greater than 2, let h(n) be the number of positive
integer triples (a, b, c) such that a + b + c = n and a ≤ b + c, b ≤ a + c, and
c ≤ a+b. Show that h(n) = (n+8)(n−2)/8, if n is even, and h(n) = (n2−1)/8,
if n is odd.
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Pólya and Szegő remark that the problem was originally posed by Ch. Hermite
in 1868 and solved by V. Schlegel in 1869. (In [8, Solution to Ex. 31] the exact
references can be found.)

For the first case, n = 3, it is obvious that (1, 1, 1) is the only solution, thus
h(3) = 1. If n = 4 we have three solutions, namely (1, 1, 2), (1, 2, 1), and (2, 1, 1);
this means, h(4) = 3. The general case can be settled automatically with the
Omega package as follows.

First we encode the situation in form of a generating function the Ω= operator
acts on:

∞∑
n=3

h(n) qn = Ω
=

∑
a,b,c≥1

λb+c−a1 λa+c−b
2 λa+b−c

3 qa+b+c

= Ω
=

λ1λ2λ3 q
3(

1− λ2λ3q
λ1

)(
1− λ1λ3q

λ2

)(
1− λ1λ2q

λ3

) .
In[2]:= hfu = λ1 λ2 λ3 q3 /

((1−λ2 λ3 q/λ1)(1−λ1 λ3 q/λ2)(1−λ1 λ2 q/λ3));

Then we successively eliminate the λ variables:

In[3]:= OR[ OR[ OR[hfu, λ1], λ2], λ3]

Out[3]=

−q
3 (−1− 2 q + 2 q2)

(1− q) (1− q2)2

Finally, from the following partial fraction representation of Out[3] the explicit
formulae for h(n) can be read off almost directly,∑

n≥3

h(n) qn =
q3(1 + 2q − 2q2)

(1− q)(1− q2)2
=

q3

(1− q2)3
+

q4

(1− q2)3
+

2q4

(1− q2)2
.

4.3. A generalization of Hermite’s problem

To illustrate the suggestive power of the Omega package, we consider a natural
generalization of Hermite’s problem. For instance, as the next case we consider
positive integer tuples (a1, a2, a3, a4) such that a1 + a2 + a3 + a4 = n where each
ai is less than or equal to the sum of the others; or equivalently, where we have
ai ≤ n− ai for all i ∈ {1, 2, 3, 4}.

Definition 4.1: As the set of “compositions of n into k positive parts” we
define

Ck(n) := {(a1, . . . , ak) ∈ Zk | ai ≥ 1 for all i, and a1 + · · ·+ ak = n}.

As the set of “k-gon compositions of n into positive parts” we define

Hk(n) := {(a1, . . . , ak) ∈ Ck(n) | ai ≤ n− ai for all i}.
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Note that h(n) = |H3(n)|. With the Omega package it is as easy as in the case
k = 3 to compute the generating functions of |Hk(n)| for the next values. For
instance, for k = 4 and k = 5 one obtains∑

n≥4

|H4(n)| qn =
q4

(1− q)4
− 4

q7

(1− q)4(1 + q)3

and ∑
n≥5

|H5(n)| qn =
q5

(1− q)5
− 5

q9

(1− q)5(1 + q)4
.

We leave the verification as an Omega exercise.
If one brings the generating function for |H3(n)| into the analogous form, i.e.,∑

n≥3

|H3(n)| qn =
∑
n≥3

h(n) qn =
q3

(1− q)3
− 3

q5

(1− q)3(1 + q)2
,

the underlying pattern already becomes obvious. We state the resulting conjec-
ture as a theorem, because — once discovered — its proof causes no further
difficulty.

Theorem 4.1: Let k be an integer greater or equal to 3, then∑
n≥k

|Hk(n)| qn =
qk

(1− q)k
− k q2k−1

(1− q)k(1 + q)k−1
.

While the Omega package cannot prove such a theorem in full generality, it
reveals its power by leading us to the correct formulation. We prove the statement
combinatorially; to this end we need a bit of preparatory work.

The first quotient is nothing but the generating function for compositions, i.e.,∑
n≥k

|Ck(n)| qn =
( q

1− q

)k
. (9)

For the combinatorial interpretation of the second quotient we introduce a
suitable composition set.

Definition 4.2: For integers n ≥ 3 and k ≥ 2 the set of compositions of n into
k positive parts where at most one part is odd can be described by the set

Ok(n) := {(e1, . . . , ek−1, ek) ∈ Zk |
ei ≥ 1 for all i, and 2e1 + · · ·+ 2ek−1 + ek = n}.

Its generating function is very close to the second quotient.
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Lemma 4.1: For integers k ≥ 2 and n ≥ 3,∑
n≥2k−1

|Ok(n)| qn =
q2k−1

(1− q)k(1 + q)k−1
.

Proof: The proof is obvious from∑
n≥2k−1

|Ok(n)| qn =
( q2

1− q2

)k−1

· q

1− q
.

2

For the proof of Theorem 4.1 it is also convenient to introduce the following
lemma.

Lemma 4.2: Let (a1, . . . , ak) ∈ Ck(n). If ai ≥ n − ai for some i ∈ {1, . . . , k}
then aj < n− aj for all j ∈ {1, . . . , k} \ {i}.

Proof: It suffices to prove the lemma for the case i = k. Suppose aj ≥ n/2
for some j ∈ {1, . . . , k − 1}. Then, since all parts are positive, we have n =
(a1 + · · ·+ ak−1) + ak > n/2 + n/2 = n, a contradiction. 2

After this preparatory work we are ready for the desired proof.

Proof of Theorem 4.1: From Lemma 4.2 we have for each (a1, . . . , ak) ∈ Ck(n) \
Hk(n) that ai > n − ai for some i ∈ {1, . . . , k} and aj < n − aj for all other
indices j 6= i. This induces the following partition of the set Ck(n)\Hk(n) into k

disjoint subsets, namely, Ck(n)\Hk(n) =
⋃
i∈{1,...,k}CH

(i)
k (n), where CH

(i)
k (n) :=

{(a1, . . . , ak) ∈ Ck(n) \Hk(n) | ai > n− ai}.
All these sets are of the same cardinality, i.e., for i, j ∈ {1, . . . , k} we have

|CH(i)
k (n)| = |CH(j)

k (n)|. This is immediate from the fact that for i < j the map

(a1, . . . , ai, . . . , aj, . . . , ak) 7→ (a1, . . . , aj, . . . , ai, . . . , ak)

is a bijection.
Hence, again by Lemma 4.2, we get that for all integers k ≥ 2 and n ≥ 3,

|Ck(n)| − |Hk(n)| = k |CH(k)
k (n)|.

In view of (9) and of Lemma 4.1, the proof of Theorem 4.1 is completed once

we are able to show that |CH(k)
k (n)| = |Ok(n)|. To this end we define the map

φ : CH
(k)
k (n)→ Ok(n),

(a1, . . . , ak) 7→ (a1, . . . , ak−1, 2ak − n).
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The map φ is well-defined, since 2(a1 + · · · + ak−1) + (2ak − n) = n and
2ak − n > 0.

Obviously, φ is an injective map. Finally we show that φ is also surjective, i.e.,
given any (e1, . . . , ek−1, ek) ∈ Ok(n) one can find (a1, . . . , ak) ∈ CH

(k)
k (n) such

that φ(a1, . . . , ak) = (e1, . . . , ek−1, ek). We will verify that the choice

ai := ei for i ∈ {1, . . . , k − 1} and ak := e1 + · · ·+ ek

does the job. This can be seen as follows:
Obviously, (a1, . . . , ak) is a composition of n, since all the ai’s are positive

and a1 + · · · + ak = 2(e1 + · · · + ek−1) + ek = n. Also, ak > n − ak, since

2ak = 2(e1 + · · · + ek) = n + ek > n. Thus (a1, . . . , ak) ∈ CH(k)
k (n). Finally, the

fact that

φ(a1, . . . , ak) = (a1, . . . , ak−1, 2ak − n) = (e1, . . . , ek−1, ek),

completes the proof that φ is surjective. Therefore φ is a bijection, and Theo-
rem 4.1 is proved. 2

4.4. k-gon partitions

One can view the study of triangles with sides of integer size [3, Sect. 3] as a
partition counterpart to Hermite’s problem. More precisely, it gives rise to the
following definition.

Definition 4.3: As the set of “non-degenerate k-gon partitions of n into posi-
tive parts” we define

Tk(n) := {(a1, . . . , ak) ∈ Ck(n) | a1 ≤ a2 ≤ · · · ≤ ak and ak < n− ak}.

The term “non-degenerate” refers to the restriction to strict inequality, i.e.,
to ak < n − ak. (Note that n − ak = a1 + · · · + ak−1.) In [3, Sect. 3], Partition
Analysis has been used to show that∑

n≥3

|T3(n)| qn =
q3

(1− q2)(1− q3)(1− q4)
. (10)

With the Omega package we are able to compute the next cases in purely me-
chanical way.∑
n≥4

|T4(n)| qn =
q4(1 + q + q5)

(1− q2)(1− q3)(1− q4)(1− q6)
, (11)

∑
n≥5

|T5(n)| qn =
q5(1− q11)

(1− q)(1− q2)(1− q4)(1− q5)(1− q6)(1− q8)
, (12)
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and∑
n≥6

|T6(n)| qn =
q6(1− q4 + q5 + q7 − q8 − q13)

(1− q)(1− q2)(1− q3)(1− q4)(1− q6)(1− q8)(1− q10)
. (13)

From these results we can derive a number of consequences. For example,

|T4(2n)| − |T4(2n− 1)| = g(n)

where g(n) is the number of partitions of n into 2’s and 3’s with at least one 3.
This implies that

g(n) =

{⌈
n−1

6

⌉
, if n ≡ 3 (mod 6),⌈

n−1
6

⌉
− 1, otherwise.

Also we can show that

|T5(2n)| − |T5(2n− 1)| = h(n)

where h(n) is the number of partitions of n into 1’s, 2’s, 4’s and 5’s with at least
one 5.

Each of these results is easily derived once we observe that if a−1 := 0 and

f(q) =
∞∑
n=0

anq
n,

then
∞∑
n=0

(a2n − a2n−1) q2n =
1

2
(1− q)f(q) +

1

2
(1 + q)f(−q).

It would be interesting to know if there are any simple combinatorial expla-
nations of these observations.

The verification of the generating function representations (11), (12), and (13)
is left to the reader as a routine Omega exercise. Moreover, it is also easily checked
that∑
n≥k

|Tk(n)| qn =
∑

ak≥···≥a1≥1
a1+···+ak−1>ak

qa1+···+ak

= Ω
=

qλ−1
1

(1− λk−1 q/λk)
(
1− λk−2λk q/λk−1)

(
1− λk−3λk q/λk−2) · · · (1− λk q/λ1)

is the corresponding Ω= representation for the generating function in full gener-
ality.

Despite the fact that the particular instances of
∑

n≥k |Tk(n)| qn can be com-
puted so easily, we were not able to find a common underlying pattern as in the
case of k-gon compositions. This suggests to conclude by stating this question
as an open problem:
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Problem 4.2: In view of the generating function representations (10), (11),
(12), and (13): Is it possible to find a common pattern for all possible choices of
k as in the case of k-gon compositions (Theorem 4.1)?
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